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Abstract Similarity learning has always been a popular topic in computer vision research. Among this, facial similarity

is especially important and difficult due to its wide applications and the nonrigid nature of human faces. The large gap

between feature representations and human perceptual descriptions makes the problem even harder. In this paper, we learn

facial similarity through human-computer interactions. To learn perceptual similarities of faces in a gallery set, we ask users

to label some candidate images with their similarities to a probe image. Based on users’ responses, a sampling algorithm

actively generates a probe image and a set of candidates for the next query. Assisted with human efforts, the algorithm

embeds all the images into a space where the distance between two subjects conforms to their dissimilarity in human

perception. We apply the learned embedding to face retrieval and compare our method with some feature-based methods

on a dataset we collect from social network sites (SNS). Experimental results demonstrate that incorporating human efforts

can ensure retrieval accuracy. At the same time, the active sampling algorithm reduces human efforts.

Keywords face retrieval, facial similarity, active learning

1 Introduction

User-based face retrieval has become a popular topic

in the field of computer vision in recent years. Espe-

cially in criminal investigations, the police wants to find

the suspect in a large database according to the wit-

ness’s description. Asking the witness to look at each

image in the database is time consuming and thus un-

realistic. In some retrieval systems 1○, the witness is

asked to describe some features or attributes of the sus-

pect (e.g., male, red hair) and accordingly the suspect

is found. However, people may not agree on the same

definition of an attribute. Short hair in one person’s

eyes might be regarded as long hair by another per-

son. Furthermore, sometimes people come out of words

when describing some features. For example, human

eyes have lots of variations in shape and color, and it is

hard to classify them into a few semantic categories. In

some cases, the police draws a sketch according to the

witness’s description and asks the witness to help revise

the sketch so that the sketch depicts the suspect more

accurately. After the witness confirms that the sketch

well describes the suspect, the police uses the sketch

to retrieve the suspect[1]. This is to some extent more

reliable than the former method since with the process

of revision, the sketch gives more accurate descriptions

of the suspect than semantic descriptions. However,

sketches are quite different with photos in terms of color

and texture, and sometimes do not contain enough in-

formation for face retrieval. Besides, drawing a sketch

takes much time and needs special techniques, which

does not fit for frequent use.

In computer vision, a typical face retrieval system

requires an actual probe image. The system defines a

set of features, and learns a similarity metric or a binary

classifier from massive training data. A main prob-

lem with this scheme is the gap between pre-defined

features and the high-level human descriptions. Al-

though Kumar et al. defined some high-level facial at-

tribute classifiers[2], these attributes still cannot com-

pare to abundant human descriptions. Furthermore,

Regular Paper

Special Section on Computational Visual Media

This work was partly supported by the National Basic Research 973 Program of China under Grant No. 2011CB302203.
1○M. Inc. Mughunt online face search engine. http://mughunt.securics.com, Dec. 2014.

©2015 Springer Science +Business Media, LLC & Science Press, China



500 J. Comput. Sci. & Technol., May 2015, Vol.30, No.3

under some circumstances (e.g., criminal investigations

mentioned above), there is no real image of the suspect

and we cannot directly extract image features. How to

find a subject similar to the probe implicitly from a few

interactions with the user is the main concern of this

paper.

To solve the problems raised above, we propose an

active learning method to embed subjects in a large

database into a face map based on annotated similari-

ties. At the beginning, we ask users to label relative

similarities among sets of subjects and build a face

space containing these subjects that conforms to human

perceptual similarity. Without any pre-defined image

features, we can locate a subject by collecting relative

similarities between the subject and some computer se-

lected candidates in the database. User responses can

guide sampling candidates in afterward queries. Since

we do not extract any visual features, the image can

be a mental image that only exists in the user’s mind.

In that way, we combine human annotated similarity

and active selection algorithm together. Fig.1 gives an

overview of the retrieval system.

Embedding of the Labeled Gallery Set 

Goal: Find the Position 

 

Round 1 

Probe 

Round 2 

Round n֓
 

Round n 

Adaptively Sampling  

Fig.1. Overview of the retrieval system. First we embed all the
subjects in an offline gallery set into a face map based on user
annotations. When a user queries an image, we ask the user to
iteratively label similarities between the query image and candi-
date sets. During each iteration, the sampling algorithm chooses
a candidate set for the next iteration based on existing user an-
notations to accelerate the retrieval process. The algorithm ends
when the user hits a satisfying subject in the gallery.

The contributions of this paper are: 1) We expand

the traditional embedding learning algorithm based on

triplet constraints to setwise active learning so that it

generates triplet constraints from image sets more effi-

ciently. 2) We combine user annotations and computer

generated queries together to obtain high accuracy in

retrieval and shorten the time consumed. 3) We col-

lect a new SNS database and apply our methods to the

problem of face retrieval on the new dataset.

The rest of the paper is organized as follows. In

Section 2, we discuss relevant work in face retrieval,

learning the embedding and human-in-the-loop active

learning. In Section 3, we describe details of building a

face map for the gallery set and setwise active selection

algorithm for incremental learning. In Section 4, we

show how to retrieve a face with humans in the loop.

Finally in Section 5, we demonstrate our experiments

and compare our approach with existing methods.

2 Related Work

The common way to do image retrieval, especially

face retrieval, is to define a set of features, and use

distance norms (e.g., Euclidean norm) to evaluate how

similar a pair of images are[3-4]. However, the Eu-

clidean distances between low-level feature vectors used

in these studies do not always conform to human per-

ception of dissimilarity. Besides, most of these methods

are very sensitive to environmental and other varia-

tions (e.g., illumination, occlusion and facial expres-

sion). After that, more and more studies focus on

face variations. Wiskott et al. described a face with

an image graph of fiducial points using sets of wavelet

components[5], which is locally invariant only to a set of

known transformations. Berg and Belhumeur used an

identity-preserving alignment to normalize a face into

fixed size and position so that low-level features can

work on the aligned images[6]. Chopra et al. learned a

similarity metric that maps input images into a target

space where a simple L2 norm conforms to the semantic

similarity among images[7]. Different from these stu-

dies, some methods[8-9] compare images under similar

conditions with the help of an additional image library.

In some cases such as criminal investigations, we do

not have an image of the suspect and cannot extract

features for retrieval. What we have is only a mental

image in the mind of the witness. Thus all the above

mentioned feature-based methods do not fit any more.

A simple solution is to train a set of attributes and sim-

ile classifiers that semantically describes a face image

with binary attributes such as male, white, long-hair
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and so on[2]. Here attributes are high-level descrip-

tions of an image invariant to environmental and pose

changes. Some methods build multi-attribute spaces

via data fusion and apply attribute classifiers to image

ranking and retrieval[10-11]. On the one hand, these at-

tributes do not have a generalized definition adopted by

all users, and hence bring inconsistency during labeling

and retrieval process. On the other hand, they only

learn a limited number of simile classifiers. For exam-

ple, they define an Angelina-Jolie-like lip classifier, but

in reality, there are far more types of lips and such facial

attributes are hard to list by words. To solve this prob-

lem, some studies learn relative attributes which are

more consistent among users than traditional binary

attributes[12-13]. A later work extends this work by ac-

tively learning to rank a set of images using set-wise

margin criterion[14]. These studies to some extent solve

the problem of user inconsistency, but are still limited

by semantic definitions of attributes. To solve these

problems, people try to directly learn from human-

provided similarities between images rather than to de-

fine a domain-specific attribute space. Some studies

model up the relative similarity information collected

from crowd-sourced data and learn an embedding from

human-labeled triplets[15-17]. These methods break up

the limitation of pre-defined features and implicitly

learn from human annotations. Garces et al.[18] applied

the triplet constraints learning method[17] and learned

an embedding for clip arts, but during each query, they

merely randomly sampled a triple from the gallery set.

Therefore the system relies on heavy annotations and

is hard to promote to a large scale. A recent work in-

troduces a bubble game that asks the user to reveal as

few bubbles to recognize a blurred image as possible[19].

In that way, a bubble bank is constructed, which can

help computers select the most discriminative features

human uses for recognition. Holub et al.[20] asked users

to assign a distance to close and far images respectively

and built a low-dimensional space for human faces us-

ing multi-dimensional scaling (MDS)[21]. Then they

learned a functional mapping from visual feature vec-

tors to the face space, which combines visual features

and human labeled similarities together. However, the

absolute distance score is not consistent among differ-

ent users, which brings noises in user responses. A simi-

lar work proposed a relevance feedback system for face

retrieval[22]. At each iteration, the user declares which

of the several displayed faces is “closest” to the tar-

get in his/her mind. A Bayesian, information-theoretic

method models user responses and chooses which im-

ages to display next. Some studies train self-organizing

maps (SOMs) to organize the database[23-24] in which

the semantic classes are densely spread in separate ar-

eas. The SOMs classify images into accurate sub-classes

by iteratively asking users to pick up similar subjects

in the candidate set. The main idea of our algorithm is

quite similar to these two studies, but we use sampling

probability instead of semantic classes to choose candi-

dates. Our method can recover even if the user gives

an ambiguous response, and thus is more consistent to

noises.

3 Learning a Perceptual Embedding

In this section, we introduce our approach for build-

ing a perceptual face map for a gallery database. Dur-

ing each iteration, the algorithm samples candidates

and poses queries about their relative similarities. Each

query contains a query image and a set of candidate

images. Users are asked to annotate each candidate

whether it is similar or dissimilar to the query image.

The output of the algorithm is an embedding of all the

images in the gallery where the Euclidean distances be-

tween image pairs in the new space accord with human-

labeled dissimilarities. The algorithm starts with some

randomly sampled query images and builds a basic em-

bedding of the gallery. By calculating the confidence of

each subject in the embedding, our algorithm automati-

cally finds out these unsatisfying queries and re-sample

candidates to collect more annotations. The pipeline of

our approach is shown in Fig.2.

3.1 Stochastic Triplet Embedding

Given a set of subjects Z = {z1, ..., zN}, we want to

learn an embedding {x1, ...,xN} ⊂ R
r, where the Eu-

clidean distance between a pair of subjects (i, j) accords

with human perception of dissimilarities dij , i.e.,

‖xi − xj‖2 < ‖xi − xl‖2 ⇐⇒ dij < dil,
{
dij = 0, if i = j,

dij > 0, if i 6= j.

In reality, such absolute dissimilarities are hard to

collect and inconsistent among users[20,25]. Instead, we

use relative dissimilarities in the form of triplets. A

triplet set is defined as T = {(i, j, l)|zi is more similar

to zj than zl}, where i is a query subject and (j, l) is

a candidate pair. After sampling query subjects and

unordered candidate pairs from the gallery set, we ask
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Fig.2. Pipeline for building the gallery face map. At the beginning, we sample some query images and candidates for labeling. With the
triplet constraints generated from user responses, we can learn a perceptual embedding of the whole gallery set. The setwise criterion
detects “unsatisfactory” queries and re-samples new candidate sets with less redundant and ambiguous candidate pairs.

users to order each candidate pair according to their

similarity to the query subject and learn an embedding

{x̃i} using the t-STE[17] algorithm. Define probability

pijl as how well a triplet (i, j, l) ∈ T is modeled:

pijl =
δ(i, j)

δ(i, j) + δ(i, l)
,

δ(i, j) =

(
1 +

‖xi − xj‖
2

α

)−α+1

2

.

(1)

The goal of t-STE algorithm is to maximize the sum of

the log-probabilities over all triplets:

max
X

∑

∀(i,j,l)∈T

log pijl. (2)

There are other definitions of δ(i, j). For exam-

ple, crowd kernel learner (CKL) uses kernel function

δ(i, j) = kii + kjj − 2kij and stochastic triplet em-

bedding (STE) uses exponential function δ(i, j) =

exp−(‖xi−xj‖
2). Here we use the t-STE rather than

other functions because it decays to zero when a triplet

constraint is very strongly violated, and thus handles

noises in T by not trying to satisfy constraints that

contradict the consensus. Projected gradient descent is

used to solve the optimization problem. More details

are introduced in the related work[17].

3.2 Setwise Criterion for Active Learning

Collecting triplets is a huge task. For N subjects,

we can generateN×
(
N−1
2

)
triplets for user annotations.

For example, there are 500 million triplets in 1 000 im-

ages. Apparently, it is hard and unnecessary to label

them all as some will be redundant or ambiguous. But

if we label too few triplets for each subject, they might

be insufficient to learn a good embedding. Instead of an

exhaustive enumeration, we generate triplets in a more

efficient way.

We query users in the form of image sets

{(qt, Ct)|t = 1, . . . , n}. Here n is the number of queries

posed. qt ∈ Z denotes a query image and Ct = {ctk|k =

1, . . . ,K, ctk ∈ Z} is a candidate set. In a query, the

user is asked to select candidates that are most similar

to the probe image and candidates that are definitely

not similar to the probe. We do not limit the number

of similar and dissimilar images a user picks up. De-

noting user responses U t = {ut
k|i = 1, . . . ,K}. ut

k is

set to 1 if a subject ctk is labeled as “similar” to the

probe image qt, −1 if “dissimilar” and 0 if “neither

similar nor dissimilar”. In this way, we can generate

tens of triplets from a query with ten candidates, de-

noting the sets of triplets generated in the i-th query

T i = {(qi, cij , c
i
l) | u

i
j > ui

l}. The set-wise triplet gene-

rating method is more efficient than the one-at-a-time

triplet generating methods[15-17].

After running the t-STE algorithm using the set of

triplets T generated from set-wise queries, we learn an

estimated embedding {x̃i}. However, with limited an-

notation, this result is not good enough. The small can-

didate set for each query directly results in that some

of the query subjects are dissimilar to all of the images

in their corresponding candidate sets. Therefore, we

need to find these “bad” queries and re-sample some

candidates for them. Intuitively, the objective function

defined in (1) favors large margin triplets, i.e., one of

the candidates is clearly more similar to the probe than

the other candidates. Still, we use pijl defined in (1) to
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represent how well the triplet (i, j, l) is modeled. For

an ideal candidate set, there should be some candidates

that are very similar to the query while some are rela-

tively dissimilar. We define the confidence of a query

(qt, Ct) as:

conf(qt, Ct) =
∏

ut
j
6=ut

l

δ(qt, ctj)

δ(qt, ctj) + δ(qt, ctl)
,

j, l ∈ {1, . . . ,K}.

(3)

Here we use the estimated embedding of the subjects x̃i

to calculate δ. The bigger the confidence is, the better

the query is. For those queries with small confidence,

we need to re-sample a candidate set to improve the

embedding we constructed.

A main cause for a “bad” query is that some of

the triplet constraints we generated are ambiguous or

redundant. For example, if both the subjects in a

candidate pair are very dissimilar to the probe, it is

very likely that the user is hard to decide their rela-

tive similarity. Thus the response provided is ambigu-

ous. Fig.3 shows some examples of good, ambiguous,

and redundant candidate pairs. We desire a candidate

set that can produce informative and consistent triplet

constraints. And intuitively, the learning method fa-

vors candidate pairs with one near to the query image

and the other relatively far. Similar to the objective

function defined in (1), we naturally select the best can-

didate set C∗ for query subject zi as:

C∗ = argmaxC⊂Z

∑

j,l∈C

δ(i, j)

δ(i, j) + δ(i, l)
. (4)

The search space of optimizing (4) is O(N2) where N

is the number of images in the gallery set. For effi-

ciency, we simply sample some possible candidate sets

and choose the one with the highest score.

4 Interactive Mental Image Retrieval

Mental image retrieval does not use any visual repre-

sentation of the probe image during retrieval. As men-

tioned in Section 1, due to the limitation of pre-defined

visual features, simple Euclidean distance may not ac-

cord with the dissimilarity between a pair of images. In

Section 3, we learn a face map from user labeled rela-

tive similarities, where the Euclidean distance between

a pair of images conforms to their perceptual dissimi-

larity. In this section, we focus on face retrieval with

humans in the loop with the help of the face map.
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Fig.3. Examples of good and bad candidates. The red dot is
the query subject, and the blue dots are candidates. The dash
lines are constraints of a candidate pair. The yellow region is the
possible area of the query image determined by all constraints.
In (a), the blue lines mark a good pair. One is near to the query
image and the other is relatively far. Constraints provided by
the pair cut off most of the space and restrict the possible em-
bedding of the query image to a small area. In (b), both of the
two subjects of the redundant pair are very far from the query
image and the constraint they provide is almost useless. The two
subjects in the ambiguous pair are also very far from the query
image. Although their constraint seems to play an important
role in restricting the possible embeddings of the query image, it
is very likely that the user gives a contradictory response. The
condition in (c) is similar to that in (b), and most of the can-
didates are quite far from the query image resulting in an open
infinite area for the possible embedding of the query image.
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Given a query image q, our goal is to locate it

or find the most similar image in a gallery dataset

Z = {z1, ..., zN}. Here for i = 1, ..., N , each image

zi is embedded in a face map at xi. The probe image

can be any kind of image (e.g., a sketch or a mental im-

age that exists in the user’s mind). We denote π as the

distribution of images in the gallery being the target

image. At step 0, we know nothing about q, and it can

be located anywhere in the face map. Every image in

the gallery has equal chance to be the target image, i.e.,

p0i = 1
N
, i = 1, ..., N , and N is the number of images in

the gallery.

During each iteration, we sample a candidate set

Ct = {ctk|k = 1, ...,K} according to the probability

distribution πt−1, where K is the number of subjects

in a candidate set. We ask the user to label relative

similarities between the query image and the candidate

set with “similar”, “dissimilar” and “neither similar nor

dissimilar”. Same as in Section 3, we denote the user re-

sponses as {ut
k|k = 1, ...,K}. Hence to embed the query

q into the learned face map, we maximize the objective

function w.r.t. x
t
q, which is the estimated embedding

of the query image during iteration t :

max
x

t
q

∑

∀(zi,zj)∈Ct

log
δ(qt, i)

δ(qt, i) + δ(qt, j)
. (5)

To sample candidates for the next round annotation,

we update the probability with the criterion:

pt+1(zi|x
t
q) =

∏

∀j

δ(qt, i)

δ(qt, i) + δ(qt, j)
,

where the position of the query image q at round t is

estimated through a maximization defined in (5).

With this iterative sample-label-estimate process,

we adaptively learn the probability distribution of each

image in the gallery set to be sampled in the next query

and automatically sample candidate sets that are simi-

lar to query image according to the distribution. The

advantage of this sampling process over simply sam-

pling around the “similar” subjects is that even if there

are some deficiencies of the face map we learned before,

or the user gives back a noisy response, the algorithm

is still likely to get back on track after a few iterations.

5 Experiment

5.1 Dataset and Data Collection

We need a dataset that contains a massive number

of faces that cover subjects of different genders, races,

ages and so on for our experiments. Although there

are a few existing datasets for face recognition, none

of them meet our demands perfectly. For example, the

Public Figures (PubFig) dataset[2] contains only 200

people, and most of them are celebrities aging from 20

to 50. Although the most widely used Labeled Faces

in the Wild (LFW) dataset[26] contains 5 749 people, it

also suffers severe bias on distributions in age and race.

To conduct our experiments, we collect a large number

of portrait images from an SNS where each image rep-

resents a unique subject (regardless of that some users

use celebrity photos or popular images on the Internet

as their portraits) including babies and seniors. We run

a face detector[27], cut out faces in the dataset, and fil-

ter out those images that do not have any faces in them.

Limited by annotation cost, we use only N = 500 ran-

domly selected subjects in the following experiments.

We call the dataset 500-SNS. As shown in Fig.4, faces

in our 500-SNS dataset shown in Fig.4(b) vary in age,

gender and race, etc., while the PubFig dataset shown

in Fig.4(a) biases heavily on these aspects.

(a)

(b)

Fig.4. Examples in (a) PubFig[2] and (b) 500-SNS dataset re-
spectively.

5.2 Learning the Embedding

5.2.1 Absolute Score vs Relative Comparisons

First we perform experiments on a small dataset

with 20 subjects to verify the advantage of relative com-

parisons over absolute scores. We randomly select 20
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images from the PubFig dataset[2] and ask a volunteer

to label each image with its similarity to the other ima-

ges with one of the labels “very similar”, “definitely

not similar”, “neither similar nor dissimilar”. We ask

the user to do this twice to measure the user’s abi-

lity to replicate his or her original annotation. De-

note the user’s response is U = {uk,t|k = 1, . . . ,K, t =

1, . . . , N}, where N is the number of queries we posed

and K is the number of candidates in each query. In

this experiment, N = 20 and K = 19. For simplicity,

we set uk,t as 1 if it is labeled as “similar” to the query,

−1 as “dissimilar” and 0 as “neither similar nor dissim-

ilar”. The absolute and the relative difference between

the two times of annotation, U1, U2, are defined as:

Ascore(U1, U2) =

∑

k,t

I(u1
k,t 6=u2

k,t)

K×N
,

Rscore(U1, U2) =

∑

u1
i,t

<u1
j,t

I(u2
i,t>u2

j,t)

∑

u1
i,t

<u1
j,t

I(u2
i,t

6=u2
j,t

)
,

i, j, k = 1, . . . ,K, t = 1, . . . , N.

The Ascore of the user is 0.189 5 and the Rscore

is 0.009 8. We can see that although the user might

change his/her absolute score for similarity during the

two times of annotation, the relative similarity is con-

sistent. We also ask another user to label the same

set of images and calculate the difference between the

two users’ annotation. The Ascore is 0.311 1 and the

Rscore is 0.094 5. Although different users are sup-

posed to have different judgments for whether two sub-

jects are similar, the consistency of relative similarity

is acceptable. In the following experiment, we assume

all users behave the same in annotations and ignore the

difference among users.

5.2.2 Offline Learning the Embedding

In this experiment, we test the offline learning ac-

curacy using t-STE with different parameters. As in-

troduced in Section 3, the objective of learning is to

maximize the log probability defined in (2). Parameter

α is set to be the number of degrees of freedom of the

student-t distribution. Here we use α = r − 1, where r

is the desired dimension of the embedding.

The gallery set we use is the 500-SNS dataset intro-

duced in Subsection 5.1. In order to generate triplets,

we pose a query for each subject in the gallery. Each

query contains a unique query image and a set of 24

subjects in the gallery, namely K = 24. The number

24 is simply decided by the number of images that can

be clearly shown on the screen at the same time. Since

it is hard for users to distinguish the similarity of every

candidate pair to the probe image, we simply ask the

user to pick up these “most similar” and “definitely not

similar” images. We call the rest of the candidate ima-

ges “borderline” images. To avoid personal bias, we

assign the annotations to 10 volunteers not affiliated

with this project. Using user annotations, we generate

38 766 triplets from the 500 queries we posed.

We test on different r and the number of triplets

used in learning the embedding. The result is evalu-

ated in three aspects: 1) the maximum log probability

as defined in (2); 2) we generate triplets according to

the learned embedding, compare that with triplets used

in building the embedding, and calculate the ratio of vi-

olated triplets (RVT1); 3) we generate triplets accord-

ing to the learned embedding, compare that with all the

triplets we collected from users, and calculate the ratio

of violated triplets (RVT2). We desire small RVT1 and

RVT2. Especially RVT2 is considered as an important

criterion to evaluate the embedding. The results are

shown in Fig.5.

Generally speaking, the parameter r does not have

a great influence on the log probability achieved in

learning. But the log probability increases with the

number of triplets used. Both RVT1 and RVT2 de-

crease as the dimension of the learned embedding in-

creases, which accords with the intuition that a higher

dimensional space can better embed these subjects. Al-

though RVT1 increases as we use more triplets, RVT2

decreases. Namely, the more triplets we use, the less

the learned embedding is likely to satisfy these triplets,

and the nearer the learned embedding is to human per-

ception.

5.2.3 Active Learning the Embedding

In this subsection, we illustrate the advantage of

the proposed active sampling method on constructing

the embedding. The experimental set-up is similar to

that of offline learning. But in this experiment, we

split the candidate set in each query into two subsets,

each containing 12 subjects. The first subset is used to

build a basic embedding, i.e., {x̃i} mentioned in Sub-

section 3.2. After that, we test our active learning al-

gorithm in three ways. First, we pose queries randomly

selected from the second subset and build an embed-

ding as a baseline (i.e., random query + random candi-

dates). Second, i.e., best query + random candidates,

we use the estimated embedding to calculate a confi-

dence score defined in (3) for each query subject. We
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Fig.5. (a) Maximum log probability achieved in learning. (b) Ratio of violated triplets to all triplets used in building the embedding
(RVT1). (c) Ratio of violated triplets in the learned embedding to all triplets we collected (RVT2). r ranges from 2 to 50 on the cross
axis. The number of used triplets ranges from 5 000 to 38 766 marked in different line colors.

actively pose new queries with the second subset of can-

didates according to the order of the confidence score.

The best query subject experiment validates the ability

of our algorithm in finding “bad queries” in the exist-

ing embedding. In the last one, we sample a candidate

set based on (4) with 12 candidate subjects and pose

queries using these new candidates. All the three sam-

pling methods sample in 24 candidate images for each

face in the dataset, but the order of query images and

candidate sets is different. We evaluate the improved

embedding built using these three methods in terms of

RVT2. Results are shown in Fig.6.

5.3 Facial Similarity Evaluation

As we claimed, the face map we build in Section 3

accords with the human perception of facial similarity.

Fig.7 shows some of the nearest neighbors (NN) we get

using different features. Columns 1∼7 orderly represent

probe images, NN in the attribute space, NN in a color

histogram space, NN in an LBP histogram space, NN in

a combination of color and LBP histogram space, NN in

the basic embedding we build (emb1), and NN in the ac-

tively learned embedding we build (emb2) respectively.

The NNs in the two embedding spaces are the same in
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Fig.6. Active sampling results. We evaluate our method in terms of number of triplets generated and RVT2 using 500∼1 000 queries
posed in three different ways. (a) shows the number of triplets generated with certain number of queries posed in the three different
ways. With a certain number of queries, the number of triplets generated does not differ greatly. The horizontal axis starts at 500
since we use 500 queries each with 12 candidates to build a basic embedding {x̃i}. (b) is RVT2 with certain number of queries posed in
the three different ways. Generally speaking, RVT2 decreases with the number of queries used. The queries generated using optimized
query images and candidate sets proposed in Subsection 3.2 perform better than the baseline random sampling for they build an
embedding which better accords with human perception.
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Fig.7(a). We can see that the basic embedding does not

conform to human perception especially when a face has

few similar images in the gallery set (e.g., Asians and

babies). Thus the random sampling in building the ba-

sic embedding might lose those similar images and lead

to indistinguishable candidate sets. The improved ac-

tive learning we proposed improves this case as shown

in Fig.7(b). NNs in other feature spaces are similar to

the probe image in some aspects (e.g., LBP counts for

face pose and the color histogram can, to some extent,

distinguish people of different races), but they are not

so similar to the probe image on the whole as the em-

bedding we build.

(a)

(b)

Fig.7. Columns 1∼7 represent probe image, NN in the attribute
space, NN in the color histogram space, NN in the LBP his-
togram space, NN in a combination of color and LBP histogram
space, NN in the basic embedding we build (emb1), and NN in
the final embedding we build (emb2) respectively. Here the at-
tributes we use are provided by a public software development
kit (SDK) 2○. We select six attributes that we think are most
important in facial similarity: age, gender, race, wearing glass,
pose, and expression.

We ask two users to label the top 8 nearest neighbors

generated by the five different methods (attri, color,

lbp, color+lbp, emb) we mentioned above. They also

use the “Similar, Borderline or Dissimilar” approach to

label each set of 40 images. Fig.8 shows the CMC curve

and a statistic of the number of pictures in a group of

eight NNs selected as similar/dissimilar in each feature

space. The meaning of different colors is shown in the

legend.

5.4 First Subject Hit in Face Retrieval

The goal of this experiment is to fast locate a facial

image in the gallery set. We commit experiments on 20

images randomly selected from the dataset, and it takes

an average of 5.25 rounds to find the image. Namely,

users need to see 125 images on average to locate the

probe image. Note that for a random retrieval method,

this number is 250, which takes twice the time needed

using the face map guided retrieval method. We believe

that as the scale of the dataset increases, the advantage

of our method can be more obvious. It takes O(log(n))

iterations to locate the image compared with O(n) us-

ing random sampling.

Two visualized examples of the retrieval process are

shown in Figs. 9 and 10. The first rows in Figs. 9(a) and

10(a) show the probe image. In both experiments, the

user hits the probe image in four iterations. The rest

rows show the candidate set and user responses in each

iteration. Candidates that are selected as “similar” to

the probe image are with green boxes and “dissimilar”

with red ones. Figs.9(b)∼9(d) and Figs.10(b)∼10(d)

show the probe image and the candidates in the em-

bedding space during each iteration. The big magenta

dot is the location of the probe image. Green dots rep-

resent candidates that are labeled “similar” in current

iteration and red dots “dissimilar”. The rest colored in

blue indicate “borderline” candidates. In Fig.9, we can

see that the sampling tends to converge to the location

of the probe image with human interactions. While in

Fig.10, although our algorithm does not sample enough

similar candidates in the first round due to the sparsity

of children pictures in our dataset or results in a wrong

sampling region, it can still recover from the misplace-

ment of estimated embedding of the probe image in

the second round and finally find the probe image after

three rounds of annotation.

We also put four images of the other four methods

(attribute, color, LBP, color+LBP) in the candidate set

and see in which iteration images more similar to the

probe image begin to appear (e.g., the NN in the at-

tribute space is not labeled as similar to the probe and

2○Face++ research toolkit. http://www.faceplusplus.com/face-research-toolkit/, Feb. 2015.
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Fig.8. Facial similarity measurement result. (a) CMC curve of similar images. (b) Statistic of the number of pictures in a group of
eight NNs selected as similar in each feature space. (c) CMC curve of dissimilar images. (d) Statistic of the number of pictures in a
group of eight NNs selected as dissimilar in each feature space.

some other candidates are labeled as similar. We call

this the attribute NN is filtered out in this iteration).

From the results shown in Table 1, we can see that most

of the NNs are filtered out within two rounds, i.e., our

retrieval approach can beat them in two iterations. The

attribute space is better than the simple feature space

such as color and LBP histograms, and nearest neigh-

bors in the attribute space are filtered out in an average

of 3.55 iterations.

Table 1. Results for the First Subject Hit Experiment

Experiment Number of Rounds

Filtered Attribute 3.55

Color 1.20

LBP 1.25

Color+LBP 1.45

Hit Embedding 5.25

Note: Our methods hit the subject in an average of 5.25 rounds.
The average number of iterations that nearest neighbors based
on other features are filtered out is shown in the table.

6 Conclusions

In this paper, we learned an embedding of faces in

a gallery from crowd-sourced set-wise relative simila-

rities. With active sampling-labeling-learning process,

the new approach learns an embedding that accords

with human perception of facial similarity and needs

less user interactions compared with random sampling.

Based on the face embedding, we proposed a mental im-

age retrieval framework which automatically samples

candidate images according to user response history.

Experimental results for building the embedding, facial

similarity measurement, and face retrieval were demon-

strated on an SNS dataset that contains 500 facial im-

ages. Due to annotation cost, we only experimented

on a small part of the face dataset we collected. But

we believe that a larger dataset can better present our

idea. In the future, we are planning on reducing the

computation complexity using methods such as spectral

clustering[28] and carrying out experiments on larger

datasets.
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(a)

(b) (c)

(d) (e)

Fig.9. First subject hit result. The first row in (a) shows the probe image. In our experiment, the user hits the probe image in four
iterations. Rows 2∼5 in (a) show the candidate set and the user labeling in each iteration.

(a)

(b) (c)

(d) (e)

Fig.10. Another first subject hit result.
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