
Kang CM, Wang L, Wang P et al. Coherent photon mapping on the Intel MIC architecture. JOURNAL OF COMPUTER

SCIENCE AND TECHNOLOGY 30(3): 519–527 May 2015. DOI 10.1007/s11390-015-1542-1

Coherent Photon Mapping on the Intel MIC Architecture

Chun-Meng Kang 1,2 (xS�), Lu Wang 1,2,∗ (� å), Pei Wang 2,3 (� �), Yan-Ning Xu 1,2 (Mòw), and
Xiang-Xu Meng 1,2 (��R), Member, CCF

1School of Computer Science and Technology, Shandong University, Jinan 250101, China
2Engineering Research Center of Digital Media Technology, Ministry of Education, Jinan 250101, China
3Software College, Shandong University, Jinan 250101, China

E-mail: kcm89kimi@163.com; luwang hcivr@sdu.edu.cn; jobwangpei@gmail.com; {xyn, mxx}@sdu.edu.cn

Received November 30, 2014; revised March 9, 2015.

Abstract Photon mapping is a global illumination algorithm which is composed of two steps: photon tracing and photon

searching. During photon searching step, each shading point needs to search the photon-tree to find k-neighbouring photons

for reflected radiance estimation. As the number of shading points and the size of photon-tree are dramatically large, the

photon searching step is time consuming. We propose a parallel photon searching algorithm by using radiance estimation

approach for coherent shading points on the Intelr Many Integrated Core (MIC) Architecture. In order to efficiently use

single instruction multiple data (SIMD) units, shading points are clustered by similarity first (every cluster contains 16

shading-points), and an initial neighbouring scope is searched from the photon-tree for each cluster. Then we use 16-wide

SIMD units by performing k-NN searching from the initial neighbouring scope for those 16 shading-points in a cluster in

parallel. We use the method to simulate some global illumination scenes on Intelr Xeonr processors and Intelr Xeonr

PhiTM coprocessors. The comparison results with existing photon mapping techniques indicate that our method gives

significant improvement in speed with the same accuracy.

Keywords photon mapping, parallel processing, SIMD

1 Introduction

Photon mapping is an extension of ray tracing

method that makes it able to efficiently compute global

illumination effects, such as caustics, ambient occlu-

sion, color bleeding, soft shadows and soft indirect illu-

mination in participating media. The visual impact of

global illumination is essential for photo-realistic ren-

dering. Fast and high quality global illumination has

been the central goal of photo-realistic image synthesis

for a long time.

On modern programmable architectures such as

CPUs, GPUs and MICs, the key to reaching the goal

of speeding up is to efficiently use those architectures’

SIMD units. Intelr Many Integrated Core (MIC) Ar-

chitecture Xeonr PhiTM coprocessors have the same

fundamentals of vectorization or bandwidth with main

processors. Therefore, a system using Intelr Xeonr

PhiTM coprocessors will have broader applicability than

a system using GPUs. In this paper, we propose a

parallel photon mapping algorithm using Intelr Xeonr

processors and Intelr Xeonr PhiTM coprocessors to

explore the acceleration of global illumination through

SIMD execution. In our parallel algorithm, we achieve

photon tracing and photon searching on Intelr Xeonr

PhiTM coprocessor, and SIMD instructions are both

used in the photon tracing and the photon searching

steps.

Regular Paper

Special Section on Computational Visual Media

This work was partly supported by the National Natural Science Foundation of China under Grant Nos. 61472224, 61472225,
the National High Technology Research and Development 863 Program of China under Grant No. 2012AA01A306, the National Key
Technology Research and Development Program of China under Grant No. 2013BAH39F02, the Special Funding of Independent
Innovation and Transformation of Achievements in Shandong Province of China under Grant No. 2014ZZCX08201, and the Special
Funds of Taishan Scholar Construction Project of China.

∗Corresponding Author

©2015 Springer Science +Business Media, LLC & Science Press, China



520 J. Comput. Sci. & Technol., May 2015, Vol.30, No.3

The standard photon mapping method[1] in the sim-

plest way can be summarized in two main steps: photon

tracing and photon searching.

In the photon tracing step, photons are emitted

from the light sources, traced through the scene, and

stored in the photon maps. During this step, we follow

the ray tracing method proposed by Benthin et al.[2]

to trace photons. By using a bounding volume hierar-

chy (BVH) tree with a branching factor to store objects

in the scene, each photon can do intersection test with

four nodes of the BVH tree in parallel by using 16-wide

SIMD units of Intelr Xeonr PhiTM coprocessors. Af-

ter the photon-tracing step, a photon-tree (organized

as a K-D tree) can be constructed.

During the photon searching step, the radiance in-

formation needs to be estimated for each shading point

by searching the k-neighbouring photons in the photon-

tree. Considering the spatial coherence property of

shading points, a proper neighbouring scope of photons

can be shared by nearby shading points, and each shad-

ing point can find its explicit k-neighbouring photons

from this public photon scope. As the nearby shading

points and the photons in the public scope are both

with spatial coherence, the SIMD units of MIC can be

efficiently used when we search k-neighbouring photons.

The main contribution of this paper is a parallel

photon searching algorithm by a novel factorized radi-

ance estimation method to improve SIMD utilization.

By using a similarity-based merging clustering step for

shading points, 16 shading points can be organized in

a cluster. Then a central point can be selected for

each cluster to find an initial neighbouring scope of

the photon-tree for each cluster. Finally, a 16-wide k-

NN searching for shading points in every cluster can be

easily implemented by SIMD. Thus the radiance infor-

mation of those 16 shading points in a cluster can be

calculated in parallel. In Fig.1, we show the rendering

results for different scenes.

(a) (b) (c) (d)

Fig.1. Results rendered using our algorithm. (a) Metal ring scene is an experiment for caustic effect rendering, and (b) cornell box
scene, (c) desk model, and (d) small insect scene are examples for global photon mapping test.

2 Background and Previous work

The idea of speeding up global illumination has been

explored by several researchers in the last few years. In

order to make better use of graphics hardware com-

puting power, different calculation methods and data

structures are applied to the global illumination algo-

rithms, such as ray tracing, point-based global illumi-

nation (PBGI), and photon mapping (PM).

Ma and McCool[3] presented a neighbourhood-

preserving hashing algorithm that is low-latency and

has sub-linear access time on GPU in 2002. In 2003,

Purcell et al.[4] also presented a modified photon map-

ping algorithm in which the photons are stored in a

grid-based photon map. In 2009, Fabianowski and

Dingliana[5] proposed a highly parallel photon mapping

algorithm that utilizes CUDA architecture, by handling

diffuse reflections using photon differentials. Gupte[6]

presented a hybrid photon-mapping approach for global

illumination using the spatial hashing method to store

and retrieve a photon map.

Wang et al.[7] used k-means to sample receiving

points and interpolate irradiance. Their approach im-

proves the final gather and photon mapping method, by

selecting a representative point to perform the gather

process and the others to perform the interpolation pro-

cess. In 2013, Wang et al.[8] similarly applied the idea

of receiving points coherence clustering to eliminate re-

dundant computations in PBGI.

Using efficient GPU ray shooting and K-D tree

building, Zhou et al.[9] implemented efficient photon

mapping based on K-D tree querying. Their approach

is similar to the original photon mapping idea, but us-

ing modern graphics hardware.



Chun-Meng Kang et al.: Coherent Photon Mapping on the Intel MIC Architecture 521

Recently, the first GPU method of progressive pho-

ton mapping[10] has prevented constructing K-D tree

and standard spatial hashing data structures. Photon

mapping method can be used in volume rendering[11],

and Zhang et al.[12] proposed a real-time volume ren-

dering by using precomputed photon mapping.

After years of development in parallel rendering

technology, many researchers increasingly focus on

SIMD units with both CPUs and GPUs using ever

wider SIMD units: 8-wide AVX on Intel CPUs 1○, and

16-wide (or greater) SIMD units on GPUs[13]. Wald et

al.[14] proposed the first SIMD ray tracing that defines

the concept of packet tracing and works by traversing

N different rays of a packet in parallel through sharing

one traversal stack. Singh and Faloutsos[15] presented

a novel photon mapping framework that uses SIMD

parallelism to accelerate the final gathering phase of

photo mapping. To implement SIMD photon gather-

ing, they used Intel SSE[16] instructions. Intel issued

the Xeonr PhiTM coprocessor which is based on MIC

Architecture 2○ with the KNC instructions. The flexi-

bility of an Intelr Xeonr PhiTM coprocessor provides

its suitability for complex parallel structure.

To improve SIMD utilization, Benthin et al.[2] used

a bounding-volume hierarchy with four branches as the

acceleration structure to efficiently perform intersection

tests in parallel when the rays are incoherent. They im-

plemented their method on the Intelr MIC Architec-

ture which is designed for highly parallel applications

with the highest demands for compute power and mem-

ory bandwidth.

3 Algorithm Overview

By analyzing the performance of photon mapping

algorithm, we find that the photon tracing and the pho-

ton searching steps are most time consuming. Thus we

apply the idea of SIMD to accelerate these two steps

respectively. Fig.2 shows the working flow of our ren-

dering system. The photon tracing and radiance esti-

mation modules are implemented on the coprocessor.

The other modules are implemented on the host.

Compute Photon Map

Initialize
Photon

Directions

Trace
Photons

Build
Photon
Map

Ray
Trace
Scene

Render Image

Compute
Radiance

Estimation

Fig.2. Working flow of our rendering system.

Lane 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Lane 1 Lane 2 Lane 3

X Y Z Child

Child Node 0 Child Node 1 Child Node 2 Child Node 3

Child Node 0 Child Node 1

Child Node 1

Child Node 2 Child Node 3

X Y Z Child X Y Z Child X Y Z Child

(a)

(b)

Fig.3. (a) Take a 16-wide SIMD as four lanes and each lane is
composed of four elements. (b) Organize a QBVH tree.

Firstly, in the photon-tracing step, photons are

emitted from the light sources, and directions are ran-

domly assigned according to properties of the light

sources. Then, these photons are traced through the

scene, which means tracing N independent rays. There

are many performance challenges associated with the

parallel N independent rays algorithm. The main one

is that it needs local storage forN independent rays and

temporary variables. Especially when rays are totally

incoherent, the performance of the parallel N indepen-

dent rays algorithm degrades significantly.

We implement the parallel N independent photons

tracing algorithm on MIC based on the work of Benthin

et al.[2] which takes the 16-wide SIMD hardware of MIC

as four lanes of four elements, and uses this to process

four nodes intersection test in parallel. To realize this

efficiently, a four-wide BVH (also called Quad-BVH or

QBVH) should be organized for single ray traversal (see

Fig.3). In this step, we launch a beam of photons each

time, and load these photon rays onto MIC for the in-

tersection in parallel. As different kinds of behavior

may happen on the surfaces after the first bounce, the

intersection results should be returned and we reorga-

nize these bundles of photon rays after the first bounce

behavior. Then, data will be loaded onto MIC to inter-

sect until reaching the maximum depth.

Meanwhile, in the photon searching step, each shad-

ing point needs to search the photon-tree to find k-

neighbouring photons for reflected radiance estimation.

It is true that k-NN searching in a K-D tree can be

simply implemented in parallel. However, K-D tree

searching requires random read and write frequently.

Therefore, parallel K-D tree algorithms do not have

good performance on graphics hardware generally. In

1○http://software.intel.com/en-us/avx, Mar. 2015.
2○http://download.intel.com/pressroom/archive/reference/ISC 2010 Skaugen keynote.pdf, Mar. 2015.



522 J. Comput. Sci. & Technol., May 2015, Vol.30, No.3

this case, we propose a two-step K-D tree searching ap-

proach, and make it run in parallel on the Intel MIC ar-

chitecture efficiently by organizing shading points into

clusters. In order to better use wide-SIMD capability,

shading points are clustered by similarity. We should

make sure that each cluster contains 16 shading-points,

and we search an initial neighbouring scope from the

photon-tree for each cluster. Then we use 16-wide

SIMD by performing k-NN searching from the initial

neighbouring scope for those 16 shading-points in a

cluster in parallel. A flow of this step is illustrated

in Fig.4.

P

P P

P PPP

P P P P P P P P

P P P P P P P P P P P P P P P

P P P P P P P P P P P P

Initial Neighbouring Scope

sp3 sp4sp2sp1sp0

Shading 

Point

pi pi pi pi pi pi piPhoton i

Distance i d0 d1 d2 d3 d4

k7
k9

sp14

d14 d15

sp15

(a) (b) (c)

Fig. 4. Flow of photon searching step. (a) Cluster shading points. (b) Find an initial neighbouring scope from the photon-tree for
each cluster. (c) Find k-NN for 16 shading-points in a cluster in parallel. P: photon.

4 Parallel Radiance Estimation

Our basic assumption is that shading points with

spatial coherence have similar k-neighbouring photons.

We propose a clustering strategy to collect coherent

shading points into a cluster, and points in a cluster

can use their spatial coherence to efficiently use SIMD

units when doing radiance estimation. Each cluster can

work independently and run in parallel.

4.1 Shading-Points Clustering

Shading points are those intersection points of rays

and the scene in ray tracing pass. As rays are traced

by bundles with similar directions, shading points lo-

cated on the same object are with spatial coherence.

Thus we divide the shading points into different groups

according to the objects they located on. Then, we di-

vide each group to clusters according to the similarity

of shading points. We define the similarity of shading

points with their positions and normals.

D(x1, x2) = ‖px1
− px2

‖2 + α× ‖nx1
− nx2

‖2,

with x1 and x2 being two points, p being their position,

and n being their normal in the 3D geometric space.

The weight α trades cluster flatness for spatial extent.

We typically set it to 1.

Then, we cluster shading points based on this simi-

larity by a hierarchical aggregation method. And each

cluster contains 16 shading-points.

1) We initialize a random cluster list {C1, C2, . . . ,

Cm} with m shading points and assign one point for

each cluster.

2) We merge the first unclassified cluster with its

most similar cluster and calculate their center position

and normal for the next level clustering.

3) We repeat 2) until we get 16 shading-points in

each cluster.

In step 2, the center position pc and the normal nc

of a cluster C with Nc points are updated as follows

respectively:

pc =
1

Nc

Nc∑

i=1

pi,

nc =

∑Nc

i=1 ni

‖
∑Nc

i=1 ni‖,

where Nc is the number of shading points contained in

a cluster. When a cluster contains more than one point,

we use its center position and normal to measure the

cluster’s similarity with others.

We perform this classification algorithm beforeK-D

tree searching when we receive a set of shading points.

Then we search k-NN photons for every point in a clus-

ter using SIMD.

4.2 Factorized k-Neighbor Photons Searching

To achieve high SIMD utilization, we propose a fac-

torized (two-step) K-D tree searching method. Firstly,



Chun-Meng Kang et al.: Coherent Photon Mapping on the Intel MIC Architecture 523

we search an initial neighbouring scope from the

photon-tree for each cluster. We call this step range

searching by using an initial search radius R0. The ra-

dius R0 should be conservative such that k nearest pho-

tons for every point in the cluster are within this radius

and the radius remains as small as possible. Fig.5(a)

shows the R0 we use, and the formula is:

R0 = r0 + distance, (1)

with r0 being the initial search range for one shading

point, and distance being the farthest distance from the

center point to shading points in the cluster. Different

clusters are with different search radius values R0. The

initial neighbouring scope of photons can be searched

for each center point of a cluster with searching radius

R0.

pc pc

r r

di

ri

pi

p p

(a) (b)

d
is
ta
n
ce

d
is
ta
n
ce

Fig.5. (a) Components of the initial searching radius R0 for a
cluster in (1). (b) Searching radius ri for one point in a cluster
in (2).

Secondly, we implement our parallel k-NN searching

algorithm from the initial neighbouring scope for those

16 shading-points in a cluster following Zhou et al.[9]

The key idea is that instead of using a priority queue, we

try to find every shading point’s k-NN photons within

radius ri through the range histogram. ri is set as R0 in

areas with dense photons. During the iteration, we con-

struct a two-dimensional (2D) histogram for 16 different

shading points synchronously. By splitting the search-

ing radius ri for each shading point to different radius

ranges, the number of photons is counted in different

radius ranges. The horizontal axis of the histogram

shows the radius ranges and the longitudinal axis in-

dicates the number of photons located in each range.

The k-NN photons can be searched iteratively accord-

ing to the histogram, and the 16 shading-points can be

processed in parallel. The following is the searching

process which starts from the initial neighboring scope.

1) Calculate every shading point’s searching radius

ri. Divide ri into multi-ranges to construct the shading

point’s histogram, and initialize the number of photons

in each radius range as 0.

2) For every photon in the initial neighbouring

scope, calculate its distance to the 16 shading points in

a cluster in parallel, and this photon can be classified

into proper range in each shading point’s histogram.

3) For each shading point, find the first range which

contains the k-th photon based on its histogram, and

then divide this range into multi-ranges again. Then

2) is repeated until the specified maximum number of

iterations are reached.

4) Search k-neighbor photons in the range contain-

ing the k-th photon with a priority queue.

We achieve SIMD through organizing the data of

16 points in a cluster into several vectors to use MIC’s

vector calculation unit. Fig.6 illustrates the organiza-

tion of position vectors, with spx, spy, spz being the

position vectors of a cluster and pxi, pyi, pzi being

the position vectors of the i-th photon. In spx, the

respective components from 0 to 15 equal the value of

the x-coordinate from the 0th to the 15th points in a

cluster. However, in pxi, the values of the respective

components from 0 to 15 are the same, and equal the

i-th photon’s x-coordinate value. The organization is

similar for another two position vectors of y-coordinate

and z-coordinate and the normal vectors. Then, we

can compute the distance of the 16 shading points with

a photon through one distance calculation. A 2D his-

togram also contains several 16-wide vectors for count-

ing and saving range radius of different points. Thus,

we achieve computing 16 shading points by using the

16-wide SIMD units.

4.3 Hybrid Scheme in Sparse Area

The factorized radiance estimation scheme is more

suitable for SMID than k-NN searching with a priority

queue, but excess calculations make the results lack of

accuracy in the place with sparse photon distribution.

In these areas, we determine the query radius ri directly

for every shading point in the cluster by (2). With the

same formula, we compute k-NN photons from the ini-

tial neighbouring scope using the 16-wide SIMD units

to compute distance in parallel.

ri = r0 + distance− di, (2)

where r0 is the initial search range for the center point,

distance is the farthest distance from the center point

to shading points in the cluster, and di is the distance

from the center point to the i-th shading point. Fig.5(b)

illustrates the value of ri.



524 J. Comput. Sci. & Technol., May 2015, Vol.30, No.3

sp
x sp

x
sp

x
sp

x
sp

x
sp

x
sp

x
sp

x
sp

x
sp

x
sp

x
sp

x
sp

x
sp

x
sp

x
sp

x
sp

x

sp
y

sp
y

sp
y

sp
y

sp
y

sp
y

sp
y

sp
y

sp
y

sp
y

sp
y

sp
y

sp
y

sp
y

sp
y

sp
y

sp
z

sp
z

sp
z

sp
z

sp
z

sp
z

sp
z

sp
z

sp
z

sp
z

sp
z

sp
z

sp
z

sp
z

sp
z

sp
z

sp
y

sp
z

px
i

py
i

pz
i

p
xi

p
yi

p
zi

p
xi

p
yi

p
zi

p
xi

p
yi

p
zi

p
xi

p
yi

p
zi

p
xi

p
yi

p
zi

p
xi

p
yi

p
zi

p
xi

p
yi

p
zi

p
xi

p
yi

p
zi

p
xi

p
yi

p
zi

p
xi

p
yi

p
zi

p
xi

p
yi

p
zi

p
xi

p
yi

p
zi

p
xi

p
yi

p
zi

p
xi

p
yi

p
zi

p
xi

p
yi

p
zi

p
xi

p
yi

p
zi

Fig.6. We use a 16-wide SIMD unit in our method. It shows that the organization of shading-point’s position vector and photon’s
position vector.

When the number of photons in the initial neigh-

bouring scope is less than the searching number k, we

start out with the simple calculation process for query

radius ri by (2). Fortunately, we can easily derive a

threshold through the distance and the number. The

basic assumption is that photon density is a constant

within a small area, and it is inversely proportional to

the query radius ri.

Kc = b× k,

b = (R0/r0)
2,

where Kc is the threshold and k the number for k-NN

searching.

5 Results

We implement our algorithm in the Pixie Ren-

derer. Performances are measured on a server equipped

with an Intelr Xeonr CPU E5-2609 at 2.50 GHz with

16 GB of main memory and an Intelr MIC Architec-

ture Xeonr PhiTM coprocessor SC7110P at 1.10 GHz

with 8 GB of shared memory. Images are rendered with

our method at a 960×720 pixels resolution (except for

the cornell box, at 720×720).

In all experiments, we test our method’s computa-

tional efficiency using 120 threads in a process of calcu-

lation, which contains a set of shading points and has

the maximum capacity of 2 000. Then, we classify the

shading points, and each thread is allocated to process

a cluster with SIMD.

In Fig.1, we show the rendering results for differ-

ent scenes, both caustic photon map and global pho-

ton map have been tested. In Fig.1(a), there is a metal

ring, and the scene generates 8 MB caustic photon map

which takes about 150 thousand photons in the map.

In addition, we measure radiance estimation with the

photon’s searching number being 50. Fig.1(b), Fig.1(c)

and Fig.1(d) show global illumination in a cornell box

scene, a desk model, and an insect scene respectively.

Global photon map contains the number of enormous

photons with respect to the caustic photon map. It

takes more than 10 million photons in the map, and

2 000 is used as the search value, K.

In Table 1, we report the total time (T time) and the

searching time (S time) for the four different examples

shown in Fig.1, where MES is the mean squared er-

ror. Here, we can assess the benefit of our approach for

caustic effect rendering, with a speed-up ratio for the

total rendering time ranging from 1.2 to 1.3 compared

with the original photon mapping algorithm. Mean-

while, in the specific portion of the algorithm that we

target (radiance-estimation), the speed-up ratio ranges

from 8.5 to 8.8. In the experiments using global pho-

ton map, accelerating effect is more prominent. The

speed-up ratios range from 3.7 to 10.1 and from 8.4 to

25.6, corresponding to total rendering time and search-

ing time respectively. Additionally, in the photon trac-

ing step, the acceleration rate is about four times.

Table 1. Time Comparison and Error Analysis

for the Four Different Experiments

Scene CPU T CPU S MIC T MIC S MES

Time (s) Time (s) Time (s) Time (s)

Metal ring 3 121 3 062 103 007 0.584

Cornell box 3 448 3 352 117 032 0.268

Desk 3 574 3 536 153 064 0.669

Insect 3 930 3 767 389 147 0.078



Chun-Meng Kang et al.: Coherent Photon Mapping on the Intel MIC Architecture 525

We compare the difference between our coherent ra-

diance estimation and the original photon mapping al-

gorithm. Overall, we observe a negligible error, both

from the visual detail comparison of Fig.7 and the nu-

merical error with MES in Table 1. The values of

MES prove that our classification and factorized search

are effective. We also check the coherence for shading

points in a cluster. For each shading point pi, the mini-

mum distance between pi and other shading points in a

cluster is signed as dpi
. If dpi

< ǫ, where ǫ is the mean

distance of all clusters, we consider the points in a clus-

ter are with spatial coherence. If all points in a cluster

are coherent, we consider the cluster with spatial coher-

ence. By using the checking standard, the percentage

of coherence clusters is about 99% in our experiments.

We also analyze the influence of the number of pho-

tons for our method, both the number of photons col-

lected and the number of photons emitted. By compar-

ing the experimental results of the global photon map

and the caustic photon map, it can be clearly found

that acceleration is more efficient when global photon

map is used. The reason is that in global photon map,

there is a great-high tree with a large number of pho-

tons and almost all of the shading points need to search

for enough photons for radiance estimation, which takes

a long time to traverse. In our method, a cluster only

needs to traverse once, thus the method harvests a high

acceleration efficiency. The search number k is also a

very important parameter, which impacts the accuracy

of the rendering results. In Fig.8, we plot the speed-up

evolution under the variation of the number k, both the

total time and the searching time. We can see from the

figure that the larger the k, the better the acceleration.

Choosing a larger k value will improve acceleration ef-

fect, but on the other hand, the larger k is, the more

bias appears.

(a) (b) (c)

0
%

0
%

2
5
%

2
5
%

(d)

D
if
fe

re
n
ce

 
D

if
fe

re
n
ce

 

(e) (f)

0
%

0
%

2
5
%

2
5
%

D
if
fe

re
n
ce

 
D

if
fe

re
n
ce

 

Fig. 7. Differences between our method and the traditional photon mapping. (a) (d) Results of our method. (b) (e) Results of
traditional method. (c) (f) Differences between the two methods.

500 1000

S
p
e
e
d
-
U

p
 (

X
)

Total Time

Search Time

1500

k Value of k-NN

2000

14

12

10

8

6

4

2

0

Fig.8. Performance of the cornell box with different k values.

6 Summary and Discussion

In summary, we presented a parallel method for ra-

diance estimation on MIC. The method divides shading

points into coherent clusters using a hierarchical aggre-

gation method, and then searches the K-D tree for an

initial neighbouring scope in radius R0 at each cluster

center. Compared to standard photon searching, we

searched k-NN photons in the initial scope for all of the

16 shading points in a cluster, thereby allowing us to

perform SIMD instructions in parallel on the MIC. We

also presented a photon tracing approach on the MIC

based on a QBVH tree by applying a 16-wide SIMD

hardware as four lanes of four elements. The approach

uses the KNC instructions of MIC to implement SIMD

calculation. Although some exiting algorithms can uti-

lize the parallelism of CPU with SSE instructions, we

take advantage of the many-core computing power on

MIC and our algorithm for the photon searching can

also be implemented on CPU with SIMD instructions.

Our algorithm presents a balance achieved between

rendering accuracy and efficiency as we use a classi-

fication and factorization search algorithm for k-NN

searching. The classification step can complete the



526 J. Comput. Sci. & Technol., May 2015, Vol.30, No.3

search tree in one time, and the factorized algorithm

applies the 16-wide SIMD units to maximize the per-

formance of the parallel program. Meanwhile, the ap-

proach chooses a conservative initial radius for each

cluster to make sure that k-NN photons of every shad-

ing point are included in the initial neighbouring scope.

Our approach has two main limitations. First, the

cluster step introduces redundant computation. We

used a hierarchical aggregation method to cluster 16

points in a set. Although using a four-layer iteration

can get the results, the method has to calculate the

distance between any two points. Therefore, the initial

bundle should not be too large, and we set the maxi-

mum value to be 2 000 as test using 120 threads in paral-

lel. Second, when rays are totally incoherent, it is hard

to get a bundle with a number of shading points, which

makes our factorized method burdensome. Fortunately,

ray tracing pipeline will generally return appropriate

bundles in the first bounce. Our current solution is that

when we get a bundle with a small number of points,

we achieve radiance estimation according to the origi-

nal method in parallel without SIMD. Of course, this

will reduce the acceleration efficiency. It would then be

interesting to determine how to re-manage incoherent

rays.

Finally, in this work, successfully searching k-NN

photons in a K-D tree using SIMD units onto the MIC

has many engineering challenges, although the device

is more flexible compared with GPU. We still believe

that this device has certain advantages in dealing with

parallel speedup global illumination. Due to the differ-

ent architectures and methods, direct comparison with

GPU methods is difficult. However, the experimental

data in [4, 6-7] shows that the acceleration data of our

approach is not less than the data in GPU methods.

Our classification and factorization search algorithm is

a general algorithm, as it can be applied to progres-

sive photon mapping in the same way. In progressive

photon mapping, photon tracing and photon detection

are processed in the same process, which makes all of

the operators on the photon map can be run entirely

on MIC. Our future job will be concentrated on these

operations’ optimization and parallelization on MIC.

References

[1] Jensen H W. Global illumination using photon maps.

In Proc. the Eurographics Workshop on Rendering Tech-

niques, June 1996, pp.21-30.

[2] Benthin C, Wald I, Woop S et al. Combining single and

packet-ray tracing for arbitrary ray distributions on the In-

tel MIC architecture. IEEE Transactions on Visualization

and Computer Graphics, 2002, 18(9): 1438-1448.

[3] Ma V C H, McCool M D. Low latency photon

mapping using block hashing. In Proc. ACM SIG-

GRAPH/EUROGRAPHICS Conference on Graphics

Hardware, June 2002, pp.89-99.

[4] Purcell T J, Donner C, Cammarano M et al. Photon map-

ping on programmable graphics hardware. In Proc. ACM

SIGGRAPH/EUROGRAPHICS Conference on Graphics

Hardware, June 2003, pp.41-50.

[5] Fabianowski B, Dingliana J. Interactive global photon map-

ping. Computer Graphics Forum, 2009, 28(4): 1151-1159.

[6] Gupte S. Real-time photon mapping on GPU. Univer-

sity of Maryland Baltimore County, 2011. http://www.cs-

ee.umbc.edu/olano/635s11/sgupte1.pdf, Mar. 2015.

[7] Wang R, Wang R, Zhou K et al. An efficient GPU-based

approach for interactive global illumination. ACM Trans-

actions on Graphics, 2009, 28(3): Article No. 91.

[8] Wang B, Huang J, Buchholz B et al. Factorized point

based global illumination. Computer Graphics Forum,

2013, 32(4): 117-123.

[9] Zhou K, Hou Q, Wang R et al. Real-time kd-tree construc-

tion on graphics hardware. ACM Transactions on Graphics,

2008, 27(5): Article No. 126.

[10] Hachisuka T, Jensen H W. Parallel progressive photon map-

ping on GPUs. ACM SIGGRAPH ASIA 2010 Sketches,

2010, Article No. 54.

[11] Collin C, Ribardiére M, Gruson A et al. Visibility-driven

progressive volume photon tracing. The Visual Computer,

2013, 29(9): 849-859.

[12] Zhang Y, Dong Z, Ma K L. Real-time volume rendering in

dynamic lighting environments using precomputed photon

mapping. IEEE Transactions on Visualization and Com-

puter Graphics, 2013, 19(8): 1317-1330.

[13] Aila T, Laine S. Understanding the efficiency of ray traver-

sal on GPUs. In Proc. Conference on High Performance

Graphics, Aug. 2009, pp.145-149.

[14] Wald I, Slusallek P, Benthin C et al. Interactive render-

ing with coherent ray tracing. Computer Graphics Forum,

2001, 20(3): 153-165.

[15] Singh S, Faloutsos P. SIMD packet techniques for photon

mapping. In Proc. IEEE Symposium on Interactive Ray

Tracing, Sept. 2007, pp.87-94.

[16] Thakkur S, Huff T. Internet streaming SIMD extensions.

Computer, 1999, 32(12): 26-34.

Chun-Meng Kang is a Ph.D. can-

didate in the School of Computer Sci-

ence and Technology, Shandong Univer-

sity, Jinan. She received her B.S. degree

in software engineering from Shandong

University in 2011. Her research inter-

ests include photorealistic rendering and

high performance computing.



Chun-Meng Kang et al.: Coherent Photon Mapping on the Intel MIC Architecture 527

Lu Wang is an associate professor

in the School of Computer Science and

Technology of Shandong University,

Jinan. She received her Ph.D. degree

in computer science and technology

from Shandong University in 2009. Her

research interests include photorealistic

rendering, non-photorealistic rendering,

geometric modeling, interactive design, etc.

Pei Wang is a master candidate in

Software College, Shandong University,

Jinan. He received his Bachelor’s degree

in software engineering from Chongqing

University in 2012. His research inter-

ests include photorealistic rendering and

high performance computing.

test test test test test test test test test test test test

test test test test test test test test test test test test

test test test test tes

Yan-Ning Xu received his Ph.D.

degree in computer science and tech-

nology from Shandong University in

2006, and is now an associate professor

of the School of Computer Science and

Technology, Shandong University. His

research interests include virtual reality

and human computer interaction, 3D

modeling and rendering, etc.

Xiang-Xu Meng is a professor in

the School of Computer Science and

Technology of Shandong University,

Jinan. He obtained his Ph.D. degree in

computer science and technology from

Institute of Computing Technology,

Chinese Academy of Science, Beijing, in

1998. His researches focus on human-

computer interaction and computer graphics theory and

methods, virtual reality and virtual prototyping, grid

computing and service computing, and manufacturing of

information technology.


