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Abstract Ricci flow deforms the Riemannian metric proportionally to the curvature, such that the curvature evolves

according to a nonlinear heat diffusion process, and becomes constant eventually. Ricci flow is a powerful computational

tool to design Riemannian metrics by prescribed curvatures. Surface Ricci flow has been generalized to the discrete setting.

This work surveys the theory of discrete surface Ricci flow, its computational algorithms, and the applications for surface

registration and shape analysis.
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1 Introduction

Ricci flow deforms the Riemannian metric pro-

portionally to the curvature, such that the curvature

evolves according to a heat diffusion process and even-

tually becomes constant everywhere. Ricci flow is a

powerful tool in geometric analysis for studying low-

dimensional topology. It has been successfully applied

for the proofs of Poincaré’s conjecture and Thurston’s

geometrization conjecture. Recently, Ricci flow has

started making impacts on practical fields and tackling

fundamental engineering problems. This work focuses

on the theory and algorithm of discrete surface Ricci

flow, and its applications on surface registration and

shape analysis.

Ricci flow is the tool to design a Riemannian met-

ric using prescribed Gaussian curvature. Ricci flow de-

forms the Riemannian metric proportionally to the dif-

ference between the target curvature and the current

curvature, such that the curvature evolves according to

a heat diffusion process, and eventually converges to the

target curvature. So far, there is no other alternative

to achieve this goal. Designing a metric using curva-

ture is fundamental to solving many problems, surface

parameterization is equivalent to finding a flat metric

for a surface, and surface matching and registration can

be converted to image registration using Ricci flow. By

using Ricci flow, NP-hard problems in computational

topology can be solved practically.

Surface Ricci flow implies the celebrated surface uni-

formization theorem. Namely, as shown in Fig.1, any

closed metric surface can be conformally mapped to

the unit sphere S
2, the Euclidean plane E

2 or hyper-

bolic plane H2. Similarly, surfaces with boundaries can

be mapped to one of these three canonical spaces with

circular holes (the so-called circle domains), as shown

in Fig.2.

General Ricci flow is defined on arbitrary dimen-

sional Riemannian manifolds. Surface (2-manifold)

Ricci flow has unique characteristics, which are cru-

cial for developing discrete theories and designing com-

putational algorithms. First, surface Ricci flow never

blows up, namely, the Gauss curvature during the flow

is always bounded. This phenomenon ensures the nu-

merical stability of discrete surface Ricci flow. In con-

trast, 3-manifold Ricci flow will produce singularities,
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and thus topological surgery is unavoidable. Second,

surface Ricci flow is conformal, namely, the deforma-

tion of the Riemannian metric preserves angles. This

fact greatly simplifies both theoretical arguments and

algorithmic designs. General Ricci flow is governed by

tensor differential equations, whereas surface Ricci flow

is described by scalar differential equations. Third, sur-

face Ricci flow has intuitive geometric interpretations,

which directly lead to the design of data structures. A

conformal deformation transforms infinitesimal circles

to infinitesimal circles. This elucidates the geometric

nature of the flow. Finally, Ricci flow is variational,

namely, Ricci flow is the negative gradient flow of Ricci

energy. Accordingly, discrete surface Ricci flow can be

formulated as a convex optimization problem, which

has a unique global optimum and can be carried out

using the efficient Newton’s method.

Fig.1. Uniformization for closed surfaces[1].

Fig.2. Uniformization for surfaces with boundaries[1].

For the purpose of surface registration and shape

analysis, discrete surface Ricci flow has the following

unique merits: 1) by Ricci flow, all shapes in real life

can be unified to be one of three canonical shapes, the

sphere, the plane, or the hyperbolic disk; 2) therefore,

most 3-dimensional (3D) geometric problems can be

converted to 2-dimensional (2D) image problems, which

greatly simplifies the computation; 3) furthermore, this

conversion is conformal and preserves the original geo-

metric information; 4) finally, by deforming Rieman-

nian metric, Ricci flow can be used to compute general

diffeomorphisms between surfaces.

Ricci flow has demonstrated its great potential by

solving various problems in many fields, which can be

hardly handled by alternative methods so far. The fol-

lowing are some examples: 1) non-rigid surface regis-

tration and tracking in computer vision, 2) global sur-

face parameterization in computer graphics, 3) confor-

mal brain mapping and virtual colonoscopy in medi-

cal imaging, 4) the shortest word problem in computa-

tional topology, 5) delivery guaranteed greedy routing

and load balancing in wireless sensor network, and so

on. We believe more and more researchers will rea-

lize and appreciate the intrinsic power and beauty of

Ricci flow, and more and more fields in engineering and

medicine will be impacted by Ricci flow.

2 Groundwork

Ricci flow conformally deforms the Riemannian

metrics, such that during the flow, the infinitesimal cir-

cles are preserved. This phenomenon inspired Thurston

to develop the circle packing method. In his work

on constructing hyperbolic metrics on 3-manifolds,

Thurston[2] studied a Euclidean (or a hyperbolic) circle

packing on a triangulated closed surface with prescribed

intersection angles. His work generalizes Andreev’s

and Koebe’s results of circle packing on a sphere[3-5].

Thurston conjectured that the discrete conformal map-

ping based on circle packing converges to the smooth

Riemann mapping when the discrete tessellation be-

comes finer and finer. Thurston’s conjecture has been

proved by Rodin and Sullivan[6]. Chow and Luo estab-

lished the intrinsic connection between circle packing

and surface Ricci flow[7].

The rigidity for classical circle packing was proved

by Thurston[2], Marden and Rodin[8], Colin de

Verdiére[9], Chow and Luo[7], Stephenson[10], and He

and Schramm[11]. Bowers and Stephenson[12] intro-

duced inversive distance circle packing which genera-

lizes Andreev-Thurston’s intersection angle circle pack-

ing. See [10] for more information. Guo gave a proof

for local rigidity[13]. Luo studied the combinatorial
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Yamabe problem for piecewise flat metrics on trian-

gulated surfaces[14]. Springborn et al.[15] considered

this combinatorial conformal change of piecewise flat

metrics and found an explicit formula of the energy

function. Glickenstein[16-17] studied the combinatorial

Yamabe flow on 3D piecewise flat manifolds. Recently,

Glickenstein[18] set the theory of combinatorial Yamabe

flow of piecewise flat metric in a broader context includ-

ing the theory of circle packing on surfaces. Combinato-

rial Yamabe flow on hyperbolic surfaces with boundary

has been studied by Guo[19]. All the schemes are unified

in [20].

The variational approach to circle packing was first

introduced by Colin de Verdiére[9]. Since then, many

studies on variational principles on circle packing or

circle pattern have appeared, for example, studies of

Brägger[21], Rivin[22], Leibon[23], Chow and Luo[7],

Bobenko and Springborn[24], Guo and Luo[25], and

Springborn[26]. Variational principles for polyhedral

surfaces including the topic of circle packing were stu-

died systematically by Luo[27]. Many energy functions

are derived from the cosine law and its derivative. Tan-

gent circle packing is generalized to tangent circle pack-

ing with a family of discrete curvature. For the exposi-

tion of this work, see also [28].

3 Smooth Surface Ricci Flow

This section briefly reviews the fundamental con-

cepts and theorems related to surface Ricci flow. De-

tailed discussion on Ricci flow on general Riemannian

manifolds can be found in [29]. Advanced topics on dif-

ferential geometry related to Yamabe equations can be

found in [30].

3.1 Isothermal Coordinates and Gauss-Bonnet

Theorem

Given a metric surface, one can choose isother-

mal coordinates to facilitate geometric computations,

as show in Fig.3. Most differential operators, such as

gradient and Laplace-Beltrami operators, have the sim-

plest form under isothermal coordinates.

Definition 1 (Isothermal Coordinates). On a sur-

face S with a Riemannian metric g, a local coordinates

system (u, v) is an isothermal coordinate system, if

g(u, v) = e2λ(u,v)(du2 + dv2),

where λ : S → R is a function defined on the surface

and called conformal factor.

Fig.3. Isothermal coordinate system on the Stanford bunny sur-
face. The mapping from the surface to the parameter plane is
conformal, which preserves angles and infinitesimal circles[31].

Isothermal coordinates on metric surfaces always ex-

ist, and can be proved using either surface Ricci flow or

quasi-conformal mapping.

Under the isothermal coordinates, the Gaussian cur-

vature can be formulated as

K(u, v) = −e−2λ(u,v)

(

∂2

∂u2
+

∂2

∂v2

)

λ = −∆gλ,

where the Laplace-Beltrami operator is

∆g = e−2λ(u,v)

(

∂2

∂u2
+

∂2

∂v2

)

.

The Gauss-Bonnet theorem claims that although

the Gauss curvature is determined by the Riemannian

metric, the total curvature is solely determined by the

surface topology.

Theorem 1 (Gauss-Bonnet). Suppose S is a com-

pact 2D Riemannian manifold with piecewise-smooth

boundary ∂S. Let K be the Gaussian curvature, kg the

geodesic curvature of ∂S, and θk, k = 1, 2 · · · , n, the

exterior angles of ∂S. Then

∫

S

KdA+

∫

∂S

kgds+

n
∑

k=1

θk = 2πχ(S),

where χ(S) is the Euler characteristics of the surface.

3.2 Yamabe Problem

Suppose S is a surface with a Riemannian metric g,

which induces Gauss curvature K and geodesic curva-

ture kg on the boundary. Let

ḡ = e2λg

be another metric conformal to the original one, which

induces Gauss curvature K̄ and geodesic curvature k̄g.

Then the relations between Gaussian curvature associ-

ated with a conformal change of metric are

K̄ = e−2λ(K −∆gλ),

k̄g = e−λ(kg − ∂n,gλ).
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∂n,g can also written as (∇gλ,n), ∇g = e−λ( ∂
∂u

, ∂
∂v

),

n = (sin θ,− cos θ).

Problem 1 (Surface Yamabe Problem). Given

(S, g) and the prescribed curvature, K̄ and k̄g, compute

the conformal factor λ.

Surface Yamabe problem can be solved using sur-

face Ricci flow.

3.3 Surface Ricci Flow

Given an n-dimensional Riemannian manifold M

with metric tensor g = (gij), the normalized Ricci flow

is defined by the geometric evolution equation

∂tg(t) = −2Ric(g(t)) + ρg(t),

where Ric is the Ricci curvature tensor and ρ is the

mean value of the scalar curvature

ρ =
2

n

∫

M
Rgdµg

∫

M
dµg

,

where Rg and µg are the scalar curvature and the vol-

ume element with respect to the evolving metric g(t),

respectively. Recall that a one-parameter family of met-

rics {g(t)}, where t ∈ [0, T ) for some 0 < T 6 ∞, is

called a solution to the normalized Ricci flow if it sati-

sfies the above equation at all p ∈ M and t ∈ [0, T ).

In two dimensions, the Ricci curvature for a metric

g is equal to 1
2Rg, where R is the scalar curvature (or

twice the Gauss curvature). Therefore, the normalized

Ricci flow equation for surfaces takes the form

∂tg(t) = (ρ−R(t))g(t), (1)

where ρ is the mean value of the scalar curvature,

ρ =
4πχ(M)

A(0)
,

where χ(M) is the Euler characteristic number of M ,

and A(0) is the total area of the surface M at time

t = 0.

The normalized Ricci flow preserves the total area,

A(t) = A(0), ∀t > 0. During the Ricci flow (1), the

metric deforms conformally, g(t) = e2λ(t)g(0), the con-

formal factor evolution equation is

∂tλ =
1

2
(ρ−R), λ(0) = 0,

and the curvature evolution equation is

∂tR = ∆g(t)R+R(R− ρ).

Hamilton[32] and Chow[33] proved the convergence of

surface Ricci flow.

Theorem 2 (Hamilton[32]). Let (M2, g0) be com-

pact. If ρ 6 0, or if R(0) > 0 on all of M2, then the

solution to (1) exists for all t > 0 and converges to a

metric of constant curvature.

Theorem 3 (Chow[33]). If g0 is any metric on S
2,

then its evolution under (1) develops positive scalar cur-

vature in finite time, and hence by Theorem 2 converges

to the round metric as t goes to ∞.

Theorem 4. Suppose (S, g) is a compact, there is

a function λ : S → R, such that e2λg induces constant

Gaussian curvature. If the Euler characteristics of S

χ(S) is positive, zero or negative, the constant is +1, 0

or −1 respectively.

4 Unified Discrete Surface Ricci Flow

This section systematically introduces the unified

framework for discrete surface Ricci flow. The whole

theory is explained using the variational principle on

discrete surfaces based on derivative cosine law[28]. The

elementary concepts and some of schemes can be found

in [27] and the chapter 4 in [1].

4.1 Discrete Surfaces

In practice, smooth surfaces are usually approxi-

mated by discrete surfaces. Discrete surfaces are repre-

sented as 2D simplicial complexes which are manifolds,

as shown in Fig.4.

Fig.4. Smooth surfaces are approximated by discrete sur-
faces[31].

Definition 2 (Triangular Mesh). Suppose Σ is a 2D

simplicial complex, furthermore it is also a manifold,

namely, for each point p of Σ, there exists a neighbor-

hood of p, U(p), which is homeomorphic to the whole

plane or the upper half plane. Then Σ is called a tri-

angular mesh. If U(p) is homeomorphic to the whole

plane, then p is called an interior point; if U(p) is

homeomorphic to the upper half plane, then p is called

a boundary point.
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The fundamental concepts from smooth differential

geometry, such as Riemannian metric, curvature and

conformal structure, are generalized to the simplicial

complex, respectively.

In the following discussion, we use Σ = (V,E, F ) to

denote the mesh with vertex set V , edge set E, and face

set F . A discrete surface is with Euclidean (hyperbolic

or spherical) background geometry if it is constructed

by isometrically gluing triangles in E
2 (H2 or S2).

Definition 3 (Discrete Riemannian Metric). A dis-

crete metric on a triangular mesh is a function defined

on the edges, l : E → R
+, which satisfies the trian-

gle inequality: on each face (vi, vj , vk), li, lj, lk are the

lengths of edges against vi, vj , vk respectively,

li + lj > lk, lj + lk > li, lk + li > lj .

A triangular mesh with a discrete Riemannian metric

is called a discrete metric surface.

Definition 4 (Background Geometry). Suppose Σ

is a discrete metric surface, if each face of Σ is a sphe-

rical, (Euclidean or hyperbolic) triangle, then we say Σ

is with spherical (Euclidean or hyperbolic) background

geometry. We use S
2, E2 and H

2 to represent spheri-

cal, Euclidean and hyperbolic background metric respec-

tively.

Triangles with different background geometries sati-

sfy different cosine laws (Fig.5):

E
2 : 1 =

cos θi + cos θj cos θk
sin θj sin θk

,

S
2 : cos li =

cos θi + cos θj cos θk
sin θj sin θk

,

H
2 : cosh li =

cosh θi + cosh θj cosh θk
sinh θj sinh θk

.

The discrete Gaussian curvature is defined as angle

deficit, as shown in Fig.6.

Definition 5 (Discrete Gauss Curvature). The dis-

crete Gauss curvature function on a mesh is defined on

vertices, K : V → R,

K(v) =







2π −∑

jk θ
jk
i , if v 6∈ ∂M,

π −∑

jk θ
jk
i , if v ∈ ∂M,

where θ
jk
i is the corner angle at vi in the face (vi, vj , vk),

and ∂M represents the boundary of the mesh.

The Gauss-Bonnet theorem still holds in the dis-

crete case.

vi

vi

vi

vj

vj

s

θi

θi

θj

θj

θk

θk

lj

lj

li

li

lk

lk

vj

θi

θj
θk

lj

li

lk
vk

vk

vk

(a)

(b)

(c)

Fig.5. Different background geometries[20]. (a) Euclidean E2.
(b) Spherical S2. (c) Hyperbolic H2.

α1

α1

α2

α2α3

v
v

(a) (b)

Fig.6. Discrete curvatures of an interior vertex and a boundary
vertex[1].

Theorem 5 (Discrete Gauss-Bonnet Theorem).

Suppose Σ is a triangular mesh with Euclidean back-

ground metric. The total curvature is a topological in-

variant,

∑

v 6∈∂Σ

K(v) +
∑

v∈∂Σ

K(v) + ǫA(Σ) = 2πχ(Σ), (2)

where χ is the characteristic Euler number, K is the

Gauss curvature, A(Σ) is the total area, and ǫ =

{+1, 0,−1} if Σ is with spherical, Euclidean or hyper-

bolic background geometry.
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4.2 Unified Circle Packing Metrics

Definition 6 (Circle Packing Metric). Suppose Σ =

(V,E, F ) is a triangle mesh with spherical, Euclidean or

hyperbolic background geometry. Each vertex vi is as-

sociated with a circle with radius γi. The circle radius

function is denoted as γ : V → R>0; a function defined

on the vertices ǫ : V → {+1, 0,−1} is called the scheme

coefficient; a function defined on edges η : E → R is

called the discrete conformal structure coefficient. A

circle packing metric is a 4-tuple (Σ, γ, η, ǫ), and the

edge length is determined by the 4-tuple and the back-

ground geometry.

In the smooth case, changing a Riemannian metric

by a scalar function, g → e2ug, is called a conformal

metric deformation. The discrete analogy to this is as

follows.

Definition 7 (Discrete Conformal Equivalence).

Two circle packing metrics (Σk, γk, ηk, ǫk), k = 1, 2, are

conformally equivalent if Σ1 = Σ2, η1 = η2, ǫ1 = ǫ2.

(γ1 may not equal γ2.)

The discrete analogy to the concept of conformal

factor in the smooth case is:

Definition 8 (Discrete Conformal Factor). Dis-

crete conformal factor for a circle packing metric

(Σ, γ, η, ǫ) is a function defined on each vertex u : V →
R,

ui =











log γi, E
2,

log tanh γi

2 , H
2,

log tan γi

2 , S
2.

Definition 9 (Circle Packing Schemes). Suppose

Σ = (V,E, F ) is triangle mesh with spherical, Euclidean

or hyperbolic background geometry. Given a circle pack-

ing metric (Σ, γ, η, ǫ), for an edge (vi, vj) ∈ E, its

length lij is given by















l2ij = 2ηije
ui+uj + εie

2ui + εje
2uj , E2,

cosh lij =
4ηije

ui+uj+(1+εie
2ui )(1+εje

2uj )

(1−εie
2ui )(1−εje

2uj )
, H

2,

cos lij =
−4ηije

ui+uj+(1−εie
2ui )(1−εje

2uj )

(1+εie
2ui )(1+εje

2uj )
, S

2.

(3)

The schemes are named in Table 1.

Table 1. Scheme Name

Scheme εi εj ηij

Tangential circle packing +1 +1 +1

Thurston’s circle packing +1 +1 [0, 1]

Inversive distance circle packing +1 +1 > 0

Yamabe flow 0 0 > 0

Virtual radius circle packing −1 −1 > 0

Mixed type {−1, 0,+1} {−1, 0,+1} > 0

Fig.7 illustrate all the schemes with discrete surfaces

with Euclidean background geometry.

From the definition, the tangential circle packing is

a special case of Thurston’s circle packing; Thurston’s

circle packing is a special case of inversive distance cir-

cle packing. In the following discussion, we unify all

three types as inversive distance circle packing.

4.3 Discrete Surface Ricci Flow

Definition 10 (Discrete Surface Ricci Flow). For

a discrete surface with S
2, E2 or H2 background geome-

try, and a circle packing metric (Σ, γ, η, ǫ), the discrete

surface Ricci flow is

dui(t)

dt
= K̄i −Ki(t),

where K̄i is the target curvature at the vertex vi.

The target curvature must satisfy certain con-

straints to ensure the existence of the solution to the

flow, such as Gauss-Bonnet equation (2), and some ad-

ditional ones described in [2], [7], and [8], for instance.

The discrete surface Ricci flow has exactly the same

formula as the smooth counterpart (1). Furthermore,

similar to the smooth case, discrete surface Ricci flow is

also variational: the discrete Ricci flow is the negative

gradient flow of the discrete Ricci energy.

Definition 11 (Discrete Ricci Energy). Given a

discrete surface with S
2, E2 or H

2 background geome-

try, and a circle packing metric (Σ, γ, η, ǫ), for a trian-

gle (vi, vj , vk) with inner angles (θi, θj , θk), the discrete

Ricci energy on the face is given by

Ef (ui, uj, uk) =

∫ (ui,uj ,uk)

θidui + θjduj + θkduk. (4)

The discrete Ricci energy for the whole mesh is defined

as

EΣ(u1, u2, · · · , un) =

∫ (u1,u2,··· ,un) n
∑

i=1

(K̄i −Ki)dui.

From Definition 11, we get the relation between the

surface Ricci energy and the face Ricci energy:

EΣ =

n
∑

i=1

(K̄i − 2π)ui +
∑

f∈F

Ef .

The description of the energy in terms of an integral

requires the fact that the intergrand is a closed form so

that it is defined independent of the integration path.

This follows from the following symmetry lemma, which

has fundamental importance. The proof is given by the

geometric interpretation of the Ricci energy.
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Fig.7. Circle packing (CP) schemes and the geometric interpretation to their Ricci energies[20]. (a) Tangential CP. (b) Thurston’s CP.
(c) Inversive distance CP. (d) Tangential CP, η = 1, ǫ = 1. (e) Thurston’s CP, 0 6 η 6 1, ǫ = 1. (f) Inversive distance CP, η > 1, ǫ = 1.
(g) Yamabe flow. (h) Virtual radius CP (virt.rad.cp). (i) Mixed type. (j) Yamabe flow, η > 0, ǫ = 0. (k) Virt.rad.cp, η > 0, ǫ = −1.
(l) Mixed type, η > 0, ǫ ∈ {+1, 0,−1}.

Lemma 1 (Symmetry). Given a discrete surface

with S
2, E

2 or H
2 background geometry, and a circle

packing metric (Σ, γ, η, ǫ), it has for any pair of ver-

tices vi and vj:

∂Ki

∂uj

=
∂Kj

∂ui

.

4.4 Geometric Interpretations to Ricci

Energies

This subsection focuses on the geometric interpre-

tation to Ricci energies of all the schemes in all back-

ground geometries, as shown in Fig.8.

We use the upper half space model for H
3, with
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Virtual Radius CP

Mix Type CP

Fig.8. Geometric interpretation to discrete Ricci energy — volumes of generalized hyperbolic tetrahedra[20] . Inversive distance circle
packing in (a) Euclidean E2, (b) hyperbolic H2, (c) spherical S2. Yamabe flow in (d) E2, (e) H2, (f) S2. Virtual radius circle packing
in (g) E2, (h) H2, (i) S2. Mixed type schemes in (j) E2, (k) H2, (l) S2.

Riemannian metric

ds2 =
dx2 + dy2 + dz2

z2
,

and the xy-plane is the ideal boundary. Consider a

triangle (vi, vj , vk), its Ricci energy is closely related

to the volume of a generalized hyperbolic tetrahedron

whose vertices can be in H
3, truncated by a horosphere

or truncated by a hyperbolic plane.

In Fig.9, the generalized hyperbolic tetrahedron has

four vertices w0, wi, wj , wk. The tetrahedron vertex w0

is called the top vertex. The four faces of the tetra-

hedron are hyperbolic planes, and the six edges are
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geodesics. The six edge lengths of the generalized tetra-

hedron are −ui,−uj,−uk and λij , λjk, λki respectively.

The generalized tetrahedron is uniquely determined by

these six edge lengths.

wi wj

wk

w

wi wj

wk

w

−ui

−uk

−uj
λki

lij
ljk

lki

λij

λjk

βjk
βki

βij

θi θj

θk

Fig.9. Generalized hyperbolic tetrahedron[20] .

The followings are the common principles for

constructing the generalized tetrahedron for all the

schemes.

1) For all E2 schemes, the top vertex w0 is ideal

(at infinity) and truncated by a horosphere; for all H2

schemes, the top vertex is hyperideal (exceeding the

boundary of H3) and truncated by a hyperbolic plane;

for all S2 schemes, the top vertex is in H
3.

2) For wi, if the corresponding vertex vi is of in-

versive distance circle packing εi = +1, then it is hy-

perideal and truncated by a hyperbolic plane; if vi is

of Yamabe flow εi = 0, then it is ideal and truncated

by a horosphere; if vi is virtual radius circle packing

ε1 = −1, then it is in H
3. Same results hold for wj and

wk.

3) The edges on the truncated tetrahedron, connect-

ing to the top vertex on the original tetrahedron, have

lengths −ui, −uj and −uk respectively.

4) For the edge lengths λij , there is a unified formula

for three geometries: Euclidean, hyperbolic, spherical,

ηij =
1

2
(eλij + εiεje

−λij ).

The triangle associated with the top vertex w0

is the triangle (vi, vj , vk). It is obtained by trun-

cating by a horosphere, truncating by a hyper-

bolic plane or intersecting with a sphere. Given

−ui,−uj,−uk, ηij , ηjk, ηki, using cosine law, we can cal-

culate the edge lengths of the triangle (vi, vj , vk). They

are exactly given by (3). That means the triangle

(vi, vj , vk) has lengths lij , ljk, lki and angles θi, θj , θk.

Here we can give the proof for the symmetry lemma

based on the geometric interpretation to the Ricci en-

ergy, which is more geometric, intuitive and much easier

to verify.

Proof. As shown in Fig.8, for a generalized hyper-

bolic tetrahedron, the four vertices can have any types.

The three vertical edges have lengths −ui,−uj,−uk

with dihedral angles θi, θj , θk. The bottom edges have

lengths λij , λjk, λki with dihedral angles βij , βjk, βki.

Let V be the volume of the generalized hyperbolic

tetrahedron. By the Schläfli formula

dV = −1

2
(−uidθi − ujdθj − ukdθk +

λijdβij + λjkdβjk + λkidβki). (5)

During the Ricci flow, the conformal structure coeffi-

cients, ηij , ηjk, ηki, are invariant, thereby λij , λjk, λki

are fixed. Because the generalized tetrahedron is deter-

mined by the edge lengths −ui,−uj,−uk, λij , λjk, λki,

during the flow, all dihedral angles θi, θj , θk, βij , βjk, βki

are functions of ui, uj , uk, and the volume V is also the

function of ui, uj , uk.

Consider the function,

W (ui, uj , uk) = uiθi + ujθj + ukθk − λijβij −
λjkβjk − λkiβki − 2V, (6)

hence,

dW = θidui + θjduj + θkduk + uidθi + ujdθj +

ukdθk − λijdβij − λjkdβjk − λkidθki − 2dV,

substituting the Schläfli formula (5), we have

dW = θidui + θjduj + θkduk;

therefore

W =

∫

θidui + θjduj + θkduk + c.

W , in fact, is the discrete Ricci energy on face in (4).

This shows the differential 1-form

θidui + θjduj + θkduk (7)

is exact, therefore closed. Namely, the Hessian matrix

∂(θi, θj , θk)

∂(ui, uj , uk)

is symmetric. �

The formula (6) represents the Ricci energy on a

face as the volume of the generalized hyperbolic tetra-

hedron with other terms of conformal factors and con-

formal structure coefficients. This formula was intro-

duced first by Bobenko, Pinkall and Springborn in [34]

for Euclidean and hyperbolic Yamabe flow. In the cur-

rent work, we generalize it to all 18 schemes. The

differential in (7) is independent of the choice of horo-

spheres, since the Schläfli formula is independent of the

choice of horospher for an ideal vertex.
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4.5 Geometric Interpretation to Hessian

This subsection focuses on the geometric interpre-

tation to Hessian matrix of the discrete Ricci energy on

each face for the cases of E2,H2 and S
2.

Euclidean Case. The interpretation in Euclidean

case is due to Glickenstein[18] (He[35] in the case of cir-

cle packings) and illustrated in [1].

We only focus on one triangle (vi, vj , vk), with cor-

ner angles θi, θj , θk, conformal factors ui, uj, uk and

edge lengths lij for edge (vi, vj), ljk for (vj , vk) and

lki for (vk, vi).

As shown in Fig.7, the power of q with respect to vi

is

pow(vi, q) = |vi − q|2 − ǫγ2
i .

The power center o of the triangle satisifies

pow(vi, o) = pow(vj , o) = pow(vk, o).

The power circle C is centered at o with radius γ, where

γ = pow(vi, o).

Therefore, for tangential, Thurton’s and inversive

distance circle packing cases, the power circle is ortho-

gonal to three circles at the vertices Ci, Cj and Ck; for

Yamabe flow case, the power circle is the circumcircle of

the triangle; for virtual radius circle packing, the power

circle is the equator of the sphere, which goes through

three points {vi + γin, vj + γjn, vk + γkn}, where n is

the normal to the plane.

Through the power center, we draw lines perpen-

dicular to three edges, and the perpendicular feet are

wi, wj and wk respectively. The distances from the

power center to the perpendicular feet are hi, hj and

hk respectively. Then it can be shown easily that

∂θi

∂uj

=
∂θj

∂ui

=
hk

lk
,

∂θj

∂uk

=
∂θk

∂uj

=
hi

li
,

∂θk

∂ui

=
∂θi

∂uk

=
hj

lj
,

furthermore,

∂θi

∂ui

= −hk

lk
− hj

lj
,

∂θj

∂uj

= −hk

lk
− hi

li
,

∂θk

∂uk

= −hi

li
− hj

lj
.

Hyperbolic Case. Similar to Euclidean case, the

power circle can be defined directly. For the mixed

type of discrete conformal geometry, the edge length lk

is given by

cosh lk

= 4ηij
sinh ri

(1− ǫi) cosh ri + 1 + ǫi
×

sinh rj
(1− ǫj) cosh rj + 1 + ǫj

+ coshǫi ri cosh
ǫj rj .

According to the cosine law, the edge lengths li, lj, lk
determine the angles θi, θj , θk. Let hi be the distance

from the center of the power circle to the edge (vi, vj)

whose length is lk.

Theorem 6. Let

eui =
eri − 1

eri + 1
= tanh

ri

2
.

Then
∂θ1

∂u2
=

∂θ2

∂u1

which is equal to

tanhh3

sinh2 l3
×

√

2 coshǫ1 r1 cosh
ǫ2 r2 cosh l3 − cosh2ǫ1 r1 − cosh2ǫ2 r2.

The detailed proof can be found in [20].

Spherical Case. According to a general principle

of the relation of hyperbolic geometry and spherical

geometry, to obtain a formula in spherical geometry,

we only need to replace sinh and cosh in hyperbolic

geometry by
√
−1 sin and cos.

Similar to the Euclidean case, the power circle can

be defined directly. For the mixed type of discrete con-

formal geometry with spherical background geometry,

the edge length of lk is given by

cosh lij

= −4ηij
sin ri

(1− ǫi) cos ri + 1 + ǫi
×

sin rj
(1− ǫj) cos rj + 1 + ǫj

+ cosǫi ri cos
ǫj rj .

Via the cosine law, the edge lengths li, lj , lk deter-

mine the angles θi, θj , θk. Let hi be the distance from

the center of the power circle to the edge (vi, vj) whose

length is lk.

Theorem 7. Let

eui = tan
ri

2
.
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Then
∂θ1

∂u2
=

∂θ2

∂u1

which is equal to

tanh3

sin2 l3
×

√

−2 cosǫ1 r1 cosǫ2 r2 cos l3 + cos2ǫ1 r1 + cos2ǫ2 r2.

The detailed proof can be found in [20].

5 Applications for Surface Registration and

Shape Analysis

The computational algorithms for discrete surface

Ricci flow are straightforward, which optimize the dis-

crete Ricci energy using Newton’s method and preserve

Delaunay triangulation. Due to the convexity of the en-

ergy, the computation is stable and efficient.

In order to compute the conformal metric with pre-

scribed curvature, we can optimize the Yamabe energy

using Newton’s method. We give the discrete Yamabe

flow as Algorithm 1.

Algorithm 1. Discrete Surface Yamabe Flow
Require: 0

1) a triangular mesh Σ, embedded in E3;
2) a target curvature K̄,

∑
K̄i = 2πχ(Σ) and K̄i ∈ (−∞, 2π)

Ensure: a discrete metric conformal to the original one, which
realizes the target curvature K̄

Initialize the discrete conformal factor u as 0 and the
conformal structure coefficient η, such that η(e) equals the
initial edge length of e
while maxi |K̄i −Ki| > threshold do

Compute the edge length from γ and η

Update the triangulation to be Delaunay using diagonal
edge swap for each pair of adjacent faces

Compute the corner angle θ
jk
i

from the edge length using
cosine law
Compute the vertex curvature K

Compute the Hessian matrix H

Solve linear system Hδu = K̄ −K

Update conformal factor u← u− δu

end while

Output the result circle packing metric

Based on the uniformization theorem, surface can be

mapped to Euclidean plane, sphere or hyperbolic disk.

The computational method for genus 0 closed surface

can be found in [31], the computational method for high

genus closed surface can be found in [36], for genus 0

open surface, the computational details can be found

in [37], and for high genus open surface, the computa-

tional details can be found in [1]. We also developed

the unified Ricci flow algorithm[20].

Shape Registration and Tracking. They are the

fundamental tasks in many engineering fields, includ-

ing computer vision and medical imaging. Surface

registration aims at finding a diffeomorphic mapping

between two given surfaces with Riemannian metrics

(Sk, gk), k = 1, 2, φ : (S1, g1) → (S2, g2), such that

the mapping preserves some geometric properties or

optimizes some special form of energy E(φ). Surface

tracking is to register two successive surface frames in

a sequence of surfaces with dynamic deformations.

All the methods for surface registration and track-

ing share the same framework. By mapping 3D sur-

faces to canonical planar domains using Ricci flow, 3D

geometric processing tasks can be converted to image

processing problems. This greatly improves the effi-

ciency and efficacy of computational algorithms. The

framework of surface matching and registration can be

summarized as the following diagram.

S1
f−−−−→ S2

f1





y





y

f2

D1
φ−−−−→ D2

Suppose Sk, k = 1, 2, are the input source and target

surfaces, respectively. In order to compute the optimal

diffeomorphism f : S1 → S2, we conformally map them

onto the plane by fk : Sk → Dk, where Dk are called

conformal parameter domains, and then construct a

planar diffeomorphism φ : D1 → D2. The registra-

tion between two surfaces is given by f = f−1
2 ◦ φ ◦ f1.

Moreover, φ can be further optimized in the 2D map-

ping space. This provides a key to constructing the

globally optimal diffeomorphism between surfaces.

Deformable Clothes Tracking. The clothes deforma-

tion is close to isometry. The deformable clothes track-

ing can be performed based on the registrations frame

by frame. The clothes surfaces are captured by the 3D

scanner introduced by [38]. Each frame is a topological

quadrilateral (i.e., only one simple boundary with four

corners), and can be mapped to a rectangle automa-

tically by the Euclidean discrete surface Ricci flow. In

order to verify if the deformation is close to be con-

formal/isometric, we compute the conformal module of

each frame. The conformal modules are very consistent

across the frames. This validates our hypothesis that

the deformations are close to be conformal.

We also use vision techniques to find textural fea-

tures on each frame, and use them as hard constraints

for the registrations between two adjacent frames. The

registration between two planar rectangles with feature

point constraints is performed based on planar har-

monic maps. Because the deformations are close to be

conformal, the harmonic mappings are close to iden-

tity. In order to visualize the tracking results, we put
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checker-board textures to the first frame, and propa-

gate the texture parameters to the other frames through

the correspondences from tracking. As shown in Fig.10,

the checker-board textures are consistent across frames,

without oscillating effects or checker collapse. This

demonstrates that the registration between two frames

is a diffeomorphism, and the tracking is stable and au-

tomatic.

Fig.10. Tracking for deformable clothes sequences. The con-
sistent tracking results can be observed from the checker-board
texture motion[1].

Human Face Registration with Expressions. In

general, human facial expression changes are not con-

formal, and far away from isometry. This can be eas-

ily verified by computing the conformal modules of the

same face with different expressions. The expression

surfaces can be obtained from a real-time structured

light 3D scanner[39]. For example, the face surfaces

without interior regions of eyes and mouth are confor-

mally mapped to the planar circle domains, and then by

comparing the inner circle positions and sizes, one can

tell the change of the conformal structures[40]. It is chal-

lenging to register the circle domains using harmonic

maps, because the harmonic maps may not be diffeo-

morphic due to their concavities. Instead, we can ap-

ply hyperbolic Ricci flow and use hyperbolic harmonic

map to ensure the diffeomorphic results. We can also

use Euclidean Ricci flow to concentrate all the curva-

tures to some feature points, and set the Gauss curva-

ture and the geodesic curvature to be zero everywhere.

Then the surface can be decomposed to the union of

planar convex polygons, and registered by piecewise

harmonic maps. Details can be found in [40]. Fig.11

demonstrates the registration for a sequence of human

facial surfaces with non-isometric deformations, com-

plex topologies, and inconsistent boundaries. The one-

to-one correspondence is visualized by the consistent

checker-board texture mapping results.

Registration of Surfaces with Large Deformations.

Quasi-conformal geometry provides a powerful ap-

proach to registration. The strategy for registration

is first to estimate the Beltrami coefficient µ and then

compute the quasi-conformal mapping under the auxi-

liary metric associated with µ. A coarse-to-fine method

to compute µ is introduced in [41]. The Beltrami coeffi-

cient is estimated from the graph of feature points, and

then refined by the diffusion on the whole surface. The

Beltrami coefficient can also be obtained by minimizing

the matching energy[42]. The methods can handle sur-

faces with complicated topologies and large anisometric

deformations.

Fig.11. Registration for human facial surfaces with expression
change by hyperbolic Ricci flow[1].

Fig.12 shows the registration between two facial sur-

faces of the same person with a large expression de-

formation. Both faces are mapped to the planar an-

nuli conformally, and then the annuli are registered by

a quasi-conformal mapping using the auxiliary metric

method. The consistent circle-packing texture mapping

demonstrates the one-to-one correspondence between

two faces. From Fig.12, we can see that an ellipse field

on the calm face is mapped to a circle field on the frigh-

tened face. Therefore, the mapping is quasi-conformal.

The distortion can be visualized by the color encoded

eccentricity and argument of the Beltrami coefficient.

Virtual Colonoscopy. Colorectal cancer is the

third most incident cancer and the second lead-

ing cause of cancer-related mortality in the United

States[43]. Optical colonoscopy (OC), whereby precan-

cerous polyps can be located and removed, has been

recommended for screening and has helped to greatly

reduce the mortality rate of colorectal cancer[44]. Vir-

tual colonoscopy (VC) techniques have been developed

as viable non-invasive alternatives to OC for screening

purposes[45-46]. The colon wall surface is reconstructed

from CT images. By using Ricci flow, one can flatten

the whole colon wall surface onto a planar rectangle[47].
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Then polyps and other abnormalities can be found ef-

ficiently on the planar image by computer aided detec-

tion (CAD) techniques.

(a) (b) (c)

Fig.12. Quasi-conformal registration for a topological annu-
lus case. The ellipse field on the source domain A is mapped
to the circle field on the target domain B. The distortion is
visualized by the eccentricity of ellipses D(µ) on both the 3D
surface and its circle domain C, where the red color denotes the
higher non-conformality, and the blue color denotes the higher
conformality[1]. (a) Domain A. (b) Domain B. (c) Domain C.

For a VC procedure, CT scans of the abdomen are

commonly acquired with the patient in both supine

(facing up) and prone (facing down) positions. Being

able to register these two scans is useful for a routine

VC system to provide the user with the ability for con-

firming a finding or easy comparison when something

might be unclear in one of the scans, and is also helpful

for a CAD system to achieve greater accuracy while at

the same time reducing false positive results. As shown

in Fig.13, the colon surface is regarded as a topological

cylinder, and therefore can be mapped to a rectangle

using Euclidean Ricci flow. By quasi-conformal regis-

tration, we obtain the one-to-one correspondence be-

tween them, and then use that to analyze and visualize

the elastic deformation of the colon. Details can be

found in [48].

Fig.13. Colon wall surface flattening by using Euclidean Ricci
flow. The rectangular flattened mapping is cut to 3 segments for
display. Data courtesy of Arie E. Kaufman[1].

Brain Mapping. The human brain cortical surfaces

can be reconstructed from CT images and discretized

as triangular meshes. The brain cortical surface can

be mapped to a canonical planar domain. All the geo-

metric details are exposed onto the domain. The mor-

phometry analysis can be constructed on the canonical

domain. Besides, by using the landmarks on the brain,

the brain surface is sliced open with holes, where each

landmark generates a hole. Therefore, the brain corti-

cal surface with holes can be mapped to either a circle

domain where each hole is mapped to a circle, or a hy-

perbolic convex domain where each hole is mapped to

a geodesic in hyperbolic space. The conformal modules

can be extracted for brain surface shape analysis pur-

poses. Fig.14 shows an example of hyperbolic mapping

for a brain cortical surface with one boundary and three

interior landmarks.
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γ
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γ
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γ
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(a) (b)

(c)

Fig.14. Brain mapping. A human brain surface with one
boundary γ0 (b) is sliced open by three interior landmarks
γk , k = 1, 2, 3 (a), then it becomes a genus zero surface with
four boundaries. By Hyperbolic Ricci flow, it is mapped to a
hyperbolic convex polygon on Poincaré disk (c) where the do-
main is sliced open by curves τk , k = 1, 2, 3 (b) between γ0 and
γk , k = 1, 2, 3, respectively[1].

It is crucial to register different brain cortical sur-

faces in brain imaging field. Since brain cortical sur-

faces are highly convoluted and different people have

different anatomic structures, it is quite challenging to

find a good registration (or mapping) between them.

By finding an automorphism of the canonical shapes,

the registration between surfaces can be easily estab-

lished. The computation of the spherical, Euclidean,

and hyperbolic brain mappings is based on the discrete
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Ricci flow method. The details of brain surface map-

ping and its applications can be found in [49-50].

Human Facial Surface Dynamics. Suppose a se-

quence of facial surfaces with different expression

changes are captured. By computing the time depen-

dent conformal module R(t), we can analyze the ex-

pression. Fig.15 shows such an example. A sequence of

male facial surfaces from calm expression to frightened

expression are acquired using a 3D camera system[39].

We remove the mouth region and compute the confor-

mal module. It is easy to see that the human facial

expression intensity is proportional to the norm of the

conformal module. Details can be found in [51].

2D Shape Indexing and Retrieval. Shape analysis

of objects from their observed silhouettes is important

for many computer vision applications, such as classi-

fication, recognition and image retrieval. In real-world

applications, objects from their observed silhouettes are

usually multiply connected domains, i.e., domains with

holes in the interior. Most of the existing methods

work only on simple closed curves and generally can-

not deal with multiply connected objects. Sharon and

Mumford[52] proposed a conformal approach to model

simple closed curves which captures subtle variability

of shapes up to scaling and translation. They also in-

troduced the Weil-Petersson metric on their proposed

shape space. The method is generalized to represent

multiple objects in a single image (i.e., with multiple

contours) based on conformal welding signatures in [53].

The shape signature is complete and can represent 2D

shapes with arbitrary topologies uniquely up to scalings

and translations. As shown in Fig.16, the three diffe-

rent images with multiple boundaries have very diffe-

rent shape signatures. This demonstrates that the rep-

resentation can be used to effectively classify 2D shapes.

1 50 100 150 200

Frame

QC Deformation

C
o
n
fo

rm
a
l 
M

o
d
u
le

250 300 350 390

0.22

0.20

0.18

0.16

0.14

0

Fig.15. Conformal modules of a sequence of human facial sur-
faces with dynamic expressions. All the faces are mapped to a
unit disk with one concentric circle with radius r. The conformal
module is defined as 1

2π
log 1

r
, which decreases monotonically as

the inner circle radius increases[1].

6 Summary

Discrete surface Ricci flow is a powerful tool for de-

signing Riemannian metrics by prescribed curvatures.

It has elegant and profound theories and practical al-

gorithms, and is valuable for both theoretic exploration

and engineering applications.

We will continue to prove the existence and unique-

ness of the solutions to discrete surface Ricci flow with

general schemes and find broader applications in the

future.

Fig.16. Conformal welding shape signatures of three different images with two levels of contours[1].
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