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Abstract Due to advances in semiconductor techniques, many-core processors have been widely used in high performance

computing. However, many applications still cannot be carried out efficiently due to the memory wall, which has become a

bottleneck in many-core processors. In this paper, we present a novel heterogeneous many-core processor architecture named

deeply fused many-core (DFMC) for high performance computing systems. DFMC integrates management processing ele-

ments (MPEs) and computing processing elements (CPEs), which are heterogeneous processor cores for different application

features with a unified ISA (instruction set architecture), a unified execution model, and share-memory that supports cache

coherence. The DFMC processor can alleviate the memory wall problem by combining a series of cooperative computing

techniques of CPEs, such as multi-pattern data stream transfer, efficient register-level communication mechanism, and fast

hardware synchronization technique. These techniques are able to improve on-chip data reuse and optimize memory access

performance. This paper illustrates an implementation of a full system prototype based on FPGA with four MPEs and 256

CPEs. Our experimental results show that the effect of the cooperative computing techniques of CPEs is significant, with

DGEMM (double-precision matrix multiplication) achieving an efficiency of 94%, FFT (fast Fourier transform) obtaining a

performance of 207 GFLOPS and FDTD (finite-difference time-domain) obtaining a performance of 27 GFLOPS.

Keywords heterogeneous many-core processor, data stream transfer, register-level communication mechanism, hardware

synchronization technique, processor prototype

1 Introduction

It is well known that the development of the semi-

conductor industry follows Moore’s law. In the last

decade, this has mainly been achieved via on-chip

many-core architectures. This trend is more obvious in

the high performance computing (HPC) domain. Com-

pared with multi-core processors, many-core processors

can provide higher computing ability, computing den-

sity, and ratio of computation to power consumption.

As a result, they are considered as the most impor-

tant component for future high performance computing

systems[1-2].

Many-core processors can be classified as either

homogenous or heterogeneous. Heterogeneous many-

core processors can integrate different types of cores

on a chip. Heterogeneous many-core processors pro-

vide a good balance among performance, energy effi-

ciency, and computing density. Thus, they have re-

ceived significant research interest from both academia

and industry[3-6]. We propose a novel heterogeneous

deeply fused many-core architecture (DFMC), which

integrates management processing elements (MPEs)

and computing processing elements (CPEs) on one

chip. For the heterogeneous cores, DFMC provides a

unified execution model as well as share-memory that

supports cache coherence.
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Moreover, due to the low ratio of memory band-

width to computation and the small on-chip memory

capacity, many-core processors have to address a more

serious memory wall problem, which significantly con-

strains the processors’ performance[1-2,7]. There has

been much research on memory optimization technolo-

gies for many-core processors through memory access

optimization and on-chip data reuse exploration[8-19].

On one hand, it is obvious that memory band-

width is very important to boost many-core pro-

cessors’ performance. It is necessary to improve

bandwidth utilization and hide memory access la-

tency. For instance, the SIMT execution mechanism

adopted in NVIDIA’s GPGPU implementation[8] and

multi-threaded techniques applied on Intel’s MIC/Xeon

PhiTM processors[10,20] are for those exact purposes.

However, those processors are not able to support data

distributed on different cores via collective memory ac-

cess according to application features, such as broad-

cast, one-dimensional (1D) or two-dimensional (2D)

block-cyclic data distribution, and so on. As a result,

there is space for improving the memory access perfor-

mance.

On the other hand, due to the constraints of on-

chip resources, cache or on-chip memory dedicated

to exploiting memory locality in many-core proces-

sors will be limited; thus, on-chip data reuse mecha-

nisms are one of the most important research topics

for many-core processor architectures. On-chip data

reuse mechanisms can be classified into two types: on-

chip share-memory and on-chip communication. For in-

stance, GPGPU’s shared memory[21-22] and Intel MIC’s

L2 Cache[23] are within the on-chip share-memory

category, while the Intel SCC processor[13-15] adopts

the on-chip communication approach, and the Tile64

processor[12,24] implements both on-chip share-memory

and communication via its on-chip mesh interconnect.

On-chip data reuse mechanisms have attracted lots of

research interest[16-18,25-32].

To optimize memory access performance and im-

prove on-chip data reuse, DFMC adopts a series of

tightly coupled cooperative computing techniques to

optimize on-chip data distribution, inter-core commu-

nication and synchronization.

The contributions of this paper are as follows:

• a series of cooperative computing techniques of

CPEs, such as a multi-pattern data stream transfer, an

efficient register-level communication mechanism, and

a fast hardware synchronization technique, with basic

performance evaluations;

• an implementation of full chip RTL and a pro-

totype DFMC system based on FPGA, which includes

four MPEs and 256 CPEs;

• a mapping of DGEMM, FFT, FDTD, BFS, and

SpMV to the DFMC prototype system, and an analysis

of the effect of each cooperative computing technique.

The results show that the cooperative computing

techniques of CPEs can effectively improve the compu-

tational efficiency of typical applications with regular

memory accesses.

The rest of this paper is organized as follows. Sec-

tion 2 introduces the DFMC architecture in detail, and

Section 3 describes the optimization efforts for DFMC’s

cooperative computing techniques. Section 4 illustrates

the prototype implementation and Section 5 presents

the experimental performance. Related work is pre-

sented in Section 6, and, finally, the paper is concluded

in Section 7.

2 DFMC Architecture

2.1 Overview

Fig.1 shows the DFMC architecture. DFMC con-

sists of management processing elements (MPEs), com-

puting processing elements (CPEs) clusters, memory

controllers (MCs), and the system interface (SI). All of

these modules are interconnected via network on chip

(NoC). DFMC is connected to an off-chip system via

the system interface.

MPE

NoC SI

CPE 

Cluster

…

…

…

MM MM MM

CPE 

ClusterMPE

MC MC MC

Fig.1. Architecture of DFMC.

The DFMC architecture is highly scalable. The

number of MPEs, CPE clusters, and MCs can be ad-

justed in a flexible manner according to the practical

implementation conditions. The number of CPEs in

one CPE cluster is also flexible. The crossbar, mesh,

or ring structures can be selected as the NoC topology

according to the number of components connected via

NoC.
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An MPE is a fully functional core, which integrates

two levels of cache structures and uses SIMD vector

extension. MPEs can run in both the user mode and

the system mode, and support superscalar, out-of-order

issue, out-of-order execution, and speculative execu-

tion. Applications’ serial sections can be efficiently per-

formed on an MPE, and users can obtain standard ser-

vices and operating environments. The proportions of

MPEs’ power and area are low in DFMC. Therefore,

the goal of MPEs’ design is to improve performance

and general-purpose computing capability.

We consider some important design parameters of

CPEs, such as issue width from one to three, out-of-

order or in-order and branch prediction strategy. Ac-

cording to energy and area efficiencies, CPEs support

dual-issue, out-of-order execution, and static branch

prediction. They only run in the user mode, and sup-

port double-precision floating-point multiply-add and

divide/square-root operations. They can largely sim-

plify micro-architecture design under the premise of en-

sured computational efficiency.

DFMC’s architecture has good adaptability for high

performance computing. A large number of CPEs

can efficiently process thread-level parallelism. And a

small number of powerful MPEs can effectively explore

instruction-level parallelism and process the serial sec-

tions of applications.

The key component of DFMC is the CPE cluster,

whose structure is shown in Fig.2. Each CPE clus-

ter consists of multiple CPEs, a CPE cluster network

(CPE NET) and a CPE controller (CPE Ctrl). The

CPE cluster has a series of optimization techniques to

combat the memory wall problem.

CPE NET uses an N × N mesh topology, credit-

based flow control, and wormhole routing. Its design

focuses on achieving low latency and lightweight com-

munication to meet the demand of cooperative com-

puting among CPEs. CPE NET supports an efficient

register-level inter-CPE communication, which will be

described later in Subsection 3.2.

The main components of CPE Ctrl include:

• CPE NET NI: the CPE NET network interface

(NI) is used to process CPE NET’s requests.

• Stream engine: the stream engine is used to dis-

patch and manage the data stream transfer operations

from the CPEs, which will be described in Subsection

3.1.

• Int Ctrl: the interrupt controller is used to control

the interrupt sent from the CPE cluster to the external

system.

• Syn Ctrl: the synchronization controller is used to

handle inter-CPE fast hardware synchronization, which

will be described in Subsection 3.3.

• CTLB: the CPE translation lookaside buffer is

used for the translation and protection of CPE virtual

addresses.

• Coherence process unit: the coherence process

unit is used to process the coherence protocol between

CPEs and MPEs.

• NoC NI: the NoC network interface in CPE Ctrl.

NoC

CPE 

Cluster

CPE_Ctrl

CPE CPE CPE CPE

CPE CPE CPE CPE

CPE CPE CPE CPE

CPE CPE CPE CPE

...

...

...

...

...

...

...

...

Int_CtrlCPE_NET NI

Coherence

Process Unit

Stream

Engine
CTLB

NoC NI

Syn_Ctrl

CPE_NET

Fig.2. CPE cluster of the DFMC processor.

2.2 Deep Fusion of Heterogeneous Cores

A major feature of the DFMC architecture is the

deep and seamless fusion of heterogeneous cores by

applying the unified ISA (instruction set architecture)

and the execution model, as well as the share-memory

model, which supports cache coherence. It provides

programmers with a consistent programming environ-

ment of MPEs and CPEs and minimizes main memory

copy between heterogeneous cores.

• ISA. The basic ISAs of MPEs and CPEs are

compatible; both are Alpha-like general RISC archi-

tectures with 32-bit fixed-length. There are 212 in-

structions in the basic ISA, which supports operand

sizes of 8-bit, 16-bit, 32-bit, 64-bit, and IEEE 754 float-

ing point in 32-bit (single precision) and 64-bit (dou-

ble precision). The operations include memory access,
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arithmetic logic, control and floating point. In ad-

dition, CPEs add register-level communication, data

stream transfer and hardware synchronization instruc-

tions, which are related to the structure of the CPE

cluster.

• Execution Model. MPEs run standard Linux,

with kernel version 2.6.28. CPEs run a customized

lightweight operating system that just supports basic

functions, such as processing/thread management and

memory management. Both MPEs and CPEs can run

independently. There are two hybrid execution models:

the accelerating model and the service model, facilitat-

ing the cooperative performance of MPEs and CPEs.

Under the accelerating model, the main program runs

on an MPE, and the MPE offloads the computational

kernel to CPEs; under the service model, the main pro-

grams run on CPEs, and the CPEs call for the MPEs

to finish the file and provide MPI services.

• Memory Space. DFMC supports the sharing of

main memory between MPEs and CPEs. Cache co-

herence is supported among MPEs. When accessing

shared main memory (by load/store instructions or

data stream transfer), CPEs can obtain the latest copy

from the MPEs’ cache. Thus, MPEs offloading compu-

tational kernels to CPEs are lightweight and effective

because there is no need for the global memory copy.

SPMs in the CPE cluster have their own address space

with explicit data transfer instructions to move data to

and from the main memory. There is no coherence be-

tween SPMs. The memory hierarchy design of DFMC

is shown in Fig.3.

L1 

ICache

RF 
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L2 SCache

MPE

L1 

ICache

RF 

L1 

ICache

RF 

SPM SPM

L2 ICache

CPE Cluster

CPE CPE

Memory

Cache Coherence Process Unit

Fig.3. Memory hierarchy of the DFMC processor.

MPEs have a two-level on-chip memory hierarchy,

including separated data and instruction L1 caches, and

a shared data and instruction L2 cache. CPEs’ in-

struction memory system provides a private L1 instruc-

tion cache for each CPE and a shared L2 instruction

cache for the CPE cluster. The data memory system

of CPEs is based on the organization of scratch pad

memory (SPM), which is directly open to management

via software. Compared with the cache, this approach

simplifies the implementation, achieves the accurate

use of space, reduces off-target traffic, and avoids the

design complexity and performance degradation that

would be caused by dealing with coherence among many

CPEs. CPEs can access memory through load/store

instructions, which support register, immediate, and

displacement addressing modes and 1B/2B/4B/8B ac-

cessing granularity. CPEs also support multi-pattern

data stream transfer between the SPM and the main

memory to take full advantage of memory bandwidth.

The CPE cluster translation lookaside buffer (CTLB)

translates the virtual addressing to physical addressing

by segmentation without paging. The virtual address

is divided into a limited number of segments. CTLB

keeps all of the segment information, such as physical

base address, segment length, and access permission.

The maximum number of total segments in the CPE

cluster is equal to the number of CTLB entries. This

mechanism can avoid the performance degradation of

CTLB misses.

3 Cooperative Computing Techniques

There are three optimization techniques to support

the cooperative computing of CPEs and alleviate the

memory wall in DFMC: data stream transfer, register-

level communication, and hardware synchronization.

These techniques can adapt to many key applications

of HPC.

3.1 Data Stream Transfer

Depending on the application features, the conti-

nuous or stride data can be moved between the SPM

and the main memory with the multi-pattern data

stream transfer in DFMC, which can utilize the SPM

and the memory more accurately and efficiently. The

data stream transfer, which is started by CPEs and

independent of CPE pipeline execution, can pre-fetch

data and effectively hide the memory access latency by

double-buffering or multi-buffering. The stream engine

in CPE Ctrl can process several data stream transfers

concurrently. To improve memory access performance

and ensure QoS and fairness of the CPEs, there are

three levels of scheduling in the engine: stream level,

request flit level, and response flit level.
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The instructions of CPEs that configure and start a

data stream transfer are shown in Table 1. To improve

efficiency, the stream engine performs transfers out-of-

order. If a specified transfer group must be in order, a

stream barrier can be used. The stream put/stream get

instructions after a stream barrier will not be executed

until the stream put/stream get instructions before the

stream barrier are finished. When a data stream trans-

fer is completed, the response generated by the stream

engine can be written to the SPM. The CPE can just

start the data stream transfer between the main mem-

ory and the SPM in its own cluster. The communi-

cation across the CPE cluster is routed through shared

main memory. If there is more than one task running in

a CPE cluster simultaneously, the corresponding rela-

tion between CPEs and tasks is recorded in the stream

engine. An exception will be generated when CPEs that

are assigned to different tasks take part in the same data

stream.

Table 1. Instructions for Data Stream Transfer

Instruction Description

stream put ra, rb,
rc

Configure and start the data stream
transfer from the SPM to the main
memory

stream get ra, rb,
rc

Configure and start the data stream
transfer from the main memory to
the SPM

stream barrier Data stream transfer barrier

stream mask ra Set the masks of the stream trans-
fer. ra is a 64-bit vector and each
bit represents a CPE. A “1” bit rep-
resents that the corresponding CPE
will be masked.

The stream put and the stream get instructions

have three 64-bit source operand registers, which form a

192-bit command to describe the data stream transfer,

such as SPM address, main memory address, transfer

pattern, stride, transfer length, and so on.

For the cooperative computing of CPEs, there are

multiple patterns of data streaming transfers. These

transfer patterns can make the data arrangement in the

CPE cluster multi-dimensional, which can effectively

improve the data locality and save the main memory

access bandwidth. A CPE cluster in DFMC supports

seven patterns: the single CPE pattern, the broad-

cast pattern, the row pattern, the broadcast row pat-

tern, the column pattern, the broadcast column pat-

tern, and the array pattern. The broadcast pattern

broadcasts data to all of the CPEs in a CPE cluster

while accessing the main memory; the row pattern and

the broadcast row pattern can circularly arrange the

data blocks via row dimension; the column pattern and

the broadcast column pattern can circularly arrange

the data blocks via the column dimension; and the ar-

ray pattern can circularly arrange the data blocks in

a 2-dimensional (2D) array. The patterns are shown

in Fig.4; CPE(R,C) indicates its location in the CPE

cluster is row R and column C. In this paper, the pat-

terns of data stream transfers are fixed corresponding

to the CPE cluster’s 8×8 structure.

3.2 Register-Level Communication Mecha-

nism

We propose a data reuse mechanism based

on register-level communication, implementing fine-

grained low-latency data movement between CPEs at

low hardware cost, and supporting multicast and broad-

cast communication functions. The user interface of

register-level communication consists of MPI-like com-

munication primitives, such as send/recv, isend/irecv,

and bcast. The communication library of primitives is

written by the embedded assembler, with customized

instructions for register-level communication. More-

over, register-level communication does not ensure data

coherence via hardware, according to the massage pass-

ing model.

Different from the traditional communication me-

chanisms for network-on-chip, register-level communi-

cation mechanisms provide direct data transfer between

the general purpose register files of CPEs without pass-

ing through the local on-chip memory of CPEs, as

shown in Fig.5. CPEs’ pipelines and CPE NET are

tightly coupled in DFMC, and thus the data are di-

rectly injected into the CPE NET from the source

CPE’s pipeline, and then carried to the destination

CPE’s pipeline. The topology of CPE NET is a

mesh that only needs adjacent communication and

short inter-core wires, and thus we can fix the tim-

ing easily. The register-level communication function

uses the producer-consumer protocol and implements

lightweight blocking/non-blocking communication. As

a sender, a CPE puts the data into a sending unit from a

general-purpose register file, and then the pipeline will

continue to run; the receiver CPE gets the valid data

from a receiving buffer and takes them into its general-

purpose register file. The sending/receiving hardware

logic used for the register-level communication mecha-

nism is simple and without virtual channels, which can

reduce the area, power cost, and design complexity
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of both CPEs and CPE NET. The producer-consumer

protocol also avoids handshake or synchronization ope-

rations to establish a communication session, which can

significantly shorten the communication delay.

The CPE NET consists of 64 reduced routers to

support register-level communication. The reduced

router is similar to the classic on-chip network router,

but parallel multicast and broadcast functions are

added in order to improve the efficiency of collective

communication.

RF

Cache/RAM Cache/RAM

RF

Cache/RAM Cache/RAM

RF RF

CPE CPE CPE CPE

(a) (b)

Fig.5. Differences between (a) traditional communication and
(b) register-level communication.
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There are four instructions used to control register-

level communication; two of the instructions are used

for sending data and the others are used for receiving

data, as shown in Table 2. In this paper, the send/bcast

instruction and the receive instruction must be used as

a pair, or the next register-level communication will be

blocked.

Table 2. Instructions for Register-Level Communication

Instruction Description

send ra,
rb/#dest

Send the data in ra to the CPE desig-
nated by rb or immediate dest. rb is a
64-bit vector, and each bit represents a
CPE. A “1“ bit represents that the date
will be sent to the corresponding CPE in
the CPE cluster

bcast ra, rb Broadcast the data in ra to the CPE
designated by rb

receive ra, rb Receive the communication data blocked,
and take the data into ra. Then, put the
ID of the sender into rb

receive test ra,
rb

Receive the communication data non-
blocked, if the data has not arrived. Sign
a flag into rb

3.3 Hardware Synchronization Technique

CPEs often work in a tightly coupled cooperative

computing model, which leads to frequent synchroniza-

tion and lock operations. Traditionally, the synchro-

nization is implemented by software through atomic

memory operations. The software synchronization is-

sues many memory accesses, resulting in system per-

formance degradation. To improve the synchroniza-

tion performance, this paper implements an on-chip

fast hardware synchronization technique without mem-

ory accesses, which can perform the most frequently

used barrier operation in a CPE cluster. Other types

of synchronization in a CPE cluster are performed by

software. The comparison between the traditional soft-

ware synchronization and the hardware synchronization

is shown in Fig.6. When the synchronization between

MPEs and CPEs or the synchronization across a CPE

cluster is needed, we can still use the soft synchroniza-

tion operations.

1○ and 4○ are CPE execution phases before synchro-

nization, 2○ and 5○ are CPE synchronization phases,

and 3○ and 6○ are CPE execution phases after synchro-

nization. In phase 2○, all CPEs that have reached the

synchronization point always access memory until the

last CPE arrives, wasting memory bandwidth. In phase

5○, CPEs use a synchronization instruction to notify

Syn Ctrl in CPE Ctrl. Syn Ctrl sends finish signals to

the CPEs after all of the CPEs that need synchroniza-

tion have reached the synchronization point.

CPE i Memory CPE j CPE i Syn_ Ctrl CPE j

1
1

4
4

5

6

5

6

2

3

2

3

(a) (b)

Fig.6. Comparison between (a) software synchronization and
(b) hardware synchronization.

Syn Ctrl completes synchronization by collecting

hand-up state and then setting a completed flag. It

can also process several groups of synchronization con-

currently. Synchronization instructions in DFMC in-

clude a row synchronization instruction, a column syn-

chronization instruction, and an array synchronization

instruction. The row/column synchronization instruc-

tions have an 8-bit synchronization vector, and the ar-

ray synchronization instruction has a 64-bit synchro-

nization vector. Each bit of the vectors represents

whether the corresponding CPEs need to synchronize

with the current CPEs. Synchronization instructions

are described in Table 3.

Table 3. Instructions for Hardware Synchronization

Instruction Description

synr
ra/#dest

Row synchronization instruction. Register ra
or immediate dest is an 8-bit vector, and
a “1” bit represents that the corresponding
CPE in current row participates in the syn-
chronization

sync
ra/#dest

Column synchronization instruction. Regis-
ter ra or immediate dest is an 8-bit vector,
and a “1“ bit represents that the correspond-
ing CPE in current column participates in
the synchronization

syn ra Array synchronization instruction. Register
ra is a 64-bit vector, and a “1“ bit repre-
sents that the corresponding computing-core
in current CPE cluster participates in the
synchronization
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4 Implementation and Performance Evalua-

tion

To validate DFMC, we implemented a full chip

RTL design and built a prototype system with FPGA.

The performance of cooperative computing techniques

in the prototype system was evaluated. Furthermore,

several typical applications were mapped to the DFMC

architecture for performance analysis.

4.1 Full Chip RTL

The RTL of DFMC is designed in-house; thus we

can easily optimize the microarchitecture, extend the

functionality, and balance the performance and the

power-usage. Clock gate and fault tolerance technology

are also used in this design. For the future test chip,

we finished the physical design intended for fabrication

in 40 nm technology.

The parameters of DFMC are compared with those

of an Intel Xeon CPU and an NVIDIA GPU as shown in

Table 4. These processors are different in architectures,

but under the similar CMOS technology process. Be-

cause of the balance design of power and performance in

CPEs, DFMC achieves the best peak performance and

the ratio of computation to power consumption. How-

ever, the ratio of memory bandwidth to computation of

DFMC is the worst. In this paper, DFMC combines a

series of cooperative computing techniques to solve this

problem.

4.2 Prototype System

The applications and tests run slowly in a software

environment, thereby we implemented a full chip pro-

totype system with FPGA for acceleration.

The FPGA prototype system adopts a modular

structure, which consists of MPE cards, CPE cards,

a PCIe card, an MC card, an NoC card, and so on.

The prototype includes 256 CPEs, four MPEs and four

MCs, as shown in Fig.7.

The FPGA prototype system uses a total of 352

Altera EP3C120, 21 Xilinx 5VLX330 and one Xilinx

5VLXT220. The frequency of the prototype system is

2.6 MHz. Table 5 lists the components and functions.

Although there are many cross-board signals, we

balance all of the stages related to cross-board and en-

sure the FPGA prototype system is equal to the RTL

design at the cycle level. Then, the foremost reason

that the simulation is inaccurate is the main memory

frequency. Compared with the target RTL design, the

ratio of CPE frequency to MC frequency in the proto-

type is quite different, which results in simulation de-

viation. To ensure accuracy, the prototype system uses

the performance calibration techniques. FPGA proto-

types have many performance adjusters and counters,

and we have an FPGA adjustment benchmark that in-

cludes more than one hundred short programs espe-

cially for memory systems. We define the deviation ra-

tio as the ratio of a program’s execution time on RTL

to its execution time on FPGA. Then, we can adjust

the latency, bandwidth, and scheduling in the FPGA

prototype to find the minimum average deviation ratio

for the benchmark. The performance counters can in-

dicate which adjustment is more important. The test

shows that the performance accuracy of the prototype

system is up to 95% in the benchmark thanks to the

calibration.

4.3 Software Layer

In this paper, the programs running on DFMC use

the accelerated model. We designed a library-based

programming approach to ease the task of utilizing

DFMC. The library supports programming interfaces

for thread management, data stream transfer, register

level communication and synchronization. Program-

mers can use these interfaces to explicitly control the

Table 4. Parameters of DFMC/Xeon/GPGPU

DFMC (40 nm) Intelr Xeonr 5680 (32 nm) NVIDIA Fermi M2090 (40 nm)

Architecture 4 CPE clusters (256 CPEs)
4 MPEs, 4 MCs

6 cores 512 CUDA cores

NoC Mesh Ring topology –

On-chip memory 32 KB in each CPE×256=8 MB 12 MB cache 1 024 KB share memory/L1 cache
768 KB L2 cache

Frequency 1 GHz 3.33 GHz 1.3 GHz

Computing ability 1000 GFLOPS DP 80 GFLOPS DP 665.6 GFLOPS DP

Memory bandwidth 102.4 GB/s DDR3 32 GB/s DDR3 177.6 GB/s GDDR5

Chip area ∼ 400 mm2@40 nm 240 mm2 @32 nm 520 mm2@40 nm

Power ∼ 200 W 130 W 250 W
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hardware and implement their applications on DFMC,

and then the compiler translates source code to assem-

bly code. It is not the intention of this paper to describe

the way to design software layer in detail.

(b)

PCIe Card

Ethernet

DFMC

PCIe 

Device

Host

NoC Card

MC Card

D
M

M

D
M

M

CPE CBoard

CPE Ctrl Card

MPE Card

Peripheral 
Environment

CPE Card

FPGA

(a)

I I

Fig.7. DFMC FPGA prototype system. (a) Logic diagram.
(b) Physical photo.

Table 5. Component of FPGA Prototype System

Card/Board FPGA Function

CPE card 11×32 cards
(EP3C120)

Eight CPEs in one card

MPE card 2×4 cards
(5VLX330)

One MPE in one card

CPE Ctrl
card

2×4 cards
(5VLX330)

One CPE Ctrl in one card

MC card 1×4 cards
(5VLX330)

One MC in one MC card

NoC card 1
(5VLX330)

DFMC NoC

PCIe card 1
(5VLXT220)

PCIe interface

CPE
CBoard

– Assemble CPE card and
CPE Ctrl card

A programming example on DFMC is shown in

Fig.8. That is a kernel of matrix multiplication. The

original program in Fig.8 is split into an MPE pro-

gram and a CPE program. The MPE program, as the

host program, invokes the CPE program to acceler-

ate the kernel. In the CPE program, several steps are

performed: arrays aa, bb and cc are first declared in

SPM using the SPM variable declaration; data is

then fetched from the main memory to SPM through

explicit data transfer operations; after hardware syn-

chronization, the matrix multiplication is computed

on all CPEs in parallel; the calculation is divided

into eight rounds, and different CPEs do register-level

broadcast in different rounds (e.g., row and column

register-level broadcasts are performed by diagonal

//-----------------Main function in MPE----------------------- 
Main(){ 
…  
/* CPE_VEC is a 64 -bit vector corresponding to 64 CPEs in 
#CCN CPE_Cluster */ 
CPE_Foo(CPE_VEC, CCN);  
…  
} 
//------------------- Function in CPEs --------------------------- 
CPE_Foo{ 
__SPM__ double aa[N][N], bb[N][ N ], cc[N][ N ];  
… 
//data stream transfer:  
//get data from source(main memory) to dest(SPM) 
dt_get(source_addr_a, aa, size_a, pattern_a, tag_a); 
dt_get(source_addr_b, bb, size_b, pattern_b, tag_b); 
dt_get(source_addr_c, cc, size_c, pattern_c, tag_c); 
// hardware synchronization: all CPEs in CPE cluster 
syn_all(); 
//-------------Round 0 ------------------ // 
If(CPE_RowNum == CPE ColNum) // The diagonal CPEs 
{ 

for (ii=0; ii< N; ii++) 
for (kk=0; kk< N; kk++) 

for (jj=0; jj< N; jj++) 
{ 

//register-level comm:  
//broadcast aa to CPE in the same row 
rlc_bcast (aa [ii][kk], row, size); 
// broadcast bb to CPE in same col 
rlc_bcast (bb[kk][jj], col, size); 

cc[ii][jj]=cc[ii][jj] aa[ii][kk]*bb[kk][jj];} 

else 
{ 

for (ii=0; ii<N; ii++) 
for (kk=0; kk<N; kk++) 

for (jj=0; jj<N; jj++) 
{  

//register-level comm:  
//receive data and save to aa_temp/bb_temp 
aa_temp=rlc_receive (row, size); 

        bb_temp=rlc_receive (col, size); 
cc[ii][jj]=cc[ii][jj]-aa_temp*bb_temp;}

//-------------Rounds 1~7------------------// 
… 
 
syn_all(); 
//data stream transfer:  
//put data from source(SPM) to dest(main memory) 
dt_put(cc, dest_addr_c, size_c, pattern_c, tag _c); 
} 

Fig.8. Example of programming on DFMC.
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CPEs in round 0); the results are finally put back

to the main memory after computing. We use the

library to abstract the details of new hardware in-

structions, such as dt get/dt put(data stream transfer),

rlc bcast/rlc receive(register level communication), and

syn all(hardware synchronization). In addition, the

register allocation and the spilling of register level com-

munication are preceded by the compiler.

There is much manual work involved in mapping the

algorithms to the architecture. However, openacc2.0

and openmp4.0 standards will be supported on DFMC

in the future, which can alleviate the burden on the

programmers.

5 Performance Analysis

5.1 Performance of Cooperative Computing
Techniques

5.1.1 Data Stream Transfer

Fig.9 shows the full-chip aggregate bandwidth of

various data stream patterns. The horizontal axis rep-

resents the data size that each CPE obtains (byte);

the vertical axis represents the aggregated data stream

bandwidth (GB/s) of full chip with 256 CPEs. For

the single CPE pattern (S), the row/column pat-

tern (R/C), and the array pattern (A), we used four

cases: stream get, stream put, stream get with stride

and stream put with stride. For broadcast row/column

pattern (BR/BC) and broadcast pattern (B), we used

two cases: stream get and stream get with stride. Due

to the limit of space in this paper, we just show the

results of stream get in all patterns in Fig.9.
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Fig.9. Bandwidth of data stream transfer.

The results show that in the case of the single CPE

pattern, row/column patterns and array pattern, more

than 90% of the peak bandwidth (physical link width ×
data rate) can be reached when the transfer length ex-

ceeds 256B. However, the bandwidth of the row/column

pattern and array pattern is better than that of the sin-

gle CPE pattern when the data size is less than 256B.

In the case of the broadcast row/column pattern and

broadcast pattern, the CPEs obtained bandwidth scales

out of the main memory physical bandwidth because

of the broadcast technique. Their maximum aggregate

bandwidths are 593.6 GB/s and 2 165.8 GB/s, respec-

tively.

5.1.2 Register-Level Communication Mechanism

We achieved a lightweight MPI-like communication

primitive between CPEs by the register-level communi-

cation mechanism, and chose four different communica-

tion modes from typical algorithms, as shown in Fig.10.

Mode A is from the butterfly transform of FFT, and

the communication distance between CPEs is 2n (n is

2 in our experiment). Mode B is from the famous Red-

Black Colouring. Adjacent CPEs update alternately,

and the communication mode is wavefront. Mode C

is from the DGEMM algorithm based on row/column

broadcast. The diagonal CPEs perform row and colu-

mn broadcast. Other CPEs receive data. Mode D is

a full broadcast from one CPE to all the other CPEs.

CPE 0 is set to be the broadcasting CPE in this expe-

riment.

(a) (b)

(c) (d)

Fig.10. Register-level communication modes in test. (a)
Mode A. (b) Mode B. (c) Mode C. (d) Mode D.
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The aggregate bandwidths of four communication

modes with different data sizes are shown in Fig.11.

The horizontal axis represents the communication data

sizes (byte) and the vertical axis represents the ag-

gregate communication bandwidth of one CPE cluster

(GB/s).
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Fig.11. Bandwidth of the register-level communication test in
one CPE cluster.

Because all of the communications of CPEs go

through the middle of the network, there is a com-

munication hotspot in the CPE cluster in mode A.

The maximum aggregated bandwidth reaches only

126.9 GB/s. Mode B communications are approach-

ing traffic with the shortest latency. The aggregated

bandwidth is maximized when the data size is less than

128 B. The aggregated bandwidth reaches 502.2 GB/s

when the data size is increased to 2 KB. For mode C,

the maximum latency is that across a CPE cluster side

and the aggregated bandwidth is up to 831.1 GB/s.

For mode D, the maximum latency is that from dia-

gonal CPEs and the aggregated bandwidth is up to

889.8 GB/s.

Fig.12 provides the maximum communication la-

tency of the four communication modes with various

data sizes. The horizontal axis represents the amount

of communication data (byte); the vertical axis rep-

resents the maximum latency (cycle). This library is

written by the embedded assembler and we use the in-

line optimization, and thus the latency shown in Fig.12

is in hardware.

In Fig.12, the communication latency of mode A is

the maximum because there is a hotspot in the CPE

cluster. For the other three cases, mode B, mode C

and mode D, the maximum latency is less than 300

cycles. The register-level communication mechanism is

simple and the latency is small, and thus the latencies

of modes A∼D are only 17 cycles, 7 cycles, 22 cycles

and 36 cycles, respectively, with the data size of 16 B.

As a result, the register-level communication mecha-

nism is also adapted to the small-data communication

with small latency.
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Fig.12. Latency of register-level communication test in one CPE
cluster.

5.1.3 Hardware Synchronization Technique

Fig.13 gives a comparison between the hardware

synchronization technique (Hard Syn) and the tradi-

tional software synchronization technique with atomic

operation (Spft Syn). The horizontal axis represents

the number of CPEs which participate in synchroniza-

tion, from 2×2 to 8×8. The vertical axis represents the

time required by synchronization. The hardware syn-

chronization technique is implemented by the Syn in-

struction of DFMC, while the software synchronization

technique is implemented with an atomic fetch&add

operation.
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Fig.13. Performance of hardware synchronization technique.

The results show that the hardware synchroniza-

tion needs only 29 to 33 cycles to finish synchronization,

while the software synchronization needs 2 558 to 18 856

cycles. Thus, the hardware synchronization technique

can achieve an 88X to 500X speedup, which improves

the synchronization efficiency dramatically. In addi-

tion, the scalability of the hardware synchronization is
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also better, as the latency is independent on the num-

ber of participating CPEs. However, for the software

synchronization, the synchronization cost of 8×8 is up

to 7.4 times over 2×2.

5.2 Performance of Typical Applications Map-

ping

5.2.1 Typical Applications

To validate the design of DFMC, we chose

five typical applications from 13 Dwarfs of Berke-

ley to map to the prototype[33]: dense linear al-

gebra (DGEMM, double-precision matrix multipli-

cation), spectral method (FFT, fast Fourier trans-

form), structured grids (FDTD, finite-difference time-

domain), sparse linear algebra (SpMV, sparse matrix

vector product) and graph traversal (BFS, breadth-first

search). DGEMM, FFT and FDTD are regular memo-

ry access applications, and SpMV and BFS are irregular

memory access applications.

• DGEMM. It is the kernel of many linear algebra

algorithms, which have important application prospects

in the fields of science and engineering computing.

DGEMM has good separability and regular memory

access. Its input matrices are N × N . Its computa-

tional complexity is O(N3), the amount of data access

is O(N2), and the ratio of computation to data accesses

is O(N). On the general-purpose processor, DGEMM

is computing bound. However, in the many-core pro-

cessor, it will be bandwidth bound if the on-chip data

reuse and the memory accessing do not work well.

• FFT. It is one of the most important kernels for

signal processing. It is used to convert signals from time

domain to frequency domain. The computation com-

plexity is O(N logN) and the space complexity is O(N).

FFT finishes the transmission within logN stages of the

butterfly computation. During the FFT process, the

stride size of data access is the power of 2. The bound

is depending on the FFT size. If the work set cannot

be stored on chip, memory access impacts on the per-

formance significantly.

• FDTD. It is an important numerical analysis tech-

nique for modelling computational electrodynamics.

That belongs to the grid-based modelling methods. The

equations are solved in a leapfrog manner: the electric

field vector components are solved at a given instant

in time; then the magnetic field vector components are

solved at the next instant in time; and the process is

repeated over and over again until electromagnetic field

behaviour is fully evolved.

• BFS. It is one of the most important graph algo-

rithms, and it serves as a building block for many other

algorithms. Benchmark suites targeting graph applica-

tions perennially include BFS as a primary element.

• SpMV. It is at the heart of many iterative solvers.

SpMV is characterized by regular access patterns over

non-zero elements and irregular access patterns over the

vector, based on column index.

5.2.2 Performance

The five applications can be parallelized in the

thread-level and mapped to CPEs. The MPEs were

only used to manage the threads of CPEs in our experi-

ments. We compared the performance of DFMC, Intel

Xeon 5680, and NVIDIA GPU M2090. The MKL10.2.4

was used in Xeon for DGEMM and FFT. The CUBLAS

4.1 and the CUFFT4.1 were used in GPU for DGEMM

and FFT. Another application is our own codes and

CUDA was used in GPU, and we spent as much effort

in optimizing for Xeon/GPU as for DFMC. The perfor-

mances of FDTD, BFS, and SpMV in Xeon/GPU are

the same as in other studies[7,34-37].

We used the “application performance” (amount

of effective calculation/executive time) and the “com-

putational efficiency” (application performance/peak

performance) as the metrics for DGEMM, FFT, and

FDTD, and the “speedup” (execution time on target

architecture/execution time on DFMC) for BFS and

SpMV.

• DGEMM. DGEMM was mapped in DFMC with

all of the cooperative computing techniques. Multi-

pattern data stream transfer not only supports data ar-

rangement in CPE cluster according to the application

requirement but also hides memory access latency by

double buffering. DGEMM implements C = C−A ·B,

where A, B and C are double-precision floating-point

matrices. A and C adopt the row pattern, while B

adopts the single CPE pattern. After that, the calcula-

tion is divided into eight rounds. There are eight CPEs

doing row broadcast register-level communication, and

eight CPEs doing column broadcast register-level com-

munication in every round. The latency of register-level

communication is completely hidden by computation.

In this paper, DFMC is compared with Intelr

Xeonr and Fermi. The size of the selected matrix is

61 184. Fig.14 provides the results. Furthermore, in

order to analyze the impact of cooperative computing

techniques on performance, we performed the test of

DFMC without register-level communication (DFMC

no RLC), row pattern data stream transfer (DFMC no
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Fig.14. DGEMM in DFMC. (a) Application performance. (b) Computational efficiency.

DT) and hardware synchronization mechanism (DFMC

no Syn).

The results show that the peak performance of

DFMC reaches 940 GFLOPS, which is higher than

those of Xeon multicore processors and GPGPU.

And the efficiency is 94%, which is close to that of

Intelr Xeonr multicore processors and exceeds that of

GPGPU by 35%. In this algorithm, the most important

optimization technique is register-level communication,

which makes the whole CPE cluster work together. The

size of working set on-chip is expanded by 64 times,

then the amount of memory access is reduced to 12.5%,

which shifts DFMC from the memory access bound to

the computing bound. The computational efficiency

is improved by 65.8% by register-level communication.

In this algorithm, the efficiency is improved by 9.7%

due to the row transfer pattern, which is fairer for each

CPE. The efficiency is improved by 2.8% with hardware

synchronization over software synchronization.

• FFT. FFT was mapped in DFMC with all of the

cooperative computing techniques. Multi-pattern data

stream transfer not only supports data arrangement in

CPE cluster according to the application requirement

but also hides memory access latency by double buffer-

ing. The data were transferred in the array pattern.

After local computation, each CPE needs to communi-

cate with other CPEs whose distance is the square of

the loop round. Take CPE 0 for example, the target

CPE of the 6-round communication is 1, 2, 4, 8, 16,

and 32, exactly the CPEs in the same row or column.

The experiment was based on the double-precision

FFT with the size of 32 768 and the results are com-

pared with Xeonr and Fermi, as shown in Fig.15. Fur-

thermore, we performed the experiments on DFMC

without register-level communication (DFMC no RLC),

array pattern data stream transfer (DFMC no DT), and

hardware synchronization mechanism (DFMC no Syn).

The results show that the bound of FFT is the mem-

ory access. The peak performance is 207 GFLOPS,

which is higher than that of Xeonr multicore proces-

sors and GPGPU. The efficiency is 20.7% and lower

than that of Xeonr multicore processors by 5.8% and

higher than that of GPGPU by 3.5%. In FFT, the

most important technique is register-level communica-

tion, which can reduce the amount of memory access

by approximately 50%. Without that, the computa-
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Fig.15. FFT in DFMC. (a) Application performance. (b) Computational efficiency.
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tion efficiency is only 9.73%. In FFT, the array pattern

improves the efficiency by approximately 1.6%, which

is fairer for each CPE. There are a few synchronization

operations in FFT and the impact of hardware synchro-

nization on performance is small.

• FDTD. In DFMC, the grid of 3D-FDTD is di-

vided into blocks, which are specified in two dimensions,

and the data are transferred in the array pattern stream

transfer. Each CPE obtained the border points data

from other CPEs through adjacent mode register-level

communication.

In this paper, DFMC is compared with Intelr

Xeonr and Fermi. The size of the selected grid is

256×500×100. Fig.16 provides the results. We per-

formed the test of DFMC without register-level commu-

nication (DFMC no RLC), array pattern data stream

transfer (DFMC no DT), and hardware synchronization

mechanism (DFMC no Syn).
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Fig.16. FDTD in DFMC. (a) Application performance. (b)
Computational efficiency.

In FDTD, the ratio of computation to data ac-

cesses is O(1), and the bound is the memory access.

The results show the peak performance is 27 GFLOPS,

and the efficiency is 2.7%, both are higher than those

of Xeonr multicore processors and GPGPU. If with-

out register-level communication, every CPE must load

some redundant boundary data from the main mem-

ory. Then, the register-level communication can reduce

the amount of redundant boundary data access by ap-

proximately 15%. The array pattern stream transfer

improves the performance by approximately 2.8%. The

performance is improved by 5% with hardware synchro-

nization over software synchronization.

• Applications with Irregular Data Access. BFS and

SpMV have a large working set and very little compu-

tation. Because of irregular data access, the coopera-

tive computing techniques cannot be used in these ap-

plications. This experiment shows the limitation of

DFMC and cooperative computing techniques. The

performance of BFS and SpMV is measured by TEPS

(traversed edges per second) and FLOPS. For brief-

ness and clarity, we analyze BFS and SpMV together

here with speedup (execution time on target architec-

ture/execution time on DFMC) as the metric.

In DFMC, BFS scale is 23, and SpMV data size is

4GB with compressed row storage. Fig.17 provides the

results. The most important factor of performance is

the peak global memory bandwidth. Fermi bandwidth

is approximately 1.4X of that of DFMC and 4.5X of

that of Xeon. The application speedup results shown

in Fig.17 almost report this trend.
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Fig.17. SpMV and BFS in DFMC.

Above all, the cooperative computing techniques

can be used to improve the performance in the ap-

plications with regular data access, such as DGEMM,

FFT, and FDTD. The register-level communication is

the across-board best performer because it can reduce

the amount of memory access by on-chip data reuse.

The multi-pattern data stream transfer makes the data

arrangement in the CPE cluster fit the application fea-

ture, and makes the memory access more fair for each

CPE. Although the hardware synchronization is much

more efficient than software counterpart, the best per-

formance promotion is just 5% (FDTD) for less syn-

chronization operations in these applications. It maybe

plays a greater role in other fields.
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One of the main drawbacks of the cooperative com-

puting techniques is that they are hard to use in appli-

cations with irregular data access.

6 Related Work

Our proposed DFMC and cooperative computing

techniques were inspired from many studies on proces-

sor architecture, on-chip memory management, on-chip

communication and synchronization.

Amdahl’s Law and Heterogeneous Many-Core Ar-

chitecture. According to Amdahl’s law, fully parallel

applications are not available, and the whole applica-

tion performance is deeply affected by the performance

of sequential component[38]. Hill and Marty[39] found

that the Amdahl’s law is also effective in many-core era.

By analyzing the kernel sections of key applications,

heterogeneous many-core computing is the trend of fu-

ture computing on chip[33]. Early in 2005, IBM released

the Cell processor, the first heterogeneous processor in

high performance computing, which includes one gene-

ral purpose processing unit and eight synergistic pro-

cessing elements[40-41]. In academic research, the hete-

rogeneous architecture is also broadly adopted, such as

the work in [42], which focuses on energy-efficient com-

puting, and in [43], which studies the ISA of hetero-

geneous chip multiprocessors. Major companies have

already started the research and development on hete-

rogeneous many-core processors, for example, AMD’s

APU[44-45], NVIDIA’s Echolen[46]. Those processors

integrate powerful complex processing core and thread

accelerating core within single chip, which can signifi-

cantly improve the chip’s performance while still keep-

ing the abilities for accommodating different working

sets.

On-Chip Memory Management. On-chip memory

management is very important to improve application

execution efficiency. GPGPU and Cell processor both

use none cache structure[8,47-48], which is explicitly used

by software. This on-chip software-managed memory

can reduce the amount of external memory access by

cache conflicts. NVIDIA GPGPU provides SIMT to

fully hide the memory access by computing[8]. Cell pro-

cessor uses asynchronous DMA and software-managed

local store to overlap the memory access[47]. In com-

parison with Cell, our data stream transfer supports

multi-pattern, which can better adapt to the applica-

tion features and improve the performance of memory

access.

On-Chip Communication and Synchronization.

Keckler et al.[49] proposed fine-grain communication

mechanism in multi-ALU processor, which supports

register-to-register communication between clusters

through writing directly into the register file of an-

other cluster. Shared memory in GPGPU[8] and L2

cache in Intel MIC[10] are both shared by threads to

improve data utilization on chip. Tile64[12] has five

individual 2D mesh NoCs, which support the commu-

nication between tiles and distributed cache sharing.

Intel SCC chip uses high performance mesh network

and message passing buffer (MPB) to support data

sharing and lightweight MPI communication among

cores[13-15,50]. In comparison with [12, 49], the com-

munication latency is similar, but the sender and the

receiver are asynchronous in our register-level commu-

nication, and DFMC supports broadcast/multicast and

blocking/non-blocking communication. We believe it is

a better fit to achieve MPI-like primitives and easier to

use.

Hardware implementations of synchronization have

been around for a long time; most of them rely on

a wired AND line connection for cores or processors.

Abellan et al.[51] proposed the special network to al-

low for fast and efficient signaling of barrier arrival and

departure. Watkins and Albonesi[52] designed special-

ized programmable logic (SPL) in heterogeneous CMP.

Their work proposed modifications to the baseline SPL

design to provide fine-grain inter-thread and barrier

communication among cores for obtaining the addi-

tional performance benefit. The work in [53] uses NoC

to construct distributed synchronization mechanism. In

our work, however, synchronization network is a special

hardware network and has a dynamic synchronization

vector, providing fast and flexible barrier among cores.

7 Conclusions

In this paper, we presented a deeply fused many-

core processor (DFMC) architecture for the high per-

formance computing systems. The DFMC architecture

integrates MPEs and CPEs, which are heterogeneous

processor cores that cooperate seamlessly. Specifically,

the DFMC processor can alleviate the memory wall

problem through combing a series of CPEs coopera-

tive computing techniques such as multi-pattern data

stream transfer, efficient register-level communication

mechanism, and fast hardware synchronization tech-

nique. With these techniques, we are able to improve

the on-chip data reuse and optimize memory access per-

formance.

In this paper, we also illustrated the implementa-

tion of a full system prototype with four MPEs and
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256 CPEs using 374 FPGAs. Our experimental results

based on the prototype system show that the maxi-

mum bandwidth of data stream transfer achieved is

2 165.8 GB/s, which is 21.2 times faster than the physi-

cal memory bandwidth, and the register-level com-

munication bandwidth of a CPE cluster achieved is

889.82 GB/s in broadcast mode. Compared with tradi-

tional software synchronization, the speed-up ratio can

achieve 88∼500 times by using the hardware synchro-

nization technique. We also mapped the DGEMM,

FFT, FDTD, BFS and SpMV to the DFMC pro-

totype. With cooperative computing techniques of

CPEs, DGEMM can achieve the efficiency of 94% (940

GFLOPS), FFT can obtain the performance of 207

GFLOPS, and FDTD obtains the performance of 27

GFLOPS. Our analysis of the result shows that the

cooperative computing techniques of CPEs can effec-

tively improve the computational efficiency of typical

applications with regular data access. Conversely, BFS

and SpMV with irregular memory data access cannot

use the cooperative computing techniques, and the per-

formance is almost proportional to the physical global

memory access bandwidth.

For future work, we expect to map and optimize

more applications and algorithms on DFMC. In addi-

tion, we plan to tape out through MPW. Finally, we

aim to carry out further studies on DFMC regarding

the programming model, CPE pipeline, and power con-

trol.
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