
Qian TY, Liu B, Li Q et al. Review authorship attribution in a similarity space. JOURNAL OF COMPUTER SCIENCE

AND TECHNOLOGY 30(1): 200–213 Jan. 2015. DOI 10.1007/s11390-015-1513-6

Review Authorship Attribution in a Similarity Space

Tie-Yun Qian 1 (钱铁云), Member, CCF, ACM, Bing Liu 2 (刘 兵), Fellow, IEEE
Qing Li 3,∗ (李 青), Distinguished Member, CCF, Senior Member, IEEE, and Jianfeng Si 4 (司建锋)

1State Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, China
2Department of Computer Science, University of Illinois at Chicago, Chicago 60607, U.S.A.
3Multimedia Software Engineering Research Centre and Department of Computer Science, City University of Hong Kong

Hong Kong, China
4Data Analytics Department, Institute for Infocomm Research, Singapore 138632, Singapore

E-mail: qty@whu.edu.cn; liub@cs.uic.edu; itqli@cityu.edu.hk; thankjeff@gmail.com

Received February 19, 2014; revised November 14, 2014.

Abstract Authorship attribution, also known as authorship classification, is the problem of identifying the authors

(reviewers) of a set of documents (reviews). The common approach is to build a classifier using supervised learning. This

approach has several issues which hurts its applicability. First, supervised learning needs a large set of documents from

each author to serve as the training data. This can be difficult in practice. For example, in the online review domain, most

reviewers (authors) only write a few reviews, which are not enough to serve as the training data. Second, the learned classifier

cannot be applied to authors whose documents have not been used in training. In this article, we propose a novel solution

to deal with the two problems. The core idea is that instead of learning in the original document space, we transform it to a

similarity space. In the similarity space, the learning is able to naturally tackle the issues. Our experiment results based on

online reviews and reviewers show that the proposed method outperforms the state-of-the-art supervised and unsupervised

baseline methods significantly.

Keywords authorship attribution, supervised learning, similarity space

1 Introduction

Authorship attribution (AA) has been studied by

many researchers[1-12]. It was originally proposed to

classify Bronte Sisters’ novels, Shakespeare’s plays, etc.

Later on, it was applied to other literary work such

as American and English literature and news articles.

Recently, AA was applied to various types of online

texts such as emails[13-14], blogs[13,15], forum posts[16]

and reviews[17]. In this article, we consider AA for on-

line reviews. One application is to find fake review-

ers (also called opinion spammers) who register multi-

ple user-IDs and write fake reviews (also called spam

reviews)[18].

Most existing AA approaches are based on super-

vised learning. Let A = {a1, . . . , ak} be a set of k

authors and D = {D1, . . . , Dk} be k sets of documents

with Di being the document set of author ai ∈ A. Each

document is represented as a feature vector. Each fea-

ture represents a piece of information about the docu-

ment itself, e.g., a word or a punctuation mark. The

learning is done in the document space because each

feature vector represents a document. A model or clas-

sifier is then built from the training data and applied

to the test data to determine the author a of each test

document d, where a ∈ A, meaning that the authors

used in testing must also be from A. Applying this

approach to the review domain has two difficulties.

1) Supervised learning needs a large set of docu-

ments from each author to serve as the training data.

This is difficult for the review domain because most au-

thors (reviewers) only write a few reviews. In [18], it

Regular Paper

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61272275, 61232002, 61272110,
61202036, 61379004, 61472337, and 61028003, and the 111 Project of China under Grant No. B07037.

∗ Corresponding Author

©2015 Springer Science+Business Media, LLC & Science Press, China

Tie-Yun Qian et al.: Review Authorship Attribution in a Similarity Space 201

is shown that on average each reviewer only has 2.72

reviews at amazon.com, and only 8% of the reviewers

have more than four reviews. This number of reviews

is too small for training an accurate classifier for super-

vised learning. As we will see in Subsection 6.2, with

a small number of training reviews, the classification

results are extremely poor using state-of-the-art super-

vised approaches[16].

2) The learned model cannot be applied to authors

whose documents have not been used in training (we

call them unseen authors, or test authors in an open

set). Without seeing any documents of an author, there

is no way for a model to recognize documents of the au-

thor. This, however, limits its application to the review

domain because for any new author, a new model has

to be built, which is inconvenient and impractical in

the review domain since new reviewers (authors) join

in constantly.

To solve the first problem of lack of training docu-

ments for an author, we have to somehow exploit docu-

ments of other authors in training in such a way that

the learned classifier can also be applied to this author

and help recognize his/her documents. If we can do

that, then the second problem is automatically dealt

with.

To achieve this, we propose a novel learning formu-

lation in this article, which is based on the following

key idea termed as LSS:

Learning in a Similarity Space (LSS). Learn-

ing/training is performed in a similarity space rather

than the document space. That is, in this formulation,

each training or testing example is a similarity vector

(or s-vector) representing a set of similarities between

a document d and a query q (which is also a document,

see below). If d has the same author as q, we give its

s-vector the class q-positive (denoted by 1). If d has an

author different from q, we give its s-vector the class

q-negative (denoted by −1). We use q-positive and q-

negative here because we use q as the base and decide

the class by comparing d’s author with q’s author.

With this transformation, we obtain a two-class

classification problem. The two classes are q-positive

and q-negative. Each training or testing case no longer

belongs to any particular author as in the traditional

formulation. And each author in the test set may or

may not have appeared in training. In the following,

we briefly look at the training and test data prepara-

tion.

Training Data Preparation. For each author ai ∈
AR, we select a subset of his/her documents DRi as

the query documents QRi. The rest of his/her docu-

ments {DRi − QRi} are the q-positive documents as

they have the same author as the queries. The docu-

ments from all other authors are q-negative documents,

denoted by DRothers. A training instance is basically a

similarity vector (or s-vector) produced by comparing a

set of similarities of a query document from QRi and a

q-positive (or q-negative) document from {DRi−QRi}
(or from DRothers), and is attached with the class label

1 (or −1).

This is seemly a very expensive operation as every

document can serve as a query or a non-query docu-

ment. If the total number of training documents from

all authors is w, the complexity is O(w2). However,

in practice, we do not need all pairwise comparisons;

instead, only a tiny subset is needed (see Section 6).

With the s-vectors for the two classes, we can use

any learning algorithm to build a classifier. In this

work, we use SVM.

Test Data Preparation. We have a set of test au-

thors AT and a set of test documents DT. For each test

author atj , we must also have a set of known documents

from atj to serve as queries QTj . Each test case is also

an s-vector produced by comparing a set of similarities

between a test document in DT and a query document

in QTj . If a test case is classified as q-positive (i.e., 1),

then we know that its underlying document is written

by the author of its corresponding query. We call this

test author a seen author, or a test author in a closed

set. If a test author did not appear in training, we call

him/her an unseen author.

The similarity comparison above is done by a simi-

larity function S, which consists of a set of similarity

measures for two documents. Each measure produces

one similarity feature (or s-feature). All the s-features

together form an s-vector. In detail, each document d

is first represented by a document space vector (or d-

vector) based on d itself as in the traditional classifica-

tion. Each feature in the d-vector is called a document-

feature (or d-feature). A query document q is repre-

sented in the same way. We then produce a similarity

vector (s-vector) sv for document d by comparing doc-

ument d’s d-vector and query q’s d-vector based on the

set of similarity measures in S. The d-vector in the

document space is thus transformed to an s-vector sv

in the similarity space.

Let us see an example, in which the d-vector of a

query document q is as follows:

q: 1:1 2:1 6:2,

where i:j is a d-feature representing that term i has a

202 J. Comput. Sci. & Technol., Jan. 2015, Vol.30, No.1

frequency j in q. We also have two non-query docu-

ments: one is d1 which is also written by the author of

query q and the other is d2 which is not written by the

query author q. Their d-vectors are given below:

d1: 1:2 2:1 3:1,

d2: 2:2 3:1 5:2.

If cosine is the first similarity measure in S, we can

generate one s-feature 1:0.50 for d1 and one s-feature

1:0.27 for d2. If we have more similarity measures in S,

we can generate other s-features. Finally, we have two

s-vectors, sv1 and sv2, for d1 and d2 respectively with

their class labels (1 and −1) attached:

sv1: 1 1:0.50 . . . ,

sv2: -1 1:0.27 . . . ,

where x:z is an s-feature representing the x-th similar-

ity measure and its similarity value z between the query

q and the document di.

Due to the use of query documents, the LSS formu-

lation has some resemblance to information retrieval

and document ranking 1○[19-21]. However, LSS is very

different because it still performs supervised classifica-

tion, rather than document ranking directly based on

their similarities to queries as in information retrieval.

The recent method for AA in [15] is based on the re-

trieval model. It does not learn a model/classifier. We

will see in Section 6 that it performs poorly for our

task. On the other hand, although a small set of query

documents are still needed for each author in testing,

we will see that a supervised baseline can hardly learn

with such a small number of query documents as train-

ing examples (Section 6). Our experiments are con-

ducted using a large number of reviews (documents)

and their reviewers (authors) from Amazon.com. The

proposed LSS formulation is tested based on the AA

task and also an author retrieval task. The results show

that it is highly effective, and it outperforms both the

state-of-the-art supervised and unsupervised baselines

significantly.

2 Related Work

2.1 Authorship Attribution

Authorship attribution (AA) has received a great

deal of attention in recent years. Many approaches

have been developed. Existing methods can be cate-

gorized into two main themes: finding good features to

quantify author writing styles, and developing effective

techniques to perform the AA task.

On finding good features (d-features in our case),

function words were studied half a century ago[22].

Since then, various newer features have been proposed

to model writing styles. The most promising fea-

tures seem to be the function words[3,23] and rewrite

rules[2]. Other features include length features[12,24],

richness features[7], punctuation frequencies[12], cha-

racter n-grams[1,4,25], word n-grams[9,26-27], POS (part-

of-speech) n-grams[5,24,28], word endings[28], k-ee sub-

tree patterns[17], topic models[13], and modality spe-

cific meta features (MSMF)[16]. Among them, MSMF

reports the best results for AA with up to 100 authors.

In this work, MSMF is used as one of our baselines.

Many other features like the length of URL and in-

link (out-link) number are also introduced in machine-

learned rankings in information retrieval 2○. However,

since our task is to identify the authors of reviews

(which have no links), we focus on writing style fea-

tures of authors. When computing s-features for certain

types of d-features, we use several similarity measures

from information retrieval[29].

There are also a number of literatures that study

the use of machine learning methods for attributi-

on[30]. While an early work used Bayesian statisti-

cal analysis[22], recent research focused almost exclu-

sively on classification, including discriminant analy-

sis[11], PCA[31], Bayesian decision theory[25], multi-

nomial logistic regression[28], neural networks[12,32],

clustering[27], decision trees[33-34], SVM[4,7-8,15,35-36],

and methods based on topic models[13]. Among them,

supervised learning using SVM is regarded as one of the

best approaches[9-10,17].

The open class authorship problem has been intro-

duced at the PAN@CLEF conference series. However,

the tasks there are quite different from ours, as they

only return an answer of “other” or “unknown” for un-

seen authors. In contrast, we need to identify exactly

which author is the candidate author. The most re-

lated work to ours is the work of Koppel et al.[15], which

takes a retrieval approach, and does not use any train-

ing documents to build a model. Instead, it compares a

query document with the test documents multiple times

using cosine similarity. Each time, a subset of randomly

sampled features are used. We will describe the algo-

rithm in great detail in our experiment section. We

will also see that this similarity-based approach with-

out learning performs poorly for our problem.

1○ http://research.microsoft.com/en-us/um/beijing/projects/letor/, Nov. 2014.
2○ http://research.microsoft.com/en-us/projects/mslr/feature.aspx, Nov. 2014.

Tie-Yun Qian et al.: Review Authorship Attribution in a Similarity Space 203

2.2 Similarity-Based Classification

The idea of learning in the similarity space is

also related to the work done on the similarity-based

classification[37-38], where data are represented as the

similarity or dissimilarity relations between objects.

Early work mainly used a nearest neighbor method.

Later on, several other approaches such as density-

based or SVM classifier were adopted for better clas-

sification accuracy[39-40]. Interestingness was also ex-

plored in finding good similarity or dissimilarity fun-

ctions[41-43]. While results presented in the litera-

ture point to a data representation in terms of their

(dis)similarity, the existing frameworks either use k-NN

or traditional supervised classification. They estimate

the class label for a test case based on its similarities

to the training examples and its self-similarity, which

means that the classes for test cases must be as same

as or included in the training classes. In contrast, our

proposed method can deal with the unseen classes in

test which can be completely different from those in

training.

3 Learning in Similarity Space

As discussed in the introduction, our proposed for-

mulation is called learning in the similarity space (LSS).

To facilitate understanding, we first describe the tradi-

tional formulation of the problem as supervised learn-

ing.

3.1 Traditional Formulation of AA

Training Data. We have a set of n training authors

AR = {ar1, . . . , arn} and a set of n training document

sets DR = {DR1, . . . , DRn}, where DRi is the set of

documents of author ari ∈ AR.

Test Data. We have a set of test documents DT with

unknown authors. Their authors must be from the set

AR, and none of the documents in DT has appeared in

the training data.

Training Document Representation. Each train-

ing document dr is represented as a feature vector,

which we call a document vector (or d-vector for short).

We call each feature in the vector a d-feature (for

document-feature), which represents a piece informa-

tion about the document itself. Each training example

is of the form (dr, y), where y is dr’s class (or author).

Test Document Representation. Test documents are

represented in the same way as the training documents

except that their authors are unknown and need to be

predicted.

Training. A model or classifier is learned using the

training data.

Testing. The learned model/classifier is applied to

the test data DT to assign an author ar (∈ AR) to each

document dtj (∈ DT).

3.2 Training in LSS Formulation

We now present the proposed LSS formulation of

AA. The key differences from the traditional formu-

lation are in 1) the test data and 2) about how each

document is represented.

3.2.1 Training Data Representation

The training data is prepared as follows.

1) Each document is first represented by a d-vector

in the traditional formulation.

2) From the d-vector representations of training doc-

uments, we produce s-training examples in a similarity

space. We use the term s-training examples to dis-

tinguish our training examples from those in the tra-

ditional formulation. The algorithm is given in Fig.1

(where // indicates comment). The algorithm works as

follows. For each author ari (line 1), it first selects a set

of documents from the document set DRi of the same

author ari as the query documents Qi (line 2). For each

query qij ∈ Qi (line 3), it selects a set of documents

DRij also from DRi (excluding qij) of the same author

(line 4) as the q-positive documents for qij . Then, for

each document drijk in DRij , a q-positive s-training

example with the label 1 is generated for drijk by com-

puting the similarities of qij and drijk using the similar-

ity function S (line 6). It then selects a set of documents

from other authors (line 7) as the q-negative documents

for qij . For each document drijk,rest in DRij,rest (line

8), a q-negative s-training example with the label –1 is

generated for drijk by computing the similarities of qij
and drijk,rest using function S (line 9).

How to select Qi, DRij and DRij,rest (lines 2, 4 and

7) is left open intentionally to give flexibility in imple-

mentation.

Fig.2 shows what the s-training data looks like. For

easy presentation, we assume that there are k queries in

every Qi, p documents in every DRij , and u documents

in every DRij,rest. The number of authors is n. Each

author ari generates k × (p+ u) s-training examples.

Complexity. As discussed in Section 1, in the worst

case, every document can serve as a query or a non-

query document. Then we need to compute all pairwise

204 J. Comput. Sci. & Technol., Jan. 2015, Vol.30, No.1

similarities. If the total number of training documents

is w, the complexity is O(w2), which is expensive. In

practice, however, we do not need all pairwise compari-

sons. Instead, only a tiny subset is needed (see Section

6).

1. For each author ari ∈ AR
2. Select a set of query documents Qi ⊆ DRi

3. For each query qij ∈ Qi

// Produce positive s-training examples
4. Select a set of documents from author ari

DRij ⊆ DRi – {qij}
5. For each document drijk ∈ DRij

6. Produce an s-training example for drijk,
(S(drijk, qij), 1)

// Produce negative s-training examples
7. Select a set of documents from the rest of the authors

DRij,rest ⊆ (DR1∪ . . .∪ DRn) – DRi

8. For each document drijk,rest ∈ DRij,rest

9. Produce an s-training example for drijk,rest,
(S(drijk,rest, qij), −1)

Fig.1. Generating s-training examples.

// Author ar1
// Positive (1) s-training examples

(S(dr111, q11), 1), . . . , (S(dr11p, q11), 1)
. . .
(S(dr1k1, q1k), 1), . . . , (S(dr1kp, q1k), 1)

// Negative (−1) s-training examples
(S(dr111,rest, q11), −1), . . . , (S(dr11u,rest, q11), −1)
. . .
(S(dr1k1,rest, q1k), −1), . . . , (S(dr1ku,rest, q1k), −1)

. . .
// Author arn
// Positive (1) s-training examples

(S(dr111, qn1), 1), . . . , (S(dr11p, qn1), 1)
. . .
(S(dr1k1, qnk), 1), . . . , (S(dr1kp, qnk), 1)

// Negative (−1) s-training examples
(S(dr111,rest, qn1), −1), . . . , (S(d11u,rest, qn1), −1)
. . .
(S(dr1k1,rest, qnk), −1), . . . , (S(dr1ku,rest, qnk), −1)

Fig.2. S-training examples.

3.2.2 Training in LSS

A binary model/classifier is learned using the s-

training data. Each s-training example is represented

by (sv, y), where sv is an s-vector and y (∈ {1,−1})
is its class. Any supervised learning algorithms, e.g.,

SVM, can be applied.

3.3 Authorship Attribution in LSS

After a classifier is learned, we can then test it by

performing the authorship attribution task. We are

given the following data:

1) A set of m test authors AT = {at1, . . . , atm}.
Note that in traditional supervised learning, AT must

be from AR. In contrast, in our new LSS framework,

AT can be totally different from AR. We differentiate

these two types of test authors as unseen authors, i.e.,

AT ∩AR = Ø, and seen authors, AT ⊆ AR.

2) A set of m given query document sets Q = {Q1,

. . . , Qm} of the m authors, where Qj is the set of query

documents of author atj ∈ AT .

3) A set of r test documents DT = {dt1, . . . , dtr}
with unknown authors. Their authors are from the

set AT. None of the documents in DT has appeared

in training.

Objective. Using the learned classifier to determine

the author of each dtk ∈ DT.

Note that if atj (∈ AT) has appeared in training, its

query set can be his/her documents used in training.

3.3.1 Test Data Representation

The data is prepared as follows.

1) Each test document in DT and each query docu-

ment in Qi are first represented by their document fea-

ture vectors (or d-vectors) as in the traditional formu-

lation.

2) From the d-vector representation of each test

document, we produce test cases in the similarity space.

Each test case in the space is called an s-test case. A

test document will generate multiple s-test cases. The

algorithm is given in Fig.3, which works as follows. For

each test author ati in AT (line 1), each query docu-

ment qij in Qi (line 2) and each test document dtf in

DT (line 3), it produces an s-test case by computing

the similarity of qij and dtf using function S (line 4).

Each s-test case is ⟨(ati, qij), (S(dtf , qij), ?)⟩ as we need
to remember the author and the query for later author

assignment. ?(∈ {1,−1}) denotes the unknown class to

be predicted.

1. For each test author ati ∈ AT
2. For each query qij ∈ Qi

3. For each test document dtf ∈ DT
4. Produce an s-test case ⟨(ati, qij), (S(dtf , qij), ?)⟩

Fig.3. Generating s-test cases.

Fig.4 shows the set of s-test cases denoted by ST.

For easy presentation, we assume that there are k

queries in every Qi. We have r(= |DT |) test docu-

ments, and m(= |AT |) test authors. Note that the clas-

sifier is only applied to the s-vector produced by S(drj ,

qij). Each query qij generates r ×m s-test cases. The

total number of s-test cases for each author is r×m×k.

Tie-Yun Qian et al.: Review Authorship Attribution in a Similarity Space 205

// Test data DT = {dt1, . . . , dtr }
// Author at1

⟨(at1, q11), (S(dt1, q11), ?)⟩, . . . , ⟨(at1, q11), (S(dtr, q11), ?)⟩
. . .
⟨(at1, q1k), (S(dt1, q1k), ?)⟩, . . . , ⟨(at1, q1k), (S(dtr, q1k), ?)⟩

. . .
// Author atm

⟨(atm, qm1), (S(dt1, qm1), ?)⟩, . . . , ⟨(atmqm1), (S(dtr, qm1), ?)⟩
. . .
⟨(atm, qmk), (S(dt1, qmk), ?)⟩, . . . , ⟨(atm, qmk), (S(dtr, qmk), ?)⟩

Fig.4. S-test cases.

As we can see, the process of producing s-test cases

is similar to that for s-training examples. However,

there are some differences.

1) For testing, the query sets and the test set (lines

2 and 3 in Fig.3) are pre-determined, unlike in training

where every document can be a query or a non-query

document.

2) In line 4 of Fig.3, the resulting s-vector of S(dtf ,

qij) is associated with its query qij and author ati, and

the latter two are not used in training. After the s-

training data in the similarity space is generated, train-

ing simply builds a model for the q-positive and the q-

negative classes, and does not concern either individual

authors or their documents.

3.3.2 Authorship Attribution

The learned classifier is applied to the s-test set ST.

Each s-test case in ST is represented by ⟨(at, q), (sv, ?)⟩,
where sv is computed using the similarity function S

based on the query document q of author at. The classi-

fier is applied to sv. However, this classification alone

is unable to make an author assignment to each test

document dtf ∈ DT . The reason is that for each dtf ,

multiple s-test cases are generated due to multiple test

authors and multiple query documents of each author

(see Fig.4). The labels produced by the classifier may

not be consistent. For example, dt1 can be classified as

1 and −1 for q11 and q1k, respectively. Let the set of s-

test cases for a test document dtf be STf . Some s-test

cases in STf may be classified as q-positive for some

queries of an author but q-negative for other queries of

the same author. Furthermore, there are also multiple

authors. Hence, additional algorithms are needed to de-

cide the final author attribution for each test document

dtf .

One simple general method is voting. Depending on

what output value the classifier produces, there are also

other methods. Here we propose three methods includ-

ing the voting method. The other two methods require

the classifier to produce predicted score, which can re-

flect the positive and negative certainty. Many clas-

sification algorithms produce such a score, e.g., SVM,

logistic regression, and näıve Bayesian. Here we use

SVM as an example. For each test case, SVM outputs

a positive or negative score which can be interpreted

as the certainty that a test case is positive or negative.

The three methods are all given in Fig.5 to save space.

1. Classify all s-test cases in ST
2. For each test document dtf ∈ DT
3. For each test author ati ∈ AT
4. pcount[ati, dtf], psum[ati, dtf], max[ati, dtf] = 0
5. For each query qij ∈ Qi

6. If st = ⟨(ati, qij), (S(dtf , qij), ?)⟩ (∈ ST)
is classified positive (i.e., ? = 1) then

7. pcount[ati, dtf] = pcount[ati, dtf]+ 1
8. psum[ati, dtf] = psum[ati, dtf] + st.score
9. If st.score > max[ati, dtf] then
10. max[ati, dtf] = st.score
// Three alternative methods to determine the author of dtf
11. For each test document dtf ∈ DT
12. If for all pcount[ati, dtf] = 0 then
13. dtf .author = argmax

ati∈AT
(max[ati, dtf])

14. Else dtf .author = argmax
ati∈AT

(
pcount[ati,dtf]

|Qi|
) // Voting

15. dtf .author = argmax
ati∈AT

(
psum[ati,dtf]

|Qi|
) // ScoreSum

16. dtf .author = argmax
ati∈AT

(max[ati, dtf]) // ScoreMax

Fig.5. Model testing: authorship attribution.

1) Voting. The learned model/classifier is first ap-

plied to classify all s-test cases in ST (line 1). Then

for each test document dtf ∈ DT (line 2), the author

assignment works as follows. For each test author ati ∈
AT (line 3), it counts the number of queries of the au-

thor for which the test document dtf is classified as

positive (line 7). In other words, it counts the number

of s-test cases that are classified as positive. The count

value is stored in pcount[ati, dtf]. It then assigns dtf
to the author with the highest count (line 14). Lines 12

and 13 mean that if dtf ’s s-test cases generated from

all queries of all authors are classified as negative, we

use method 3 ScoreMax below. The normalization is

used because each test author may not have the equal

number of queries.

2) ScoreSum. The second method works similarly

to the voting method above except that instead of

counting positive classifications, it sums up all scores

of positive classifications (line 8). The sum is stored

in psum[ati, dtf]. The decision is also made similarly

(line 15). Again, normalization is applied. Note that if

pcount[ati, dtf] = 0 (line 12), it implies that psum[ati,

dtf] = 0.

206 J. Comput. Sci. & Technol., Jan. 2015, Vol.30, No.1

3) ScoreMax. This method also works similarly

except that it finds the maximum classification score

(lines 9 and 10). The decision is also made similarly in

line 16.

4 D-Features

We now describe how to compute s-features (simi-

larity features) for each non-query document based on

a query document. Since s-features are calculated us-

ing d-features (document features) of a non-query docu-

ment and a query document, we first discuss d-features,

which are extracted from each document itself. We

employ 26 d-features and classify them into four cate-

gories: length d-features, frequency-based d-features,

tf.idf-based d-features, and richness d-features. Note

that although many features listed below have been

used in various tasks before, our main contribution here

is to look at the AA problem from a new angle and for-

mulate it differently, which helps deal with the issues of

existing approaches as discussed in the introduction.

4.1 Length D-Feature

We derive three length d-features from each raw

document, namely:

average sentence length: in terms of word count in

one sentence;

average word length: in terms of character count in

one word;

average review length: in terms of word count in one

document.

4.2 Frequency-Based D-Features

We first extract lexical, syntactic, and stylistic to-

kens from the raw documents and the parsed syntactic

trees.

• Lexical tokens: word unigrams.

• Syntactic tokens (content-independent structu-

res): POS n-grams (1 6 n 6 3) and rewrite rules[2,5]. In

linguistics, a rewrite rule is the combination of a node

and its immediate constituents in a syntactic tree[2].

For example, the rewrite rule for the noun phrase “the

best book” is NP->DT+JJS+NN.

• Common stylistic token: K-length word (1 6 K 6
15), punctuations, and 157 function words such as “we”

and “after” 3○.

• Review specific stylistic tokens: reflect styles spe-

cific to reviews: all cap words, pairs of quotation marks,

pairs of brackets, exclamatory marks, two or more

consecutive non-alphanumeric characters, contractions,

model auxiliaries (e.g., should, must), word “recom-

mend” or “recommended”, sentences with the first let-

ter capitalized, sentences starting with “This is (this

is)” or “This was (this was)”.

We then treat all these tokens as pseudo-words and

count their frequency to form the frequency-based d-

features.

4.3 TF-IDF Based D-Feature

For the tokens listed in Subsection 4.2, we also com-

pute their tf.idf values. We list these two kinds of d-

features separately because they will be used for differ-

ent s-features later.

4.4 Richness D-Feature

This set of d-features is a set of vocabulary richness

functions, which were used to quantify the diversity of

the vocabulary in a text[2]. In this work, we apply the

richness metrics to the counts of word unigrams, POS

n-grams (1 6 n 6 3), and rewrite rules. Here POS

n-grams and rewrite rules are treated as pseudo-words.

Let T be the total number of tokens (words or pseudo-

words), and V (T) be the number of different tokens in a

document, v be the highest frequency of occurrence of a

token, and V (m,T) be the number of tokens which oc-

cur m times in the document. We use the following six

richness measures: Yule’s characteristic (K)[44], Hapax

dislegomena (S), Simpson’s index (D), Honorës mea-

sure (R), Brunet’s measure (W), and Hapax legomena

(H)[24]. The formulae for these richness metrics are

listed as below:

K = 104 ×

v∑
m=1

(m2 × V (m,T)− T)

T 2
,

S =
V (2, T)

V (T)
,

D =

v∑
m=1

(m× (m− 1)× V (m,T))

T × (T − 1)
,

R =
100× log(T)

1− V (1, T)/V (T)
,

H = V (1, T),

W = TV (T)−a

, a = 0.17.

These give us a set of richness d-features about word

unigrams, POS n-grams, and rewrite rules.

3○ https://www.flesl.net/Vocabulary/SinglewordLists/functionwordlist.php, Nov. 2014.

Tie-Yun Qian et al.: Review Authorship Attribution in a Similarity Space 207

5 S-Features

The extracted d-features are transformed into s-

features in a similarity space for classification. S-

features are a set of similarity functions on two docu-

ments. In this work, we adopt five types of s-features.

5.1 Sim4 Length S-Features

Defined by us, this is a set of four similarity func-

tions used for d-feature vectors of length

1/(1 + log(1 + |lwq − lwd|)),
1/(1 + log(1 + |lsq − lsd|)),
1/(1 + log(1 + |lrq − lrd|)),∑

m∈{w,s,r}
(lmq × lmd)√ ∑

m∈{w,s,r}
(lmq)2 ×

√ ∑
m∈{w,s,r}

(lmd)
2
,

where lwq.(lwd), lsq.(lsd), and lrq.(lrd) denote the ave-

rage word, sentence, and review length respectively, ei-

ther in query q or non-query document d. The four

formulae produce four s-features.

5.2 Sim3 Sentence S-Features

This is a set of three similarity functions designed
for sentence similarity[45]. Since the length of online
review can be short, we apply this set (called Sim3) to
the query and the non-query reviews. Sim3 s-features
are used for frequency-based d-features. The three for-
mulae are given as below:

∑
t∈q∩d

f(t, d)/

∑
t∈q

f(t, q) +
∑
t∈d

f(t, d)−
∑

t∈q∩d

f(t, d)

 ,

logt∈q∩d

(
N

f(t, d)

)
×

∑
t∈q∩d

f(t, d)∑
t∈q

f(t, q) +
∑
t∈d

f(t, d)−
∑

t∈q∩d

f(t, d)
,

1

1 + log(1 + |lq − ld|)
×

∑
t∈q∩d

N × idf(t)

1 + |f(t, q)− f(t, d)| ,

where f(t, s) denotes the frequency count of token t

in a document s, and lq and ld denote the average re-

view length of the query and the non-query document,

respectively.

5.3 Sim7 Retrieval S-Features

This is a set of seven similarity functions. These

functions were originally used for text information

retrieval[42], and in this work, they are applied to all

frequency-based d-features:∑
t∈q∩d

log(f(t, d) + 1),

∑
t∈q∩d

log

(
|D|

f(t, d)
+ 1

)
,

∑
t∈q∩d

log(idf(t)),

∑
t∈q∩d

log

(
f(t, d)

|d|
+ 1

)
,

∑
t∈q∩d

log

(
f(t, d)

|d|
× idf(t) + 1

)
,

log(BM25score),∑
t∈q∩d

log

(
f(t, d)

|d|
× |D|

f(t, d)
+ 1

)
,

where f(t, d) denotes the frequency count of token t in a

non-query document d, q denotes the query document,

D is the entire collection, |.| is the size of a set, and idf is

the inverse document frequency. These seven formulae

can produce seven s-features.

5.4 SimC tf-idf S-Feature

This is the cosine similarity measure used for the d-

vectors represented by the tf.idf-based d-features. SimC

tf-idf produces one s-feature.

5.5 SimC Richness S-Feature

This is also the cosine similarity measure, but it is

applied to the richness d-feature vectors. SimC richness

produces one s-feature.

6 Experimental Evaluation

To evaluate the proposed approach, we first intro-

duce the experiment setup, and then present the ex-

perimental results under various settings and compare

them with two state-of-the-art baselines. All our ex-

periments use the SVMperf classifier[46] with default pa-

rameter settings.

6.1 Experiment Setup

6.1.1 Dataset

We use a set of documents (reviews) and their au-

thors (reviewers) collected from Amazon.com as our ex-

periment data. We select the authors who have posted

208 J. Comput. Sci. & Technol., Jan. 2015, Vol.30, No.1

more than 20 reviews in the book category. All dupli-

cate and near duplicate reviews are removed by com-

paring their text similarity using cosine. After pre-

processing, we have 1 903 authors in our data. We ran-

domly select 1 803 authors for training and 100 authors

as unseen authors for testing. For seen author test-

ing, we use reviews from some of the 1 803 authors that

are not used in training. The numbers of reviews in the

training set and in the unseen test author set are 99 055

and 5 380, respectively. The average review length is

223 words. We use the Stanford PCFG parser[47] to

generate the grammar structure of sentences in each

review for extracting syntactic d-features.

Training Data. We randomly choose a small num-

ber of reviews, i.e., one review or two reviews for each

author as the query and 70% of his/her other reviews

as q-positive reviews (the remaining 30% are used for

seen author testing). The q-negative reviews consist of

reviews randomly selected from the other 1 802 authors,

two reviews per author. We also try choosing two and

more queries from each author, but they make little

difference in the final results.

Test data. We use two types of test data. One is for

unseen authors, and the other is for seen authors. For

both the seen and the unseen author data, we prepare

the test set for each author as follows. We randomly

choose 9 reviews from the author as the query set and

other randomly selected 10 reviews as his/her q-positive

test set. The q-negative set is from the other authors.

The query and the test sets are disjoint. We do not

use more queries or test reviews from each author since

in the review domain, most authors only have a few

reviews.

We vary the number of test authors, the number of

queries, and the number of q-positive and q-negative

reviews in testing. We use the following format to de-

scribe our test data:

[U |S]<n> Q<n>D<n>,

where U denotes unseen author, S seen author, Q

query, D test document, and n a number. For exam-

ple, U50 Q9D10 stands for the test data with 50 unseen

authors, 9 queries and 10 test documents from each au-

thor. ∗ or # means a wildcard.

6.1.2 Baseline Methods

We now give two state-of-the-art baselines.

MSMF +FLF [16]. This latest supervised method

for authorship attribution (AA) has reported the best

results so far for AA with up to 100 authors. Besides

the first level features (FLF), i.e., stylistic, lexical, per-

plexity, and syntactic features, it also generates a set of

modality-based meta-features (MSMF). SVM is used as

the learning algorithm.

SBM [15]. This method uses the cosine similarity

comparison for AA with a single query. Each document

is represented as a vector of frequencies of character 4-

grams. SBM works in a retrieval-based method as fol-

lows. It randomly chooses 40% of character 4-grams to

compute cosine similarity between the query document

and each test document. This procedure repeats for 100

times. If a test document has the highest similarities

for at least σ × 100 times, the document is labeled as

positive. Otherwise, it is labeled as negative.

6.2 Authorship Attribution

This is the traditional AA task. Traditional AA can

only work with seen authors. However, our approach

can perform the task for both seen and unseen authors.

Below, we report the experimental results.

1) Effects of Positive/Total Ratio in Training Set.

Here we evaluate the results of different proportions of

positive s-training examples. We have experimented

with different ratios of 0.3, 0.4, 0.5, 0.6, and 0.7.

U∗ Q9D10 is used as the test data. The number of

test authors (∗) varies from 3, 5, 10, 30, 50, to 100.

We use the ScoreSum method as it is the best (see be-

low). Note that unseen authors are employed for testing

to highlight the major advantage of our approach, but

we will see shortly that for seen authors, our system

achieves similar results.

We observe a stair-like best results in Table 1.

For the datasets containing fewer authors, a higher

positive(p)/total(t) ratio is more helpful. However, for

data with more authors, a lower ratio is slightly better.

This is mainly because a relatively low positive pro-

portion enables the learner to observe more negative

samples from other authors. Thus the generated model

has the ability to differentiate reviews from more au-

thors. For balanced results, all our experiments below

use the model trained with the 0.5 ratio.

Table 1. Accuracy for Different p/t Ratios in Training

p/t Number of Test Authors

3 5 10 30 50 100

0.3 80.00 78.00 65.00 56.00 49.60 42.10

0.4 80.00 78.00 66.00 56.67 52.00 42.10

0.5 83.33 82.00 71.00 57.67 50.80 41.50

0.6 90.00 86.00 70.00 56.33 48.60 39.60

0.7 83.33 84.00 67.00 54.00 40.20 37.20

Tie-Yun Qian et al.: Review Authorship Attribution in a Similarity Space 209

2) Effects of Different Numbers of Queries per

Training Author. Fig.6 shows the results with 1

query (Q1) and 2 queries (Q2) randomly chosen from

the training data under 0.4(R0.4) and 0.5(R0.5) posi-

tive/total ratio settings. AuthorNum means the num-

ber of test authors. Other results are similar and omit-

ted for clarity. We can see that Q1 and Q2 give very

similar results. This indicates that our model is quite

stable and not sensitive to the selection of query doc-

uments. Hence the time overhead for training can be

very small. We use a model trained from 1 query in all

other experiments.

0 20 40 60

AuthorNum

A
c
c
u
ra
c
y

80

80

70

60

50

40

30

20
100

QR.
QR.
QR.
QR.

Fig.6. AA by different numbers of queries per training author.

3) Effects of Different Decision Methods. We now

show the effects of the three proposed decision meth-

ods: Voting, ScoreSum and ScoreMax using our basic

data of U∗ Q9D10 with varied number of test authors.

Fig.7 shows that ScoreSum is the best. We also observe

that Voting performs better than ScoreMax in all cases.

This indicates that the decision made from a number

of scores, either Voting or ScoreSum, is much more re-

liable than that made from only one score. ScoreSum

is our default method.

0 20 40 60 80 100
20

40

60

80

AuthorNum

A
c
c
u
ra

c
y

Voting
ScoreSum

ScoreMax

Fig.7. AA using different decision methods.

4) Results of Seen and Unseen Authors. Since our

method does not differentiate reviews from seen or un-

seen authors, we study how it performs on seen and

unseen authors.

Fig.8 shows the comparison results using the

U∗ Q9D10 (unseen) and S∗ Q9D10 (seen) datasets.

Fig.8 shows that our method performs similarly for seen

and unseen authors, suggesting that the influence of

training reviews of seen authors is limited. We can

say that LSS generalizes well for both seen and un-

seen authors. Note that the two results are not strictly

comparable as they use different author sets (seen and

unseen), but we can see the same general trend.

5) Effects of Different Number of Queries per Au-

thor in Testing. Fig.9 shows that the accuracies, on

all datasets, consistently increase when the number of

queries (QueryNum) increases from 1 to 9. This indi-

cates the positive effects of the number of queries, which

is easy to understand.

0 20 40 60 80 100
20

40

60

80

AuthorNum

A
c
c
u
ra

c
y

Seen Authors
Unseen Authors

Fig.8. AA with seen and unseen authors.

0 20 40 60 80 100
0

20

40

60

80

100

AuthorNum

A
c
c
u
ra

c
y

QueryNum/

QueryNum/

QueryNum/

QueryNum/

QueryNum/

Fig.9. AA by different numbers of queries in testing.

6) Effects of Number of Test Documents (Reviews)

per Author. We have experimented with 2, 4, 6, 8, and

10 test reviews per author.

Fig.10 shows the results on U# Q9D∗ (# = 10,

50, 100, and ∗ = 2, 4, 6, 8, 10), where DocNum de-

notes the number of test documents per author. From

Fig.10, the other numbers of authors follow the same

trend. From Fig.10, we find that a larger number of

test documents/reviews have a slightly negative effect

on classification. This is understandable. Since with

more test documents, the task becomes harder, which

brings down the performance slightly.

210 J. Comput. Sci. & Technol., Jan. 2015, Vol.30, No.1

40

60

80

100

DocNum

A
c
c
u
ra

c
y

U↩QD⇀
U↩QD⇀

U↩QD⇀

2 4 6 8 10

Fig.10. AA by changing the number of test reviews per au-
thor.

7) Impact of Individual S-Feature Sets. To show

the effectiveness of individual s-feature sets, we use

U∗ Q9D10 as an example. From Table 2, we see that

SimCTfidf s-features are extremely important. Remov-

ing SimCTfidf drops the accuracy from 70% to 0%.

Sim7Retrieval s-features are also useful. The impacts

of other s-features are small. For 10 authors, with-

out Sim4Len, the accuracy actually improves, but for

50 and 100 authors, Sim4Len is useful to some extent.

Hence we use all features in all other experiments.

Table 2. Results on U∗ Q9D10 by Using Different S-Features

Accuracy Accuracy Accuracy

(10 Authors) (50 Authors) (100 Authors)

All features 71.00 50.80 41.50

No Sim4Len 74.00 50.60 40.20

No SimCRich 70.00 50.20 41.60

No SimCTfidf 00.00 00.20 00.10

No Sim7Retr 66.00 43.80 34.90

No Sim3Sent 68.00 49.20 38.40

8) Comparison with Baselines. We first compare

LSS with MSMF+FLF[16] which cannot work with un-

seen authors. However, since in our LSS formulation,

we need query documents in testing, we can use these

query documents to train a classifier. This compari-

son is fair in the sense that our methods see only the

same queries. It is also “unfair” because our model

is trained from reviews of other authors, but the su-

pervised learning method in MSMF+FLF is unable to

exploit training documents from other authors. This

shows the major advantage of our approach. For this

set of experiments, we again use the data U∗ Q9D10,

all features and the ScoreSum method. We vary nei-

ther the number of training reviews (the queries), nor

the number of test documents from each author since

for MSMF+FLF, these maximum numbers of queries

and test documents already do very poorly. The com-

parison results are given in Fig.11.

0 20 40 60 80 100
20

40

60

80

100

AuthorNum

A
c
c
u
ra

c
y

MSMF+FLF

Our Method

Fig.11. Comparison with MSMF+FLF on AA.

From the results, it is clear that our LSS method

dramatically outperforms MSMF+FLF on all data.

The average accuracy increases 36.12% on all datasets.

This can be explained since the supervised classifica-

tion approaches like MSMF can hardly learn with such

a small number of training documents (queries in our

test data). In contrast, our LSS formulation can exploit

other authors in training and thus greatly improve the

accuracy.

We have also used seen authors in testing, but they

make no difference.

Next we compare our method with SBM[15]. SBM

can deal with unseen authors as it is a retrieval method

based on cosine similarity. The original SBM does not

perform the authorship assignment task for multiple au-

thors. It only uses a single query to find another (one)

document authored by the same author from a large

set of documents. For multiple authors, we adopt the

method. We first save the outputs of SBM and compute

the average or total values of cosine similarities. Then

we use this as the input and apply the same three deci-

sion methods to obtain the final author assignment for

each test document for SBM. The details are as follows.

In the original SBM, each query has only one test

document to identify, but we need to identify n (n = 10

in our case) test documents for each query. We have to

extend SBM. Instead of identifying one, we make it to

identify n (the number of test documents of each au-

thor) documents. Clearly, this is unrealistic because n

is not known in practice. Our method does not use n.

For the adapted SBM, as long as a document appears

at least σ×100 times in any of the top n rank positions,

we label it positive (written by the query author), and

otherwise negative. σ is set to 0.9 in [15], but 0.9 per-

forms very poorly with our data. We thus try σ = 0.9,

0.8, 0.7, 0.6, 0.5, 0.4, 0.2, 0.1. We found that a value

higher than 0.5 will result in about 0% accuracy. We

believe the reason is that in their test[15], the query and

the positive test document are actually from the same

document: the query is the first half and the test is the

Tie-Yun Qian et al.: Review Authorship Attribution in a Similarity Space 211

second half of the document. Due to the content simi-

larity of the same document, their classification is much

easier. In contrast, our queries and test documents are

all individual and different reviews.

We have tried both the average and total value of co-

sine similarities for the three decision methods and con-

ducted a series of experiments. Average-based SBM is

very poor. Neither Voting nor ScoreMax is good. Here

we only present the experimental results for SBM using

the total value with the ScoreSum method.

In Fig.12, we compare our method with SBM based

on the σ values which give the best results. This is

unrealistic, but even in this unrealistic situation (in fa-

vor of SBM), our method performs dramatically better

than SBM. For example, our method has a 50% accu-

racy increase over SBM on data U10 Q9D10.

0 20 40 60 80 100
0

20

40

60

80

100

AuthorNum

A
c
c
u
ra

c
y

SBM

Our Method

Fig.12. Comparison with SBM on AA.

In summary, we can conclude that our LSS method

dramatically outperforms the two state-of-the-art su-

pervised and unsupervised baselines. The reason, as

we believe, is that LSS can exploit the documents of a

large number of other authors to gain knowledge in the

similarity space, while the two existing methods are un-

able to do that. It is also very important to note that

for all our experiments (seen or unseen), our method

uses only one classifier.

7 Conclusions

Although authorship attribution (AA) has been

studied by many researchers, the problem is still an

open one. In the domain of user-generated contents

such as reviews or posts in the forums, there are some

special characteristics, e.g., lack of training documents

and unable to deal with authors not used in train-

ing, which make it difficult for current classification

approaches to work effectively. In this paper, we pro-

posed a novel formulation LSS of the AA problem to

deal with the two issues by transforming learning from

the original document space to a similarity space. In

this new space, we can use documents from other au-

thors to learn a model to help classify the documents of

current test authors, regardless of whether the test au-

thors are seen or unseen in training, as long as we have

some query documents from the test authors. Our ex-

perimental results based on a large number of authors

and their reviews show that the proposed LSS approach

is highly effective, and it outperforms two state-of-the-

art existing approaches by large margins.

References

[1] Grieve J. Quantitative authorship attribution: An eval-

uation of techniques. Literary and Linguistic Computing,

2007, 22(3): 251-270.

[2] Baayen H, van Halteren H, Tweedie F. Outside the cave

of shadows: Using syntactic annotation to enhance author-

ship attribution. Literary and Linguistic Computing, 1996,

11(3): 121-132.

[3] Argamon S, Whitelaw C, Chase P, Hota S R, Garg N, Lev-

itan S. Stylistic text classification using functional lexical

features: Research articles. Journal of the Association for

Information Science and Technology, 2007, 58(6): 802-822.

[4] Hedegaard S, Simonsen J G. Lost in translation: Author-

ship attribution using frame semantics. In Proc. the 49th

ACL, June 2011, pp. 65-70.

[5] Hirst G, Feiguina O. Bigrams of syntactic labels for author-

ship discrimination of short texts. Literary and Linguistic

Computing, 2007, 22(4): 405-417.

[6] Holmes D I, Forsyth R S. The federalist revisited: New di-

rections in authorship attribution. Literary and Linguistic

Computing, 1995, 10(2): 111-127.

[7] Koppel M, Schler J. Authorship verification as a one-class

classification problem. In Proc. the 21st ICML, July 2004.

[8] Diederich J, Kindermann J, Leopold E, Paass G. Author-

ship attribution with support vector machines. Applied In-

telligence, 2000, 19(1/2): 109-123.

[9] Escalante H J, Solorio T, Montes-y-Gómez M. Local his-

tograms of character n-grams for authorship attribution. In

Proc. the 49th ACL, June 2011, pp. 288-298.

[10] Li J, Zheng R, Chen H. From fingerprint to writeprint.

Communications of the ACM, 2006, 49(4): 76-82.

[11] Stamatatos E, Fakotakis N, Kokkinakis G. Automatic text

categorization in terms of genre and author. Computational

Linguistics, 2000, 26(3): 471-495.

[12] Graham N, Hirst G, Marthi B. Segmenting documents by

stylistic character. Natural Language Engineering, 2005,

11(4): 397-415.

[13] Seroussi Y, Bohnert F, Zukerman I. Authorship attribution

with author-aware topic models. In Proc. the 50th ACL,

July 2012, pp. 264-269.

[14] de Vel O, Anderson A, Corney M, Mohay G. Mining e-mail

content for author identification forensics. ACM SIGMOD

Record, 2001, 30(4): 55-64.

212 J. Comput. Sci. & Technol., Jan. 2015, Vol.30, No.1

[15] Koppel M, Schler J, Argamon S. Authorship attribution in

the wild. Language Resources and Evaluation, 2011, 45(1):

83-94.

[16] Solorio T, Pillay S, Raghavan S, y Gómez M M. Modal-

ity specific meta features for authorship attribution in Web

forum posts. In Proc. the 5th IJCNLP, Nov. 2011, pp. 156-

164.

[17] Kim S, Kim H, Weninger T, Han J, Kim H D. Author-

ship classification: A discriminative syntactic tree mining

approach. In Proc. the 34th SIGIR, July 2011, pp. 455-464.

[18] Jindal N, Liu B. Opinion spam and analysis. In Proc.

WSDM, Feb. 2008, pp. 219-230.

[19] Rudin C. The p-norm push: A simple convex ranking algo-

rithm that concentrates at the top of the list. The Journal

of Machine Learning Research, 2009, 10: 2233-2271.

[20] Yih W, Meek C. Improving similarity measures for short

segments of text. In Proc. AAAI, Nov. 2007, pp. 1489-1494.

[21] Agichtein E, Brill E, Dumais S T, Ragno R. Learning user

interaction models for predicting web search result prefer-

ences. In Proc. the 29th SIGIR, Aug. 2006, pp. 3-10.

[22] Mosteller F, Wallace D L. Inference and Disputed Author-

ship: The Federalist. Addison-Wesley, 1964.

[23] Argamon S, Levitan S. Measuring the usefulness of func-

tion words for authorship attribution. In Proc. the 2005

ACH/ALLC Conference, June 2005.

[24] Gamon M. Linguistic correlates of style: Authorship classi-

fication with deep linguistic analysis features. In Proc. the

20th COLING, Aug. 2004, Article No. 611.

[25] Peng F, Schuurmans D, Wang S, Keselj V. Language in-

dependent authorship attribution using character level lan-

guage models. In Proc. EACL, April 2003, pp. 267-274.

[26] Burrows J F. Not unless you ask nicely: The interpreta-

tive nexus between analysis and information. Literary and

Linguistic Computing, 1992, 7(2): 91-109.

[27] Sanderson C, Guenter S. Short text authorship attribution

via sequence kernels, Markov chains and author unmasking:

An investigation. In Proc. EMNLP, July 2006, pp. 482-491.

[28] Madigan D, Genkin A, Lewis D, Argamon S, Fradkin D, Ye

L. Author identification on the large scale. In Proc. CSNA,

June 2005.

[29] Cao Y, Xu J, Liu T, Li H, Huang Y, Hon H. Adapting rank-

ing SVM to document retrieval. In Proc. the 29th SIGIR,

Oct. 2006, pp. 186-193.

[30] Stamatatos E. A survey of modern authorship attribution

methods. Journal of the Association for Information Sci-

ence and Technology, Aug. 2009, 60(3): 538-556.

[31] Hoover D L. Statistical stylistics and authorship attribu-

tion: An empirical investigation. Literary and Linguistic

Computing, 2001, 16(4): 421-444.

[32] Zheng R, Li J, Chen H, Huang Z. A framework for author-

ship identification of online messages: Writing style features

and classification techniques. Journal of the Association for

Information Science and Technology, 2006, 57(3): 378-393.

[33] Uzuner Ö, Katz B. A comparative study of language models

for book and author recognition. In Proc. the 2nd IJCNLP,

Oct. 2005, pp. 969-980.

[34] Zhao Y, Zobel J. Effective and scalable authorship attribu-

tion using function words. In Proc. the 2nd Asia Informa-

tion Retrieval Symposium, Oct. 2005, pp. 174-189.

[35] Luyckx K, Daelemans W. Authorship attribution and ver-

ification with many authors and limited data. In Proc. the

22nd COLING, Aug. 2008, pp. 513-520.

[36] Vapnik V N. Statistical Learning Theory. Wiley-

Interscience, 1998.

[37] Graepely T, Herbrichz R, Bollmann-Sdorraz P, Obermay-

ery K. Classification on pairwise proximity data. In Proc.

NIPS, Jan. 1999, pp. 438-444.

[38] Chen Y, Garcia E K, Gupta M R, Rahimi A, Cazzanti

L. Similarity-based classification: Concepts and algorithms.

The Journal of Machine Learning Research, 2009, 10: 747-

776.

[39] Pezkalska E, Duin R P W. Dissimilarity representations al-

low for building good classifiers. Pattern Recognition Let-

ters, 2002, 23(8): 943-956.

[40] Liao L, Noble W S. Combining pairwise sequence similarity

and support vector machines for remote protein homology

detection. In Proc. the 6th RECOMB, April 2002, pp. 225-

232.

[41] Wang L, Yang C, Feng J. On learning with dissimilarity

functions. In Proc. the 24th ICML, June 2007, pp. 991-998.

[42] Balcan M F, Blum A, Srebro N. A theory of learning with

similarity functions. Machine Learning, 2008, 72(1/2): 89-

112.

[43] Kar P, Jain P. Similarity-based learning via data driven

embeddings. In Proc. the 25th NIPS, Dec. 2011.

[44] Yule G U. The Statistical Study of Literary Vocabulary.

Cambridge University Press, 1944.

[45] Metzler D, Bernstein Y, Croft W B, Moffat A, Zobel J.

Similarity measures for tracking information flow. In Proc.

the 14th CIKM, Oct. 2005, pp. 517-524.

[46] Joachims T. Training linear SVMs in linear time. In Proc.

the 12th KDD, Aug. 2006, pp. 217-226.

[47] Klein D, Manning C D. Accurate unlexicalized parsing. In

Proc. the 41st ACL, July 2003, pp. 423-430.

Tie-Yun Qian is an associate profes-

sor at the State Key Laboratory of Soft-

ware Engineering at Wuhan University.

She received her B.S. degree in com-

puter science from Wuhan University of

Technology in 1991, and her Ph.D. de-

gree in computer science from Huazhong

University of Science and Technology,

Wuhan, in 2006. Her current research

interests include text mining, web mining, and natural lan-

guage processing. She has published over 20 papers in top

conferences including ACL, EMNLP, SIGIR, etc. She is

a member of CCF and ACM. She has served as program

committee member of many leading conferences: WWW,

COLING, DASFAA, WAIM, and APWeb.

Tie-Yun Qian et al.: Review Authorship Attribution in a Similarity Space 213

Bing Liu is a professor of computer

science at the University of Illinois at

Chicago (UIC). He received his Ph.D.

degree in artificial intelligence from

the University of Edinburgh. Before

joining UIC, he was a faculty member

at the National University of Singapore.

His current research interests include sentiment analysis

and opinion mining, data mining, machine learning, and

natural language processing (NLP). He has published

extensively in top conferences and journals. He is also

the author of two books: “Sentiment Analysis and

Opinion Mining” (Morgan and Claypool) and “Web Data

Mining: Exploring Hyperlinks, Contents and Usage Data”

(Springer). In addition to research impacts, his work has

also made important social impacts. Some of his work has

been widely reported in the press, including a front-page

article in The New York Times. On professional services,

Liu has served as program chair of many leading data

mining related conferences of ACM, IEEE, and SIAM:

KDD, ICDM, CIKM, WSDM, SDM, and PAKDD, as

associate editor of several leading data mining journals,

e.g., TKDE, TWEB, DMKD, and as area/track chair or

senior technical committee member of numerous NLP, data

mining, and Web technology conferences. He currently also

serves as the chair of ACM SIGKDD, and is an IEEE fellow.

Qing Li is a professor at the City

University of Hong Kong, where he

also directs the Multimedia Software

Engineering Research Centre. His

research interests include multime-

dia databases, social networks and

recommender systems. Prof. Li has

authored/co-authored over 90 journal

papers, and 240 conference publications in these and

related areas. He is a fellow of IET, a distinguished

member of CCF, and a senior member of IEEE. He is a

steering committee member of ACM RecSys, DASFAA,

ER, ICWL, and WISE Society.

Jianfeng Si received his Ph.D.

degree in computer science from the

City University of Hong Kong, China,

in 2013. He is currently a research

scientist in the Data Analytics De-

partment of Institute for Infocomm

Research, Singapore. His research

interests include text mining, natural

language processing, and social media analysis.

