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Abstract We present Fatman, an enterprise-scale archival storage based on volunteer contribution resources from under-

utilized web servers, usually deployed on thousands of nodes with spare storage capacity. Fatman is specifically designed

for enhancing the utilization of existing storage resources and cutting down the hardware purchase cost. Two major con-

cerned issues of the system design are maximizing the resource utilization of volunteer nodes without violating service level

objectives (SLOs) and minimizing the cost without reducing the availability of archival system. Fatman has been widely

deployed on tens of thousands of server nodes across several datacenters, providing more than 100 PB storage capacity and

serving dozens of internal mass-data applications. The system realizes an efficient storage quota consolidation by strong

isolation and budget limitation, to maximally support resource contribution without any degradation on host-level SLOs.

It novelly improves data reliability by applying disk failure prediction to minish failure recovery cost, named fault-aware

data management, dramatically reduces the mean time to repair (MTTR) by 76.3% and decreases file crash ratio by 35%

on real-life product workload.
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1 Introduction

Internet companies have collected billions of giga-

bytes of data on their storages during recent years, and

have to face the growing of storage cost. These large

sets of data that are not always processed by appli-

cations still spend the space of expensive storage re-

sources on offline computational clusters. According

to ESG (Enterprise Strategy Group) report 1○, 80% of

the file data on storage systems is wasting high cost re-

sources for their inactivation. These sets of data should

be transferred to the archiving system. However, main-

taining huge quantities of data still has to pay for extra

machines, racks, and rents.

Many studies for building cost-saving archiving sys-

tems focus on compressing high-density data[1-2] and

shifting cost to opening cloud storage providers like

Amazon S3 or Windows Azure[3-4]. However, the main

cost lies in the machine purchase and attached cash

on datacenter infrastructure. They seldom think about

how to make use of existing unutilized storage nodes to

build the system. Erasure codes technique[5-6] is cur-

rently used in big-data storage since it can cut down

almost half of storage volume without reliability loss,

but it brings in a tenfold overhead in network band-

width and disk I/O during the recovery process. The

shifting cost on opening cloud storage cannot actually

cut the cost. It limits the flexibility of company ap-

plications by restricted service interfaces of third-party

providers.

On the other hand, the average disk utilization on

existing clusters is always low. To cut down the cost, it

becomes a trend to adopt compact hardware configura-

tion in machine purchase, which redundantly attaches

several disks to serve both CPU-bound and IO-bound

applications at the same time. This compact configu-

ration is beneficial for internet companies. Since in-

ternet business generally consists of offline backend for

IO-bound analysis and online frontend for CPU-bound
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query processing, mixed deployment on compact confi-

gured hardware can reduce much overhead when trans-

mitting tons of result data from offline clusters to online

ones. However, compact configuration introduces low

utilization when the hardware requirement of two kinds

of applications does not match mutually. Meanwhile,

legacy servers with common hardware configuration do

not fully consume all hardware capacity. Therefore,

the spare capacity can be contributed as volunteer re-

sources. From our statistics on the datacenters of the

biggest internet search service provider in China, there

exists more than 100 PB free storage space on tens of

thousands of frontend servers, and in most of them, the

utilization on both space and IO is lower than 40% over

years.

In this paper, we present Fatman, a novel design

for enterprise-scale archiving storage built on volunteer

nodes, which makes use of the idle storage contribu-

tion to implement PB-level low-cost reliable storage.

The volunteer node can be any one of servers from

search backend or frontend, which makes agreement of

resource sharing and gets protection from malicious be-

haviours. Our contributions are as follows.

• We investigate the challenges of archiving systems

building on volunteer storage. We address the basic

isolation requirement, the features of various quality of

service (QoS) of storage medium, and the complexity

of data reliability. (Section 2)

• We present the system architecture and the

lightweight isolation mechanism to implement budget-

based resource limitation. (Subsection 3.2)

• We outline the rules to place the data replicas

within resource limitation, and show how to take ad-

vantage of medium heterogeneity without losing relia-

bility. (Subsection 3.3)

• We demonstrate pre-scheduled data recovery

based on failure prediction of disk medium, which effi-

ciently avoids the hardware failure. (Subsection 3.4)

• We finally demonstrate by experiments that Fat-

man can ensure the reliability together with cost effi-

ciency. (Section 4)

2 Challenge

The major barriers ahead of impeding broader ap-

plications of volunteer storage systems lie in three as-

pects.

• Resources isolation and limitation, is to guaran-

tee no performance influence on host applications. Like

TFS[7], contributory application is transparently run-

ning as parasite daemon in volunteer nodes, sharing the

host’s CPU, memory, disk, network, and other local re-

sources. The hybrid-deployed contributory application

will cause heavy performance degradation as more sto-

rage is allocated[8] when no isolation and limitation are

enforced in resource usages.

• Heterogeneous storage medium, usually con-

tributed to volunteer storage, has influence on hard-

ware performance, reliability, and cost[9]. It is critical

for Fatman and other volunteer storages to accomplish

isolation and abstraction for slow, failed or possibly-fail

storage medium and to minimize the data failure repair

overhead for the purpose of avoiding the host’s service

level objective (SLO) violation. Especially for those

replica recovery with erasure codes[5-6], data recovery

is expensive under all kinds of medium fault.

• Reliability is complicated and tricky. Besides hete-

rogeneous resource failure, contributory applications

may be deliberately killed at any time for resource with-

drawn by volunteer nodes. Activated replication reco-

vering cannot be quickly processed because of resource

limitation and non-priority access. To smooth resource

utilization without reducing availability, assumptions

are pre-required in some systems to determine when

and how data will be recovered[7]. But these assump-

tions are not always true in general cases[9-10].

3 Design and Implementation

3.1 Overview

Fatman adopts master-slave architecture: metadata

is maintained by the master and file data is stored

via datanode, which acts as the contributory service,

residing in volunteer nodes and trying to share local

resources (see Fig.1). For scalability, there are seve-

ral metaservers in the master assisting with metadata

management.

Resource isolation and limitation are implemented

in datanode to monitor the usage of CPU, memory,

disk, and network. Hardware health parameters are

also collected to be used for failure model training

and failure prediction, which would provide hints for

scheduling on data recovery and power efficiency.

3.2 Resource Availability

To enforce network bandwidth within given limita-

tion (say b MB/s), the network is scheduled based on

budget. Each second will be assigned with a budge of

b MB for the total sending buffer size on RPC channel.

During a second, each RPC request will subtract part

of budget according to its sending package size. When
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Fig.1. Overall architecture.

the budget is exhausted, the next RPC request will be

blocked until new budget is assigned in the next sec-

ond. Sometimes, it needs to fine-tune the parameters

to avoid network peaks hurt the host’s local applica-

tions.

Budget-based scheduling is also used to control disk

IO bandwidth. But for multiple block devices, all the

block devices are sharing the total budget. Currently,

storage capacity is only isolated via physical disks, and

is returned via background garbage collector.

CPU and memory are controlled elastically by co-

operating with the self-manager, which checks whether

any over-consumption of resources has occurred, and

will execute suicide to clean malignant affect.

Since the self-manager is designed as a stand-alone

daemon, it can watch all contributory daemons and

audit their resource consumption objectively. Diffe-

rent from the hypervisor of virtual machines[11], it is

more lightweight and can be launched or destroyed

quickly. Also different from kernel-level container (i.e.,

cgroup)[12], the self-manager only controls CPU and

memory. On the other hand, we do not adopt vir-

tual machine or kernel-level container because almost

all volunteer nodes are running online services, which

does not allow for deploying new system softwares or

shutdowning to upgrade kernel version to support new

features.

3.3 Replica Placement

Data in Fatman are classified as hot data with three

replicas and cold data encoded via Reed-Solomon (RS)

algorithm[5-6]. As in [13], a big file will be separated

into 256 MB-size data blocks, stored in distributed

datanode. Each data block may have replications, or

may be encoded together with several parity blocks.

The archival data are hot when they are just written

in the system or accessed recently. With the classifi-

cation of hot data and cold data, we can simply know

which data are inactive and can save storage capacity

by applying algorithms with high compression rates.

The placement aims at reaching the balance be-

tween low cost and high availability. For three-replica

hot data, one block replica is placed in high-quality

storage media, while the other two mirrors are in

cheaper media (we will try to place one of them in

neighboring datacenter). For RS-encoded cold data,

data blocks are tried to be placed in a cheaper but

better-performance medium, while parity blocks are

placed in a high-available medium. The storage medi-

ums are ranked by their service quality based on their

hardware parameters, service time, repair history, etc.

Therefore, accessing cold data will achieve better per-

formance in most cases without data block crashes.

The placement of cold data helps to save net band-

width on data recovering. If data block crash hap-

pens, the recovery of cold data has to access all the

data blocks and parts of the parity blocks, which would

cause heavy IO consumption. To achieve better reco-

vering performance, an optional solution is to split cold

data block into slices and disperse them across several

nodes. Fatman adopts RS(10, 4) to encode the data

slices, where RS(n, k) is defined to represent that one

data is split to n data blocks with k parity blocks. Fig.2

shows an placement example of RS(3, 1).
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Fig.2. RS-encoded file split and placement. (a) File block and
slice. (b) Block crash and recovery.

Each slice owns 10 segments for data and 4 segments

for parities. For un-failure data slice access, the client

only needs to read 10 data segments. However, when

one needs to tolerate t failure block(s) (t < 4), since

each slice will have at most 4 failure segments, he/she

will read 10 − t data segments and t parity segment(s)

back in stream to recover the slice on crashed blocks. To

recover one crashed data segment, other data segments

will be prefetched from datanode, and these segments

can be used again to assemble the whole block. For hot

data, the read on failure data block will automatically

switch to another replica.

3.4 Fault Awareness

Because of the resource limitation, data recovering

needs to be scheduled intelligently in advance to reduce

the mean time to repair (MTTR) of the failure file data.

The pre-scheduling strategy is cooperated with hard-

ware failure prediction. Usually, the prediction mecha-

nism notifies the scheduler to prepare data transmission

several days in advance, and then the scheduler makes

use of the idle time and activates replication recovering.

To the best of our knowledge, the accurate detection

of storage failure can help the system to optimize the

MTTR[14], since the speed of repair after a failure de-

termines the reliability for a specific storage system[15].

However, the classical erasure codes relied on by Fat-

man, such as RS codes, are suboptimal for distributed

environments because RS(10, 4) recovery requires to

transfer 10 blocks and recreate the original 10 data

blocks even if a single block is lost[16]. Hence, the re-

covery process suffers from a tenfold overhead in repair

bandwidth and disk I/O. To be more efficient, locally

repairable codes (LRCs) have been introduced in [1-2,

17], which gain 50% disk I/O and network reduction at

the cost of 14% more storage.

As reported in [18], 78% of the hardware replace-

ments in modern datacenters are caused by hard disk

failures. Therefore, Fatman applies disk failure pre-

diction to improve the MTTR, and our result shows a

better performance than LRCs without any more sto-

rage overhead. In our previous work[19], our model can

predict 84.8% of the failures at least 24 hours ahead,

which will provide with enough time margin for data

migration from possibly-fail drives.

Once Fatman receives the alerts of incoming disk

failures, it can pre-schedule the recovery process as soon

as possible. Therefore the data reconstruction time af-

ter the failures will be reduced, especially when heavy

RS decoding is needed under computing resource limi-

tations. The benefits of this mechanism to replica ro-

bustness lie in two aspects. On one hand, as [20] has

confirmed, a system that can predict failures sufficiently

ahead of time would be able to extend the mean time to

failures (MTTF) and shorten the MTTR evidently. On

the other hand, it gives an opportunity for Fatman to

migrate and recover data when the resource budget of

the target node is unstrained, which means that higher

bandwidth (network and disk) and more CPU/memory

can be used while side effects to basic performance are

under control. We will show the effectiveness of the

failure prediction method in Subsection 4.3.

4 Evaluation

The goals of our evaluation here are 1) to illustrate

that volunteer resources are available for Fatman with-

out any resident influence; 2) to show the performance

based on volunteer environment with specific resource

limitation and enforcement; and 3) to demonstrate the

reliability impact of fault-aware data management and

scheduling on the MTTR and real-life product work-

load.

4.1 Resource Availability

We measure the resource consumption on one of the

real online volunteer nodes, which is configured with

8-core 2.4 GHz Xeon processors, 32 GB of memory,

12 1 TB disks, and a 1 Gbps full-duplex Ethernet con-

nection. Fatman datanode and self-manager services

are deployed within the same Linux account in the vol-

unteer node. In Fig.3, the workload fluctuation (line

host) is simulated from a real local host application to

measure the impact on contributory services (datanode)
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of their resource consumption (line contributory). The

measurement can be easily conducted via system tools

or commands (e.g., top or ps).
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Fig.3. Elastic resource usage for dynamically changed workload.
(a) Elastic CPU usage. (b) Elastic memory usage. (c) Elastic
network usage.

CPU is a flexible resource and can be easily sche-

duled without killing processes. Usually, datanode

keeps the core consumption under specific threshold

(say 60%) when the host workload is not heavy. When

host workload increases and challenges more CPU re-

source, datanodes will gradually return the core. In

Fig.3(a), we simulate the workload changing as the fluc-

tuation of the dot-dash line. It can be seen from the

figure that the datanode withdraws the resource con-

sumption to ensure the host’s resource provision. When

the host workload continues to increase to the upper

limit, the datanode would be totally killed to release all

the resources, which can be seen from the black line at

1 000-second point.

Differently, the memory is recycled via killing con-

tributory services (Fig.3(b), 1 GB limited). We use kill,

instead of shut down, because the execution is quicker

and simpler to release resources. The self-manager can

be optionally restarted after suicide, which is configured

in Linux cron service.

The budget-based network scheduling can achieve

a relatively stable utilization of contributory services.

In our experiment in which the network bandwidth is

limited to 30 MB/s, we can see from Fig.3(c) that data-

nodes will keep this level unless the resource challenge

arrives at the threshold from host workload. Similarly,

the self-manager detects the resource shortage and in-

forms datanodes to narrow down the bandwidth budget

whenever necessary.

As the disk capacity resource is recycled via garbage

collector in background, the effect of resource release

will not be instant. But, it has no influence on our real

workload, because the disk utilization of real workload

is almost stable and seldom approaches the threshold.

Additionally, the physical isolation based on devices is

common in our real-world deployment.

4.2 Performance

We measured the performance on a Fatman cluster

consisting of one master, two master replicas, 24 data-

node servers, and 32 clients. Hardware configuration

of each datanode server is the same as the real volun-

teer node. We prepare both hot and cold data in our

experiment: hot data has three replicas for each data

block, and cold data is encoded with RS(10, 4). Note

that this configuration was set up for the ease of test-

ing, while general clusters have several thousands of

datanode servers and thousands of clients.

4.2.1 Reads

N clients read simultaneously from the system.

Each client reads a randomly selected 256 MB block size

from a 500 GB file set without replication crash. This

is repeated 10 times to simulate the big-data flowing
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operation like the real case. Fig.4(a) illustrates the ag-

gregated read throughput with the increase of the client

number. As for hot data with three replicas, read ope-

ration can easily reach 120 MB/s peak limit of 1 Gbps

switch, and 14 MB/s for each client on average. But for

RS-encoded cold data, the peak throughput fluctuates

at around 85 MB/s (14 MB/s for each client). Because

the RS-decoding is processed in stream from data seg-

ments across tens of datanode which swaps out some

CPU time from networking, the curve in Fig.4(a) can-

not reach the bandwidth of hot data when increasing

the client’s workload.
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Fig.4. Read/write throughput. (a) Reads. (b) Writes.

4.2.2 Writes

N clients write simultaneously to N distinct files.

Each client writes 1 GB of data to a new file in a se-

ries of 2 MB writes. The write throughput is shown in

Fig.4(b). Averagely, the write for both of hot and cold

data can reach the peek speed 14 MB/s per client. But

the throughput for cold data cannot keep up with the

corresponding value of hot data at full workload.

The reason of low throughput at full workload is

that RS computation slows down the networking. Since

computation resource is strictly limited and the current

implementation has to calculate the parity segments per

ten data segments, there exists an idle scope of network-

ing flow reducing the throughput. But the effect of the

idle scope can disappear gradually after N > 16 (see

Fig.4(b)).

4.2.3 Reads on Failure Replication

Fig.4(a) also shows the performance of reads on

those files with some crashed replicas. The experiment

simulates the replica crash via randomly deleting repli-

cation without crashing the whole file. For hot data,

we randomly delete one or two replica(s), and for RS-

encoded cold data, one or two block(s) is/are selected

to be deleted. The missing reads can be used to mea-

sure the overhead of data recovering when the client

tries to read back the correct data from the system.

As shown in Fig.4(a), the missing reads have mi-

nor influence on client throughput for hot data, which

is decreased by 0.4%. But for cold data, it is 29.7%

averagely. For hot data, the client usually selects a

closer and lower-workload replica to execute data read.

If the replica is crashed or missing, the performance

cost of the client is only the switch to the next replica.

Therefore, the crash-replica read throughput of hot

data is almost equal to no-crash ones. But for cold

data, crashed replica would cause multiple additional

read operations of parity segments to recover the data

segments. Along with the computation cost, that will

decrease the throughput.

4.2.4 Data Recovering

Table 1 lists the recovering performance of a single

replica in Fatman (for RS-encoded cold data, each block

only has one replica). For hot data, it is determined

by networking and disk IO. While for cold data, RS-

based decoding also needs to consider CPU and mem-

ory, which may result in some performance loss during

recovering. Since one crash/missing RS block will fetch

a tenfold dataset, it needs to open ten connections ave-

ragely and read geographically from block files. Under

the 40 MB/s bandwidth, it needs 82.8 seconds to re-

cover one block file.
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Table 1. Recovering Performance of Single Block

Type Block Size (MB) Trans. Size (MB) Opened Connections Network Limit (MB/s) Consumed Time (s)

Three-replica 256 256×10 01 40 07.25

RS-encoded 256 256×10 10 40 82.80

4.3 Fault Awareness

As discussed in Subsection 3.4, Fatman implements

a fault-aware recovering mechanism by predicting in-

coming disk failures, which can reduce 76.3% of the

MTTR for RS recovery. For those possibly-fail disks,

Fatman not only pre-schedules the recovery processes

for the sake of resource limitation to improve the re-

pair efficiency, but also cuts down the reconstruction

cost apparently, since the system only needs to mi-

grate the data away from the possibly-fail drives, which

consumes only 1/10 repair time of RS recovery time.

The actual statistics shows that 1 384 of the predic-

tions were made 24 hours ahead of 1 632 failures, ac-

counting for 84.8% of all the failed disks (shown by

the cumulative distribution function in Fig.5). There-

fore, the MTTR of RS should be reduced by at least

(1−1/10)×84.8% = 76.3% if the latent failures can be

predicted one day ahead, which will save the computing

resources for RS decoding in the meantime.
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4.4 Reliability Improvement

We specify some status to represent the file block

changing. For three-replication hot data, f1 means

the client hits one failure replication (including missing

replica), f2 means two hits, and f3 means the file has

crashed since at least one block in the file has been com-

pletely missed. Fig.6 shows the three-month statistics

from log files of our daily-run process routine, which

is real-life product workload of reading 1T data ran-

domly from our testbed. Comparing the no-prediction

and the prediction of hot data, we can find the fai-

lure prediction situations can help us cut down 77% of

the crash replications (f3) and 68% of two-replica fai-

lures (f2). In Fig.6, the number of one-hit prediction is

higher than the no-prediction one, because two-failure-

replication block will be recovered first, which increases

the number of one-failure ones.
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For RS-encoded cold data, f2 is specified to the sta-

tus in which the failure replication number is between

two and k, where k is the maximally tolerant crash num-

ber in RS. In Fatman’s RS code, each ten units of data

segments will create four units of parities, and thus here

k is 4. Therefore, total crashed replica on f1 is less than
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that of hot data, and the benefit of failure prediction

can achieve 35% for f1 and 49% for f2. But for f3, both

of them are zero, which means that no file is crashed or

missing in our experiments.

5 Related Work

Volunteer computing aims at enhancing the resource

utilization without local performance loss. Currently,

prevalent volunteer systems or products are built based

on computational resources like CPU and memory,

since this category of runtime resources is relatively eas-

ier in control[21]. It introduces more challenges of volun-

teer storage to solve the efficient utilization of heteroge-

neous host resources with varying capabilities and the

instability of high optional participation rate, which are

two of basic requirements in volunteer computing[22].

Volunteer storage would cause SLO violation with-

out efficient isolation during utilizing volunteer re-

sources. VM-based isolation can achieve strong limita-

tion but also introduces heavy overhead, while kernel-

level container has not been ready for networking and

disk IO[11-12]. Some still use the traditional audit-

control method in application level, while it is coarse-

grained and insensitive[7,21]. However, the application-

level control can be pervasive for no resident require-

ments with existing applications.

The reliability of volunteer storage is more tricky,

challenged by fault prevalence from the instability

of volunteer resource provision or heterogeneous re-

source failure. As we have shown in Section 4, hard

drive failure prediction can help maintain the reliabi-

lity on storage system effectively. Merely relying on

the Self-Monitoring, Analysis and Reporting Techno-

logy (S.M.A.R.T.) standard that most hard drive ven-

dors will follow can predict at least 50 percent of fu-

ture failures[20]. In order to further enhance the pre-

diction accuracy, several machine learning techniques

have been proposed using the S.M.A.R.T.-based fea-

ture sets[23-25]. In our previous work[19], we also com-

pared the performance of backpropagation neural net-

work and SVM.

Storage system has long been tried to build more

reliable systems via disk mirroring[26] and RAID[27].

Erasure codes[5-6,28] can improve reliability with low

storage capacity but the overhead of using such erasure

codes will likely reduce system performance.

The integration of failure prediction and erasure

codes is seldom reported in recent articles, especially

applying prediction to pre-schedule decoding. Previ-

ous work mainly focuses on self-monitoring detection,

but does not consider hardware-aware tolerance design.

The work in this paper is based on [29], but presents

more details about replica placement on RS-coded data

slice to achieve the lowest overhead for data recovery

and the summary of volunteer environment in real pro-

duct workload. Meanwhile, this paper reaches further

performance enhancement than [29] during recovery via

sharing common blocks between replicas.

6 Conclusions

Volunteer resource contribution is one of the obvi-

ous ways to achieve high scalability and low investment

for building large-scale archival systems. However, tra-

ditional volunteer storage is hard to be popularized,

which lies in the concerned influence on host applica-

tions against the reliable service provision. This pa-

per presented Fatman, a novel storage system design

on volunteer contribution resources to build a reliable

enterprise-scale archiving storage system.

1) Fatman summarizes the challenges and the re-

quirements of archiving system building on volunteer

storage, and outlines the key designs focusing on re-

source availability, data placement, and fault aware-

ness.

2) To guarantee the resource availability, Fatman is

implemented with efficient budget-based resource limi-

tation and can transparently share unutilized resources

in full read/write throughput, without any degradation

on host-level SLOs.

3) By fault-aware scheduler predicting potential

hardware failure and perceiving QoS, Fatman can exe-

cute data scheduling and quality-aware data allocation

in advance, achieving high availability and reliability.

4) The experiment result illustrates that failure

replication ratio has been reduced by 68% for hot data

and 35% for cold data at least and MTTR has reduced

by 76.3%.

In reality, Fatman has been deployed on tens of

thousands of server nodes across several datacenters,

providing more than 100 PB storage capacity and sav-

ing millions of dollars for company. The storage capa-

city of Fatman has served for dozens of business applica-

tions, especially for those valuable datasets with perio-

dic updates like webpage processing and user business

logging.
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