Wen Y, Wang WP, Guo L et al. Automated power control for virtualized infrastructures. JOURNAL OF COMPUTER
SCIENCE AND TECHNOLOGY 29(6): 1111-1122 Nov. 2014. DOI 10.1007/s11390-014-1494-x

Automated Power Control for Virtualized Infrastructures

Yu Wen (3), Wei-Ping Wang (A1), Member, CCF, Li Guo (¥ #i), Senior Member, CCF
and Dan Meng (i F1), Senior Member, CCF, Member, IEEE

Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China
E-mail: {wenyu, wangweiping, guoli, mengdan}@iie.ac.cn

Received August 28, 2013; revised May 26, 2014.

Abstract Power control for virtualized environments has gained much attention recently. One of the major challenges
is keeping underlying infrastructure in reasonably low power states and achieving service-level objectives (SLOs) of upper
applications as well. Existing solutions, however, cannot effectively tackle this problem for virtualized environments. In this
paper, we propose an automated power control solution for such scenarios in hope of making some progress. The major
advantage of our solution is being able to precisely control the CPU frequency levels of a physical environment and the CPU
power allocations among virtual machines with respect to the SLOs of multiple applications. Based on control theory and
online model estimation, our solution can adapt to the variations of application power demands. Additionally, our solution
can simultaneously manage the CPU power control for all virtual machines according to their dependencies at either the
application-level or the infrastructure-level. The experimental evaluation demonstrates that our solution outperforms three
state-of-the-art methods in terms of achieving the application SLOs with low infrastructure power consumption.

Keywords power control, virtualized infrastructure, multi-tier application, virtual machine, service-level objective

1 Introduction applications may share one node, such as VM 2 of ap-

plication A and VM 5 of application B share node 2.

The motivation of this paper stems from two grow-
ingly important trends on modern datacenters. One
trend is the popularity of virtualization technology
which is leading to a disruptive change on the exist-
ing resource sharing paradigms for datacenters. For
instance, in Fig.1, three multi-tier applications share
three virtualized nodes of a cluster, where 1) each VM
hosts a function tier of an application, such as VM 1
hosting the Web tier of application A and VM 5 host-
ing the database tier of application B; 2) the applica-
tions may span multiple nodes, such as application A
on nodes 1, 2 and 3; and 3) the VMs from the different

Node 1 Node 2 Node 3
App. 4 Web —/1_App. 4 App. App. 4 DB
VM 1 VM 2 VM 3
App. C Web App. BDB App. B Web
VM 4 VM5 VM 6
VMM VMM VMM

Fig.1. Virtualized cloud platform that hosts three multiple-tier

Another trend is the power management for datacen-
ters. This problem has regained considerable atten-
tion in system design and management because of the
power delivery limits, which result from the continu-
ously increasing hardware density and the huge energy
cost of the servers and the cooling system in a datacen-
ter. However, the power management for such virtua-
lized environments faces several challenges.

The requirement to simultaneously guarantee
service-level objectives (SLOs) of multiple applications,
e.g., application end-to-end performance, is the first key
challenge of the power management for a virtualized en-
vironment. In cloud computing, infrastructure service
providers need to meet the SLOs of hosted applications
in the infrastructure-as-a-service paradigm. However,
most of the recently proposed solutions, e.g., [1-4], treat
the power consumption as the first-class control target
without considering the SLOs of application services.
For example, the power management system presented
in [1] uses a control theory based method to adaptively
keep the power consumption of a virtualized platform

applications. App.: Application. DB: Database. below a budget. While this solution works effectively

Regular Paper

This work was supported by the National Key Technology Research and Development Program of the Ministry of Science and
Technology of China under Grant No. 2012BAH46B03, the National HeGaoJi Key Project under Grant No. 2013ZX01039-002-001-001,
and the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No. XDA06030200.

(©2014 Springer Science + Business Media, LLC & Science Press, China

1112

in controlling the power consumption of the system, it
cannot strictly guarantee the application performance
even with a sufficient power budget. Moreover, it is
non-trivial to simultaneously achieve the SLOs of multi-
ple applications. Thus, application SLOs oriented solu-
tions need to be proposed for virtualized environments.

Adaptability to the time-varying application beha-
vior is the second challenge of the power management
for a virtualized environment. Usually, the applica-
tion behavior, e.g., the power demand, is workload-
dependent and susceptible to the environmental varia-
tions, such as those resulting from the resource con-
tention among multiple applications in a shared envi-
ronment. The variations of application workload usua-
lly not only involve the changes of the workload inten-
sity, but also involve the changes of the workload mix,
e.g., the proportion of each request class. Nevertheless,
recently proposed techniques!> are able to adapt to
the inherent power demand changes within an appli-
cation instead of the external variations from applica-
tion workloads and environments. As a result, these so-
lutions may unnecessarily decrease power provisioning
when an application runs in the performance-critical
phases and thus lead to deficient application perfor-
mance. Therefore, a power control solution must be
able to handle such realistic variations of the applica-
tion behavior.

Another major challenge of the power management
for virtualized environments is to coordinate the po-
wer consumption control for related application VMs
in the multi-tier application scenarios. Recently a
few studies":9 present multiple-input, multiple-output
(MIMO) power control solutions based on control
theory for multiple applications. However, these solu-
tions neither explicitly control the power consumption
of all VMs of an application!], nor consider the depen-
dencies of the power consumption of related VMs as
this kind of approach is oriented to the single-tier ap-
plication scenariol®. Since the unawareness of VM de-
pendencies can exacerbate the performance imbalance
among function tiers of an application, these solutions
may lead to power efficiency deterioration and even un-
desired application performance degradation. This is-
sue is particularly important for cloud infrastructures
whose primary workloads are expected to be multi-tier
applications.

In this paper, we propose a novel and highly efficient
power control system that automatically manages the
power provision for a virtualized infrastructure that is
specially designed for multi-tier applications. Our con-
trol solution features a two-layer design. We first adopt
control theory to precisely control the performance of
individual applications, with theoretically guaranteed
accuracy and stability, by simultaneously calculating

J. Comput. Sci. & Technol., Nov. 2014, Vol.29, No.6

the power demands of all VMs of an application. Then,
we dynamically adjust the power provisioning for each
node and determine actual power allocations among all
the VMs within a node according to their power de-
mands and actual system conditions. Therefore, our so-
lution can guarantee the application performance while
precisely limiting the underlying power consumption as
much as possible.

Specifically, this paper makes the following major
contributions.

e We propose a highly efficient power control so-
lution for a virtualized infrastructure hosting multiple
multi-tier applications. Our solution is able to auto-
matically adjust the power provisioning at the node-
level and the power allocations at the VM-level accord-
ing to the SLOs of applications.

e We propose an adaptive approach to dynamically
describe the relationship between the SLOs of a multi-
tier application and the power allocations for its VMs.
This approach can adapt to the time-varying applica-
tion behavior which leads to the complicated changes
of the power demands of the application VMs.

e We implement our control solution on a small-
scale cluster of Xen-based machines and present
experimental results to demonstrate that our solution
achieves better power control efficiency than three of
the methods proposed in the literatures. The overhead
tests for the power demand calculations also demon-
strate the scalability of our solution on virtualized in-
frastructures.

The rest of this paper is organized as follows. Sec-
tion 2 describes our problem and goals in this paper.
Section 3 introduces the design for our power control
system. Section 4 presents our experimental testbed.
Section 5 discusses the evaluation results. Section 6
presents the related work and Section 7 concludes the

paper.
2 Problem Statement

In this paper, we adopt CPU as the control object
of our power management system as CPU is one of the
major power-consuming components in modern com-
puter systems. Many kinds of modern CPUs provide
assistant mechanisms, such as dynamic voltage and
frequency scaling (DVFS), to achieve dynamic power
management. Through DVFS, CPU voltage and fre-
quency can be intentionally decreased to reduce the
CPU power consumption. In this paper, we define a
metric, named CPU frequency quota, to quantify the
CPU power allocations for application VMs. The CPU
frequency quota is defined as the ratio of the CPU fre-
quency expected by or allocated for an application VM
to the highest CPU frequency level. Here, all of CPUs
within a node are always at the same CPU frequency

Yu Wen et al.: Automated Power Control for Virtualization

level. In addition, we adopt two performance metrics,
average response time and throughput, for the applica-
tion SLOs.

In this paper, our goal is to design a highly efficient
power management system that can automatically ad-
just CPU frequency levels for a virtualized infrastruc-
ture and allocate CPU frequency quotas for multi-tier
applications with respect to the average response time
goals and the throughput goals.

3 Design

In this section, we present the design for our power
management system for virtualized infrastructures.

3.1 Overview

We first give an overview of our management sys-
tem. As shown in Fig.2, our system features a two-
layer design: the top layer consists of a group of appli-
cation power controllers that dynamically calculate the
CPU frequency quota demands for all application VMs;
the bottom layer comprises a group of node power con-
trollers that determine the CPU frequency levels of all
nodes and the actual CPU frequency quota allocations
for all the application VMs.

Application 1 Application2| . |Application »
Controller Controller Controller
=1]
Node 1 Node 2 Node m
Controller Controller Controller

Fig.2. Structure of our power control system.

Each application power controller periodically calcu-
lates the CPU frequency quota demands for all VMs of
an application and then sends power requests to those
node power controllers on nodes hosting these VMs.
Based on such requests from the different applications,
each node power controller finally decides the CPU fre-
quency levels for a node and the actual CPU frequency
quota allocations for all the VMs within the node.

In the following subsections, we introduce the de-
sign for the application power controller and the node
power controller respectively. For easy reference, Table
1 summarizes the most relevant mathematical symbols
used in this paper.

3.2 Application Power Controller

Our application controller is based on control theory
and consists of a basic feedback controller and an online
model estimator. Fig.3 shows the control logic of the
controller during each control interval k. At the start

1113
Table 1. Notation
Mathematical — Description
Symbol

y(k) Predicted performance for an application in
interval k

y' (k) Measured performance for an application in
interval k

Yy Performance goal for an application

f(k) Column vector of the CPU frequency quota
demands for all VMs of an application in in-
terval k

f' (k) Column vector of the actual CPU frequency
quota allocation for all VMs of an application
in interval k

fa,i(k) CPU frequency quota demand for VM i of
application A in interval k

12 (k) Actual CPU frequency quota allocation for
VM ¢ of application A in interval k

Fj(k) Demanded CPU frequency for node j in in-
terval k

Fj’(k) Actual CPU frequency level for node j in in-

terval k

of a control interval, the feedback-based controller uses
an application performance model to calculate the CPU
frequency quota demands f(k) for all VMs of an ap-
plication based on the difference between the perfor-
mance goal § and the measured performance y'(k — 1)
in the last control interval £ — 1 for the application.
The application performance model correlates the ap-
plication performance with the CPU frequency quota
allocations for all the VMs of the application. At the
end of the control interval, according to the measured
performance y' (k) and the actual CPU frequency quota
allocations f/(k) for the application in the current in-
terval, the estimator recalibrates the coefficients of the
application performance model for the feedback con-
troller to capture the newest relationship between the
application performance and the CPU frequency quota
allocations for all the VMs of the application.

v (k)

Estimator Ij
Sk

Y= Feedback | £ (k)

Controller
S (k)

Fig.3. Control logic of our application power controller. Based

Node S5 Application | |
Controller VMs

(k)

on control theory, a feedback controller adaptively calculates the
CPU frequency quota demands for all VMs of an application f(k)
subject to the application performance goal . Based on the mea-
sured performance y’ (k) and the actual CPU frequency quota al-
locations f/(k), an estimator dynamically adjusts an application
performance model for the feedback controller to adaptively cap-
ture the relationship between the application performance and

its CPU frequency quota allocations.

1114

3.2.1 Basic Feedback Controller

We use a widely adopted time series model, named
auto-regressive moving average (ARMA) model, to de-
sign the application performance model for the feedback
controller. Specifically, we adopt two time series of the
measured performance and the actual CPU frequency
quota allocations for the application as the autoregres-
sive part and the moving average part of the ARMA-
based application performance model respectively. The
model can deterministically describe the locally linear
relationship between the application performance and
the CPU frequency quota allocations. Therefore, we
can predict the future application performance with the
expected CPU frequency quota allocations for the cur-
rent control interval and history information which in-
cludes the measured application performance and the
actual CPU frequency quota allocations in the recent
control intervals. In implementation, we adopt second-
level ARMA model since it has acceptable accuracy and
less computational complexity. The experimental re-
sults are presented in Subsection 5.1.

Therefore, the application performance model is for-
mulated as:

y(k) =a1(k)y' (k — 1) + by (k) f(k)+
by (k) f'(k—1), (1)

where aq, by and b; are the model coefficients that
respectively correlate the predicted application perfor-
mance y(k) with the expected CPU frequency quota
allocations f(k) for the current control interval k, the
measured application performance y'(k — 1), and the
actual CPU frequency quota allocations f'(k — 1) in
the last control interval k — 1. Since f and f’ are col-
umn vectors that denote the expected and the actual
CPU frequency quota allocations for an application re-
spectively, their coefficients by and b; are also column
vectors of the same dimension. Notice that these co-
efficients are also functions of the control interval k
and thus can be dynamically adjusted by the online
model estimator. Therefore, our solution can dynami-
cally capture the globally non-linear relationship be-
tween the application performance and the CPU fre-
quency quota allocations. Subsection 3.2.2 presents the
design details for the online model estimator.

By now, through the model in (1), we can calcu-
late the CPU frequency quota demands f(k) subject
to the application performance goal y. This kind of
calculation can be regarded as a typical optimization
problem. We first define our optimization objectives
for this problem as:

1) minimize |y(k) — g|, and

2) minimize || f(k)||.

J. Comput. Sci. & Technol., Nov. 2014, Vol.29, No.6

The objectives mean achieving the application perfor-
mance goal with the minimal CPU power consumption.

Further, the objectives can be formulated together
as a linear quadratic cost function, a common approach
used for many optimization problems!®). This cost func-
tion is:

J = Wyly(k) = gI* + Wel[£ ()P, (2)

where W, and Wy are control weights for objectives 1)
and 2) respectively. Since the application performance
and the CPU frequency quota allocations are two very
different metrics, we use the control weights to norma-
lize them and thus get control balance between achiev-
ing the application performance goal and minimizing
the CPU power consumption. In implementation, we
set W, and Wy to be as 1/g and 1/||fmax|| respec-
tively, where ||fmax|| denotes the norm of the likely
maximal CPU frequency quota allocations.

Then, we calculate the optimal CPU frequency
quota allocations that minimize the cost function J.
We get the first derivative of the function J on f(k).
For easy description, we define (k) = bl (k)a; (k), and
p(k—1) = ((f' (k- 1))Ty’(k—1))T. As y(k) is replaced
with (1), (2) can be rewritten as:

J =W, (2(h)pk —1) - g)2+
w, (bo(k) F(8)) +
2W, 7 (k)B] (k) (2 (k) (k — 1) =)+
Wil (k)12

Therefore, the first derivative of the function J on f(k)
is:
oJ
———— =2W, b} (k)bo (k) f(k
8f(k) Y 0() 0()f()"‘
2w, b (k) (2 (k)p(k — 1) =)+
2We (k).
Notice that the second derivative of the function J on
f (k) is a positive constant 2W, b} (k)bo (k) 4+ 2Wy, thus
the minimum of the function J always exists.

Finally, as the first derivative is equal to zero, we
can get the optimal CPU frequency quota allocations:

fk) = (WyboT(k)bo(k) + WfI)_l.
W3 () (5 — 2(k)e(k — 1)),

where I is an identity matrix.

Yu Wen et al.: Automated Power Control for Virtualization

3.2.2 Online Model Estimator

As presented in the previous subsection, the appli-
cation performance model in (1) is designed to describe
locally linear relationship between the application per-
formance and the CPU frequency quota allocations. In
this subsection, we present the online model estimator
that allows our system to dynamically capture globally
non-linear relationship between them.

The online estimator is designed to dynamically es-
timate the coefficients of the application model in (1).
In classic control theory, least squares (LS) is a main
stream approach for model estimation. Here, we adopt
recursive least squares (RLS)I7), an online variant of
ordinary LS, to implement our dynamic model estima-
tion. RLS not only possesses the same accuracy as or-
dinary LS, but also has less computational complexity
because of its recursive feature.

For easy description, we rewrite (1) as y(k) =
z(k)0(k), where we define z(k) = b (k)b (k)a;(k) and
0(k) = ((f'(k)™(f'(k —1))"y'(k —1))". Therefore,
the RLS-based coefficient estimation for the mode in
(1) can be described as:

(k) = y'(k) — 2(k)8(K), (3)
o (10T (k) A(k — 2)

k) =2k =D+ TG At — 28 (4)
Al 1) = AGh 2) 4 ALE= 20000 RAGk—2)

1+ 0T (k)A(k — 2)0(k

(5)
where (k) is the error of the application performance
prediction, 2(k) indicates an estimated value for z(k)
and therefore 2(k)0(k) is the expected application per-
formance for the actual CPU frequency quota alloca-
tions f’(k) for the current control interval, and A(k)
is a covariance matrix. At the end of each control in-
terval, if the prediction error (k) that is calculated via
(3) is not negligible, the estimator will re-calculate the
coefficients of (1) following (4) and (5).

3.3 Node Power Controller

After calculating the CPU frequency quota allo-
cations demands for an application, each application
power controller sends power requests to the node
power controllers on those nodes hosting the VMs for
the application. According to such requests from the
different application controllers, each node power con-
troller determines the CPU frequency levels for its node
and the actual CPU frequency quota allocations for all
the application VMs within the node.

1115

In this subsection, we present our approach for the
CPU frequency level adjusting and the CPU frequency
quota allocations following the example shown in Fig.1.
In particular, we discuss the power control for VM 3 and
VM 6, respectively, belonging to applications A and B,
respectively, on node 3. We suppose that the CPU fre-
quency quota demands calculated for these two VMs in
control interval k are f, 3(k) and f, ¢(k) respectively.
As presented in Section 2, we define the CPU frequency
quota as the ratio of the CPU frequency expected by a
VM to the highest CPU frequency level. Therefore, the
expected CPU frequency level for node 3 F5(k) is equal
to (fa,3(k) + fo,6(k))F*, where F'* denotes the highest
CPU frequency level. Since the feasible CPU frequency
levels are a set of discrete values, we need to find an ap-
propriate level F}(k) that is either immediately higher
than F5(k) or the highest level if F5(k) exceeds the
range of the feasible levels. Finally, the actual CPU fre-
quency quota allocations f, 3(k) and fj (k), for VM
8 and VM 6, are fu, o (k)F4(R)/(fa, a(k)F* + fo.6(k) ™)
and fy, 6F3(k)/(fa,3(k)F* + f,6(k)F*) respectively.

In implementation, we use Xen’s Xenpm utility to
set the CPU frequency levels. Xenpm provides an in-
terface that allows users to specify the expected CPU
frequency levels. Furthermore, we use Xen’s Credit
scheduler to enforce the CPU frequency quota alloca-
tions for the application VMs. We set each VM’s CPU
cap equal to its CPU frequency quota. The CPU cap
denotes the maximum amount of the CPU resources
that a VM can consume during each unit time. Then,
the Credit scheduler allocates the CPU resources for
the VMs according to their CPU caps.

4 Experimental Testbed

We evaluate our solution on a Xen-based cluster
where each machine has two 8-core Intel Xeon E5-2670
processors, 28 G memory, 146 GB disk and a 1 Gbps
NIC, and runs OpenSuSE 10.3 and Xen 3.4.1 (for Linux
2.6.22.5-31 SMP kernel). The processor has 15 possi-
ble frequency levels, ranging from 1.2 GHz to 2.6 GHz.
All the machines are connected via an adaptive 1 Gbps
switcher within the cluster.

Moreover, we adopt two test applications: an RUBIS
system® and the TPC-W benchmark®. RUBIS system
implements an online bid service. It has a three-tier
structure that consists of a web server, an application
logic tier and a MySQL database. RUBIS system sup-
ports 22 kinds of requests and two kinds of workload
mixes: browsing and bidding. The TPC-W benchmark
is also a multi-tier service and simulates an online book-
store service. It supports 14 kinds of requests and three

®http://rubis.orjectweb.org, Sept. 2014.
®http://www.tpc.org/tpcw, Sept. 2014.

1116

kinds of workload mixes: browsing, shopping, and or-
dering.

We design experimental workloads for the applica-
tions with a part of access logs from the official World
Cup website in 19988]. Fig.4(a) shows a statistic curve
of average request arrival rate for the trace. Based on
these statistics, we synthesize five kinds of application
workloads shown in Fig.4(b). Since our experiments
are to test the adaptability of our solution, we sim-
ulate the workload variations instead of the real re-
quest arrival rates. Specifically, we vary the number
of five kinds of application clients over time according
to the statistics shown in Fig.4(b). The five kinds of
clients implement RuBiS’ browsing and bidding work-
load, and TPC-W’s browsing, shopping, and ordering
workload respectively. In addition, in order to simulate
the power demands shifting between the applications,
we alternately generate the workload variations for the
applications. As presented in Section 2, we adopt ave-
rage response time and throughput as the metrics for
the application SLOs.

(x10%)

| I

0 20 40 60 80

Arrival Rate (Number of Clients/s)
)

Interval (905s)
(a)
TPC-W RUBIS
400 | — Browsing --e-- Browsing N |
-------- Shopping —a— Bidding N
o

AAAAAAAA Ol‘derll’lg

300}

200

Number of Clients

100 pvY,

|

0 40 80 120 160
Interval (905s)
(b)
Fig.4. Experimental workload synthesized using a part of a real
trace of the World Cup 1998 website. (a) A part of the trace of

the World Cup 98 website. (b) Simulation workloads.

Additionally, we compare the experimental results
for our solution with those for the three aforementioned
state-of-the-art methods. The first method that we de-
note as Prediction, is a DVFS policy based on appli-
cation workload prediction proposed by Rong et al.l"!

J. Comput. Sci. & Technol., Nov. 2014, Vol.29, No.6

This method adopts average request arrival rate as an
indicator for the workload intensiveness and predicts
such metric with its past information. In addition, this
method requires to specify a bound on the performance
degradation when adjusting the CPU frequency levels.
For fairness, we use the average performance degrada-
tion from our solution as the bound for this method.
The second method that we denote as Utility, is a
heuristic solution like the Xenpm’s ondemand mecha-
nism that dynamically adjusts the CPU frequency lev-
els based on CPU utilization observation. The third
method that we denote as Offiine, in fact, is an offline
version of our solution. This method supposes that the
relationship between the application performance and
the power allocations is deterministic and can be identi-
fied using samples of the application workload. There-
fore, unlike our solution, its application performance
model is built in an offline manner that the model coeffi-
cients are estimated statically. In particular, we use the
workload shown in Fig.4(b) and a set of, intentionally
generated, control inputs to test the system and then
collect the control outputs. Then, we use ordinary Least
Squares method on these data to estimate the model co-
efficients. Once the model is determined, it cannot be
adjusted during the experiments. Correspondingly, we
refer to our solution as AutoFreq in our experiments.
In our experiments, we first evaluate ARMA model
accuracy with respect to the model levels. Second, we
compare the experimental results in terms of the ap-
plication performance control and the power consump-
tion control for AutoFreq, Prediction, Utility, and Of-
fline on four of the nodes of the cluster respectively.
The experimental setup is shown in Fig.5. Three nodes
work together as a shared platform for the RUBIS sys-
tem and the TPC-W benchmark. Another node hosts
two application power controllers for the applications.
Application clients run on the rest of the machines. At

Node 1 Node 2 Node 3
RUBIS Web RUBIS App. RUBIS DB
VM VM VM
TOC-W Web TOC-W DB TOC-W App.
VM VM VM
VMM VMM VMM

z

i3

i3

g

i3

il

Node 0 Node 4 Node 5

RUBIS RUBIS Client TPC-W Client
Controller]]

TPC-W :)
Controller | RUBIS Client | [TPC-W Client|

Fig.5. Experimental setup for comparing our system with the

three proposed methods. App.: Application, DB: Database.

Yu Wen et al.: Automated Power Control for Virtualization

last, we evaluate the scalability of AutoFreq with up to
384 VMs on different nodes of the cluster.

5 Evaluation Results and Discussions
5.1 ARMA Model Accuracy

As presented in Subsection 3.2.1, our application
performance model is based on the ARMA model. An
important issue to the ARMA model applications is
to determine the model levels. While a higher model
level is able to bring ARMA model higher accuracy,
the complexity of the computation based on the model
inevitably increases. In this subsection, in order to find
a cost-efficient ARMA model, we compare the accuracy
of four ARMA models with four model levels respec-
tively. We use the error of the application performance
prediction to quantify the model accuracy. Further-
more, we adopt three CPU frequency levels: 1.2 GHz,
1.9 GHz and 2.6 GHz. For evaluation accuracy, tests of
each experimental configuration are repeated 20 times.
In each test, the nodes dedicatedly host a single appli-
cation and all CPUs are at the same frequency level.

In Fig.6, the experimental results for the ARMA
model accuracy evaluation are shown. Obviously, the
first-level model has higher prediction errors (26.1% in
average) than the other three models (11.7% at most).
Without history information in the stochastic impulse,
the first-level model cannot generate complete time
series for the application performance. Although the

Q

é . M First N Second #Third | Fourth
2% 40 & :
=

2 E 30 _ S R éb
R} &

573 20 a S

29

<D‘ 10 0 RS e
5 g \ ‘

g= 0

‘U:i .

CPU Frequency Level (GHz)
(a)

= M First Second @Third []Fourth
£.Y = @ a
oh 2 \ e 7
2 =30 & QQ
=3 & :
2352
(el =]
5 E 10 .
5y |
1.2
CPU Frequency Level (GHz)
(b)
Fig.6. Comparison of the average prediction errors in four

ARMA-based application performance models with different
model levels. Considering a compromise between the model accu-

racy and the model simplicity, we choose the second-level model.

1117

models with the higher levels are more accurate than
the second-level model in Fig.6, their differences are
not significant (3.2% at most). Since the model level
is normally a compromise between the model accuracy
and the model simplicity, we finally adopt second-level
ARMA model in this paper.

5.2 Application End-to-End Performance

In this subsection, we compare the experimental re-
sults of the application performance control for Auto-
Freq, Prediction, Utility and Offline. Since our goal
is to minimize the power consumption while guarantee-
ing the application performance, comparing the original
metrics for the application performance is not helpful.
Thus we define two metrics for the evaluation for the ap-
plication performance control. We define SLO success
ratio, which is proportional to the total control intervals
in which the application performance is achieved, and
SLO deviation ratio, which is the ratio of the absolute
performance error to the application performance goal.
Here, we do not discriminate the positive errors from
the negative errors since the positive ones mean unnece-
ssary power consumption that should be avoided.

In Fig.7, the CDFs of the per-interval application
performance for AutoFreq, Prediction, Utility and Of-
fline are shown respectively. The success ratios of Auto-
Freq with respect to the average response time goal and
the throughput goal for RUBIS are 80.2% and 71.4% re-
spectively. The corresponding results for TPC-W are
77.5% and 69.9%. They are higher than the corre-
sponding results of Prediction (68.2%, 58%, 65.8% and
53.4%), Utility (73.8%, 66.1%, 72.6% and 59.3%), and
Offtine (42.2%, 46.8%, 46.5% and 38.3%). Thus, Auto-
Freq is better than the three proposed methods with
regard to the success ratio of the application perfor-
mance control.

Sometimes the success ratios of Prediction and
Utility are relatively comparable to those of AutoFreq.
For example, in Fig.7(b), the success ratio of Utility
(66.1%) differs only by a 5.3% from that of AutoFreq
(71.4%). However, AutoFreq is obviously better than
the two methods with respect to the average deviation
ratio. In Fig.7(b), the average deviation ratios of Pre-
diction and Utility (31.7% and 16.8% respectively) are
about four times and twice higher than that of Auto-
Freq (7.3%), respectively. Thus, AutoFreq completely
outperforms the three proposed methods with respect
to achieving the application SLOs.

5.3 Power Consumption

In our experiments, we use a WattsUp power meter®
to measure the CPU power consumption of the appli-

®https://WWW.Wa,ttsupmeters.Com/secure/index.php7 Sept. 2014.

1118

B
9 —-A- Prediction
g —o— Utility
&) -8~ Offline
© —% - AutoFreq
""" Control Goal
olLd L Ll
1.0 2.0 3.0 4.0 5.0 6.0
Average Response Time (s)
(a)
~&c- Prediction
801~ —o— Urility
3 | -8~ Offline
£ 60 —%- AutoFreq
E 40— Control Goal
O
20—
ol | 1 £ ol \ | 1 |
100 200 300 400 500 600
Throughput (Number of Requests per Second)
(b)
——EF
a--=
80—
3 60— &~ Prediction
S —o— Utility
E 40— -8- Offline
@) —%- AutoFreq
20— Ay Control Goal
ol : Lo | []
1.0 2.0 3.0 4.0 5.0 6.0
Average Response Time (s)
80| A
S 60— ~&c- Prediction
< —e— Utility
5 40— -8- Offline
© —% - AutoFreq
20— LR Control Goal
L \ L

100 200 300 400 500 600

Throughput (Number of Requests per Second)
()

Fig.7. CDFs of the application performance for AutoFreq, Pre-
diction, Utility, and Offline respectively. (a) CDFs of the average
response time of RUBIS. (b) CDFs of the throughput of RUBIS.
(c) CDFs of the average response time of TPC-W. (d) CDFs of
the throughput of TPC-W.

cations. For accuracy, tests of each experimental confi-
guration are repeated 20 times. Fig.8 shows the experi-
mental results of the average application power con-
sumption for AutoFreq, Prediction, Utility and Offline
respectively. The results for AutoFreq with regard to
the average response time goals and the throughput
goals for the applications are 819 watts and 765 watts
respectively. They are lower than the corresponding re-
sults for Prediction (1115 watts and 1021 watts) and

J. Comput. Sci. & Technol., Nov. 2014, Vol.29, No.6

Utility (994 watts and 910 watts). Therefore, Auto-
Freq outperforms Prediction and Utility in terms of the
application power consumption control.

B Prediction

S Utility @ Offline U AutoFreq

—
[\]
[
(=]

800
400

Power (watt)

Average Response Time

Fig.8. Comparison of the CPU power consumption for AutoFreq,
Prediction, Utility and Offline. AutoFreq outperforms Prediction
and Utility in terms of power consumption control. Compared
to Offline, AutoFreq has significantly higher application perfor-
mance shown in Fig.7 with little extra cost of power consumption.

AutoFreq is better than Offline in terms of power efficiency.

Although Offiine slightly outperforms AutoFreq in
terms of power consumption control in Fig.8, AutoFreq
significantly benefits the application performance pre-
sented in Subsection 5.2 with little extra cost of power
consumption (5.2% in average). The reason is that the
workloads shown in Fig.4(b) that are used in our experi-
ments have also been used to estimate the control mod-
els of Offline presented in Section 4. Therefore, Offline
can relatively easily figure out the total power demands
of applications during the experiments and hence effec-
tively manage the global power control. Nevertheless,
as presented in Section 4, this method adopts offline
model estimation, thus it cannot accurately capture
the local variations of the application power demands.
This is why Offiine is noticeably worse than AutoFreq
in terms of the application performance control pre-
sented in Subsection 5.2. The further investigations on
the differences between AutoFreq and the three state-
of-the-art methods are presented in the following part
of this subsection.

We first compare the aggregated CPU frequency
level distributions with regard to the application perfor-
mance goals for AutoFreq, Prediction, and Utility. The
experimental results are shown in Fig.9. Compared to
AutoFreq, the results for Prediction and Utility obvi-
ously focus on high CPU frequency levels (from 2.6 GHz
to 2.1 GHz). This is why the power consumption for
these two methods is higher than that for AutoFreq
shown in Fig.8.

Notice that although Prediction and Utility prefer
to allow the applications to consume more CPU power,
AutoFreg, on the contrary, outperforms them in terms
of application performance control as shown in Fig.7.
We further compare the traces of the aggregated CPU
frequency demands calculated for the applications for
these three methods. The experimental results are

Yu Wen et al.: Automated Power Control for Virtualization

B Prediction ® Utility ™ AutoFreq

8 B0 [g
]
5 20 b
2
o |

0 1.6 1.7 1.8 19 20 21 22 23 24 25 26

CPU Frequency (GHz)
@
m Prediction wmUtility L AutoFreq
30
20

Percentage

, |1 ” """ W

16 1.7 18 19 20 21 22 23 24 25 26
CPU Frequency (GHz)
(b)
Fig.9. Comparison of the aggregated CPU frequency level distri-
butions for AutoFreq, Prediction, and Utility. AutoFreq prefers to
lower the CPU frequency levels. (a) Aggregated CPU frequency
level distributions with regard to the average response time goals
for the applications. (b) Aggregated CPU frequency level distri-
butions with regard to the throughput goals for the applications.

shown in Fig.10. The curves for Prediction and Utility
are relatively more stable than those for AutoFreq. Pre-
diction calculates the CPU power demands for the ap-
plications according to the predictions for the request
arrival rate. However, the variations of the applica-
tion power demands not only result from the changes
of the workload volume, but also heavily depend on the
changes of the workload mix. Thus, Prediction cannot
effectively identify the exact CPU power demands of
the applications.

Since Utility calculates the application power de-
mands based on separated observations on the CPU
utilization, its difficulty is the lack of the awareness of
VM dependencies. Thus, this method likely leads to
the performance imbalance among the VMs and thus
unnecessary CPU power consumption. Based on con-
trol theory, AutoFreq directly correlates the application
performance with the CPU power allocations instead of
depending on any system factor to instruct the power
control because of the complexities of the application
power demand variations. Therefore, AutoFreq outper-
forms these two proposed methods in terms of achieving
the application performance goals while minimizing the
power consumption.

Moreover, we compare the aggregated CPU fre-
quency level distributions and the aggregated CPU fre-
quency quota allocations for the application for Auto-
Freq and Offline. For easy comparison, the results for
AutoFreq are normalized to those for Offfine. In addi-
tion, the CPU frequency quota allocations are aggre-
gated at the different CPU frequency levels. The expe-

1119
-8 - Prediction --&--- Utility ~—e— Autofreq

< 120
T
)
Y
5 80
=
g
=

ol

300 600 900 1200 1500
Intervals (per 9s)
(a)
-8&- Prediction - Utility ~—— AutoFreq

< 120
T
)
Y
g5 80
=
g
=

40

300 600 900 1200 1500
Intervals (per 9s)
(b

Fig.10. Comparison of the traces of the aggregated CPU fre-
quency demands calculated for the applications for AutoFreq,
Prediction, and Utility. AutoFreq is more sensitive to the varia-
tions of the application power demands than Prediction and
Utility. (a) Aggregate CPU frequency demands with regard to
(b) Ag-
gregate CPU frequency demands with regard to the throughput

the average response time goals for the applications.

goals for the applications.

rimental results with respect to the application perfor-
mance goals are shown in Figs. 11 and 12 respectively.

Compared to the differences between the aggregated
CPU frequency level distributions of these two methods
in Fig.11(a) and Fig.12(a), their differences of the ag-
gregated CPU frequency quota allocations for the ap-
plications change more notably in Figs. 11(b) and 11(c)
and Figs. 12(b) and 12(c). The average differences be-
tween the aggregated CPU frequency level distributions
of AutoFreq and Offline with regard to the average re-
sponse time goals and the throughput goals are 18.5%
and 24.6% respectively. Correspondingly, the average
differences between their aggregated CPU frequency
quota allocations with regard to the application goals
are 53.2% and 47.1% respectively.

In particular, the difference between the aggregated
distributions of the 2.0 GHz frequency level of Auto-
Freq and Offline is relatively trivial (17%) in Fig.11(a).
However, the difference between their aggregated CPU
frequency quota allocations for TPC-W at the same
CPU frequency level is significant (224%) in Fig.11(c).
Since Offline adopts offline model estimation, it cannot

1120

Percentage

1.7 18 19 20 21 22 23 24 25 26
CPU Frequency (GHz)
(@
BOffline DAutoFre
200 ol i q[\
(= .
& 150 $en -
= T & 88 8, & =
S 100 | gy g p g =
o [a\]
A,
50+ 4
0
20 21 22 23 24 25 26
CPU Frequency (GHz)
(b)
324%
© N BOffline OAutoFreq
200 o o]
°)
g0 150
=
8 100
5]
& 50
1.7 1.8 19 20 21 22 23 24 25 26

CPU Frequency (GHz)
©

Fig.11. Comparison of the aggregated CPU frequency level dis-
tributions and the aggregated CPU frequency quota allocations
for the applications for AutoFreq and Offline with respect to the
average response time goals. (a) Normalized aggregated CPU fre-
quency distributions. (b) Normalized aggregated CPU frequency
quota allocations for RUBIS. (¢) Normalized aggregated CPU
frequency quota allocations for TPC-W.

effectively identify the local variations of the applica-
tion power demands. Therefore, while the measured
application power consumption for AutoFreq and Of-
fline shown in Fig.8 is comparable, the results with
regard to achieving the application goals for them pre-
sented in Subsection 5.2 are significantly different.

5.4 Scalability

In this subsection, we evaluate the scalability of
AutoFreq with its overhead when calculating the CPU
frequency quota demands for the applications. We use
eight kinds of environments that include: three nodes
with 3 VMs, 6 VMs, 12 VMs, 24 VMs, 48 VMs and
96 VMs respectively; six nodes with 192 VMs; and 12
nodes with 384 VMs. For accuracy, tests of each experi-
mental configuration are repeated 20 times.

J. Comput. Sci. & Technol., Nov. 2014, Vol.29, No.6

150
&
<
§ 100
2 50 -
£ o [|
1.6 1.7 1.8 19 20 21 22 23 24 25 26
CPU Frequency (GHz)
(a)
m Offline TAutoFreq
200 =]
g 150
8
g 100
L2 50
0 1.6 1.7 1.8 19 20 21 22 23 24 25 26
CPU Frequency (GHz)
(b)
- BOffline OAutoFreq
200 e o
a 3 e
1 [] o - S =
g 150 asaes 5 3
S 100 r
2
L2 50
0 16 1.7 1.8 1.9 2.0 2.1 22 23 24 25 26
CPU Frequency (GHz)
(©

Fig.12. Comparison of the aggregated CPU frequency level dis-
tributions and the aggregated CPU frequency quota allocations
for the applications for AutoFreq and Offline with respect to the
throughput goals. (a) Normalized aggregated CPU frequency
distributions. (b) Normalized aggregated CPU frequency quota
allocations for RUBIS. (c) Normalized aggregated CPU frequency
quota allocations for TPC-W.

Fig.13 shows the average calculation overhead for
eight different kinds of environments. We find that the
overhead does not significantly increase until it is up to
192 VMs. Moreover, compared to the control interval,
the overhead, even with 384 VMs, is relatively negli-
gible. The results imply that AutoFreq leads to low
calculation overhead and thus features scalability.

120l —o— RUBIS - #-TPC-W

80—
40
0 | | L1 LULCCTLLLL O TIEDY
3 6 12 24 48 96 192 384
Number of VMs

Time (ms)

Fig.13. Overhead of the application power demand calculation
with eight kinds of VM scales for AutoFreq. Compared to the con-
trol interval, the overhead is relatively negligible. Thus, AutoFreq

features scalability.

Yu Wen et al.: Automated Power Control for Virtualization

6 Related Work

6.1 Power Management for Virtualized
Platform

Recent work on power management for virtualized
environments can be divided in two directions: con-
trol theory based methods!*®! and non-feedback con-
trol methods2+10-14] Lim et al.l!l proposed a control
theory based power budgeting technique for a virtua-
lized datacenter. However, this method explicitly con-
trols the power consumption of only one VM of a multi-
tier application. In addition, this work adopts offline
system identification to estimate its control model.

Wang et al.l’) presented a control theory based
mechanism, which includes two independent control
loops for the system-level power control and the
application-level performance control respectively, for
a virtualized cluster. However, this work first needs to
carefully coordinate these two control loops to avoid
control conflicts. Second, this approach aims to limit
the total power consumption to be below the capacity
of the power supplies instead of controlling the power
consumption with respect to guaranteeing the applica-
tion performance. Third, this method is designed for
the scenario of single tier applications. It is unaware
of the dependencies among the related VMs within a
multi-tier application. Last, this work also adopts of-
fline system identification. In contrast, our solution di-
rectly correlates with these two different control goals
and thus can control the power consumption with re-
gard to the application performance goals. Further-
more, our solution can simultaneously control the power
consumption of all VMs of a multi-tier application.

Stoess et al.?l and Nathuji et al.['?l proposed in-
vasive power control methods for virtualized systems.
This kind of techniques needs to modify the system
software, e.g., OS2l or VM hypervisor['?l. Kansal et
al.Bl and Chen et al.l'% proposed non-invasive con-
trol approaches. But these methods depend on spe-
cific hardware supports, such as hardware performance
counters(® or a sensor network to monitor the system
power consumption!?l. Moreover, all of these studies
regard the power consumption as the first-class control
target. Although some studies*'3-14 consider the sys-
tem performance, instead of being oriented to the end-
to-end performance of multi-tier applications, they are
proposed for low-level hardwarel!, high performance
computing jobs!'3 1 or a single-tier web servicel'll,
Our solution neither modifies the source code of both
the system software and an application nor depends on
specific hardware support. In addition, our solution
can explicitly guarantee the end-to-end performance of
a multi-tier application.

1121

6.2 Control Theory Based Methods for Other
Problem

Control theory based methods are widely used
for system management including performance
management 518! allocation19-20,
Kamra et al.l'®l proposed a request admission con-
trol mechanism to prevent a server from overload. This
work adopts an adaptive PI controller to control the
application performance. Padala et al.l!9 presented
a resource control method for multi-tier applications
based on control theory. Lu et al.?%! proposed a feed-
back control based QoS differentiation method for a
web content service. Abdelzaher et al.l'®l presented
a control theory based approach of application mana-
gement for performance isolation and QoS differen-
tiation. Karlsson et al.l'”) designed a performance
isolation mechanism for a storage system based on con-
trol theory. Wang et al.['8! presented a feedback control
based QoS management method for an application. Ex-
cept for [15, 17-18], these studies adopt offline system
identification to build static control models. However,
online estimation-based work proposed in [15, 17-18]
is not oriented to the power control for a virtualized
environment.

and resource

7 Conclusions

Power management for virtualized environments has
gained much attention recently resulting from two
trends: the popularity of virtualization technology and
the urgencies of power management because of the con-
tinuously increasing density of hardware and the huge
energy cost of modern datacenters. In this paper, we
proposed an automated power control system with re-
gard to achieving the application SLOs for virtualized
infrastructures. Based on classic control theory and on-
line application model estimation, our solution adapts
to the time-varying application power demands. Ad-
ditionally, our solution can simultaneously control the
power consumption of all VMs of an application. Our
experimental evaluation demonstrates that our solution
outperforms three state-of-the-art methods in terms of
achieving the application SLOs while minimizing the
power consumption.

Acknowledgement We thank Lei Wang for his
insightful comments. We also thank Yuan-Sheng Chen
for his help on experiments. We would thank the anony-
mous reviewers for their constructive suggestions. Fi-
nally, we thank the editors for their helpful work.

References

[1] Lim H, Kansal A, Liu J. Power budgeting for virtualized data
centers. In Proc. 2011 USENIX Annual Technical Confer-
ence, June 2011, pp.59-72.

1122

(2]

(3]

(4]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Stoess J, Lang C, Bellosa F. Energy management for
hypervisor-based virtual machines. In Proc. 2007 USENIX
Annual Technical Conference, June 2007, pp.1-14.

Kansal A, Zhao F, Liu J, Kothari N, Bhattacharya A A. Vir-
tual machine power metering and provisioning. In Proc. the
1st ACM Symp. Cloud Computing, June 2010, pp.39-50.
Dhiman G, Marchetti G, Rosing T. vGreen: A system
for energy-efficient management of virtual machines. ACM
Trans. Design Automation of Electronic Systems, 2010,
16(1): Article No. 6.

Wang X, Wang Y. Coordinating power control and perfor-
mance management for virtualized server clusters. IEEE
Trans. Parallel and Distributed Systems, 2010, 22(2): 245-
259

Anderson B D O, Moore J B. Optimal Control:
Quadratic Methods. Prentice Hall, 1989.

Astrom K J, Wittenmark B. Adaptive Control.
Wesley, 1995.

Arlitt M, Jin T. Workload characterization of the 1998 World
Cup Web site. Technical Report, HPL-1999-35R1, HP Lab-
oratories, Sept. 1999. http://www.hpl.hp.com/techreports/
1999/HPL-1999-35R1.html, Sept. 2014.

Ge R, Feng X, Feng W C, Cameron K W. CPU miser: A
performance-directed, run-time system for power-aware clus-
ters. In Proc. the 2007 International Conference on Parallel
Processing (ICPP), Sept. 2007, pp.18-25.

Chen H, Song M, Song J, Gavrilovska A, Schwan K. HEaRS:
A hierarchical energy-aware resource scheduler for virtualized
data centers. In Proc. IEEE International Conference on
Cluster Computing. Sept. 2011, pp.508-512.

Petrucci V, Carrera E V, Loques O, Leite J C B, Mosse D. Op-
timized management of power and performance for virtualized
heterogeneous server clusters. In Proc. the 11th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Com-
puting, May 2011, pp.23-32.

Nathuji R, Schwan K. Virtualpower: Coordinated power
management in virtualized enterprise systems. In Proc. the
21st ACM SIGOPS Symp. Operating Systems Principles
(SOSP), Oct. 2007, pp.265-278.

Takouna I, Dawoud W, Meinel C. Energy efficient scheduling
of HPC-jobs on virtualized clusters using host and VM dy-
namic configuration. ACM SIGOPS Operating Systems Re-
view, 2012, 46(2): 19-27.

Zhang Z, Guan Q, Fu S. An adaptive power management
framework for autonomic resource configuration in cloud com-
puting infrastructures. In Proc. the 31st IEEE Int. Per-
formance Computing and Communications Conference, Dec.
2012, pp.51-60.

Kamra A, Misra V, Nahum E M. Yaksha: A self-tuning con-
troller for managing the performance of 3-tiered Web sites.
In Proc. the 12th IEEE Int. Workshop on Quality of Service
(IWQoS), June 2004, pp.47-56.

Abdelzaher T F, Shin K G, Bhatti N. Performance guarantees
for Web server end-systems: A control-theoretical approach.
IEEE Trans. Parallel and Distributed Systems, 2002, 13(1):
80-96.

Karlsson M, Karamanolis C T, Zhu X. Triage: Performance
differentiation for storage systems using adaptive control.
ACM Trans. Storage, 2005, 1(4): 457-480.

Wang X, Jin S, Xia M. Distributed quantitative QoS control
based on control theory in Web cluster. Journal of Software,

Linear

Addison-

(19]

20]

J. Comput. Sci. & Technol., Nov. 2014, Vol.29, No.6

2007, 18(11): 2810-2818. (In Chinese)

Padala P, Shin K G, Zhu X, Uysal M, Wang Z, Singhal S, Mer-
chant A, Salem K. Adaptive control of virtualized resources
in utility computing environments. In Proc. the 2nd ACM
SIGOPS/EuroSys European Conference on Computer Sys-
tems, Mar. 2007, pp.289-302.

Lu Y, Abdelzaher T F, Saxena A. Design, implementation,
and evaluation of differentiated caching services. IEEE Trans.
Parallel and Distributed Systems, 2004, 15(5): 440-452.

Yu Wen received his Ph.D. de-
gree in computer science from Insti-
tute of Computing Technology, Chi-
nese Academy of Sciences, Beijing, in
2011. He is now an assistant profes-
sor of Institute of Information En-
gineering, Chinese Academy of Sci-
ences, Beijing. His research interests
include cloud computing, data mana-
gement, and system security.

Wei-Ping Wang received his
Ph.D. degree in computer science
from Harbin Institute of Technology
in 2006. He is now a professor of
Institute of Information Engineering,
Chinese Academy of Sciences, Bei-
jing. His research interests include
cloud computing and big data. He is
a member of CCF.

Li Guo received her M.S. de-
gree in computer science from Insti-
tute of Computing Technology, Chi-
nese Academy of Sciences, Beijing,
in 1994. She is now a professor of
Institute of Information Engineering,
Chinese Academy of Sciences, Bei-
jing. Her research interests include
information security and data stream
analysis. She is a senior member of
CCF.

Dan Meng received his Ph.D.
degree in computer science from
Harbin Institute of Technology in
1995. He is now a professor of
Institute of Information Engineer-
ing, Chinese Academy of Sciences,
Beijing. His research interests in-
clude high performance computing
and computer architecture. He is a
senior member of CCF and a mem-
ber of IEEE.

