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Abstract Personal photo revisitation on smart phones is a common yet uneasy task for users due to the large volume

of photos taken in daily life. Inspired by the human memory and its natural recall characteristics, we build a personal

photo revisitation tool, PhotoPrev, to facilitate users to revisit previous photos through associated memory cues. To mimic

users’ episodic memory recall, we present a way to automatically generate an abundance of related contextual metadata

(e.g., weather, temperature) and organize them as context lattices for each photo in a life cycle. Meanwhile, photo content

(e.g., object, text) is extracted and managed in a weighted term list, which corresponds to semantic memory. A threshold

algorithm based photo revisitation framework for context- and content-based keyword search on a personal photo collection,

together with a user feedback mechanism, is also given. We evaluate the scalability on a large synthetic dataset by crawling

users’ photos from Flickr, and a 12-week user study demonstrates the feasibility and effectiveness of our photo revisitation

strategies.
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1 Introduction

Nowadays, as the rate of digital acquisition rises, the

capacity of storage becomes larger, and taking photos

gets easier, we are inching closer to Vannevar Bush’s

1945 Memex vision of storing a lifetime’s worth of pho-

tos. With smart phones, people can record life in a va-

riety of contexts, such as attending a conference, being

on vacation, and joining a party. Facebook reveals that

we daily upload a whopping 350 million public photos

to the social network 1○. Meanwhile, there will be more

private photos kept in users’ smart phones.

The explosion in the amount of personal digital

photo collections is beyond the abilities of individuals

to easily manage and understand their own photos,

which has made revisiting certain targets become time-

consuming and boring. Personal photo revisitation

faces grand challenges especially on the narrow screen

of smart phones. To illustrate, let us look at the fol-

lowing two real photo revisitation scenarios.

Case 1. I once found a good solution to the research

topic on “salient region detection” when I attended a

lecture a few months ago. At that time, I took a photo

of that slide using iPhone. Now I encounter a problem

and want to refer to that photo. However, it turns out

to be hard to re-localize the exact photo from dozens

of photos in my iPhone.

Case 2. I took a large number of photos about tem-

ples using iPhone when I was on vacation. I once took

a photo about a famous temple during a trip to India.

It would be handy to return that exact photo rather

than a bundle of photos about temples to recognize.

Photo revisitation is different from photo finding.

There is uncertainty in the latter process because users

Regular Paper

Special Section on Computational Visual Media

The work was supported by the National Natural Science Foundation of China under Grant Nos. 61373022, 61073004, and the
National Basic Research 973 Program of China under Grant No. 2011CB302203-2.

1○https://fbcdn-dragon-a.akamaihd.net/hphotos-ak-prn1/851575 520797877991079 393255490 n.pdf, Sept. 2014.

©2015 Springer Science +Business Media, LLC & Science Press, China



454 J. Comput. Sci. & Technol., May 2015, Vol.30, No.3

do not know enough information, while revisitation is

a more directed process as users have already taken

or browsed the photos before. A general way to sup-

port personal photo revisitation is to maintain photos’

associated context and content information. However,

how to manage such photos’ associated information to

mimic users’ retrieval and recall mechanism is still a

challenging research topic, which can make revisitation

process more personalized and better serve users to im-

prove satisfaction.

In this paper, we consider the problem defined as

follows: given a large personal photo collection P taken

by smart phones, PhotoPrev returns top-k photos af-

ter typing in context- and content-based keyword query

with fast response time and good revisit quality. The

salient character of our problem definition lies in that

we aim to mimic natural retrieval and recall mechanism

of episodic and semantic memory. In personal photo re-

visitation, the episodic memory is related to the photo’s

associated context, while the semantic memory is re-

lated to the photo’s content.

The main contributions of this paper are as follows.

• PhotoPrev automatically acquires and represents

each access context and photo content as a context lat-

tice and a weighted term list respectively, linked to the

possible to-be-revisited photo. The constructed context

and content memory are able to evolve as time elapses

to mimic degradation mechanism.

• PhotoPrev periodically learns from the feedbacks

of a user’s keyword-based query search, and adapts to

revisit habit accordingly. The feedback adaptation ad-

justs parameters during memory management to offer

personalized memory retrieval.

• We report the findings of a 12-week user study

with our prototype on personal photo revisitation.

The rest of the paper is organized as follows. We

briefly review some closely related work in Section 2.

We address the construction and management of asso-

ciated context and content in Section 3. We present a

threshold algorithm based photo revisitation framework

in Section 4, and introduce user feedback adaptation in

Section 5. Section 6 describes the design and imple-

mentation of PhotoPrev, whose performance is evalu-

ated in Section 7. We finally discuss the limitations of

our prototype in Section 8, and conclude the paper in

Section 9.

2 Related Work

2.1 Context-Based Photo Revisitation

There is a large amount of work on context-

based photo revisitation, which mainly explored how

to generate an abundance of associated contextual

metadata and manage them using effective methods.

PhotoCompas[1] proposes browseable location and ac-

tivity hierarchies to organize each personal photo col-

lection. Naaman et al.[2] extended PhotoCompas to

add more context (e.g., light status), and conducted

a detailed user study to demonstrate which categories

of contextual metadata are most useful when revisiting

photos. Bearing similarities to the previous work[2],

Cao et al.[3] proposed multi-level annotation hierar-

chy considering more semantic information. Joshi

and Luo[4] proposed a classification algorithm to infer

generic activities through combining visual and geo-

tag information. PhotoMap[5] provides an automatic

spatio-temporal annotation for mobile photos, which

combines web services and social network profiles to

build context ontology. Viana et al.[6] regarded photo

context as a bag of words to realize keyword-based re-

trieval process by extending the traditional vector space

model.

2.2 Content-Based Photo Revisitation

Object Recognition. For object recognition, the re-

search work can be mainly divided into two types of ap-

proaches: parametric approaches that consist of learn-

ing generative/discriminative models, and nonparamet-

ric approaches that rely on image retrieval and match-

ing. Among parametric approaches, Crandall et al.[7]

proposed a class of statistical models for part-based ob-

ject recognition based on the degree of spatial structure.

Dalal and Triggs[8] studied proper feature parameters

for robust visual object recognition with histograms

of oriented gradient (HOG) descriptors. In addition,

Felzenszwalb et al.[9-10] designed similar constellation

models to regard objects as ensembles of parts. These

methods focus on articulated objects, which are mostly

rigid and susceptible to little or no deformation. Hu et

al.[11] proposed an unsupervised feature selection ap-

proach based on Bag-of-Visual-Words model for high-

dimensional object indexing. Zhou et al.[12] proposed a

spatial context coding strategy for visual matching veri-

fication, which could decrease the false local matches

between images. Shotton et al.[13] proposed a discrimi-

native model that combines texture-layout filters with
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lower-level image features to realize multi-class object

recognition and segmentation. Among nonparametric

approaches, Hu et al.[14] detailed the recent research

about the object extraction and matching to assist vi-

sual media analysis. Frome et al.[15] proposed local per-

ceptual distance functions to compute the distance be-

tween a query image and images in the training set,

which subsequently cast votes to infer the object class

of the query. Russell et al.[16] built a probabilistic model

to transfer the labels from a densely labeled image

database (e.g., LabelMe[17]) to the input image based

on the nearest neighbor. Liu et al.[18] extended the

previous work[16] and proposed a method to improve

recognition accuracy, which involves firstly a retrieval

step on a large database of annotated images using a

modified version of SIFT flow[19]. Then a Markov ran-

dom field framework is applied to integrate multiple

cues to segment and recognize the query image. Cao

et al.[20] proposed a geometric method between images

for similarity judgment in high-dimensional space.

Text Recognition. Numerous research work deals

with text recognition from photos, which can be broadly

categorized into two groups: texture-based methods

and region-based methods. Through scanning image at

various scales, texture-based methods extract a number

of text properties, such as the distribution of wavelet

coefficients[21], high variance of intensity, low gradi-

ents above and below text[22-23]. Region-based meth-

ods detect connected components, which group pixels

with certain properties, such as approximately constant

color, and stoke width[24-25]. Matas et al.[26] proposed

maximally stable extremal regions (MSERs), which are

particular cases of extremal regions (ERs) whose size

remains virtually unchanged over a range of thresholds.

However, MSERs still have problems on blurry im-

ages or characters with low contrast. Neumann and

Matas[27] dropped the stability requirement of MSERs

and proposed a classification method to optimally se-

lect class-specific (not necessarily stable) ERs to en-

hance the robustness. To overcome the effect of affine

or deformation on text extraction, Zhang et al.[28] pro-

posed an efficient algorithm to detect and rectify texts

in arbitrary orientations against complex background.

For user interaction, Sketch2Photo system[29] gene-

rates photo-realistic pictures from the user’s sketch of

a scene with text label annotated objects. Candidate

images matching the sketch and text labels can be ob-

tained by searching the Internet. Then a hybrid im-

age blending algorithm is presented to realize seam-

less image composition. ShadowDraw[30] guides the

freeform drawing of objects for users by providing shad-

ows derived from images in real time. In this paper,

we adopt keyword-based traditional search considering

mobile phone’s narrow screen for personal photo collec-

tions.

3 PhotoPrev Backend

To prepare photo revisitation via captured context

and photo content, PhotoPrev acquires and manages

associated context as well as photo content information

to mimic human memory upon a photo access.

3.1 Context Memory

Given time and location information about digital

photos, we can automatically generate an abundance of

related contextual metadata using web services to as-

sist personalized photo revisitation. In this subsection,

we perform two tasks, which are the acquisition of as-

sociated context cues and the dynamic management of

context memory.

3.1.1 Context Cues Acquisition Module

When a user takes photos by a smart phone, time

and location can be automatically recorded. Access

time ctime is determinate. Access location cloc is ob-

tained based on the IP address or possible GPS infor-

mation of the smart phone if available. We infer the

user’s generic activities cacts by leveraging the inherent

patterns of association based on corresponding geo-tags

(e.g., POIs) and visual concepts by employing state-of-

the-art visual detection algorithms[18,27]. Firstly, acti-

vity classes’ descriptions and visual concepts associated

with them are defined based on the latent similarity

proposed by [4], where a practical criterion is based

on the tags’ popularity in Flickr 2○. Then, a classifi-

cation algorithm[4] combining visual and geo-tag infor-

mation is adopted to label activity class on each photo

with high association probability. In addition, the time

and the location where photo pi was taken allow us

to retrieve archival data from weather stations 3○ which

are local to pi’s exposure location. Similarly, we auto-

matically obtain other useful contextual metadata cate-

gories (e.g., light status, time zone, temperature) based

on how well they were remembered[2] as context cues

for human memory.

2○http://www.flickr.com, Sept. 2014.
3○http://cdc.nmic.cn/home.do, Sept. 2014.
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Fig.2. Contextual hierarchies of (a) time, (b) location, and (c) activity for a personal photo collection.

Example 1. Considering photo p5 in Fig.1, it was

taken in ”Wetland Park” and contains person, sea, sky

and grass. Then we can infer that the activity class la-

bel corresponds to “visit to a beach” and “on vacation”,

as shown in Fig.2(c).

Definition 1 (Context Lattice). Access context A
of each photo is comprised of n contextual attributes

(A1, A2, . . . , An), where each attribute is segmented

into hierarchies using corresponding concepts from pop-

ular knowledge base Yago. The hierarchy of context at-

tribute Ai can be viewed as a lattice (Dom(Ai), H,≺h),

where H = (h1, h2, . . . , hm) of m levels corresponds to

levelId (1, 2, . . . ,m), and ≺h is a partial order among

the levels of H. levelId ∈ {1, 2, ...,m} is the number of
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each hierarchical level, and levelId of the bottom level

is 1. Assume context values v′ and v are at different

hierarchical levels, v′ is called an ancestor of v, denoted

as v ≺a v′, only if there exists an upward path from v

to v′.

Example 2. Considering location context in

Fig.2(b), we build a 4-leveled abstraction hie-

rarchy H , where “Wetland Park”≺a “Beidaihe”≺a

“Qinhuangdao”≺a“Hebei”.

Therefore, a context instance of photo p is an instan-

tiation of its n contextual attributes, represented as a

multi-dimensional vector C = (c1, c2, . . . , cn), where ci

is the i-th context lattice for corresponding contextual

attribute.

3.1.2 Context Memory Management Module

To mimic the characteristic of human brain mem-

ory that the majority of personal photos’ associated

context instances will gradually degrade and disappear

in the end, we propose a dynamic life-cycle decay policy

based on cognitive psychology studies[31-34] for context

hierarchies of a personal photo collection as shown in

Fig.2. When a context instance has all its attribute

values decayed to root node All, we think the context

instance has been forgotten.

Definition 2 (Retention Strength). Let Ai be a

contextual attribute with a value v ∈ Dom(Ai). The

retention strength of v, denoted as R(Ai, v, t), is a real

number R ∈ [0, 1], characterizing the memorized state

of v as a function of the exponential in the square root

of elapsing time t− TAi

n−1 (also called age)[32]:

R(Ai, v, t) = r0 × e
−λ

Ai
leveln

√

t−T
Ai
n−1 , if t > TAi

n−1,

where r0 is the initial value of retention strength, λAi

leveln

= 1

T
Ai
n −T

Ai
n−1

[35] is the decay rate at leveln in context

hierarchy of Ai (e.g., location), T
Ai

n−1 is the initial day

when the retention strength of context node v in leveln

begins to decay. If elapsing time t is more than TAi
n ,

the retention strength of v in leveln+1 begins to decay

along the hierarchical path.

Note that decay rate λAi

leveln
is user-dependent,

which is firstly assigned to an initial value, and then

adjusted based on user feedback. The bigger decay

rate λAi

leveln
is, the more memory retention strength

R(Ai, v, t) drops, signifying the fast context value v

degrades. With time elapsed, users can only remem-

ber some general context values of previous accessed

photos. Therefore, the hierarchies of time, location,

and activity in the context memory evolve dynamically

in life cycles to reflect the gradual degradation of hu-

man’s context memorization as well as the generalized

context-based keyword queries that users will use for

recall[31], as shown in Fig.2.

Example 3. Consider a context value v = “Wet-

land Park” of location hierarchy in Fig.2. Assume

the initial retention strength r0 = 1.0, T loc
0 = 0 and

T loc
1 = 15. After 10 days (t = 10), v’s retention strength

will become R(Aloc, v, t) = 1.0 × e
− 1

T loc
1

−T loc
0

√
t−T loc

0

=

1.0 × e−
1

15

√
10 = 0.809 9, where t − T loc

0 is to calculate

the elapsing time of context node v in level1.

We conduct a user study to determine the ini-

tial value of decay parameters for different context at-

tributes in Subsection 7.2.1. And user feedback adapta-

tion to adjust decay parameters for personalized revisi-

tation is described in Section 5. To organize the context

lattices of personal photo collection, we adopt Dewey

code and build inverted index for multi-dimensional

context vectors Cset to facilitate context-based keyword

query Q.context.

3.2 Content Memory

When a user takes/browses a photo, he/she may

focus on some interesting parts, i.e., object and text,

which leave a deep impression. Therefore, except for as-

sociated context, we should analyze and capture useful

content cues to construct content memory for personal

photo revisitation.

3.2.1 Content Cues Extraction Module

Label transfer[18] can achieve a good performance

on object recognition; however, text in photos can also

be regarded as important content cues. Therefore, we

firstly use photo OCR technology 4○ to localize and

recognize text, and then adopt label transfer to realize

nonparametric scene parsing based on open source code

package 5○. Stop words and words not in WordNet 6○ for

photo text are removed as shown in Fig.3(a).

For photo OCR technology, the pipeline can be di-

vided into three steps: text localization, character seg-

mentation and character recognition. For text localiza-

tion, it can be regarded as how to efficiently select a

4○https://code.google.com/p/tesseract-ocr/, Sept. 2014.
5○http://people.csail.mit.edu/celiu/LabelTransfer/, Sept. 2014.
6○http://wordnet.princeton.edu/, Sept. 2014.
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Fig.3. A weighted term list example for a personal photo collection and index. (a) Photo content extraction. (b) Weighted term list.
(c) Trie tree with inverted index.

set of extremal regions (ERs), where an ER r is a re-

gion whose outer boundary pixels have strictly higher

values than the region itself[27]. A two-stage sequential

classifier is used to calculate ERs by combining a lot of

features. In the first stage, a real AdaBoost classifier

with decision trees is used with the features: aspect

ratio, compactness, number of holes and a horizontal

crossings feature. In the second stage, an SVM classi-

fier with the RBF kernel is used to classify ERs into

character and non-character classes considering more

informative and more computationally expensive fea-

tures: hole area ratio, convex hull ratio, and the num-

ber of outer boundary inflexion points. Then we group

ERs into words and select the most probable charac-

ter segmentation. Finally, text can be recognized in an

OCR training stage.

To realize scene parsing for a photo pi, label transfer

matches pi’s visual objects to the images in a database

(e.g., LabelMe[17]). If images in such databases are an-

notated with object category labels that are semanti-

cally meaningful, it will transfer labels of images in the

database to parse the input. SIFT flow[19] is adopted to

establish semantically meaningful correspondences be-

tween two images by matching local SIFT descriptors.

A coarse-to-fine pyramid SIFT flow matching algorithm

is proposed to estimate the flow at a coarse level of

image grid, and then gradually propagate and refine

the flow from coarse to fine[19]. Finally a probabilis-

tic Markov random field model is adopted to integrate

multiple labels, the prior information of object cate-

gory, and the spatial smoothness of the annotation to

parse pi.

Our object detection method is a large database-

driven approach, whose unique characteristic is open-

ness. When adding more images of the new categories

into database, it does not require additional training.

Meanwhile, label transfer can predict the right object

categories in the input image with a segmentation fit to

image boundary, even though the best match may look

different from the input. An example of scene pars-

ing for a set of personal photos using label transfer is

illustrated in Fig.1.

3.2.2 Content Memory Management Module

Extracted terms evolve dynamically in life cycles

to reflect the gradual degradation of human’s content

memory, which users can input content-based keyword

query Q.content to revisit. And the retention strength

of each term will progressively decay with time at

R(Tζ , cterm, t) = r0 × e−λζ

√
t, where λζ = 1

Tζ
is the

initial decay rate, and ζ ∈ {object, text}.
For recognized object and text, we treat each photo

as two document types, i.e., Docobj and Doctext. Then

we can calculate the tf-idf value to measure the mem-

ory influence. For a term cterm, its tf-idf value is

tfidf(cterm) = log n
df(cterm) × tf(cterm), where df(cterm)

is the number of accessed photos containing cterm, n is

the total number of accessed photos, and tf(cterm) is

the occurring number of cterm in the current accessed

photos. Note that we just consider the relevant terms

in the same document type of photos when calculating

cterm’s tf-idf value.

To gain the speed benefits of indexing at retrieval

time, we apply Trie tree to organize the extracted term

lists I based on the longest common prefix. For each

tree node, inverted index is built to store a mapping

from extracted term lists in advance. Within a to-be-

revisited personal photo collection P , we assume that

each photo has a unique serial number, known as photo

identifier (photoID). During index construction, the in-

put is I for P , and then we insert the terms into the

Trie tree. Meanwhile, instances of the same term are
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grouped together, and the result is split into a dictio-

nary and postings as shown in Fig.3(c). The dictionary

records some statistics, such as the number of photos

that contain each term (photo.freq.), which also corre-

sponds to the length of each postings list ρlist. And ρlist

stores a list of pairs of photo identifier photoID, reten-

tion strength R, document type Docζ and tf-idf value

tfidf(cterm) for each extracted term.

4 Keyword-Based Query Search Module

A keyword-based query for photo revisitation can

be denoted as a function RF (Q,CM), where Q =

{KQ, k} is the query request containing a set of context-

based keywords Q.context and content-based keywords

Q.content, and CM is the query target that is the

memory snapshot, which dynamically evolves in life cy-

cles according to query user’s memorization strength.

The result of Q upon CM is the top-k ranked pho-

tos (photo1, photo2, . . . , photok), whose ranking score is

determined by a context- and content-based similarity

function between Q and CM .

Definition 3 (Context- and Content-Based Simi-

larity). Given a user query Q and human memory

snapshot CM of photo p, the context- and content-based

similarity between Q and p is defined as

Sim(Q, p) = αSimA(Q, p.CMA
) +

(1− α)SimT (Q, p.CMT
),

where SimA(Q, p.CMA
) is context-based similarity

and SimT (Q, p.CMT
) is content-based similarity. A

parameter α is to balance relative importance between

the associated context and content cues.

Definition 4 (Context-Based Similarity). Given

context-based keywords Q.context = {KA} and context

memory snapshot CMA of photo p, the context-based

similarity between Q and p.CMA
is defined as:

SimA(Q, p.CMA
) =

√

√

√

√

1

|KA|

|KA|
∑

i=1

(R2(A, qi, t)),

where qi is the i-th context-based keyword of KA.
Definition 5 (Content-Based Similarity). Given

content-based keywords Q.content = {KT } and content

memory snapshot CMT of photo p, the content-based

similarity between Q and p.CMT
is defined as:

SimT (Q, p.CMT
)

=

√

√

√

√

1

|KT |

|KT |
∑

i=1

(tfidf(qi)×R(τ, qi, t))2,

where qi is the i-th content-based keyword of KT .

Inspired by the threshold algorithm (TA)

algorithm[36], we propose a TA-based framework to effi-

ciently find similar photos for a query. The basic idea is

that, if photo p is a top-k result of query Q, then either

its context or content cues should be similar enough.

Thus, by building inverted index for context and con-

tent memory separately, we can quickly find photos

with large context- and content-based similarity. We

take these photos as candidates and then verify them to

generate the final results. As shown in Algorithm 1, we

use Υ to dynamically keep k objects with the current

highest similarity. θQ is the lowest value in Q (Line 2).

At each loop, we incrementally find photo pA with the

current highest context-based similarity (line 6). If its

context- and content-based similarity Sim(Q, pA.CM )

is larger than θQ, we add pA to Υ and update θQ (lines

7∼9). Similarly, we incrementally find photo pT with

the current highest content-based similarity and up-

date θQ (lines 10∼13). A threshold θTA is maintained

to indicate the maximum similarity for unvisited pho-

tos and updated at the end of each loop (lines 14∼15).

If θQ > θTA, we can return the k photos in Υ as results

because none of the unvisited photos may get a higher

similarity than θQ.

Algorithm 1. TA-Based Top-k Photo Revisitation
Input: a revisit request Q formalized as {KQ, k, α}; hu-
man memory snapshot for context and content cues CM =
{CMA, CMT } of photo collection P

Output: Υ: k most similar photos

1 begin

2 Υ← Ø, θTA ← 1, θQ ← 0;

3 while true do

4 if θQ > θTA then

5 Return Υ;

6 photo pA ← BestContextSearch(KQ,P.CMA
);

7 if |Q| < k or Sim(Q, pA.CM ) > θQ then

8 Add photo pA to Υ;

9 Update threshold θQ;

10 photo pτ ← BestContentSearch(KQ,P.CMτ );

11 if |Q| < k or Sim(Q, p
T .CM ) > θQ then

12 Add photo pτ to Υ;

13 Update threshold θQ;

14 θTA ← αSimA(Q, pA.CM ) + (1− α)×

15 Simτ (Q, p
T .CM );

5 User Feedback Adaptation Module

As the outcome of context and content memory

management will directly impact the actions of a user’s
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photo revisitation by keyword-based query Q, the re-

visit feedback should be taken into account in the on-

going memory management to make the process more

personalized.

Adjustments. To adjust the decay rate λAi of the i-

th associated context attribute Ai, we need to count the

average days TAi . After that, a user’s context-based

keywords begin to become general along the hierarchi-

cal path. Note that Q.context may contain context-

based keywords from different levels of attribute set A,

and each context attribute has different decay rates at

different levels. The parameter Days(Q.context, Ai, n)

is the days between browsing a web page and revisiting

it by matching context node in leveln for Ai. Then we

can assume users’ revisit habit satisfies a normal dis-

tribution Days ∼ NA(µ, δ). And TAi
n = µAi

n + 2δAi
n

is calculated by using the upper bound of NAi . For

example, considering location context Aloc has four le-

vels in Fig.2 and Q.context = “april tsinghua” involves

context-based keyword “tsinghua” from level 2 of Aloc

in Fig.4(b), we record the daysDays(Q.context, Aloc, 1)

between browsing/taking a photo and revisiting it. Af-

ter calculating the statistical distribution NAloc and es-

timating upper bound TAloc

1 , we can update the λAloc

1 =
1

T
A

loc

1
−T

A
loc

0

of level 1. Then we can determine T loc
2 and

update λloc
2 based on matching nodes againstQ.context

in a similar manner. To adjust decay rate λζ of asso-

ciated content terms, we take the top τE of terms as a

set E based on tf-idf value. After counting the average

days Days(Q.content, E) when a user’s content-based

keywords Q.content do not belong to E , we estimate

the upper bound Tζ of corresponding statistical distri-

bution N ζ and then update λζ = 1
Tζ

. The adjustment

of decay rate is to catch the user’s memory behavior

and realize proper memory matching.

Reinforcement. Because recall actions can often re-

fresh users’ memory, during evolution process, certain

parts of context and content memory are reinforced due

to users’ revisit actions. For context memory, if a user

types in a context value in the context lattices, its possi-

bly degraded retention strength is reset to the original

one. The decay starting time for its located level is

meanwhile reset to the current time. For content mem-

ory, we update the matching terms’ retention strength

in a similar fashion.

6 User Interaction

Users interact with PhotoPrev during their photo

access phase and photo revisitation phase.

When a user takes a photo by a smart phone, Pho-

toPrev will automatically perform both context cues

acquisition and content cues extraction, and then man-

age them into context lattices and weighted term lists.

During the photo revisitation phase, PhotoPrev pro-

vides two types of search interfaces for a user to select,

as shown in Fig.4(b). For example, the user can type in

the following context-based keywords “april tsinghua”,

and content-based keyword “person”. Here, the user’s

context input may not be as precise as the original con-

text due to the natural fading of human memory as time

goes by. In the above case, instead of the exact time

and location context “2014-4-3 morning FIT Building”,

the user may only remember that this talk happened

in Tsinghua University during April. Through build-

User Interaction

Personal Photo Collection

Keyword-Based

Query Search

Acquisition

Extraction

Weighted Term Lists

Text; Object

Context
Cues

Context Lattices

Content
Cues

Memory
Matching

Memory Degradation
and Reinforcement

Context and Content
Memory Organization

User Feedback Adaptation

Time; Location; Activity;
Weather; Temperature;
Elevation; Time Zone...

(a) (b)

Fig.4. PhotoPrev: unifying context and content cues to enhance personal photo revisitation. (a) PhotoPrev architecture. (b) Mobile
UI.
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ing context hierarchies, PhotoPrev can identify those

closely matching context units from personal context

memory and present an efficient algorithm for personal

photo revisitation. When the user wants to input a

query, he/she can add ”#” to help PhotoPrev classify

context- and content-based keywords. Otherwise, Pho-

toPrev will automatically label each keyword based on

CRF model[37] and recommend appropriate queries for

the user to confirm.

After entering the revisit request and clicking the

“search” button, PhotoPrev seeks and returns a ranked

list of top-k photos in Fig.4(b). The user can double-

click a returned photo to see detailed information and

then confirm it. To protect user privacy, the user can

also mark some photos which will not be submitted to

PhotoPrev.

7 Evaluation

Two sets of experiments are performed to examine

the performance of PhotoPrev. The first experiment

aims to study its scalability issue on a large synthetic

dataset, and the second one aims at its applicability and

acceptance issues through a 12-week real user study.

Two performance measurements (revisit response time

and revisit quality) are adopted throughout the experi-

ments. Revisit response time is used to test the system

average response time when users input queries on a

large context and content memory. Revisit quality is

based on average revisit precision, recall, and ranking

position.

7.1 Experiment on Synthetic Data

7.1.1 Synthetic Data Generation

We firstly build two extra components: 1) data

simulator, to simulate the generation of personal photo

collections; and 2) user simulator, to simulate the user’s

memory over the generated data and revisit actions,

acts as a “real user”. Synthetic data generation lies in

the following two aspects.

Generation of Context and Content Memory. The

data simulator crawls users’ photos with contextual

metadata (e.g., time, location) to form a dataset us-

ing Flickr API 7○ from social network. Considering per-

sonal photo collection, data simulator mainly selects

users who share more than 500 photos on Flickr. Then

the data simulator generates photonum (1 k, . . . , 100 k)

photos, which correspond to context lattices and con-

tent term lists to mimic memory snapshot.

Generation of Revisit Requests. Every period (seven

days), the user simulator formulates 10 revisit requests

against above generated context and content memory.

Each revisit request contains keywordnum (2, . . . , 10)

keywords, which are randomly selected from the corre-

sponding context lattices and content term lists. Pho-

toPrev processes the revisit requests from the user sim-

ulator periodically, and then relevant parameters are

updated based on user feedback adaptation.

7.1.2 Experimental Results of Synthetic Data

In this subsection, we mainly compare the average

response time of 6-month revisit requests under differ-

ent parameters generated by the user simulator. The

experiment is implemented in Object-C, running on

iPhone 5S with iOS 7.1.

Evaluation on k. To evaluate the effect of parame-

ter k, we fix α to 0.5, keywordnum to 6, and vary k

from 2 to 20. The result is shown in Fig.5(a), and we

can see that the average response time keeps linear in-

creasing with the increase of k. PhotoPrev scales well

as photonum increases. The average response time with

photonum = 100 k is about 1.1 seconds, which is 2.48

times of that with photonum = 10 k.

Evaluation on α. To evaluate the effect of parame-

ter α, we fix k to 10, keywordnum to 6, and vary α from

0.1 to 0.9. The result is shown in Fig.5(b), and we can

see that PhotoPrev performs well when α belongs to

the range of 0.6 to 0.7. It illustrates that context-based

similarity accounts for larger weight than content-based

similarity. Because context attributes are more plen-

tiful and context hierarchies can do a lot of pruning

operations.

Evaluation on keywordnum. To evaluate the perfor-

mance under different lengths of query keywords, we fix

α to 0.5, k to 10, and vary keywordnum from 2 to 10.

The result is shown in Fig.5(c), and we can see that the

average response time does not increase in direct ratio

along with keywordnum. When typing more context-

based keywords, the number of candidate context trees

will be reduced.

7.2 Experiment on User Study

7.2.1 Parameter Settings

To determine the initial decay parameters of mem-

ory cues for personal photos, we invited 44 persons (27

7○http://www.flickr.com/groups/api, Sept. 2014.
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males and 17 females, aged between 21 and 57) to con-

duct a user study, who always took photos by smart

phones and saved more than 600 photos. To design a

questionnaire for each participant, we particularly se-

lect 50 photos, whose shooting time ranges from 10 days

to more than 2 years before. Among the selected pho-

tos, 40% are marked with part of content cues, and the

rest are marked with part of context cues. For photos

with marked cues, participants should fill in the value

of other memory cues if they remember. Then we can

calculate TA
i and Tζ as shown in Fig.6.
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7.2.2 Statistics and Setup

A 12-week user study was conducted to investigate

the performance of PhotoPrev in real case, with 14

participants (6 males and 8 females, aged between 21

and 41), whose iPhones were installed with PhotoPrev.

During that period, participants were asked to freely re-

visit the personal photos using PhotoPrev, which kept

the revisitation details automatically. The user study

gathered 2 691 photo revisitation records in total, about

192 records per participant in average, and each partic-

ipant input 16 revisit queries per week.

Considering context-based keywords Q.context for

user query Q, participants preferred to use location cloc

as context cue, which accounts for 23.2% as shown in

Fig.7(a). Although text accounts for just 12.3%, we dis-

cover that the proportion of text ascends to 36.7% if to-

be-revisited photos contain text. It demonstrates that

photo text is also an important content cue. With time

elapsing, participants are more inclined to use context-

based keywords as shown in Fig.7(b), which identifies

that context hierarchies are more aligned with human

retrieval and recall mechanism.

7.2.3 Experimental Results of User Study

In this subsection, we mainly compare the revisit

quality of PhotoPrev on a 12-week user study.

Evaluation on User Feedback Adaptation and Decay

Mechanism. For feedback adaptation, PhotoPrev at

first does not grasp the revisit habit of users for later

revisit, and the result quality is not so good. As time
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goes by, since PhotoPrev adapts to revisit habit, revisit

quality gradually becomes better. Through varying τE ,

we aim to determine proper value to adapt content

terms. Meanwhile, we verify decay mechanism plays

a very important role in photo revisitation to improve

revisit quality. For revisit quality comparison, Pho-

toPrev with user feedback adaptation (AdaptDecay,

τE = 20%) achieves (28.1%, 97.5%, 1.7) in the average

precision, recall rate, ranking position compared with

PhotoPrev without adaptation (DecayOnly) (24.8%,

91.8%, 3.3) and PhotoPrev without decay (NoDecay)

(19.6%, 88.5%, 3.8) as shown in Fig.8.
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Evaluation on Combination of Context and Con-

tent Cues. From the results presented in Fig.9, we can

find that unifying context and content cues (Hybrid) to

revisit delivers the best average precision, recall rate,

ranking position (28.1%, 97.5%, 1.7) compared with

only using context cues (ContextOnly) (18.1%, 82.9%,

3.7) and using content cues (ContentOnly) (15.6%,

76.2%, 4.6). Although PhotoPrev supports general

matching for context-based keywords, and participants

tended to revisit by general context-based keywords like

vacation, shopping, attending lecture series and so on,

the content-based keywords can narrow down the search

scope and reflect the user’s revisitation intention well.
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8 Limitations

For PhotoPrev, content extraction from image is

still a challenging problem. To parse an input image, we

match the visual objects between the input image and

the images in a large database. However, human anno-

tation can be ambiguous. Smaller objects are usually

overwhelmed by the labeling of larger objects, which

affect the quality of extracted content cues. If images

in the database are annotated with object category or

the matching is semantically meaningful, we can easily

transfer the labels. Otherwise, there are some failure

cases including the misclassification of mountain into

field, window into wall, and so on.

9 Conclusions

In this work, we proposed a method to automati-

cally construct an adaptive and evolutive context and

content memory based on users’ personal photo collec-

tions, supporting users’ photo revisitation by keyword-

based queries on smart phones. The proposed method

is evaluated by an experiment on a large synthetic

dataset and a 12-week user study. Our experimental re-

sults show that it can adapt to the user’s revisit habit

and offer a simple yet effective solution using human

memory cues. As future work, we would like to deal

with context and content ambiguity considering confu-

sion and error during memory construction.
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