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Abstract As the scaling of applications increases, the demand of main memory capacity increases in order to serve

large working set. It is difficult for DRAM (dynamic random access memory) based memory system to satisfy the memory

capacity requirement due to its limited scalability and high energy consumption. Compared to DRAM, PCM (phase change

memory) has better scalability, lower energy leakage, and non-volatility. PCM memory systems have become a hot topic of

academic and industrial research. However, PCM technology has the following three drawbacks: long write latency, limited

write endurance, and high write energy, which raises challenges to its adoption in practice. This paper surveys architectural

research work to optimize PCM memory systems. First, this paper introduces the background of PCM. Then, it surveys

research efforts on PCM memory systems in performance optimization, lifetime improving, and energy saving in detail,

respectively. This paper also compares and summarizes these techniques from multiple dimensions. Finally, it concludes

these optimization techniques and discusses possible research directions of PCM memory systems in future.
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1 Introduction

DRAM (dynamic random access memory) has been

used as main memory for the last decades. As the scal-

ing of applications (such as bioinformatics and search

engine) increases, the demand of memory capacity in-

creases in order to serve increasing working sets. On

the other hand, the number of concurrent running ap-

plications on individual servers increases as the number

of processor cores increases, which also results in the in-

creasing demand of memory capacity. However, DRAM

technology is facing two issues: energy and scalability.

First, DRAM uses capacitor to store data, and thus

DRAM needs to refresh periodically to avoid the leaka-

ge of capacitor. This increases the energy consumption

of DRAM memory. Generally, current DRAM mem-

ory system consumes 20% to 40% energy of the total

server energy[1-3]. Second, it is difficult for DRAM to

scale down to 20 nm due to limitations, such as capaci-

tor placement, device leakage, and chip packaging 1○.

Therefore, DRAM memory system incurs excessive cost

to satisfy the increasing memory demands of applica-

tions.

Recently, emerging non-volatile memories (NVMs)

have shown potential to be adopted as main memory,

such as phase change memory (PCM), resistive random

access memory (RRAM), and magnetoresistive random

access memory (MRAM). NVMs are expected to have

better scalability, lower energy consumption, and com-

parable performance with DRAM. PCM is a promising

technology among these NVMs[4-7]. First, PCM tech-

nology has better scalability than DRAM. For example,
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a PCM device prototype with 3 nm × 20 nm has been

fabricated and tested[8]. Second, the density of PCM

is 2 to 4 times higher than that of DRAM. Thus, it

is possible to produce PCM chip with larger capacity

than DRAM chip. At last, since PCM does not need

to refresh periodically, the static energy consumption of

PCM is also lower than that of DRAM. PCM has been

evaluated as main memory in context of GPUs, embed-

ded systems, real-time systems, video applications and

so on[9].

Unfortunately, compared to DRAM, PCM techno-

logy has three major drawbacks: longer write latency,

limited write endurance, and higher write energy, which

challenges its adoption as main memory. First, the

write latency of PCM is longer than that of DRAM,

which affects the performance of memory system. Sec-

ond, the write endurance of PCM is limited. PCM cells

can be worn out after a large number of writes, which

shortens the lifetime of PCM memory. At last, the

write energy of PCM is apparently higher than that of

DRAM. The high write energy not only degrades write

performance, but also increases system running cost.

Therefore, it is vital to address these issues of PCM for

its practical usage. A large number of techniques have

been proposed to optimize PCM memory system from

the perspectives of device, architecture, and system.

There are already a few studies that summarize

the optimization techniques of PCM memory systems.

Querish et al.[10] investigated architectural techniques

to enable PCM for main memory. Zilberberg et al.[11]

surveyed architecture and system level techniques when

PCM is used to replace DRAM and NAND flash.

Mittal[9] listed energy saving techniques for PCM mem-

ory systems. The studies [12] and [13] summarize

device-level optimization techniques for PCM devices.

However, these researches were finished several years

ago, and cannot reflect the latest research progress on

PCM memory systems. Moreover, these researches fo-

cus on introducing each technique and lack classifica-

tion, comparison, and analysis over these techniques.

In this paper, we survey the architecture-level tech-

niques of PCM memory systems to address PCM’s is-

sues and enable its actual adoption. This paper makes

the following contributions.

1) We survey architectural techniques for PCM

memory systems from the perspectives of performance,

lifetime, and energy, respectively. Moreover, We reveal

the advantages and limitations of these techniques by

classifying and comparing them from multiple dimen-

sions.

2) We propose a few possible research directions

for the future work of PCM memory systems. Hybrid

DRAM/PCM memory system and PCM-based storage

are promising usage models of PCM. On the other hand,

optimizing the performance of persistent memory sys-

tem also requires more research efforts.

The remainder of this paper is organized as follows.

Section 2 presents the background of PCM memory.

Section 3 surveys the techniques to address the long

write latency to improve PCM memory systems perfor-

mance. Section 4 summarizes the techniques to over-

come the limited write endurance to improve the life-

time of PCM memory systems. Section 5 describes the

techniques to reduce the energy consumption of PCM

memory systems. Section 6 concludes this paper and

discusses possible directions of future research.

2 Phase Change Memory

2.1 Physical Mechanism

Phase change memory (PCM) is a type of non-

volatile memory that exploits the phase change

property of chalcogenide glasses to store bit

information[14-15]. Although the principle of using

phase change material to store data was proven in

1968[16], the lack of suitable material with low energy

consumption prevents its actual usage. With the dis-

covery and development of crystallizing material, such

as Ge2Sb2Te5 (GST), phase change technology renews

industry interest including IBM, Micron, Samsung and

so on. For example, IBM produced a PCM device

prototype in 2008. Micron announced in massive pro-

duction of 1 Gbit PCM chips in 2012 2○. Samsung

produced an 8 Gbit PCM chip using 20 nm process in

2012[17].

Fig. 1(a) shows the structure of a conventional PCM

cell, which consists of top and bottom electrodes, physi-

cal change material and heater[18]. Phase change ma-

terial can switch back and forth between two states:

amorphous state that has high resistance and poly-

crystalline state that has low resistance. PCM uti-

lizes the resistance difference to store bit information.

Fig.1(b) shows the read and write mechanisms of PCM

technology[18]. To RESET (writing bit “0”) a PCM

cell, a short but high voltage pulse is applied to heat the

2○ Micron announces availability of phase change memory for mobile devices. http://investors.micron.com/releasedetail.cfm?Rel-
easeID=692563, Nov. 2014.
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phase change material and switch it from the polycrys-

talline state to the amorphous state. To SET (writing

bit “1”) a PCM cell, a sustained but low voltage pulse

is applied to switch the material back to the polycrys-

talline state. Therefore, RESET takes short latency

and consumes high power, while SET takes long latency

and consumes low power. The energy consumption of

RESET is also higher than that of SET. To read the

state of phase change material, a low enough voltage

pulse is applied to the material. The bit information is

distinguished according to the current difference. Both

the read latency and the read energy of PCM are low.
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Fig.1. (a) PCM cell and (b) its read and write mechanisms[18].

The large resistance difference between the amor-

phous state and the polycrystalline state makes it pos-

sible to store multiple bits per PCM cell, which is called

multi-level cell (MLC). Fig.2 shows a typical 2-bit MLC

that has four states. “10” and “01” are in the interme-

diate state compared with “11” and “00”.

b1kW b100MW

11 10 01 00

Fig.2. 2-bit MLC with 4 states.

The iterative programming technique (or called

programming-and-verify) is usually used to write MLC

PCM[19-20], as shown in Fig.3[21]. After every write, a

read is used to decide whether to stop or continue to

write. If the resistance does not reach the target range,

then the controller calculates new programming pulse

and continues to write. This process iterates multiple

times until the resistance of MLC reaches the target

range. Therefore, the write latency and the write en-

ergy of MLC PCM are higher than those of SLC PCM.
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Fig.3. Iterative programming of MLC PCM[21].

2.2 Comparison with Other Storage and
Memory Technologies

Table 1 compares the characteristics of PCM with

those of other storage and memory technologies, includ-

ing HDD, NAND flash, DRAM, and SRAM. Note that

the parameters of PCM are varied among different pro-

totypes and literatures. The exact parameters are af-

fected by many factors, such as the material and the

process. The parameters in Table 1 derive from widely

cited studies 3○[4].

The feature size of PCM can be scaled down to

8 nm 4○, which is smaller than those of other technolo-

gies. Thus, PCM has better scalability than other tech-

nologies. The read and the write latencies of PCM are

much longer than those of DRAM, especially the write

latency. Therefore, it is important to improve write

performance when PCM is adopted in memory. Com-

pared to NAND flash and HDD, both the read and

the write latencies of PCM are shorter by several or-

ders of magnitude. Using PCM in storage systems can

greatly improve the storage system performance. For

endurance, PCM cell can only endure 109 writes on

average. Although the write endurance is larger than

that of NAND flash, it is much smaller than 1016 of

HDD, DRAM, and SRAM. It is essential to address

the endurance issue of PCM to construct a stable sys-

tem. The write energy of PCM is higher than that of

other technologies. Reducing write energy is important

3○ International technology roadmap for semiconductors (ITRS 2012). http://www.itrs.net/Links/2012ITRS/2012Tables/PI-
DS 2012Tables.xlsx, Dec. 2014.

4○ The feature size of PCM is projected to be 8 nm in future according to ITRS2013.
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Table 1. Characteristics Comparison of Memory and Storage Technologies

Storage/Memory Feature Size (nm) Read Latency Write Latency Endurance Write Energy (J/b) Volatility

HDD – 3 ms∼5 ms 3 ms∼5 ms > 1E+16 2E-16 No

NAND flash 16 35 µs 5○ 350 µs 5○ 1E+5 >2E-16 No

PCM 82 55 ns[4] 150 ns[4] 1E+9 6E-12 No

DRAM 20 6○ <10 ns <10 ns >1E+16 4E-15 Yes

SRAM 10 0.2 ns 0.2 ns >1E+16 5E-16 Yes

to build an energy-efficient PCM system. DRAM and

SRAM are volatile, while PCM, HDD and NAND flash

are non-volatile. Thus, PCM can be used to store per-

sistent data.

2.3 Chip-Level Write Process of PCM

The write latency of PCM in Table 1 is called pro-

gramming latency or cell-level write latency, which is

the latency to write (or program) a PCM cell. Actua-

lly, the latency to write a data block to a PCM chip,

which is called chip-level write latency, is much longer

than programming latency. In this subsection, we show

the chip-level write process of PCM to present the de-

tail of chip-level write latency.

For DRAM, the whole row buffer data can be writ-

ten back to memory array once. However, the PCM

chip has the maximum power constraint, which is de-

termined by the area of its charge pump[22]. The PCM

chip only supports a limited number of bits to be writ-

ten concurrently due to high write power and the maxi-

mum power constraint[23-24]. The number of bits that

can be written to a PCM chip concurrently is called

writing bits parallelism in this paper. Fig.4 shows the

latency to write a 64-byte data to eight PCM chips,

which is called write command latency 7○. Assuming

the maximum writing bits parallelism is 8, then only

64 bits data can be written to eight PCM chips concur-

rently, which takes one programming latency. Writing

a 64-byte data needs eight times of programming la-

tency. For this example, the write command latency is

eight times of the programming latency.

Actually, the resistance of a PCM cell still increases

with time after a write operation is finished, which is

known as resistance drift. The resistance drift latency

is typically tens of microseconds. The recently writ-

ten data can only be accessed after the resistance is

stable[25]. Thus, the chip-level write latency is the sum

of write command latency and the drift latency. As a

result, the chip-level write latency of PCM is apparently

longer than the cell-level write latency. Taking Micron’s

first-generation PCM chip (128Mb: P8P Parallel PCM)

as an example, writing 64 bytes data typically takes

120 µs 8○.
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Fig.4. Write command latency. Assuming each chip can sup-
port 8 bits writing concurrently (the writing bits parallelism is
8), then writing 64-byte data to 8 chips needs 8 times of pro-
gramming latency.

2.4 PCM Memory System

As shown in Table 1, the read latency and the cell-

level write latency of PCM cell are comparable to those

of DRAM. Thus, a number of research literatures ex-

plore to adopt PCM as main memory. Although some

studies do not consider the chip-level write latency of

5○ Micron. SLC NAND flash products. http://www.micron.com/products/nand-flash/slc-nand#fullPart, Dec. 2014.
6○ Samsung computing DRAM. http://www.samsung.com/global/business/semiconductor/product/computing-dram/overview,

Nov. 2014.
7○ In memory architecture, a cache line data usually spans multiple memory chips, which can be operated in parallel. A write

command writes a cache line data to memory.
8○ Micron. P8P parallel phase change memory (PCM). http://www.micron.com/∼/media/documents/products/data-

sheet/pcm/p8p parallel pcm ds.pdf, Dec. 2014.
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Fig.5. Three categories of PCM memory system architecture. (a) Replacing DRAM. (b) Parallel hybrid memory. (c) Stratified hybrid
memory.

PCM, they still provide valuable explorations to opti-

mize PCM memory systems. In this paper, we survey

architectural optimizations for PCM memory systems.

There are three categories of PCM main memory

architecture, as shown in Fig.5. The first one is us-

ing PCM to replace DRAM, as shown in Fig.5(a)[4,6,21].

The second one is the parallel hybrid main memory con-

sisting of DRAM and PCM, as shown in Fig.5(b)[26-28].

The physical address spaces of DRAM and PCM are ad-

dressable by the processor. The last one is stratified hy-

brid main memory that DRAM acts as cache or buffer

of PCM memory, as shown in Fig.5(c)[5,29-30]. The ad-

dress space of DRAM is transparent to the operating

system (OS). Hybrid main memory allows applications

to exploit the advantages of DRAM and PCM.

Compared to DRAM, PCM has advantages in scala-

bility and non-volatility. However, PCM also has three

drawbacks: long write latency, limited write endurance,

and high write energy. Therefore, optimizing perfor-

mance, improving lifetime, and saving energy are three

key techniques of PCM memory systems 9○. In this pa-

per, we survey research on PCM memory system from

these three aspects.

3 Performance Optimization Techniques

Memory accessing latency is a major factor that af-

fects memory system performance. Although write is

not on the critical path of memory system, serving a

write request blocks subsequent read requests that ac-

cess different lines of the same bank until the write

request completes. Therefore, adopting PCM as the

main memory without any optimizations degrades the

system performance due to the long write latency of

PCM, especially the chip-level write latency.

This section surveys the key techniques to overcome

the long write latency and optimize the performance of

PCM memory system. First, reducing chip-level write

latency can directly improve memory system perfor-

mance. Since resistance drift is the physical property

of phase change material, its latency is hard to be re-

duced in architecture. Therefore, the main technique

to reduce chip-level write latency is by reducing write

command latency. Second, the increasing parallelism

of write commands and hybrid memory techniques can

hide the long write latency of PCM, and thus improve

performance. Third, reducing the impact of writes on

reads can also improve performance, as reads are on the

critical path of memory system performance. Fourth,

the iterative programming characteristic of MLC PCM

provides opportunity to optimize the performance of

MLC PCM memory. At last, in addition to store mem-

ory data, PCM can also store persistent data utilizing

its non-volatility. Differentiating the persistent data

from memory data in PCM can improve the perfor-

mance of persistent memory.

Subsection 3.1 presents the techniques to reduce

write command latency. Subsection 3.2 and Subsec-

tion 3.3 show the techniques increasing the parallelism

of write commands and hybrid main memory, respec-

tively. Subsection 3.4 presents techniques to reduce the

impact of writes on reads. Subsection 3.5 describes

the techniques to improve MLC PCM memory perfor-

mance. Subsection 3.6 presents techniques to optimize

persistent memory.

9○ In this paper, the PCM memory system includes the three architectures as Fig.5 shows.
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3.1 Reducing Write Command Latency

The write command latency is the number of bits to

write dividing the writing bits parallelism, as explained

in Subsection 2.3. Therefore, both reducing the number

of writing bits and improving writing bits parallelism

can reduce the write command latency. The latency

asymmetry of SET and RESET provides opportunity

to reduce the write command latency. At last, con-

solidating multiple write commands into one can also

reduce the average write command latency.

3.1.1 Reducing Writing Bits

DRAM always writes the whole row buffer data

to the memory array. Reading data from non-volatile

PCM array does not destroy the original value. There-

fore, the number of writing bits of a write request can

be reduced by avoiding writing unmodified bits to PCM

chips.

Yang et al.[31] proposed data-comparison-write

(DCW) to reduce the number of writing bits. DCW

only writes the modified data by reading the old data

and comparing them with the new data to write be-

fore writing. Zhou et al.[6] proposed reducing-bit-writes

that only write modified bits of row buffer to PCM

array, which is similar to DCW. The number of writ-

ing bits can be further reduced using Flip-N-Write[32].

Flip-N-Write flips the data to write if the modified bits

are larger than half of total bits. Flip-N-Write only

writes the modified bits of the flipped data or the orig-

inal one. Fig.6 shows an example of Flip-N-Write that

writes 8-bit data. In Fig.6(a), 2 bits of the data to

write (new data) are modified, less than 4 bits. Thus,

Flip-N-Write writes the original data. However, 6 bits

of new data are modified, more than 4 bits, in Fig.6(b).

Thus, Flip-N-Write writes the flipped data. The flip-bit

is used to identify whether the data is flipped or not.

Flip-N-Write guarantees that at most half data bits are

actually written to PCM chips. As such, Flip-N-Write

can reduce the write command latency by half of the

original latency at least.

3.1.2 Increasing Writing Bits Parallelism

The maximum writing bits parallelism per PCM

chip is due to the maximum power constraints. As

mentioned in Subsection 2.1, RESET consumes higher

power than SET. However, conversional write scheme

assumes that writing a bit consumes power as high as

RESET, which limits the writing bits parallelism. On

the other hand, SET takes longer than RESET. Assum-

ing that writing a bit takes as long as SET also increases

write command latency. Yue and Zhu[33] proposed two-

stage-write scheme that divides a write into two stages:

write-0 stage and write-1 stage. Two-stage-write diffe-

rentiates RESET and SET by exploiting their latency

and power asymmetries. In write-0 stage, all zeros are

written at an accelerated speed. In write-1 stage, all

ones are written with increased writing bits parallelism

without violating the power constraint. Thus, two-

stage-write can reduce the write command latency of

PCM. Fig.7 shows an example of two-stage-write. As-

sume the maximum writing bits parallelism is 2 in the

conventional PCM write scheme. Thus, writing 16-bit

data to a chip needs 8 times of SET latency. Assuming

RESET power is twice of SET power, then one chip can

write 4 bits of “1” concurrently. Assume SET latency is

4 times of RESET latency. Two-stage-write only needs

4 times of SET latency to write 16-bit data.

The data of a write request is mapped to multiple

chips, as shown in Fig.4. Du et al.[34] observed that

the distribution of modified bits in different chips is

unbalanced under the conventional data mapping poli-

cy, which limits the aggregate writing bits parallelism.

The write command latency is determined by the chip

that needs the largest number of writing bits. Based on

this observation, a double XOR mapping (D-XOR)[34]

that uses a mapping function to distribute modified

Flip-Bit Flip-Bit

0Old Data

New Data

Actually
Written
Data

0 0 0

000 0

0 0 0 0 01111

1 1 1 1

1111 0 0 0 01111

1 0 0 10000

1 1 1 1 10000

(a) (b)

Fig.6. Example of Flip-N-Write. (a) Flip-N-Write writes the originally new data. (b) Flip-N-Write writes the flipped data. The flip-bit
identifies whether the data is flipped or not.
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Time
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Fig.7. Write command latencies of different write schemes. RESET power is twice of SET power.

bits evenly to chips is proposed to reduce write com-

mand latency. As a result, the aggregate writing bits

parallelism of multiple chips is increased. Fig.8 shows

an example of write command latencies with different

mappings. The programming process is divided into

two phases: a RESET phase and a SET phase. The

maximum writing bits parallelism per chip is 2. Map-

ping adjacent bits to the same cell group under the con-

ventional mapping scheme limits the aggregate writing

bits parallelism, as shown in Fig.8(a). Fig.8(b) shows

that mapping adjacent bits to different cell groups in-

creases aggregate writing bits parallelism, and thus re-

duces write command latency.

3.1.3 Pro-Actively SET the Memory Line and Write
Consolidation

The programming latency of PCM is asymmetric

in that SET takes longer than RESET. On the other

hand, when a cache line is written, the corresponding

data in memory is invalidated. Based on these two in-

sights, Qureshi et al.[35] proposed PreSET to improve

the write performance of PCM memory. PreSET pro-

actively sets all the corresponding bits in the memory

row immediately after a cache line becomes dirty. Then,

PreSET only needs to RESET some bits when actual

write is issued. By doing so, write command latency is

reduced as RESET takes less time than SET, and the

memory performance is improved.

PCM employs burst writes mode to transfer a cache

line data to memory. However, the cache line data

is partly modified when it is written back to memory.

Thus, some burst writes of a write command are wasted

to transfer unmodified data. Based on this observa-

tion, Xia et al.[36] proposed dynamic write consolida-

tion (DWC) to consolidate multiple write commands,

and thus improve the performance of PCMmemory sys-

tems. The key idea of DWC is utilizing the unmodified

data burst writes of one write command to transfer the

modified data of other write commands. By doing so,

multiple write commands can be proposed within one
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Fig.8. Write command latencies under different mappings[34]. A chip is called a cell group in the figure. (a) Adjacent bits are mapped
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write command latency. As a result, DWC reduces the

average write command latency, and thus improves the

performance.

3.2 Increasing Write Commands Parallelism

The aforementioned techniques improve PCMmem-

ory performance by reducing write command latency.

This subsection surveys techniques to increase the para-

llelism of write commands (called write commands para-

llelism), which can hide the long write latency of PCM

to some extent. Larger write commands parallelism can

also accelerate the processing of write commands, and

thus improve system performance.

The maximum power constraint limits the write

commands parallelism. Power-token[37] calculates the

actual power requirement of every write command by

only writing the modified bits of the data to write. By

recording the rest power that every chip can support,

power-token can issue more write commands concur-

rently without violating the power constraint.

Power-token works well for SLC PCM memory,

while it does not for MLC PCM memory. First, the ite-

rative write of MLC PCM starts with a RESET pulse

and is followed by a varying number of SET pulses. As-

suming all iterations consume the same power as RE-

SET is inefficient. Second, one heavily written (hot)

PCM chip may block write commands even though

other chips are idle. Jiang et al.[22] proposed two

fine-grained power budgeting (FPB) schemes to ad-

dress these two issues. FPB-IPM reduces the maximum

power of a write command by splitting the first RESET

iteration into multiple SET iterations. FPB-GCP inte-

grates a global charge pump on a DIMM to provide

extra power for hot chips to support more writes. Both

FPB-IPM and FPB-GCP increase the write commands

parallelism of MLC PCM memory, and thus improve

performance.

The write commands parallelism can also be im-

proved by increasing the parallelism of PCM chips. Al-

though Mini-Rank[38] increases write commands para-

llelism by dividing a DRAM rank into multiple sub-

ranks, it cannot increase the number of parallel PCM

chips. This is because conventional electrical bus can-

not support a large number of memory chips due to

its limitations of insufficient load capacity and signal

traversing speed. Li et al.[39] proposed OptiPCM to

overcome the bus issue by utilizing the photonics to

link the memory controller and PCM chips. Ham et

al.[30] proposed to add memory buffer (MB) in mem-

ory to keep the integrity of signal. By doing so, the

LR-DIMM 10○ buffers can be connected by parallel bus

structure and extended to two-level buffer structure,

as shown in Fig.9[30]. By using two-level 20 memory

buffers, 64 memory ranks can share a memory bus.

Memory Bus

MB MB MB MB

MBMBMBMBMBMBMBMB ...

Fig.9. Buffering with hierarchical topology. With 20 memory
buffers (gray), 64 memory ranks (white) share a memory bus[30].

3.3 Hybrid Main Memory

Hybrid DRAM/PCM memory system can exploit

advantages of both DRAM and PCM. Hybrid mem-

ory techniques that place frequently accessed data in

DRAM can avoid writes to PCM as many as possible,

and thus hide the long write latency of PCM. To uti-

lize the scalability advantage of PCM, hybrid memory

consists of DRAM with small capacity and PCM with

large capacity.

3.3.1 Parallel Hybrid Memory

For parallel hybrid memory architecture, approp-

riate data placement can improve memory system per-

formance. The key is estimating the future access pat-

tern of data and then determining its placement.

Zhang and Li[40] proposed OS-level paging scheme

that takes page accesses into consideration and migrates

hot pages from PCM to DRAM. Ramos et al.[27] pro-

posed a page placement policy called “Rank-based Page

Placement” (RaPP) in the memory controller. RaPP

ranks pages according to their access frequencies and

write intensities. Top-ranked pages in PCM are mi-

grated to DRAM. Both [40] and [27] use a modified

multi-queue algorithm to identify hot and cold pages in

memory controller.

Aforementioned two techniques use memory reads

and writes to estimate future access pattern. However,

Lee et al.[41] observed that using writes alone performs

better than using both reads and writes. Besides, the

frequency is a better estimator than temporal locality.

10○ Inphi basic of LRDIMM. http://www.edn.com/design/systems-design/4368420/Basics-of-LRDIMM, Dec. 2014.
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Based on the two observations, Lee et al.[41] proposed

a new page placement policy CLOCK-DWF[41], which

is a modified CLOCK algorithm considering the dirty

bits and the write frequency. When a write occurs to

a PCM page (the page then becomes dirty), CLOCK-

DWF migrates it to DRAM. When DRAM is full, a

DRAM page is selected using CLOCK-DWF algorithm

and replaced to PCM.

The latencies of accesses that are row buffer hits

are similar in DRAM and PCM, whereas the laten-

cies of accesses that are row buffer misses are longer

in PCM. Based on this observation, Yoon et al.[28] pro-

posed row buffer locality-aware (RBLA) mechanism to

reduce PCM accesses. RBLA places the data of high

row buffer miss rate and frequent accessing in DRAM

by recording the count of the row buffer misses of PCM

in the memory controller.

Previous techniques migrate data between DRAM

and PCM at the page granularity[27,40-41]. However,

migrating a page consumes long latency and blocks sub-

sequent memory requests, which affects memory perfor-

mance. To reduce migration costs, Chelepalli et al.[30]

proposed fine-grained migration. Instead of migrating

data at 4KB page granularity, fine-grained migration

moves data at 64B block granularity. To improve band-

width utilization, Chelepalli et al.[30] further proposed

to dynamically tune the number of blocks according to

successive accesses to one page. If the memory con-

troller accesses successive blocks of one page, it in-

creases blocks for migration. Otherwise, it decreases

them.

3.3.2 Stratified Hybrid Memory

For stratified hybrid memory architecture, DRAM

cache or buffer can filter data that are accessed fre-

quently, and thus avoid writes to PCM. Lazy-Write[5]

was proposed to reduce writes to PCM and thus over-

come the long write latency of PCM. When serving

a page fault, Lazy-Write fetches page from HDD and

only writes it to DRAM cache. This is because the

read latency of PCM is similar to that of DRAM. Lee

et al.[29] proposed a threshold-based DRAM cache that

combines the benefits of using DRAM as a write buffer.

A part of DRAM data blocks are written back to PCM

pro-actively, which guarantees that there are free blocks

in DRAM cache to serve requests due to on-chip cache

missing. It avoids the long latency to write PCM after

on-chip cache missing, which results in improved perfor-

mance. Since the capacity of DRAM is limited, Meza et

al.[42] explored fine-granularity DRAM cache manage-

ment to improve the efficiency of hybrid memory. To

accelerate DRAM cache accessing, Meza et al.[42] pro-

posed to cache the metadata for recently accessed rows

in a small on-chip buffer.

3.4 Reducing Impact of Writes on Reads

Read requests are in the critical path of memory sys-

tem, which affects memory system performance signifi-

cantly. Serving a write request blocks subsequent read

requests that access different lines of the same bank

until the write request completes. The long write la-

tency of PCM aggravates the impact for PCM memory

system.

To reduce the impact of writes on reads, Qureshi

et al.[21] proposed write cancellation and write pausing.

Write cancellation cancels the processing of a scheduled

write request to serve the pending read request that

accesses the same bank. The cancelled write request is

scheduled again until the read request completes. Write

cancellation increases write time, as well as wastes the

time of the partially completed write. By utilizing the

iterative writing of MLC PCM, write pausing pauses

the write iteration and serves the read when detecting

a pending read. The write is resumed from the point

where it was paused.

3.5 Improving MLC PCM Performance

Compared to SLC PCM, MLC PCM has higher den-

sity and larger capacity, while its programming latency

is also longer. The long programming latency degrades

memory system performance. This subsection surveys

research work that aims to improve MLC PCMmemory

performance.

MLC PCM adopts an iterative programming tech-

nique to write data, as shown in Fig.3. The program-

ming latency of MLC increases as the number of itera-

tions increases. Jiang et al.[43] observed that only a

small number of cells need significantly more iterations

than most of the other cells. However, the program-

ming latency is determined by the cell that needs the

maximum iterations. Based on this observation, write-

truncation[43] was proposed to accelerate the write pro-

cess of MLC PCM. When most cells have completed

iterations and error correction coding (ECC) can cor-

rect the uncompleted cells, write-truncation truncates

the uncompleted iterations of cells and finishes the pro-

gramming.

Besides the number of iterations, the programming

latency of MLC PCM is affected by the initial state
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of the MLC cell, the target resistance, and process

variation (PV). There are several schemes to program

MLC PCM, such as PV-aware control programming

using staircase down current pluses, programming us-

ing increasing reset current pulses. Joshi et al.[44] pro-

posed an MLC PCMmemory system with low program-

ming latency, called Mercury. Mercury employs adap-

tive program scheme to reduce programming latency.

For example, Mercury selectively uses R2S (RESET-

to-SET) and S2R (SET-to-RESET) programming al-

gorithms based on the target resistance level.

Write-truncation and Mercury do not consider the

actual memory capacity requirements of applications.

Actually, the memory requirement varies from one ap-

plication to another. It is unnecessary to provide the

largest memory capacity at any time. MLC PCM cell

can be programmed to two different densities. The

high-density cell stores as many bits as those permitted

by the technology, which has long latency (called HD-

PCM). The low-density cell stores half the number of

bits but with low latency (called LLPCM). Morphable

memory system (MMS)[45] that divides the main mem-

ory into two regions was proposed to trade off the capa-

city and the latency. MMS uses a memory monitoring

circuit (MMON) to estimate the capacity requirement

of workloads by observing the memory traffic. Then, it

periodically tunes the number of pages that must be in

LLPCM mode and HDPCM mode.

3.6 Persistent Memory

The non-volatility of PCM makes it possible to

store persistent data, called persistent memory. In this

subsection, we survey architectural techniques to im-

prove the performance of persistent memory. Note that

system-level techniques of persistent memory, such as

file system[46-48] and programming model[49-50], are out

of the scope of this paper.

The emerging of PCM provides the opportunity

of implementing single level storage architecture that

PCM acts as memory and storage simultaneously. How-

ever, storage needs to guarantee consistency and dura-

bility, which limits the performance of persistent mem-

ory. Consistency is achieved by ordering write com-

mands. As a result, the scheduler cannot exploit bank-

level parallelism of PCM memory that is critical to

memory performance. PCM’s write command latency

is related to the retention time of non-volatility. Dura-

bility is achieved by guaranteeing the non-volatility of

PCM cell, and thus increases write command latency.

Liu et al. proposed NVM Duet[51], a unified memory

and storage architecture, to improve the performance.

NVM Duet guarantees the consistency and the durabi-

lity for storage and relaxes the constraints for memory.

NVM Duet differentiates memory accesses and storage

accesses using a new hardware/software interface. The

memory scheduler fully exploits bank-level parallelism

for memory accesses while guaranteeing the write order

for storage accesses. NVM Duet provides dual retention

to guarantee the durability for storage while relaxing

the retention requirement for memory to reduce write

command latency.

3.7 Summary

Table 2 summaries the techniques optimizing the

performance of PCM memory systems described in this

section.

These techniques improve the performance of PCM

memory systems from different perspectives, including

reducing the number of writing bits, reducing the num-

ber of write commands, increasing parallelism, chang-

ing the programming mode, and reducing the impact

of writes on reads (WR-RD impact), considering per-

sistence. The memory type column refers to whether a

technique is applicable to SLC, MLC, or both of them

(PCM). The implement column refers to the main im-

plementation hierarchy of the proposed technique.

These techniques can be applied to PCM memory

simultaneously. For example, D-XOR accelerates sin-

gle write by improving the writing bits parallelism,

while power-token accelerates multiple writes by im-

proving write commands parallelism. Among these

optimization techniques, DCW is a basic technique

for PCM, which has been implemented in PCM chip

prototypes[52]. The evaluation in [33] shows that DCW

can reduce the number of writing bits by 70% on ave-

rage. Many techniques are based on DCW, such as

Flip-N-Write, D-XOR and power-token. Compared to

DCW, Flip-N-Write is a cost-effective technique to fur-

ther reduce writing bits to PCM.

The long chip-level write latency of PCM makes

PCM-only memory systems difficult to satisfy the mem-

ory performance requirement of applications. Hybrid

DRAM/PCM memory is a promising solution to pro-

vide comparable performance to DRAM-only memory.

To fully exploit the advantages of DRAM and PCM,

data placement and migration are key issues. However,

current data placement and migration policies, such as

RAPP, have unavoidable overheads. How to place and



Fei Xia et al.: A Survey of Phase Change Memory Systems 131

Table 2. Performance Optimization Techniques of PCM Memory

Technique Reduce Reduce Increase Change WR-RD Consider Memory Implement

Bits Commands Parallelism Program Impact Persistence Type

DCW[31] Y Y PCM Chips

Flip-N-Write[32] Y Y PCM Chips

DWC[36] Y PCM MC

Two-stage-write[33] Y Y SLC Chips

D-XOR[34] Y Y SLC Chips

PreSET[35] Y SLC MC

Power-token[37] Y PCM MC

FPB[22] Y MLC MC, DIMM

OptiPCM[39] Y PCM Memory bus

Memory buffer[30] Y PCM DIMM

Write cancellation[21] Y PCM MC, chips

Write pausing[21] Y MLC MC, chips

Write truncation[43] Y MLC MC, chips

Mercurcy[44] Y MLC Chips

Morphable MS[45] Y MLC OS, chips

NVM Duet[51] Y PCM MC

migrate data between DRAM and PCM with low over-

head remains a problem.

4 Lifetime Improving Techniques

One of the major weaknesses of PCM is its limited

write endurance. This is because converting the state

of phase change material repeatedly would result in the

permanent stuck-at fault of PCM cell. SLC PCM can

endure about 109 writes 11○, and MLC PCM can only

endure 107 writes. Fault blocks due to too many writes

not only result in data losing, but also reduce the avail-

able capacity and lifetime of memory system.

In this section, we survey techniques to improve

the lifetime of PCM memory, which can be classified

into three categories. First, improving the endurance of

PCM itself can efficiently improve its lifetime. Second,

delaying the worn out of PCM cells can also improve

PCM’s lifetime, including reducing writes to PCM and

wear leveling. At last, fault block reusing that contin-

uously uses partly faulty blocks rather than discards

them is also effective to improve the lifetime of PCM

memory.

Subsection 4.1 surveys techniques to improve the

endurance of PCM. Subsection 4.2 and subsection 4.3

survey techniques of reducing writes and wear leveling,

respectively. Subsection 4.4 presents fault block reusing

techniques.

4.1 Improving Endurance

The endurance of PCM is affected by many factors,

such as programming current and resistance drift. In

this subsection, we survey architectural techniques to

improve PCM’s endurance, and thus improve its life-

time.

MLC PCM requires large resistance range to store

multiple states per cell. In order to reduce readout

error rate due to resistance drift, conversional MLC de-

sign increases the resistance margin between two adja-

cent states, which further increases the maximum resis-

tance requirement. As a result, large RESET current is

needed to initialize its maximum resistance. However,

the endurance of MLC decreases as the RESET current

increases[53].

Jiang et al.[53] proposed elastic RESET (ER) to

reduce the RESET current and thus improve the en-

durance of MLC. ER first uses frequent pattern com-

pression (FPC)[54] to store data in PCM line. Thus,

the memory capacity requirements are varied from the

data to write. ER adaptively initializes a PCM line

according to the memory capacity requirement at run-

time. If the compressed data is less than or equal to

50% of the original size, then ER programs each cell as

2-state SLC. If the compressed data is larger than 50%

but less than or equal to 75%, then ER programs each

cell as 3-state MLC. If the compressed data is larger

than 75%, then ER programs each cell as 4-state MLC.

11○ International technology roadmap for semiconductors (ITRS 2013). http://www.itrs.net/Links/2013ITRS/Home2013.htm, Nov.
2014.
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The readout error rate of MLC is related to the

data pattern. The readout error rates of “10” and “01”

(drift-sensitive) are higher than those of “11” and “00”

(drift-insensitive). This is because “10” and “01” are

in the intermediate resistance state. Zhang and Li[55]

proposed bit-inversion and rotation operations to re-

duce the readout error rate of MLC. The key idea is

to store more data in drift-insensitive state rather than

drift-sensitive state by applying bit-inversion, rotation,

or a combination of both, as shown in Fig.10. Fig.10(a)

shows bit-inversion that inverts data from highly drift-

sensitive state “01” to less drift-sensitive state “10”.

Fig.10(b) shows data rotation that changes the data

from drift-sensitive states “0110” to drift-insensitive

states “0011”. Fig.10(c) shows an example of com-

bining bit-inversion and rotation. Bit-inversion and

rotation can guarantee low error rate but narrow the

resistance margin. As a result, the initial RESET cur-

rent is reduced, which improves the endurance of MLC.

Bit-inversion and rotation techniques were proposed to

tolerate resistance drift, and ER is a general technique.

They can be combined to further improve MLC PCM’s

endurance.

4.2 Reducing Writes

Hybrid DRAM/PCM memory described in Subsec-

tion 3.3 can reduce writes to PCM by placing frequently

accessed data in DRAM. This subsection surveys other

research work that aims to reduce writes to PCM mem-

ory, including reducing redundant writes, data com-

pression, cache replacement and partition policy.

4.2.1 Reducing Redundant Writes

There are two situations that memory writes are

redundant. First, the data to write is unmodified. Sec-

ond, the data to write is useless, if 1) it will not be

used in future, or 2) it is similar to the old data, which

does not affect the applications. In this subsection, we

survey techniques to reduce redundant writes to PCM

memory.

• Reducing Unmodified Writes. Unmodified data

does not need to be written back to PCM mem-

ory. DCW[31] and reducing-bit-writes[6] techniques only

write modified data bits to PCM (their details have

been presented in Subsection 3.1.1). These techniques

identify unmodified data in the memory chip. Actually,

we can also identify whether the data is modified or not

in the cache hierarchy. Qureshi et al.[5] proposed Line

Level WriteBack (LLWB) to write the dirty lines of a

page when it is evicted from DRAM cache. Lee et al.[4]

proposed partial writes to reduce writes to PCM mem-

ory. Instead of writing the whole cache line, partial

writes track the modified data of cache line and only

write the modified data to PCM.

Aforementioned techniques[4-6,31] identify unmodi-

fied data by comparing the new data with the old data.

The number of unmodified data can be increased by

encoding the new data or choosing the old data. As a

result, writes to PCM memory can be further reduced.

Flip-N-Write[32] described in Subsection 3.1.1 is a kind

of flipping manipulation, which flips the new data or

not. It guarantees to write half data at most by writ-

ing the flipped or not-flipped data. Zhao and Zhu[56]

further proposed three data manipulations, which are

flipping, XOR, and OR. The manipulation that needs

to write least bits compared to the old data is chosen.

Jacobvitz et al.[57] proposed to choose old data that has

the most unmodified data compared to the new data.

Coset coding performs a one-to-many mapping from

each dataword to a coset of vectors. FlipMin[57] was
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Fig.10. Using (a) bit-inversion, (b) rotation, or (c) the combination of both to convert the original data to drift-tolerant one[55].
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proposed to reduce writes by exploiting coset coding to

select a vector that minimizes the number of bits write.

• Reducing Useless Writes. In case of writing data

that will not be used again, these writes to PCM are

also unnecessary. Based on this observation, Bock et

al.[58] proposed to reduce useless write-backs of cache

line data. If the corresponding memory region is use-

less for program, such as heap and stack space, then

the cache line data are not written back to PCM. By

exploiting the error tolerance characteristic of video ap-

plications, SoftPCM[59] relaxes the accuracy of write

operations to reduce writes to PCM. SoftPCM cancels

write operation if the new data to write are similar to

the original data in PCM.

4.2.2 Data Compression

Compressing data can reduce the data volume.

Thus, writing the compressed data rather than the

original data can reduce writes to PCM memory.

There are frequent values that are accessed fre-

quently in applications. For some applications, mere

ten values occupy 50% of total memory accesses[60].

Therefore, reducing writes of frequent values can ef-

fectively reduce memory writes. Sun et al.[61] proposed

frequent value compression (FVC) that compresses the

frequent values and writes the compressed data to PCM

memory. FVC uses static profiling and dynamic pro-

filing techniques to find the frequent values of applica-

tions, considering the implementation overheads.

The FVC technique only compresses memory data

when it is written to PCM. For hybrid DRAM/PCM

memory, compressing data in DRAM cache can reduce

cache misses, and thus further reduce writes to PCM

memory. Baek et al.[62] proposed Dual-Phase Compres-

sion (DPC) to reduce writes in hybrid DRAM/PCM

memory. Fig.11 shows an overview of the DPC mecha-

nism. In the first phase, DPC uses a successive match-

ing algorithm to compress data and stores the com-

pressed data in DRAM cache. In the second phase,

DPC uses bit-based frequent pattern compression to

further compress the data of DRAM cache to reduce

writes to PCM memory. Du et al.[63] proposed delta

compression that only compresses the modified data of

DRAM cache and writes them back to PCM memory.
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Fig. 11. Overview of Dual-Phase Compression mechanism[62].

4.2.3 Cache Replacement and Partition Policy

Conventional cache replacement and partition poli-

cies aim to improve the cache hit rate, disregarding

reads or writes. However, writing data from cache to

PCM memory increases energy consumption and af-

fects the lifetime of PCM. Moreover, the highest cache

hit rate does not mean the best performance definitely

for PCM memory. This is because the write latency

of PCM is longer than its read latency. Thus, cache

write-back may degrade system performance more sig-

nificantly than cache miss.

Replacing a dirty cache block to memory needs to

write memory, whereas replacing a clean cache block

does not induce actual write to memory. Several cache

replacement policies were proposed to reduce writes to

PCM memory. Their key idea is replacing clean cache

blocks with high priority based on existing cache re-

placement policies. Ferreia et al.[64] proposed a new

clean-preferred victim selection policy with N chances

(CLP-N). CLP-N selects the oldest clean cache block

among the N least recently used cache blocks as a vic-

12○ Re-reference interval prediction (RRIP) is a cache replacement policy that selects the eviction block by predicting the re-reference
interval of a cache block.
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tim. If such a clean cache block does not exist, the LRU

cache block is evicted. Based on RRIP 12○, Rodriguez et

al.[65] proposed to evict the clean block among blocks

that are predicted to be re-referenced at long time later.

Both [64] and [65] do not quantize the costs of read

and write, while the following cache replacement poli-

cies do. Zhang et al.[66] proposed a read-write aware

cache replacement policy (RWA) by adding a counter

per cache block. RWA assigns a large value to the cor-

responding counter when a cache block is written and

assigns a small value if a cache block is read. The coun-

ters of other cache blocks decrease by one when a re-

quest arrives at one block. RWA selects to evict the

cache block with the minimum counter value. As such,

RWA reduces writes of dirty cache line data to PCM.

Barcelo et al.[67] proposed variable aging (VA) cache re-

placement policy that considers the cost of PCM read

and write. Instead of using reference times as the age of

a block, VA uses the rate of reference times to reference

cost as the age. As such, clean blocks age at a rate of

1, and dirty blocks age at a rate of 1/c, where c is the

average cost of writing a block to PCM. VA replaces

the oldest block as LRU.

To reduce writes to PCM, Zhou et al.[68] proposed

write-back-aware cache partition (WCP) policy that

considers the trade-off of cache writing back and cache

miss. WCP is a run-time mechanism that partitions a

shared LLC among multiple applications. WCP con-

siders the reduction in cache misses, as well as the cost

of write-back to PCM.

4.2.4 Summary

Table 3 summarizes the techniques to improve the

lifetime of PCM memory by reducing writes to PCM

memory. The implement column shows that writes to

PCM memory can be reduced from the software, cache

to memory controller, and memory chip perspectives.

These techniques can be classified into five categories,

including reducing unmodified writes, reducing useless

writes, data compression, write-aware cache replace-

ment, and cache partition.

Among these techniques, SoftPCM is only applica-

ble to video applications, while the other techniques

are effective for more applications. Reducing useless

write-backs needs the support of OS to identify use-

less write-backs, which is more complicated than the

other hardware-only techniques. For data compres-

sion techniques, dual-phase compression compresses all

data. The other two techniques selectively compress

data that improve the efficiency of compression.

We can see that the aforementioned architectural

techniques to reduce writes to PCM memory are rela-

tively comprehensive. However, these architectural op-

timizations reduce the volume of writes by only a fac-

tor about 3[69]. Some researchers aimed to reduce

writes at software level, such as compiler[70], and data

structure[69] 13○. They are important complements to

the architectural optimizations. These software tech-

niques are only preliminary explorations. There is still

large space to further reduce writes to PCM memory.

For instance, database systems have more information

about how memories are used than hardware, which

provides opportunity to reduce writes to PCM mem-

ory. We expect more research work from these aspects.

4.3 Wear Leveling

Reducing writes to PCM can improve its lifetime.

However, it is not enough to overcome the limited write

endurance of PCM. Because the locality of memory ac-

cessing results in unbalanced writes that some cells are

written more than others. By address remapping, wear

leveling (WL) can distribute writes to the whole PCM

address space, which can further improve the lifetime

of PCM memory. Based on whether to record the write

times of data blocks, the wear leveling techniques can

be divided into two categories: write times based wear

leveling and random wear leveling. The following two

subsections present these two kinds of wear leveling

techniques respectively.

4.3.1 Write Times Based Wear Leveling

Write times based wear leveling records the write

times of every data block, and swaps “hot” blocks (more

writes) with “cold” blocks (less writes) to achieve bal-

anced writing.

Segment swapping[6] records the write times of ev-

ery memory segment in the memory controller. It swaps

segments of large writes with segments of small writes

after several writes. Segment swapping assumes that

different PCM cells have the same write endurance.

However, the actual write endurance is varied among

different cells due to process variation[71]. Based on

this insight, Dong et al.[72] proposed wear rate leveling

(WRL) considering the distinct write endurance. WRL

uses the ratio of write times to write endurance as the

metric and swaps the data blocks of high ratio with

13○ The details of software techniques are out of the scope of this paper.
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Table 3. Reducing Writes to PCM Memory

Technique Reduce Reduce Data Cache Cache Implement

Unmodified Writes Useless Writes Compression Replace Partition

DCW[31] Y Chips

Reducing-bit-writes[6] Y Chips

LLWB[5] Y Cache

Partial writes[4] Y Cache

Flip-N-Write[32] Y Chips

FlipMin[57] Y MC

Reducing useless write-backs[58] Y OS, MC

SoftPCM[59] Y MC

Dual-phase compression[62] Y Cache, MC

Frequent values compression[61] Y MC

Delta compression[63] Y Cache

CLP-N[64] Y Cache

RRIP-variation[65] Y Cache

RWA[66] Y Cache

VA[67] Y Cache

WCP[68] Y Cache

blocks of low ratio. To reduce the overhead of record-

ing every data block, Yun et al.[73] proposed bloom filter

based wear leveling technique. Bloom filters are used

to identify hot and cold data blocks, which reduces the

number of write counters.

Dhiman et al.[26] proposed PDRAM that considers

wear leveling in the memory management of operating

system. Fig.12 shows the PDRAM architecture. The

memory controller uses an access map to count the

write times of every physical page. The access map is

stored in PRAM, and the memory controller keeps a

cache of the access map. When a page has been writ-

ten several times, PDRAM writes the data of the page

to a new allocated page. PDRAM preferentially allo-

cates a free page of less write times. Age-based page

allocation[74] exploits a similar idea with PDRAM.

To reduce the overhead of finding free page with low

writes, research work of [74] explores the organization

Page Addr.

0x1001
0x10ff

500
77

Access Map Cache

CommandsData Data

CPU

Memory 
Request * Page Swap/Bad Page Interrupt

* Data

Write Count

Memory Controller

DRAM PRAM

Access Map

Fig.12. Overview of PDRAM architecture[26].

of physical pages considering write times. PDRAM and

age-based page allocation can be the complements of

architecture-only wear leveling techniques, and thus re-

duce data migrations and their costs.

4.3.2 Random Wear Leveling

Write times based wear leveling introduces extra

storage overhead to record write times of every data

block. Instead of recording write times, random wear

leveling randomly swaps the data of different positions

after a number of writes.

Row shifting[6] randomly shifts the data of a PCM

row at the word granularity periodically. Fine-grained

wear leveling (FGWL)[5] makes the writes uniform at

the line granularity. FGWL uses a pseudo random num-

ber generator to get a random value when the OS allo-

cates a physical page. FGWL stores the lines of each

page in a rotated manner according to the random value

until the page is reclaimed. Start-gap[75] utilizes an ex-

tra line (called GapLine) to simplify data swap between

different lines. Start-gap moves one line that neigh-

bors the GapLine to the GapLine after several writes.

The neighboring line becomes the new GapLine which

is used to move data next time. Only a start regis-

ter and a gap register are needed to remap address in

start-gap. Fig.13 shows an example of start-gap wear

leveling.

PCM design has to consider not only the durabil-

ity under normal application behavior, but also secu-

rity issues due to malicious attack. Security refresh[76]

avoids information leak by migrating physical loca-

tions inside the PCM. Security refresh controller (SRC),

which is embedded in PCM bank, dynamically remaps
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Fig.13. Start-gap wear leveling on a memory containing 16 lines[75].

A

B

C

D

E

F

G

H

































A

B

C

D

E

F

G

H

MA RMA

A

B

D

F

G

H

































C

H

E

F

A

D

G

B

C

E

A

B

C

F

E

D

G

H

































G

D

E

F

A

B

C

H

A

B

C

F

E

D

G

H

































G

D

E

F

A

B

C

H

A

B

C

H

































G

D

E

F

A

B

C

H

D

E

F

G

(a) (b) (c) (d) (e)

Fig.14. Example of one complete security refresh round[76]. (a) Initial state. (b) 1st refresh. (c) 2nd refresh. (d) 3rd refresh. (e) Final
state.

data block memory address (MA) to refreshed mem-

ory address (RMA) inside a PCM bank using a ran-

domly generated key (called refresh). SRC generates a

new random key after several writes and refreshes the

mapping again. Fig.14 shows an example of one com-

plete security refresh round, similar to DRAM’s refresh

period[76]. At the first refresh, MA 0 is refreshed. As-

suming the random generated key is k1 (k1 = 6), then

MA 0 is remapped from RMA 4 to RMA 6 (000 XOR

k1 = 110). Since the data (A) of MA 0 is moved to

RMA 6, the original data (C) in RMA 6 is remapped

to RMA 2 (110 XOR k1 = 010). The next security

refresh is similar to the first refresh.

4.3.3 Summary

Table 4 summaries the wear leveling techniques from

the perspective of the key idea, granularity, random-

ness, and implementation hierarchy.

We can see that most techniques implement wear

leveling in the memory controller. PDRAM[26] and

age-based page allocation[74] consider wear leveling in

the OS memory management, which needs the support

of memory controller. Random wear leveling does not

record the write times of every data block, and thus has

lower overhead. However, random wear leveling cannot

achieve the best wear leveling because it does not dif-

ferentiate “hot” and “cold” data blocks. Write times

based wear leveling performs better but has higher

storage overhead compared with random techniques.

Bloom filter-based WL[73] was proposed to reduce the

storage overhead of recording write times.

The granularity of wear leveling affects the effi-

ciency and implementation overhead. Coarse-grained

wear leveling usually needs low implementation over-

head, but it is difficult to provide global wear leveling,

which is contrary to fine-grained wear leveling. In the-
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Table 4. Wear Leveling Techniques of PCM Memory

Technique Key Idea Implement Randomness Granularity

Row shifting[6] Random shift within a line MC Y Word

FGWL[5] Store the lines of page in a rotated manner MC Y Line

Start-gap[75] Swap data with neighboring line MC Y Line

Segment swapping[6] Segments swap based on write times MC N Segment

Security refresh[76] Remap a block to another one MC Y Block

Wear rate leveling[72] Swap blocks considering endurance variations MC N Block

Bloom filter-based WL[73] Use bloom filter to reduce storage overhead MC N Block

PDRAM[26] Memory management considering writes MC, OS N Page

Age-based page allocation[74] Memory management considering writes MC, OS N Page

ory, combining fine-grained WL and coarse-grained WL

at different levels, such as OS and hardware, can utilize

their advantages and avoid their drawbacks.

Wear rate leveling considers the endurance varia-

tions of different blocks. However, the difficulty of

identifying the endurance variations limits its adoption.

Due to the simplicity and efficiency, the start-gap algo-

rithm has been used in actual PCM-based SSD proto-

types, such as Onyx[77] and PSS[78].

4.4 Tolerating Wear-Out Faults

Although improving endurance, reducing writes and

wear leveling can delay the wear-out of PCM cells, some

PCM cells still wear out before other cells unavoida-

bly. This is because the absolute wear leveling of all

cells is impossible. This subsection surveys techniques

that tolerate wear-out faults to improve the lifetime of

PCM memory. One method is error correcting that

corrects fault bits using well bits. The other method is

fault block reusing that reuses the well bits of the fault

block. Subsection 4.4.1 and Subsection 4.4.2 present

techniques of error correcting and fault block reusing,

respectively.

4.4.1 Error Correcting

Conventional error correction coding cannot correct

fault bits because the states of the fault cells cannot be

converted any more. Schechter et al.[79] proposed error-

correcting pointers (ECP) that permanently encode the

locations of fault cells into a table and assign well cells

to replace them. Fig.15 shows the ECP-5 scheme that

corrects up to five failed cells for a 512-bit data block

(or line). The high nine bits of the correction entry in-

dicate the location of the failed bits and the low one bit

stores the right value of the failed bit.

ECP uniformly allocates six correction entries for

each PCM data block (512 bits) that can correct up

to 6-bit faults. However, most data blocks are correct

or have one bit fault, and only a few data blocks have

more bits faults. As a result, ECP induces high storage

overhead. Based on this observation, Qureshi[80] pro-

posed pay-as-you-go (PAYG) to improve the lifetime

of PCM while reducing storage overheads. PAYG only

allocates one error correction entry per data block to

correct 1-bit fault. In order to correct data blocks that

have more faults, PAYG uses a global correction entries

pool to provide extra entries for these data blocks.

4 3 2 1 0 511 510 509 508 3 2 1 0Full?

00

0 0

0

1

1 11 1 1 1 1 1

1 R6 58 7 4 3 2 0

1 R6 58 7 4 3 2 0

1 1

1

0 00 0 0 0 0 0

1 1 10 0 00011

Fig.15. ECP5 scheme that corrects up to 5 failed cells. There
are 5 correction entries in each data block[79].

ECP and PAYG need extra space to store error cor-

rection entries, which suffer from large storage over-

head. To reduce the overhead, Yoon et al.[81] pro-

posed fine-grained remapping with ECC and embedded

pointer (FREE-p) that remaps worn-out PCM block to

well block using a pointer. The granularity of block

is 64B. Fig.16 shows an example of FREE-p. The

well cells of a partly faulty block are used to store the

pointer that points to the well data block. The 1-bit

D/P (data/pointer) flag indicates whether the block has

been remapped. FREE-p does not need dedicated space

to store the pointer.

ECP discards the data line when the number of

fault bits is out of the scope that it can correct, which
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Ptr

Data

Data Page

Page for Remapping

Block with a Failure

D/P Flag 

Fig.16. Example of FREE-p[81].

results in non-contiguous memory space. Jiang et al.[82]

proposed Line-Leveling Mapping and Salvaging (LLS)

to achieve a longer PCM lifetime. By allocating a dy-

namic portion of total space in a PCM device as backup

space, LLS remaps fault lines to backup space. As a

result, LLS constructs a contiguous PCM space and

masks lower-level failure from the OS and applications.

Fig.17 shows the memory splitting of LLS. The percent-

age of backup space increases as fault lines increase, and

at most half of the total memory space is allocated as

backup space. LLS uses ECP to correct data line with

few fault bits.

Although a failed cell with a stuck-at value cannot

be written, it is still readable. SAFER[83] exploits this

key attribute and uses failed cells to store data, thereby

reducing the overhead of error recovery. SAFER par-

titions a data block dynamically while ensuring that

there is at most one failed bit per partition. SAFER

unceasingly uses the failed bit by utilizing bit inversion

technique. If a new failure occurs in a partition that al-

ready has a fail bit, then SAFER needs to re-partition

the data block. To improve the efficiency of block par-

tition, Fan et al.[84] proposed Aegis, a systematical par-

tition scheme that uses fewer groups to accommodate

more faults. Ageis utilizes the property of Cartesian

plane that any two different points on a line uniquely

determine the slope of the line. If the slope is changed,

then at most one point on the original line will stay on

a new line. Therefore, Ageis guarantees that any two

bits in the same group will not be in the same group

after a repartition, which reduces the average overhead

of tolerating one-bit fault. Fig.18 shows how Aegis par-

titions a data block. Bits that have the same identifi-

cation consist of a group.

Main

PCM
Main

PCM

Main

PCM

In Bank 0

In Bank 1

In Bank 0

In Bank 7

In Bank 7
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Backup
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Fig.17. Splitting the PCM memory to the main and backup space (to achieve graceful degradation, each chunk contains data from
all banks)[82].
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Fig.18. Illustrating how bits in a 32-bit data block are parti-
tioned into 7 groups, each of 5 bits. (a) The partition method
uses slope k = 0. (b) A different method uses slope k = 1. In
total, there are 7 partition methods of the 5× 7 rectangle[84].

4.4.2 Fault Block Reusing

Discarding the data block with partly worn-out cells

not only wastes memory capacity, but also reduces the

lifetime of PCM memory. This subsection surveys fault

block reusing techniques that reuse the well bits of a

fault block.

Ipek et al.[85] proposed dynamically replicated mem-

ory (DRM) that reuses memory pages that contain hard

faults. DRM dynamically forms pairs of complemen-

tary pages that act as a single page. Fig.19 shows an

example of compatible pages and incompatible pages.

If there is no same fault bit between two pages, then the
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two pages are compatible. Otherwise, the two pages are

incompatible. Since a page has many bits, the proba-

bility that two pages have the same fault bits is low.

Therefore, the probability of finding two compatible

pages is high. DRM uses two fault pages as a single

page, which results in low memory space utilization.

Chen et al.[86] proposed re-cycling PRAM (RePRAM)

to improve the utilization of PCM memory. RePRAM

leverages a group of fault pages that are compatible and

uses a well page to store the fault bits of these pages in

the group. As the number of faults per page increases

to a threshold, RePRAM uses DRM to tolerate faults.

(a)

Page 1 Page 2 Page 1 Page 2

(b)

Fig.19. Example of (a) compatible and (b) incompatible pa-
ges[85].

Both DRM and RePRAM reuse fault block at the

page granularity, which results in low memory space

utilization. Azevedo et al.[87] proposed Zombie to ex-

tend the lifetime of pages by reusing well blocks in dis-

carded pages. Zombie uses a block, or even a subblock,

sourced from disabled pages (spare block) to pair with

a block in software-visible pages (primary block). Zom-

bie enables dynamically increasing spare subblock size

as the faults in primary block increase to improve the

lifetime of primary block. Two new error correction

mechanisms, ZombieMLC and ZombieXOR, were pro-

posed in [87]. ZombieMLC is designed specifically for

MLC to tolerate both stuck-at faults and drift. Zom-

bieXOR is suit for SLC and only tolerates stuck-at

faults.

4.4.3 Summary

Table 5 summaries the wear-out fault tolerance

techniques.

The key idea column shows how fault tolerance is

achieved: by replacing partly faulty block with well

block (replacing); by using compatible page or block

to pair well memory region (pairing); or by partition-

ing partly faulty blocks with bit inversion per parti-

tion (partition+inversion). There are two granulari-

ties to tolerate the wear-out faults: block (or called

line) granularity and page granularity. The typical size

of one block is 512 bits. Page granularity techniques

have low storage overhead but result in low utiliza-

tion of PCM memory capacity. Therefore, the latest

research efforts usually use block granularity. All tech-

niques are implemented in hardware. FREE-p, DRM,

and RePRAM techniques need the support of OS. The

reusing column refers to whether a technique reuses the

partly faulty page or block.

These error correction techniques can correct varia-

ble faults with different storage overheads. To compare

these techniques, the error correction overhead column

shows the storage overhead to tolerate 6-bit faults for

a 512-bit block. Since LLS uses ECP to tolerate faults

when the number of fault bits is less than 6, its error

correction overhead is the same as that of ECP. We can

see that the overhead of PAYG and Aegis is lower than

that of the other techniques.

Wear-out fault tolerance is essential for real mem-

ory system, especially for PCM memory that has limi-

ted write endurance. Although there are many studies

that aim to improve the lifetime of PCM by tolerating

wear-out faults, they have not been used in real sys-

tems or PCM chips. Further exploring wear-out fault

Table 5. Tolerating Wear-Out Faults of PCM Memory

Technique Key Idea Granularity Implement Reusing Error Correction Overhead

ECP[79] Replacing Block Hardware No 61 bits/block for ECP-6

PAYG[80] Replacing Block Hardware No 19.5 bits/block

FREE-p[81] Replacing+pairing Block OS, hardware No 64 bits/block

LLS[82] Replacing Block Hardware No 61 bits/block

SAFER[83] Partition+inversion Block PCM chips No 55 bits/block

Ageis[84] Partition+inversion Block PCM chips No 27 bits/block

DRM[85] Pairing Page OS, hardware Yes –

RePRAM[86] Pairing Page OS, hardware Yes –

Zombie[87] Pairing Block Hardware Yes –
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tolerance techniques with higher utilization of memory

capacity and lower overhead is still an open issue.

5 Energy Saving Techniques

Energy consumption has become one of the bottle-

necks of memory systems[88-90]. PCM is a non-volatile

memory without refresh operation, and thus has lower

static energy than DRAM. However, the write energy

of PCM is largely higher than that of DRAM. The high

write energy limits the write parallelism of PCM which

results in poor write performance. On the other hand,

high write energy also introduces logical error, uncom-

pleted state conversion, and read error[9]. Therefore,

reducing energy consumption is critical to construct

energy-efficient and reliable PCM memory system. We

survey energy saving techniques of PCMmemory in this

section.

5.1 Reducing Writes

Reducing writes to PCM summarized in Subsec-

tion 4.2 can not only improve the lifetime of PCM, but

also save energy. MLC PCM consumes more energy

than SLC PCM. The latency optimization techniques

of MLC PCM summarized in Subsection 3.5 can also

reduce energy consumption, because these techniques

actually reduce writes to MLC PCM. We do not repeat

the details in this subsection.

5.2 Exploiting Energy Asymmetry

The write energy of PCM is asymmetric, which de-

pends on the writing values. For example, writing bit

“0” consumes more energy than writing bit “1”. Writ-

ing “01” and “10” consumes more energy than writing

“00” and “11” for MLC PCM cells. This subsection

describes techniques to save energy by exploiting the

energy asymmetry.

Various research studies exploit the energy asym-

metry of writing bit “1” and writing bit “0” to reduce

the energy consumption of PCM memory[91-94]. Xu et

al.[91] proposed XOR-masked write to reduce write en-

ergy. For the data to write and the original data, their

technique finds an optimal bit-pattern such that writing

an XOR-masked value leads to minimum write energy.

Fig.20 shows the data flow diagram of the XOR-masked

write strategy. Mirhoseini et al.[92] also proposed a

coding-based technique to reduce energy consumption.

Integer linear programming and dynamic programming

approaches are used to find the optimal codes. Chen

et al.[93] proposed out-of-position write that selectively

writes the free page with the lowest energy consumption

by comparing writing energies of different pages. Yue

and Zhu[94] proposed to invert a cache line when there

are more “0” bits than “1” bits in the cache line. Since

writing “00” and “11” consumes less energy than writ-

ing “01” and “10”, Wang et al.[95] proposed to increase

writes of “00” and “11” and reduce writes of “01” and

“10” using data encoding technique.

5.3 Summary

Writes to PCM not only result in the worn-out PCM

cells, but also increase the energy consumption of the

memory system. Thus, various studies aim to save the

energy of PCM memory systems by reducing writes to

PCM. On the other hand, the asymmetric write energy

of PCM provides opportunities to reduce the energy

consumption of PCM memory. Actually, the energy

saving by utilizing energy asymmetry is limited com-

pared with reducing writes. The high write energy of

PCM not only increases system running cost, but also

limits its performance. Therefore, how to reduce writes

to PCM as many as possible remains a critical issue of

PCM energy saving research.
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Minimum Energy

Selectively Write
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Fig.20. Data flow diagram of the XOR-masked write
strategy[91].

6 Conclusions

The long write latency, limited write endurance, and

high write energy of PCM challenge its adoption as

main memory. In this paper, we extensively surveyed
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the key techniques of PCM memory systems, includ-

ing performance optimization, lifetime improving, and

energy saving. Since the issues of PCM are caused by

writes, reducing writes is a fundamental technique to

optimize PCM memory systems.

Actually, the chip-level write latency of PCM makes

PCM-only memory difficult to satisfy the latency re-

quirement of real memory systems. Although most

techniques do not take the fact into consideration, these

architectural research efforts are still valuable. First,

the hybrid DRAM/PCM memory system is promising

to provide comparable performance with DRAM mem-

ory. Thus, addressing the issues of PCM is still neces-

sary. Second, many techniques, such as wear-out fault

tolerance techniques, are also applicable to other NVMs

that have endurance issue. At last, a few techniques,

such as start-gap, are applicable to PCM-based storage

devices. Adopting PCM as storage is a practical choice

as its latency is shorter than that of NAND flash.

Compared to DRAM, a key advantage of PCM is

its non-volatility. Just using PCM to replace DRAM or

construct hybrid DRAM/PCM memory system cannot

utilize this feature. How to exploit the non-volatility of

PCM to build persistent and high-performance mem-

ory system is a valuable research direction. Recently,

Kiln[96] adopts a non-volatile cache and a nonvolatile

main memory to support persistence from an architec-

ture perspective, which is a good exploration. We ex-

pect more efforts in this aspect.
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Karidis J P. Morphable memory system: A robust archi-

tecture for exploiting multi-level phase change memories.

In Proc. the 37th Annual Int. Symp. Computer Architec-

ture, Jun. 2010, pp.153–162.

[46] Condit J, Nightingale E B, Frost C, Ipek E, Lee B, Burger

D, Coetzee D. Better I/O through byte-addressable, per-

sistent memory. In Proc. the 22nd ACM SIGOPS Symp.

Operating Systems Principles, Oct. 2009, pp.133–146.

[47] Wu X, Reddy A L N. SCMFS: A file system for storage class

memory. In Proc. Int. Conf. High Performance Comput-

ing, Networking, Storage and Analysis, Nov. 2011, pp.39:1–

39:11.

[48] Dulloor S R, Kumar S, Keshavamurthy A, Lantz P, Reddy

D, Sankaran R, Jackson J. System software for persistent

memory. In Proc. the 9th European Conf. Computer Sys-

tems, April 2014, Article No. 15.

[49] Volos H, Tack A J, Swift M M. Mnemosyne: Lightweight

persistent memory. In Proc. the 16th Int. Conf. Architec-

tural Support for Programming Languages and Operating

Systems, March 2011, pp.91–104.

[50] Coburn J, Caulfield A M, Akel A, Laura M, Gupta R K,

Jhala R, Swanson S. NV-Heaps: Making persistent objects

fast and safe with next-generation, non-volatile memories.

In Proc. the 16th Int. Conf. Architectural Support for Pro-

gramming Languages and Operating Systems, March 2011,

pp.105–118.

[51] Liu R S, Shen D Y, Yang C L, Yu S C, Wang C Y M. NVM

Duet: Unified working memory and persistent store archi-

tecture. In Proc. the 19th Int. Conf. Architectural Support

for Programming Languages and Operating Systems, Feb.

2014, pp.455–470.

[52] Chung H, Jeong B H, Min B et al. A 58nm 1.8V 1Gb PRAM

with 6.4MB/s program BW. In Digest of Technical Papers

of IEEE Int. Solid-State Circuits Conf., Feb. 2011, pp.500–

502.

[53] Jiang L, Zhang Y, Yang J. ER: Elastic RESET for low

power and long endurance MLC based phase change mem-

ory. In Proc. ACM/IEEE Int. Symp. Low Power Electron-

ics and Design, Aug. 2012, pp.39–44.

[54] Alameldeen A R, Wood D A. Adaptive cache compression

for high-performance processors. In Proc. the 31st Annual

Int. Symp. Computer Architecture, Jun. 2004, pp.212–223.

[55] Zhang W, Li T. Helmet: A resistance drift resilient archi-

tecture for multi-level cell phase change memory system. In

Proc. the 41st IEEE/IFIP Int. Conf. Dependable Systems

Networks, Jun. 2011, pp.197-208.



Fei Xia et al.: A Survey of Phase Change Memory Systems 143

[56] Zhao P, Zhu L. A scheme for protecting confidentially of

non-volatile main memory based on phase-change memory.

Chinese Journal of Computers, 2011, 34(11):2114–2120. (in

Chinese)

[57] Jacobvitz A N, Calderbank R, Sorin D J. Coset coding

to extend the lifetime of memory. In Proc. the 19th IEEE

Int. Symp. High Performance Computer Architecture, Feb.

2013, pp.222–233.

[58] Bock S, Childers B, Melhem R, Mosse D, Zhang Y. Analyz-

ing the impact of useless write-backs on the endurance and

energy consumption of PCM main memory. In Proc. IEEE

Int. Symp. Performance Analysis of Systems and Software,

Apr. 2011, pp.56-65.

[59] Fang Y, Li H, Li X. SoftPCM: Enhancing energy efficiency

and lifetime of phase change memory in video applications

via approximate write. In Proc. the 21st IEEE Asian Test

Symp., Nov. 2012, pp.131-136.

[60] Zhang Y, Yang J, Gupta R. Frequent value locality and

value-centric data cache design. In Proc. the 9th Int. Conf.

Architectural Support for Programming Languages and Op-

erating Systems, Mar. 2000, pp.150–159.

[61] Sun G, Niu D, Ouyang J, Xie Y. A frequent-value based

PRAM memory architecture. In Proc. the 16th Asia and

South Pacific Design Automation Conf., Jan. 2011, pp.211–

216.

[62] Baek S, Lee H G, Nicopoulos C, Kim J. A dual-phase com-

pression mechanism for hybrid DRAM/PCM main memory

architectures. In Proc. the 22nd Great Lakes Symp. VLSI,

May 2012, pp.345–350.

[63] Du Y, Zhou M, Childers B, Melhem R, Mossé D. Delta-
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