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Abstract Link prediction in microblogs by using unsupervised methods has been studied extensively in recent years,

which aims to find an appropriate similarity measure between users in the network. However, the measures used by existing

work lack a simple way to incorporate the structure of the network and the interactions between users. This leads to

the gap between the predictive result and the ground truth value. For example, the F1-measure created by the best

method is around 0.2. In this work, we firstly discover the gap and prove its existence. To narrow this gap, we define

the retweeting similarity to measure the interactions between users in Twitter, and propose a structural-interaction based

matrix factorization model for following-link prediction. Experiments based on the real-world Twitter data show that our

model outperforms state-of-the-art methods.
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1 Introduction

The link prediction in microblogs such as Twit-

ter has been extensively studied during recent years

due to the applications in viral marketing[1], friendship

recommendation[2], community detection, etc. Link

prediction in microblogs is more difficult to handle and

is a more challenging field. First, the microblog is a

hybrid social-information and directed network, where

people are connected not only by explicit following re-

lations, but also by implicit information propagation

process. It is desired to find a framework to unify and

balance the social aspect and the information aspect

of microblogs. Second, microblogs are evolving with

a rapid speed over time, and the traditional methods

for link prediction on static network cannot afford this

challenges. Moreover, the size of the complete networks

in microblogs is so huge that it is impossible to crawl

all of them. A good sampling method to obtain one

or more tropical snapshots of the network needs more

consideration.

Although there are many challenges in link predic-

tion process in microblogs, the common methodology

used in social networks is still instructive. Generally,

the methods in this research area can be classified into

two parts: the supervised methods and the unsuper-

vised methods. Supervised methods treat the link pre-

diction as a classification problem, whereas many classic

machine learning algorithms can be introduced, such as

the supervised random walk algorithm in [3] and the lo-

gistic regression model in [4]. Although the supervised

methods are the state-of-the-art methods in link predic-

tion, they often suffer from the so-called imbalance and

feature selection problem. In contrast, the unsuper-

vised methods do not need to know the prior knowledge

of the distribution of the dataset and can avoid the
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drawbacks of the supervised methods. The unsuper-

vised methods intend to define statistics to measure the

similarity between two users, such as common neigh-

bors, Jaccard coefficients, the Adamic-Adar measure[5],

preferential attachment[6], Katz measure[7], and so on.

More recently, more various similarities are considered,

such as the geographical location based similarity of

the users[8], the geographical distance or the time zone

based similarity[9-10], the social theory based simila-

rity such as the link homophily, status homophily and

the structure balance theory[9-10], the text similarity

of the tweets posed by the users[8], and so on. Very

recently, Yin et al.[11] defined the structure similarity

measures between two users with respect to another

user, and proposed a structure-based matrix factoriza-

tion model (S-Model) for link prediction in microblogs.

They discovered that the model achieved higher F1-

measure than that obtained by other seven measures

such as the PropFlow method ([12]), the Jaccard coef-

ficient and so on. For example, the S-Model obtains F1-

measure 0.197 in dynamic setting with an increase of

0.03 compared with the Jaccard coefficient method. In

this sense, S-Model can be regarded as the best method

for unsupervised methods.

Although S-Model gets a higher F1-measure, we

discover that there still exists a gap between the pre-

dictive value and the ground truth for link prediction.

To narrow this gap, in this paper, we propose an un-

supervised method, the so-called structural-interaction

model (SI-Model), which integrates the structural infor-

mation and the interaction information between users

to predict the future links of following. This idea comes

from the observation that the interaction between users

correlates with the formation of the following links on

Twitter. For example, Akasaka et al.[13] pointed out

this from the aspect of the differences between retweet-

ing and following. Akasaka et al. examined the most

popularly retweeted tweets from celebrities and noted

that a surprising number of individuals retweeted those

they actually did not follow. Furthermore, they found

many of the users who were not following have become

followers within the following year. More precisely, we

define a similarity measure, called retweeting similarity,

to measure the similarity of two users in terms of their

interactions with another user respectively.

Our contributions are listed as follows.

• We firstly find the gap between the predictive re-

sult and the ground truth by using the matrix factori-

zation method and prove its existence. The purpose of

proving the gap is to show that there is still room for

improving the state-of-the-art work. Meanwhile, during

the proof, we further discover the necessary condition

under which the gap exists, and explain one possible

reason of the existence of the gap.

• To compensate the gap, we define the retweet-

ing similarity to measure the interactions between users

in Twitter, and propose a structural-interaction based

matrix factorization model for following-link prediction.

Theoretical analysis demonstrates that it can be used

to narrow the gap if the parameters in the model are

appropriately chosen.

• Experiments based on the real-world Twitter data

show that under the same computational complexity,

our model outperforms the state-of-the-art methods.

For example, it reduces the RMSE value by about 70%

compared with that of the best method.

The organization of this paper is as follows. In Sec-

tion 3, we find the gap between the predictive value

and the ground truth of S-Model experimentally. Sec-

tion 4 is devoted to the theoretical analysis of the gap

between the predictive result and the ground truth. In

Section 5, we define retweeting similarity, explain the

proposed model and present a theoretical analysis of the

model’s effectiveness. Section 6 presents experimental

results that validate the effectiveness of our methodol-

ogy. Finally, we conclude our work in Section 7.

2 Related Work

In this section, we shall briefly recall three types of

methods used in link prediction problem, the content-

based methods, the behavior-based methods, and the

matrix factorization methods.

Link prediction in Twitter by integrating the tweets

information and the structure information is a new way

to improve the performance of prediction. The methods

used in this direction are two-folded: one is content-

based method by investigating the text of the tweets

and the other is behavior-based by collecting the be-

haviors on tweets such as the retweet, reply or men-

tion actions. For example, Sadilek et al.[8] combined

the content of the tweets, users’ location and the net-

work structure features for friendship prediction prob-

lem. The text similarity of two tweets of two users

is defined to be the amount of overlap in the vocabu-

laries used by two users. Then a regression decision

tree model is used to unify the three features. Such

kind of methods needs to tackle the text of the tweets,

and sometimes is time-consuming. In contrast, the

behavior-based methods only care about the interac-

tion information between users. This method makes
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full advantage of the property of Twitter as a social

media (see [14]) or an information diffusion channel.

One Twitter user A can address tweets of user B, and

then mentions B obliquely in his or her tweets, which

is syntaxed as “RT@B”. Another common practice is

that A “retweets” or rebroadcasts B ’s message, which

is syntaxed by @B. For a tweet message, the behavior-

based methods extract the usernames after the symbol

@, and consider that A and B have an interaction rela-

tionship. Hopcroft et al.[9] considered these interaction

relationships and defined four features to represent the

number of retweets or replies from user A to user B

and from user B to user A, respectively. By integrat-

ing other features, they proposed a supervised method,

i.e., the Triad Factor Graph model, to predict the reci-

procity link. Similar work can refer to that by Lou et

al.[10] Our model is also behavior-based. The difference

is that we integrate the structure and the interaction

behavior into a simpler matrix factorization framework.

As for the matrix factorization method used in the

link prediction problem, it is motivated by the success-

ful application of matrix factorization used in recom-

mender systems, where the model aims to find latent

features for users and items by factorizing the observed

matrix, see [15-17]. Converting the user-item pair to

the user-user pair leads to the link prediction problem

as a link recommendation problem. Related work can

be found in the work of Menon and Elkan[18] and Yin

et al.[11] Their models learned the latent features just

from the topological structures of the network. For ex-

ample, Yin et al.[11] analyzed the role of the interme-

diate user between two users, and divided its contri-

bution into two parts: one is the recommendation of

the intermediate user, and the other is the acceptance

of the recommendation of the intermediate user. Very

recently, Zhang et al.[19] enhanced Yin et al.’s work to

find the real intermediate users and studied how they

contribute to the link formation process. To better pre-

dict new links in time-evolving social networks, Gao et

al.[20] integrated three types of information: the global

network structure, the content of nodes in the network

and the local information of a given vertex to derive

a matrix factorization model. Similar work by using

the matrix factorization method or the tensor factori-

zation method can refer to [8, 21-22], etc. However,

these methods lack the consideration of the impact of

interactions between users on the link prediction. Our

work mixes the interaction information between users

with the structure of the network.

3 Test the Existence of the Gap by Experiment

In this section, we first examine the different per-

formances of the S-Model by Yin et al.[11] on datasets

with different sparseness and get its best predictive per-

formance, i.e., the maximum F1-measure obtained by

S-Model. Experiments show that this maximum F1-

measure does not take its theoretical maximum 1. This

leads to a hypothesis that there exists a gap between

the predictive performance and the ground truth for

S-Model. To narrow this gap, we propose the idea to

use the interaction information between users in the

dataset.

Before reconstructing the experiment of Yin et

al.[11], let us simply recall S-Model as follows. The idea

of S-Model is to predict new follower vi (called the tar-

get user) of the source user vu via the contributions of

some intermediate user vk. The contributions of vk can

be divided into two parts: one is the recommendation

of vi to vu, and the other is vu’s acceptance of the reco-

mmendation of vk for vi. Then S-Model studies the in-

fluence of the network structures on vk’s contributions

by introducing the structure similarity between users.

After using the matrix factorization technique, S-Model

can predict new link formation for one static network

as well as two snapshots of the network in Twitter. To

find the best performance of S-Model, we conduct the

experiment on the static dataset with different sparse-

ness. Here the sparseness, denoted by nf , means the

average number of non-followers for a number of users.

We tune the sparseness of the dataset recursively from

one original dataset by randomly converting some num-

ber of followers to non-followers. In other words, if we

construct a rating-like matrix with the row correspond-

ing to the source users and the column corresponding

to the target users, denoted by Rn×m = (rui), where n

is the number of source users and m is the number of

target users, rui = 1 if vu follows vi and rui = 0 other-

wise, the tuning process is to randomly replace some

number of 1’s for each row with 0 respectively. The ini-

tial dataset corresponds to the matrix with all elements

being 1 except the diagonal elements, with the sparse-

ness nf = 1. It is easy to see that 1 6 nf 6 m−1. The

experiment is carried out by fixing both the smoothing

factor and the structural factor being 0.01 in S-Model

and setting m = 10 000 to find the relation between the

F1-measure and the value nf . We depict the relation

for nf = 1, . . . , 31 as follows, since for the rest part, the

tendency of the curves is similar.

From Fig.1, we can see that the maximum F1-

measure obtained by S-Model is 0.007 when nf = 29.
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We also explore the performance of the curve when

nf = 9 999, and find the F1-measure takes zero. It

is obvious that this value fails to obtain the theoretical

maximal F1-measure 1. In this sense, we propose the

hypothesis that there is a gap between the predictive

performance and the ground truth for S-Model.
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Fig.1. Relation between nf and the F1-measure of S-Model.

To narrow this gap, we turn attention to the interac-

tion information between users in the dataset. Specifi-

cally, we find that the consideration of vk’s contribu-

tions in S-Model only focuses on the link structural

information between vu and vk, and between vk and

vi. In fact, there is another important ingredient to

measure the contributions of vk’s recommendation of

vi to vu, namely, the interaction information between

vk and vi. This interaction information in microblogs

such as Twitter is referred to as the retweet and re-

ply behaviors between users. In this paper, we mainly

focus on the retweeting behaviors. We illustrate the

influence of these interactions on the link prediction

problem as follows. This example can also be regarded

as the triad closure process, which has been studied by

many authors, for example, see the work of Romero and

Kleinberg[23].

Suppose that before a specific time t0, vu follows

three intermediate users vk, vk′ and vk′′ , and each of

these three users follows the target user vi, see Fig.2.

The goal is to predict the link vu → vi at time t1.

To better achieve this goal, we consider the interac-

tion information between any pairs (vk, vi), (vk′ , vi) and

(vk′′ , vi). If vk retweets vi, which is depicted in the pic-

ture, then compared to the other intermediate users vk′

and vk′′ , its contribution is larger. Hence, our method

not only is based on the link structures of the network,

but also concentrates on the interaction information be-

tween users. By considering the interaction information

between users, our link prediction problem can be for-

mulated as follows: for a fixed user set U, given the

network structure of the Twitter network for users in

U at time t0 and the interaction network between users

in the time interval (t0, t1], where two users in the inte-

raction network are connected if they had interactions

during (t0, t1], we aim to predict new followers of one

given user during the time interval (t0, t1].
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Fig.2. Picture to characterize the structures and interactions
between users.

4 Theoretical Proof of the Existence of the

Gap

In this section, we shall accept the hypothesis posed

in Section 3 by verifying the existence of the the gap

between the predictive result and the ground truth of

S-Model. To minimize this gap, we shall propose SI-

Model in Section 5.

Before proving the existence of the gap, we intro-

duce some notations and definitions. Let Rn×m = (rui)

denote the rating-like 0-1 matrix, where n is the num-

ber of source users and m is the number of target users,

rui = 1 if vu follows vi and rui = 0 otherwise. The

purpose of S-Model is to factorize the matrix R into

two latent matrices An×K and BK×m with K ≪ n

and K ≪ m. In terms of the elements of the matri-

ces, this factorization is stated as rui =
∑K

k=1 aukbki,

where rui, auk, bki are the elements of R, A, B respec-

tively. The meanings of auk and bki are that auk mea-

sures the extent of vu’s acceptance of the recommen-

dation of vk, and bki scores the strength of vk’s reco-

mmendation for vi to vu. To avoid the over-fitting of

the factorization, S-Model also considers the Gaussian

prior distribution of the matrices A and B, as posed

by Salakhutdinov and Mnih[24]. Moreover, to reveal the

network structures, S-Model introduces the structural

regulation restrictions during the factorization process.

Specifically, S-Model first defines the effective structure
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set Se = {=⇒,⇐=,⇐⇒} among the structures of the

network as the elementary structures between two users

one-hop away. Let Su,k be the set of structures from vu

to vk, and Se
u,k be the set of effective structures from

vu to vk. It is clear that Se
u,k = Su,k ∩ Se. Based on

the effective structure set Se, the structural similarity

between two intermediate users vk and vk′ with respect

to the source user vu, denoted by Wu(k, k
′) is defined

as Wu(k, k
′) = 1 if Se

u,k = Se
u,k′ and Wu(k, k

′) = 0

otherwise. Similarly, the structural similarity between

two target users vi and vj with respect to the interme-

diate user vk, denoted by Wk(i, j) can be also defined.

Next, S-Model defines the structure regulation func-

tions S(A), S(B) for the matrices A, B respectively as

follows:

S(A) =

n
∑

u=1

K
∑

k=1

K
∑

k′=1

Wu(k, k
′)(auk − auk′)2

n
∑

u=1

K
∑

k=1

K
∑

k′=1

Wu(k, k′)

,

S(B) =

K
∑

k=1

m
∑

i=1

m
∑

j=1

Wk(i, j)(bki − bkj)
2

K
∑

k=1

m
∑

i=1

m
∑

j=1

Wk(i, j)

.

With the structure regulation functions, S-Model

aims to minimize the objective function

Y (A,B) =
1

2

∑

A,B

Iui(rui −
K
∑

k=1

aukbki)
2 +

λ1

2
‖A‖2Fro +

λ1

2
‖B‖2Fro + λ2S(A) + λ2S(B), (1)

where ‖ · ‖Fro is the Frobenius norm, Iui is the indica-

tor function such that Iui = 1 if (vu, vi) is an observed

data, and Iui = 0 otherwise. The nonnegative para-

meter λ1 is often called the smoothing parameter, and

the nonnegative parameter λ2 is called the structural

regulation factor.

Now we are in a position to define the gap G(A,B)

between the predictive value and the ground truth of S-

Model. It is measured by the predictive error, i.e., the

Frobenius norm of the difference between the matrix R

and the matrix AB, since (AB)ui is a prediction of the

value rui. Denote the gap by

Gap(A,B) = ‖R−AB‖2Fro

=

n
∑

v=1

m
∑

i=1

(

rui −
K
∑

k=1

aukbki

)2

.

It should be noted that this gap is similar to the training

error such as squared errors for linear regression. If it

becomes to be 0, the model can fit the data exactly, but

this may suffer from the potential over-fitting problem.

This can be seen in the section of experimental results.

In the following part, we shall show the existence of

the gap G(A,B). Set

W =

n
∑

u=1

K
∑

k=1

K
∑

k′=1

Wu(k, k
′),

W ′ =

K
∑

k=1

m
∑

i=1

m
∑

j=1

Wk(i, j),

and Tk = {k′|Se
uk′ = Se

uk 6= ∅} and Ti = {j|Se
kj = Se

ki 6=

∅}. Our statement is as follows.

Theorem 1. Assume that Y (A,B) gets the local

minimum. If for u and k, there exists at least one u

and one i in which auk and bki satisfy:

aukW
∑

j∈Ti

(bki − bkj) 6= bkiW
′
∑

k′∈Tk

(auk − auk′), (2)

then Gap(A,B) 6= 0.

The idea of our proof is by contradiction. We as-

sume that Gap(A,B) = 0 and aim to prove that

Y (A,B) cannot reach the local minimum unless λ1 = 0

and λ2 = 0.

Proof. Suppose that Gap(A,B) = 0. To minimize

the function Y (A,B), we differentiate the two sides of

(1) with respect to auk and bki respectively to obtain

the linear equations:

∂Y

∂auk
= eui(−bki) + λ1auk +

λ2

K
∑

k′=1

Wu(k, k
′)(auk − auk′)

W
= 0, (3)

∂Y

∂bki
= eui(−auk) + λ1bki +

λ2

m
∑

j=1

Wk(i, j)(bki − bkj)

W ′
= 0, (4)

where

eui := rui −
K
∑

k=1

aukbki,

for all 1 6 u 6 n and 1 6 i 6 m. Since Gap(A,B) = 0,

we deduce

eui = 0,

for all 1 6 u 6 n and 1 6 i 6 m. Plugging this equation

into (3) and (4), we obtain

λ1auk + λ2

K
∑

k′=1

Wu(k, k
′)(auk − auk′)

W
= 0, (5)
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λ1bki + λ2

m
∑

j=1

Wk(i, j)(bki − bkj)

W ′
= 0. (6)

Next we will show that (5) and (6) do not hold unless

λ1 = λ2 = 0. We compute the determinants of (5) and

(6) and obtain

∣

∣

∣

∣

∣

∣

∣

∣

auk

K∑

k′=1

Wu(k,k
′)(auk−auk′ )

W

bki

m∑

j=1

Wk(i,j)(bki−bkj)

W ′

∣

∣

∣

∣

∣

∣

∣

∣

=

aukW
m
∑

j=1

Wk(i, j)(bki − bkj)

WW ′
−

bkiW
′

K
∑

k′=1

Wu(k, k
′)(auk − auk′)

WW ′
.

Next we make some simplifications of the equation

aukW

m
∑

j=1

Wk(i, j)(bki − bkj)−

bkiW
′

K
∑

k′=1

Wu(k, k
′)(auk − auk′ ).

By definition of the structural similarity, Wu(k, k
′) = 1

when Se
u,k = Se

u,k′ . By convention, we set auk = 0 if

Se
u,k = ∅. Thus, the index k′ which makes contributions

to the sum
K
∑

k′=1

Wu(k, k
′)(auk −auk′) belongs to the set

Tk = {k′|Se
uk′ = Se

uk 6= ∅}. (7)

Similarly, the index j which makes contributions to the

sum
m
∑

j=1

Wk(i, i
′)(bki − bki′ ) belongs to the set

Ti = {j|Se
kj = Se

ki 6= ∅}. (8)

Under this symbol, we find that

aukW

m
∑

j=1

Wk(i, j)(bki − bkj)−

bkiW
′

K
∑

k′=1

Wu(k, k
′)(auk − auk′)

= aukW
∑

j∈Ti

(bki − bkj)− bkiW
′
∑

k′∈Tk

(auk − auk′).

It follows from the condition

aukW
∑

j∈Ti

(bki − bkj) 6= bkiW
′
∑

k′∈Tk

(auk − auk′ )

that
∣

∣

∣

∣

∣

∣

∣

∣

auk

K∑

k′=1

Wu(k,k
′)(auk−auk′ )

W

bki

m∑

j=1

Wk(i,j)(bki−bkj)

W ′

∣

∣

∣

∣

∣

∣

∣

∣

6= 0.

Therefore, it follows from the knowledge of linear alge-

bra that (5) and (6) have solutions λ1 = λ2 = 0. This

completes the proof. �

To understand (2)

aukW
∑

j∈Ti

(bki − bkj) 6= bkiW
′
∑

k′∈Tk

(auk − auk′ ),

we investigate some of its special cases and try to use

them to explain what this inequality means in the real

dataset. We have the following corollary.

Corollary 1. Assume that Y (A,B) gets the local

minimum and for each u and k, we have

W |Ti| −W ′|Tk| > 0,

where Tk and Ti are defined in (7) and (8), then

Gap(A,B) 6= 0.

Proof. We again proceed by contradiction. Suppose

that Gap(A,B) = 0. We aim to prove that

aukW
∑

j∈Ti

(bki − bkj) 6= bkiW
′
∑

k′∈Tk

(auk − auk′ ) = 0,

for at least one u and one i. If this inequality holds,

we can use Theorem 1 to find that Y (A,B) cannot get

the local minimum. By definition of Gap(A,B), this

means

n
∑

v=1

m
∑

i=1

(

rui −
K
∑

k=1

aukbki

)2

= 0. (9)

Recall that rui = 1 if vu follows vi and rui = 0 other-

wise. If for some u and i, rui = 0, by (9), we obtain
K
∑

k=1

aukbki = 0. Furthermore, for the nonnegative pro-

perty of A and B, we have auk > 0 and bki > 0. Hence,

when rui = 0, we deduce auk = bki = 0. In this case,

we have the following equation trivially

aukW
∑

j∈Ti

(bki − bkj) = bkiW
′
∑

k′∈Tk

(auk − auk′ ) = 0.

We do not consider these kinds of u and i such that

rui = 0. Without loss of generality, we suppose that

there exist just one u and i such that rui = 1. We

intend to prove for such u and i,

aukW
∑

j∈Ti

(bki − bkj) 6= bkiW
′
∑

k′∈Tk

(auk − auk′ ).
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Set

L = aukW
∑

j∈Ti

(bki − bkj)− bkiW
′
∑

k′∈Tk

(auk − auk′).

Rewriting the above equation, we find

∑

k



W
∑

j∈Ti

aukbki −W ′
∑

k′∈Tk

aukbki





=
∑

k

(W |Ti| −W ′|Tk|)aukbki

= W
∑

k

∑

j∈Ti

aukbkj −W ′
∑

k

∑

k′∈Tk

auk′bki + L

= W
∑

j∈Ti

∑

k

aukbkj −W ′
∑

k

∑

k′∈Tk

auk′bki + L

= −W ′
∑

k

∑

k′∈Tk

auk′bki + L.

The last equality holds since for other u and i, we as-

sume ruj =
∑

k aukbkj = 0. It follows from the condi-

tion W |Ti| −W ′|Tk| > 0 that

∑

k

(W |Ti| −W ′|Tk|)aukbki > 0.

We turn our attentions to the expression

−W ′
∑

k

∑

k′∈Tk

auk′bki + L. Since rui = 1, we conclude

that bki 6= 0 for all k and i. Meanwhile, the condition

k′ ∈ Tk guarantees that auk′ 6= 0. Hence, if L = 0, we

have

−W ′
∑

k

∑

k′∈Tk

auk′bki + L < 0,

a contradiction. Thus, we find that L 6= 0 for such u

and i. This completes the proof. �

We illustrate the condition W |Ti| − W ′|Tk| > 0

in the network of Twitter. In Fig.3, we can compute

W = 3×2 = 6, |Tk| = 2, W ′ = 2 and |Ti| = 1 such that

W |Ti|−W ′|Tk| = 2 > 0. In this case, if Y (A,B) gets its

minimum, from the corollary, the gap Gap(A,B) 6= 0.
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Fig.3. Example of subgraph satisfying W |Ti| −W ′|Tk| > 0.

To narrow the gap G(A,B), one possible way is to

define a similarity measure between the user vk and

the user vk′ with respect to vi based on their interac-

tions with vi respectively. For instance, we can record

the number of tweets of vi that vk and vk′ retweet re-

spectively. If vk and vk′ retweet the same number of

tweets of vi, we regard them as similar users. In Sub-

section 5.1, we shall define this interaction similarity as

retweeting similarity.

5 SI-Model for Narrowing the Gap

In this section, to narrow the gap G(A,B), we

shall propose a nonnegative matrix factorization based

model, called SI-Model to unify the structure of the

network and the interactions between users. Given

the source users vu, the intermediate user set Vk and

the target user set Vi, we firstly define the retweeting

similarity between two intermediate users vk ∈ Vk and

vk′ ∈ Vk based on their interactions with one target user

vi ∈ Vi. Then we define an objective function F (A,B)

in connection with the retweeting similarity. Our SI-

Model is devoted to minimizing the function F (A,B).

5.1 Retweeting Similarity

Firstly, we define a similarity measure to charac-

terize the similarity between two intermediate users

vk ∈ Vk and vk′ ∈ Vk based on their interactions with

one target user vi ∈ Vi respectively in the time interval

(t0, t1], denoted by Ri(k, k
′). The interactions are re-

ferred to as the retweeting behaviors. Suppose that vi
posted a list ofm tweets {tw1, tw2, . . . , twm} in the time

interval (t0, t1]. There are two ways to define Ri(k, k
′).

The first one is to compare the number of retweets of

vk and vk′ . Assume that vk retweets nk tweets of vi
and vk′ retweets nk′ tweets of vi. Then Ri(k, k

′) can be

defined in a binary way: Ri(k, k
′) = 1 if nk = nk′ and

Ri(k, k
′) = 0 otherwise. On the other hand, we can

obtain a refined vector to record whether vk retweets

each of the tweets of vi as rk = (rk1, rk2, . . . , rkm),

where rki = 0 if vk does not retweet the i-th tweet,

and rki = 1 otherwise. Similarly, we can get the re-

fined vector for vk′ as rk′ = (rk′1, rk′2, . . . , rk′m). Next

the retweeting similarity Ri(k, k
′) can be defined as the

cosine similarity of the two vectors rk and rk′ .

Ri(k, k
′) = cos(rk, rk′ ) =

rk · rk′

‖rk‖ · ‖rk′‖
.



836 J. Comput. Sci. & Technol., July 2015, Vol.30, No.4

5.2 Interaction Regulation

In this part, we shall propose SI-Model which unifies

the structural information and retweet knowledge into

a framework. We introduce an interaction regulation

factor R(A) defined in connection with the retweeting

similarity as follows.

R(A) =

n
∑

u=1

K
∑

k=1

K
∑

k′=1

Ri(k, k
′)(auk − auk′)2

n
∑

u=1

K
∑

k=1

K
∑

k′=1

Ri(k, k′)

,

where Ri(k, k
′) is the retweeting similarity of the inter-

mediate users vk and vk′ with respect to the target user

vi. SI-Model aims to minimize the following objective

function

F (A,B) =
1

2

∑

A,B

Iu,i(Ru,i −
K
∑

k=1

aukbki)
2 +

λ1

2
‖A‖2Fro +

λ1

2
‖B‖2Fro + λ2S(A) +

λ2S(B) + λ3R(A), (10)

where λ3 is a nonnegative parameter called the intera-

ction regulation parameter. Remark that except for

R(A), we do not add another interaction regulation

R(B) which has a similar definition of R(A), like the

pair of S(A) and S(B). This is because R(A) has al-

ready modeled the different contributions of the inter-

mediate users when they recommended user vi to user

vu from the interaction aspect. Whether two of the in-

termediate users interacted with vi has been considered

in the term R(A), and their different interaction behav-

iors determine whether vu will follow vi. Therefore, it

is enough to define R(A).

To minimize the function F (A,B), it is easily seen

that the objective function F (A,B) is not convex in

either A or B, and thus it is unrealistic to obtain the

global minimum of F (A,B). However, there are many

techniques from numerical optimization that can be ap-

plied to find the local minimum of F (A,B). Gradient

descent is perhaps the simplest technique to implement,

but the convergence can be slow. We follow the multi-

plicative update rule by Lee and Seung[25] and provide

the similar update rule for the elements of the matrices

A and B.

The reader may find that the difference of the ob-

jective functions Y (A,B) and F (A,B) is the addition

of the interaction regulation factor λ3R(B). A natural

question is what is the essential difference of our SI-

Model with others, such as that established by Yin et

al.[11] We point out that the addition of the interaction

regulation factor R(A) is important not only because it

considers more information than other models, but also

because adding this new factor, we can reduce the gap

G(A,B) between the predictive value and the ground

truth if we choose the appropriate value of λ3. The fol-

lowing proposition is devoted to the choices of λ2 and

λ3, given the value of λ1.

Proposition 1. If F (A,B) obtains the minimum

for the matrices A and B, and Gap(A,B) = 0. Then

for a given factor λ1 > 0, we have

λ2 =
−λ1bkiW

′

m
∑

j=1

Wk(i, j)(bki − bkj)
,

λ3 =
−λ1(auk − bki)R

K
∑

k′=1

Ri(k, k′)(auk − auk′ )

,

where

R =

m
∑

i=1

K
∑

k=1

K
∑

k′=1

Ri(k, k
′).

Proof. Suppose that Gap(A,B) = 0. To minimize

the function F (A,B), we differentiate both sides of (10)

with respect to auk and bki respectively and obtain the

linear equations:

∂F

∂auk
= eui(−bki) + λ1auk +

λ2

K
∑

k′=1

Wu(k, k
′)(auk − auk′ )

W
+

λ3

K
∑

k′=1

Ri(k, k
′)(auk − auk′ )

R
= 0, (11)

∂F

∂bki
= eui(−auk) + λ1bki +

λ2

m
∑

j=1

Wk(i, j)(bki − bkj)

W ′

= 0, (12)

where

eui = rui −
K
∑

k=1

aukbki,

for all 1 6 u 6 n and 1 6 i 6 m and

R =

n
∑

u=1

K
∑

k=1

K
∑

k′=1

Ri(k, k
′).

Since Gap(A,B) = 0, we deduce

eui = 0,
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for all 1 6 u 6 n and 1 6 i 6 m. Plugging this equation

into (11) and (12), we obtain

λ1auk + λ2

K
∑

k′=1

Wu(k, k
′)(auk − auk′)

W
+

λ3

K
∑

k′=1

Ri(k, k
′)(auk − auk′)

R
= 0,

λ1bki + λ2

m
∑

j=1

Wk(i, j)(bki − bkj)

W ′
= 0.

Suppose that λ1 is a free variable, then a routine calcu-

lation leads to the solutions for the parameters λ2 and

λ3 as stated in the proposition, which completes the

proof. �

So far, we have known how to choose the parameters

λ2 and λ3 through the parameter λ1 under the condi-

tion that the gap G(A,B) is equal to zero. Although

the analysis is theoretical, it provides the evidence that

when adding the interaction regulation factor λ3R(A)

into the objective function where λ3 is determined by

Proposition 1, we can indeed reduce Gap(A,B) to bet-

ter approximate the value zero.

5.3 Personalized SI-Model

SI-Model is a global model used for the prediction

task for all users in the Twittersphere. However, many

users, due to some reason, would not like the system to

recommend new users for them. In other words, their

friend lists turn out to be stable. If we directly re-

duce SI-Model to fit the local structures of these kinds

of users, the model faces the problem of over-fitting.

Therefore, we should construct a personalized SI-Model

for the users who are really willing to follow new users.

This local model is more efficient than SI-Model for

link prediction for the specific source user vu, and can

overcome the problem of over-fitting. In this sense, the

matrices A and R reduce to the row vectors Au and

Ru. The task is to predict new followers of vu. Notice

that Yin et al.[11] also proposed a local S-Model for pre-

diction in this case, whereas they called the prediction

in ego-centric networks. They introduced a measure

βvu,vi,vk to approximately characterize the probability

of the the intermediate user vk to recommend the target

user vi to the source user vu, given the local structure

of vk. More precisely, βvu,vi,vk is defined as follows:

βvu,vi,vk =

∑

vk′∈Nvu
Wk(vi, vk′ )

∑

vk′∈V Wk(vi, vk′)
,

where Nvu is the set of vu’s friends. In fact, βvu,vi,vk

calculates the number of vu’s friends who share simi-

lar structures with vi divided by the number of all

users who share similar structures with vi. The larger

the value βvu,vi,vk is, the more likely vu will follow vi

through the recommendation of vk. Yin et al.[11] con-

sidered the extreme case when only one target user vu
hopes the system to recommend new friends, and pro-

posed the personalized S-Model which aims to minimize

the following objective function Yvu(A,B),

Yvu(A,B) =
1

2

∑

A,B

Iu,i(Ru,i −
K
∑

k=1

aukbki)
2 +

λ1

2
‖Avu‖

2
Fro +

λ1

2
‖B − βvu‖

2
Fro +

λ2S(A) + λ2S(B),

where βvu = (βvu,vi,vk)K×m is the matrix with the

rows corresponding to the intermediate users, and the

columns corresponding to the target users.

Similar to the argument of the difference between S-

Model and SI-Model, the local S-Model only considers

the structure information in the link prediction process,

ignoring the indispensable impact of the interaction be-

tween the intermediate user vk and the source user vi.

To compensate this insufficiency, we define the follow-

ing measure γvu,vi,vk ,

γvu,vi,vk =

∑

vk′∈Nvu
Ri(vk, vk′ )

∑

vk′∈V Ri(vi, vk′ )
,

where Nvu is defined as before. Actually, γvu,vi,vk cal-

culates the number of vu’s friends who retweet vi di-

vided by the number of all users who retweet vi. Simi-

larly, the larger the value γvu,vi,vk is, the more likely vu

will follow vi, since the fact that more and more vu’s

friends retweet vi increases the probability that user vu
becomes aware of vi and vi appears frequently in the

tweets of vu’s friends. In other words, the set of such

intermediate users vk provides enough social proof (see

Cialdini[26]) that it is beneficial for vu to follow vi.

Then we introduce the personalized SI-Model which

aims to minimize the following objective function

Fvu(A,B) =
1

2

∑

A,B

Iu,i

(

Ru,i −
K
∑

k=1

aukbki

)2

+

λ1

2
‖Avu‖

2
Fro +

λ1

2
‖B − βvu − γvu‖

2
Fro +

λ2S(A) + λ2S(B) + λ3R(A),
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where βvu = (βvu,vi,vk)K×m is defined as before, γvu =

(γvu,vi,vk)K×m is the matrix with the rows correspond-

ing to the intermediate users, and the columns corre-

sponding to the target users.

6 Experimental Results and Analysis

In this section, we describe the experimental results.

We present the detailed information of our dataset,

and the experimental results in comparison with other

methods. We find that our SI-Model can reduce the

RMSE value by about 70% compared with S-Model.

The dataset in the experiments is crawled by Twit-

ter API in the way of randomly selecting 10 000 Twit-

ter users, updating their immediate neighbors per day

from the period of Oct. 1st, 2012 to Nov. 19th, 2012.

This leads to the user networks. Meanwhile, we also

extract the tweets of these users per day and use them

to construct the retweeting network, where user A has

relations with user B if A’s tweet contains the syntax

@B or RT@B, or equivalently, A retweets B or men-

tions B in his or her tweets. In total, there are 140 000

users and 400000 000 tweets. In this part, we carry

out two types of settings for evaluation similar to the

work of [27]. We firstly carry out the experiments in

dynamic setting, where we randomly choose 1 000 pairs

of snapshots with one week interval and for each pair,

and we use the first snapshot network to predict the

following links in the second snapshot network. The

interval between these two snapshots is one week. Note

that the interval can be chosen differently, for instance,

two weeks, three weeks and so on. For example, we use

the snapshot network on Nov. 08, 2012 to predict new

following links at the snapshot network on Nov. 13,

2012. During these two snapshots, the number of new

followers of the users is added up to 8 090. To evaluate

the final performance for these 1 000 snapshot pairs, we

compute their average performance. Secondly, we work

out the experiment in sparse static setting to test the

performance of SI-Model on sparse data, where we use

the sparse network by randomly deleting the links of

the snapshot network on Nov. 08, 2012 such that the

average number of followers for each user is 2. This

evaluation is widely used in link prediction problem,

for example, see [11, 28]. To use SI-Model for link pre-

diction, we remove three followers for each user of the

sparse network and intend to find these missing links.

Our model runs on the matrix R with the num-

ber of rows n = 10 000, and the number of column

m = 10 000. Two evaluation criteria for the predic-

tive result are used. One is the root mean square error

(RMSE) defined as

RMSE =

√

√

√

√

n
∑

u=1

m
∑

i=1

(rui − r̂ui)2

mn
,

where r̂ui =
∑K

k=1 aukbki. RMSE measures the error

between the predictive value and the ground truth. The

smaller the RMSE value is, the better the predictive re-

sult will be. In other words, the predictive result is more

accurate. The other criterion is the F1-measure based

on the break-even point. These two types of measures

are widely used in link prediction problem, for example,

see [11, 28].

To evaluate the performance of SI-Model, we tune

the parameters λ1, λ2 and λ3 in the full grid, where λ1

ranges from 0 to infinity, and the other two parameters

are determined by Proposition 1. We find that when

λ1 = 0.01, λ2 = 0.001, and λ3 = 0.005, the optimal

RMSE value of SI-Model is equal to 0.033. Meanwhile,

after a full search, we find that when λ1 = 0.01 and

λ2 = 0.01, the optimal RMSE value of S-Model is equal

to 0.102. It can be seen that SI-Model obtains smaller

RMSE value than S-Model.

6.1 Experimental Results

To demonstrate the effectiveness of our method, we

compare it with the other three methods in recent years

for link prediction in Twitter. One is S-Model proposed

by Yin et al.[11] Another is the Jaccard coefficient based

unsupervised method, which has been proven by Yin

et al.[11] to have a good performance on the dynamic

link prediction setting. The last one is the common

neighbors method. These two measures are commonly

used in link prediction task. For other similar measures,

readers can refer to [29]. Note that for the Jaccard co-

efficient and the common neighbors methods, there is

no RMSE by definition. In the dynamic setting, the

results are listed as in Table 1.

Table 1. Comparison of Different Methods

Method RMSE F1-Measure

SI-Model 0.033 0.278

S-Model 0.102 0.252

Jaccard coefficent – 0.125

Common neighbors – 0.091

From Table 1, we see that SI-Model achieves a

smaller RMSE value and a bigger F1-measure than any
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of the other three models. Especially, the RMSE value

is reduced by about 0.07 compared with that obtained

by S-Model. Note that S-Model obtains the RMSE

value 0.102. If we want to reduce this value, the maxi-

mal reduction is 0.102 (the corresponding RMSE value

is 0). Our SI-Model obtains the reduction of 0.07. In

other words, we get 70% reduction by using SI-Model.

On the other hand, our SI-Model gets the F1-measure

0.278, with the increase 0.02 compared to the S-Model.

Furthermore, Table 1 is devoted to the average perfor-

mance. For detailed comparison, we also conduct the

experiment. For instance, as for the F1-measure, we

illustrate the F1-measure of S-Model and SI-Model for

50 different snapshot pairs.

From Fig.4, we see that SI-Model performs better

than S-Model for 72% snapshot pairs in which the sec-

ond column is higher than the first one. Especially,

when t = 8, SI-Model gets 0.124 improvement. For the

rest 28% snapshot pairs, we find SI-Model is not better

because in these pairs, the retweeting behavior between

users does not correlate so much with the link forma-

tion process. Meanwhile, in this situation, although

SI-Model still uses the structure information to pre-

dict like S-Model, the interaction information reduces

the performance instead. In this sense, the interaction

information seems to bring in some overfitting in the

prediction process.
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Fig.4. F1-measure of S-Model and SI-Model for different snap-
shot pairs.

Next, we shall examine the performance of SI-Model

in the sparse static setting. It should be noted that Ta-

ble 1 is obtained on a dense dataset, in which the den-

sity of the network is equal to 491. This kind of dataset

is usually used for link prediction in Twitter. For ex-

ample, Yin et al.[11] tested S-Model with the dataset

density 100. If the dataset is very sparse, for example,

we use the sparse dataset mentioned in the beginning

of this subsection, with the density only 2, we intend

to examine the performance of SI-Model. The results

are listed in Table 2. From Table 2, we can see that

our SI-Model is also better than the others. Especially,

the RMSE value is reduced by about 0.005 compared

with that obtained by S-Model. Note that S-Model ob-

tains the RMSE value 0.013. Compared to the reduc-

tion 0.005, SI-Model reduces about 38% RMSE value.

On the other hand, SI-Model also increases the F1-

measure. For detailed comparison, we also conduct the

experiment. For instance, as for the RMSE value, we

illustrate the RMSE value of S-Model and SI-Model for

50 different snapshot pairs.

Table 2. Comparison on Sparse Data

Method RMSE F1-Measure

SI-Model 0.008 6.4× 10−5

S-Model 0.013 6.0× 10−5

Jaccard coefficent – 5.1× 10−5

Common neighbors – 3.6× 10−5

From Fig.5, we see that SI-Model performs better

than S-Model for 86% snapshot pairs in which the sec-

ond column is lower than the first one. Especially, when

t = 20, SI-Model gets a 0.005 8 decrease. Similarly,

for the rest 14% snapshot pairs, we find SI-Model is

not better because in these pairs, the retweeting beha-

vior between users does not correlate so much with the

link formation process. Meanwhile, in this situation,

although SI-Model still uses the structure information

to predict like S-Model, the interaction information re-

duces the performance instead. In this sense, the inter-

action information seems to bring in some overfitting

in the prediction process.
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Fig.5. RMSE of S-Model and SI-Model for different snapshot
pairs.

Finally, to check the performance of the persona-

lized SI-Model, we also tune the parameters λ1, λ2
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and λ3 in the full grid, where λ1 ranges from 0 to

infinity, and the other two parameters are determined

by Proposition 1. When λ1 = 0.01, λ2 = 0.001, and

λ3 = 0.01, the optimal F1-measure of the personalized

SI-Model is equal to 8.77 × 10−5. It can be seen that

the personalized S-Model achieves larger F1-measure

than S-Model, and the personalized SI-Model achieves

larger F1-measure than SI-Model, which obtains the

F1-measure 6.4× 10−5 as shown in Table 2.

6.2 Influence of Dimension K and Sparseness

of Data on the Performance of SI-Model

In this subsection, we shall analyze two factors that

may influence the predictive performance of SI-Model.

One is the choice of the latent dimension K during the

matrix factorization process. The other is the dataset

with different sparse degrees. In other words, we try

to find the “best” dataset with an appropriate sparse

degree on which our SI-Model achieves the best perfor-

mance.

Let us first check whether the choice of the value of

latent dimension K leads to different predictive perfor-

mance. Recall that we factorize the matrix Rn×m into

two nonnegative matrices An×K and BK×m in (10).

To investigate the effect of the dimension K, we fix the

parameters λ1, λ2 and λ3 as 0.01, 0.001 and 0.005 re-

spectively, use the dataset as in Table 1, and range K

from 1 to the number of users n (in fact, by the defini-

tion of the matrix factorization, K ≪ n). The relations

between the F1-measure and the value K, and the rela-

tions between the RMSE value and the value K are ex-

amined. We only depict the relations for K = 1, . . . , 18

as follows, since for the rest part, the tendency of the

curves is similar.

From Fig.6, we see that the values of RMSE and F1-

measures vary with the increase of K. Especially, when

K = 2, F1-measure obtains the maximum 0.278. This

value is consistent with the F1-measure of SI-Model in

Table 1. When K > 2, the F1-measure takes the value

in the interval [0.201, 0.278]. On the other hand, for

the RMSE value, when K = 1, it takes the minimum

0.031, and whenK > 7, RMSE value tends to converge.

To sum up, the performance of SI-Model is relatively

stable as the dimension K increases.

Next, we are interested in the effect of the dataset

with different sparseness. Recall that the sparseness,

denoted by nf , is the average number of non-followers

for a number of users. We aim to find how the perfor-

mance of SI-Model varies with the dataset of different

sparseness. To this end, we fix the parameters λ1, λ2

and λ3 to be 0.01, 0.001, and 0.005 respectively as be-

fore, range nf from 1 to m − 1 with m = 10 000, and

examine the relations between the F1-measure and the

value of nf , and the relations between the RMSE value

and the value of nf . We only depict the relation for

nf = 1, . . . , 41 as follows, since for the rest part, the

tendency of the curves is similar.
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Fig.6. Relations between K and F1-measure on the top, and
the relations between K and RMSE on the bottom for SI-Model.

From Fig.7, we see that for nf > 3, when nf = 5,

the F1-measure achieves the maximum 0.50 and then

the F1-measure decreases with the increase of nf . For

the RMSE value, when nf = 1, it obtains the maximum

0.077, and then it slowly decreases. We also explore the

performance of both curves when nf = 9 999, and find

they both turn to infinity, because in this situation, all

the other users are non-followers for each user and the

matrix R is 0-matrix whose elements are all equal to

zero.
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7 Conclusions

In this paper, we proposed a structural-interaction

matrix factorization model for the link prediction prob-

lem in microblogs. We firstly claimed the drawbacks of

existing matrix factorization based methods by show-

ing the gap between the predictive value and the ground

truth. Then we introduced the retweeting similarity be-

tween users and mixed the interaction regulation factor

with the structural regulation factor to obtain a hybrid

model, SI-Model. To verify the efficiency of SI-Model,

we made the experiments on real-world Twitter data

and got its RMSE value reduced by 70% compared with

that obtained by the state-of-the-art model. It should

be noted that our SI-Model is a global model on the

complete network. We similarly deduced a local, or

personalized SI-Model which aims to recommend the

target users to a given source user who has the require-

ment of following new users. It can be also experi-

mentally verified that the local model’s performance is

competitive. The importance of our SI-Model is that

we presented a framework to unify the structure of the

network and the interaction behavior information be-

tween users together for the link prediction problem.

Our model can also be applied to the other hybrid

social-information networks except for the microblogs

Twitter.

Microblogs provide an information platform for

users to share their experience, ideas, etc, based on

which people interact with each other for socialization

and information diffusion. Our SI-Model actually re-

veals a part of this relationship between the information

diffusion (including the interaction behavior) and the

link formation process. However, there is still a long

way to go if one aims to investigate this relationship

more deeply. For example, one such problem is how

and to what extent the interaction behaviors between

users influence their link formation process. Further-

more, as is known to all, the content of the tweet of one

target user is an essential factor to determine whether

the intermediate user retweets him or her. We are all

familiar with the fact that if one tweet is very positive,

its diffusion process makes many people connected and

they are prone to becoming friends. Hence, propos-

ing a model fusing the content of the tweets, the inter-

action behavior and the structural information among

users, is probably one promising area for future link

prediction work. Notice that recently, Liu et al.[30] pro-

posed HYDRA for user identity linkage across different

social platforms, which integrates the behavior simila-

rity among online users with multi-dimensional simila-

rity vectors and users’ core social network structure by

means of a multi-objective optimization approach. This

integration approach is helpful for readers for future in-

tegration strategy design in link prediction. Other im-

portant studies include [31-36]. They presented deep

insight of the link formation process and the construc-

tion of an end-to-end link prediction pipeline, by inte-

grating the knowledge of game theory, knowledge ac-

quisition and reasoning into the predictive framework.
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