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Abstract Time series clustering is widely applied in various areas. Existing researches focus mainly on distance measures

between two time series, such as dynamic time warping (DTW) based methods, edit-distance based methods, and shapelets-

based methods. In this work, we experimentally demonstrate, for the first time, that no single distance measure performs

significantly better than others on clustering datasets of time series where spectral clustering is used. As such, a question

arises as to how to choose an appropriate measure for a given dataset of time series. To answer this question, we propose an

integration scheme that incorporates multiple distance measures using semi-supervised clustering. Our approach is able to

integrate all the measures by extracting valuable underlying information for the clustering. To the best of our knowledge,

this work demonstrates for the first time that the semi-supervised clustering method based on constraints is able to enhance

time series clustering by combining multiple distance measures. Having tested on clustering various time series datasets, we

show that our method outperforms individual measures, as well as typical integration approaches.

Keywords time series analysis, clustering, dynamic programming, information search and retrieval

1 Introduction

Analysis of time series data plays a critical role in

many domains such as medical science, finance, meteo-

rology, space science, oceanography, motion capture,

and environmental science[1-4]. Time series clustering

is one of the most popular tasks in time series data

mining[3,5-8]. Time series data differ from others in that

all of their data points have a time property. This fact

leads to increasing the complexity and difficulty in clus-

tering time series data. Based on different similarity

measures[9] used, there are three types of time series

clustering.

The first type is based on the similarities in time,

which tends to cluster temporal sequences varying simi-

larly in time. A simple way of measuring similarities

is to use Euclidean distance or other Lp norms. Such

poor similarity measures have been reported[10], since

two similar series may start at different time points or

move at different speeds. This means that there may be

a shift, stretching, or shrinking in the time dimension.

The second type of clustering takes into account

the similarities in shapes. It groups together time se-

ries with common shapes or sub-shapes. Two popu-

lar approaches to measuring distances based on shapes

include sequence transformation using warping tech-
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niques and algorithms that find common features

among sub-patterns. As an alternative, elastic distance

measures, such as dynamic time warping (DTW), cal-

culate an optimal match between two given sequences.

For instance, similarities in walking patterns could

be detected with DTW, even if people walk at dif-

ferent speeds. Edit-based measures, like the longest

common subsequence (LCSS)[11], and shapelets-based

technique[12], are two common approaches to finding

similar sub-shapes. Time series shapelets are small, lo-

cal subsequences that are representatives of a class. For

example, shapelets could help distinguish the abnormal

heartbeat of a sudden for cardiologists.

The last type is on the basis of similarities in change.

Such a type of clustering attempts to cluster time series

by the similarity in the way of how they vary along the

time dimension. Among two data points with the same

value from two sequences, for instance, one is in a rising

trend, while the other is in a falling trend. We would

prefer not to align a rising trend to a falling trend.

However, elastic distance measures, like DTW, as men-

tioned previously, are not able to handle this situation.

The broad approach to solving this problem is called

derivative dynamic time warping (DDTW)[13], which is

based on first-order differences of time series.

From the above three types of distance measures on

time series, our initial goal of this work is to find a mea-

sure that outperforms the others in terms of spectral

clustering. Through extensive experiments on various

datasets of time series, we show that, however, there is

no single winner. Each measure has its own strength

and weakness.

This fact motivates us to combine multiple distance

measures by taking advantage of their strengths. In

addition, for time series clustering, we normally do not

know which measure is the best for a given data due to

the lack of labeled data. It may be effective to combine

different measures.

The further question is how to make full use of

the strengths of different measures. Instead of simply

weighting different measures, we utilize them to gene-

rate prior knowledge as constraints for semi-supervised

clustering. In particular, these constraints are gene-

rated in the form of pairwise constraints indicating the

relationship between two data points; that is, whether

these samples belong to the same cluster or not, de-

noted as must-link and cannot-link constraints, respec-

tively. As we know, the prior knowledge for a domain

is not always available in reality. Our solution also pro-

vides a new way of tackling this problem.

In summary, we propose a new framework based on

semi-supervised clustering that integrates multiple dis-

tance measures. It is widely believed that the prior

knowledge used by semi-supervised clustering can im-

prove the performance. Our experiments have also

demonstrated that for clustering time series data, our

integrated method is better than not only any sin-

gle typical distance measure, but also other rival well-

known integration schemes. To the best of our knowle-

dge, this is the first time that semi-supervised clustering

based on links is used in the time series domain.

The rest of this paper is organized as follows. In Sec-

tion 2, we review related work on time series clustering.

Section 3 briefly introduces seven distance measures we

use in our method, and presents our approach that ef-

fectively incorporates multiple distance measures. Sec-

tion 4 describes our experimental settings, reports and

analyzes experimental results. Section 5 concludes this

paper.

2 Related Work

One key step of time series clustering is to measure

the distances between compared sequences. Actually,

many measures are available for time series cluster-

ing, including variant of dynamic time warping, such

as weighted dynamic time warping[14], kernel dynamic

time warping[15], derivative dynamic time warping[13],

and edit distance based methods, like longest com-

mon subsequence[11], time warping edit distance[16].

All of these measures are common in that they try

to find an optimal alignment between two time se-

ries along the time dimension so as to handle outliers,

as outliers are quite common in the time series do-

main. A distribution-based distance measure was pro-

posed by shao et al.[17] to deal with multi-dimension

sequences. Recently, a new concept, called shapelets,

was introduced[12]. It is believed that time series data

may contain a lot of useless data, while some common

sub-patterns, shapelets, are highly discriminative. In

addition, an improved symbolic aggregate approxima-

tion (SAX) distance measure was proposed by Sun et

al.[18], which integrates a weighted trend distance. In

[19], an adaptive approximation was reported to create

compact approximations of time series, and then an ef-

ficient method based on indexing was used to compare

time series.

For clustering time series data, various clustering

algorithms have been developed. In [20], expecta-

tion maximization (EM) was adopted to cluster time
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series according to an initial approximation of raw

data by wavelets. A hierarchy clustering method us-

ing DTW distance was proposed[21]. Hidden Markov

models (HMMs) was used to cluster multivariate time

series[22-23]. Three fuzzy clustering-based methods us-

ing DTW were reported[24]. In [25], a Bayesian method

was presented to cluster sequences by modeling tempo-

ral sequences as Markov chains. The shapelets-based

clustering was introduced by [8] as well.

Clustering time series has been receiving great at-

tention. Nevertheless, most of studies focus on cluster-

ing time series using an individual measure. How to

integrate multiple measures is not well resolved. The

two widely referenced studies are [26] and [27]. Their

approaches basically transform time series sequences

into different representations. This idea differs from our

combination of multiple distance measures. Moreover,

an ensemble classification method that combines several

elastic distance measures[28] demonstrated promising

performance on extensive time series data. It has also

been shown that there is no significant difference be-

tween elastic distance measures for classification where

1NN (one nearest neighbor) is applied.

Semi-supervised learning algorithms have emerged

these years which are considered as a great alterna-

tive to traditional supervised and unsupervised learn-

ing algorithms. To deal with prior knowledge, semi-

supervised kernel K-means (SSKK) transforms the

clustering distance measure by weighted kernel K-

means with reward and penalty terms[29]. In [30], com-

plex structure data, such as graphs, are taken into

account in SSKK. In [31], constraints are incorpo-

rated into semi-supervised non-negative matrix factori-

zation by refactoring the former affinity matrix in non-

negative matrix factorization. A time-efficient semi-

supervised learning using multiple graphs that com-

bines soft spectral clustering with label propagation was

reported[32].

3 Weighted Semi-Supervised Normalized Cut

In this section, we first describe common distance

measures and then present our approach. The nota-

tions used are listed in Table 1.

3.1 Distance Measures

To measure the distance between temporal se-

quences from multiple aspects, we choose seven popular

measures, which range from shape-based measures to

change-based ones.

3.1.1 Dynamic Time Warping

Dynamic time warping[33] is based on the edit dis-

tance that looks for the optimal alignment between

two sequences in the time dimension. Given two time

series, X = {x1, x2, ..., xn} and Y = {y1, y2, ..., ym},

we can obtain an n × m distances matrix D where

the (i, j) element of D is distance d(xi, yj) between

data points xi and yj. Euclidean distance is used to

measure the distance between two points. A warp-

ing path, P = < (e1, f1), (e2, f2), ..., (es, fs) > where

max(n,m) 6 s 6 n + m − 1, is a set of points (i.e.,

pairs of the index) that satisfy the following three con-

straints: 1) boundary condition: (e1, f1) = (1, 1) and

(es, fs) = (n,m), which means the warping path must

start and end in diagonally opposite corner cells of

Table 1. Notations in Distance Measures

Notation Description

X, Y Time series containing an order set of real values, such as X = {x1, x2, ..., xn}

xi, yi Data points in time series at index i

Xi, Yi Subsequences with time index varying from 1 to i, Xi = {x1, x2, ..., xi}, Yi = {y1, y2, ..., yi}

n, m Length of time series

d(xi, yj) Distance between two data points xi and yj

d(Xi, Yj) Distance between two subsequences Xi and Yj

D Distance matrix between two time series, where D(i, j) is the distance d(xi, yj)

w Window parameter for elastic distance measure

P Warping path found by elastic distance measure, like P = < (e1, f1), (e2, f2), ..., (es, fs) >

pi Path point in P at index i, pi = (ei, fi), where ei and fi are indexes in two time series

S Similarity matrix over time series dataset, where S(i, j) is the similarity between two time series

M Must-link set, like M = < (a1, b1), ..., (as, bs) >, where (ai, bi) is a pair of time series index in data

C Cannot-link set defined similar to M

Mweight Weighted must-link set, Mweight = < (a1, b1, w1), ..., (as, bs, ws) >, where wi is the related frequency

Cweight Weighted cannot-link set
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D; 2) continuity condition: 0 6 ei+1 − ei 6 1 and

0 6 fi+1 − fi 6 1 for all i 6 s, which means adja-

cent cells are the allowable steps; and 3) monotonic

condition, ei 6 ei+1 and fi 6 fi+1, which restricts the

directions of the path.

The DTW distance between two temporal sequences

is a warping path that minimizes the total distance.

dDTW = min

(

s
∑

i=1

pi

)

,

where pi = D(ei, fi). Dynamic programming can be

utilized to find the minimized path by

dDTW(Xi, Yj)

= d(xi, yj) + min
{

dDTW(Xi, Yj−1),

dDTW(Xi−1, Yj−1), dDTW(Xi−1, Yj)
}

, (1)

where Xi denotes a sequence with the time index vary-

ing from 1 to i. The time complexity of calculating

DTW distances is O(nm). The constrained version of

DTW[34] can reduce the time complexity by adding a

window parameter that restricts the maximum allow-

able distance between any pairs of indexes in a warping

path. If w is the warping window length, then the op-

timal path is restricted so that we have |ei − fi| 6 w.

Fig.1 shows an optimal warping path and alignment

between two sequences by DTW. A window is used to

constrain the warping operation.
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Fig.1. Optimal warping by DTW.

3.1.2 Weighted Dynamic Time Warping

Weighted dynamic time warping (WDTW) is a

penalty-based DTW[14]. According to the phase diffe-

rence between two points, it penalizes points to avoid

the minimum distance distortion by outliers. It is be-

lieved that neighbor points are valuable. Thus a larger

weight penalty is imposed if the phase difference is

higher, and the smaller weight one, otherwise. WDTW

is an alternative to the constrained form of DTW using

a warping window[28]. When computing the distance

matrix D, we calculate the distance between two points

xi and yj as d(xi, yj) = ||w|i−j|(xi − yj)||, where w|i−j|

is the weight penalty between xi and yj .

In addition, a new modified logistic weight

function[14] assigns weights to WDTW according to the

phase difference between two points:

w|i−j| =
wmax

1 + exp(−g(|i− j| −m/2))
, (2)

where wmax is the desired upper bound for a weight that

is set to 1 usually, m the sequence length, and g a pa-

rameter to control the level of penalization. The smaller

g, the less penalty imposed. Four kinds of weights are

obtained by setting different values to g including con-

stant weight, linear weight, sigmoid weight, and two

distinct weights. In a case of two distinct weights, the

first one-half and the second one-half would be assigned

to different weights.

3.1.3 Kernel Dynamic Time Warping

A regularized form of DTW, called kernel dynamic

time warping (KDTW)[15], constructs positive definite

kernels from DTW. DTW searches only for one of opti-

mal warping paths, while KDTW uses the kernel trick

to examine all matching paths of existing subsequences

that can help align points better and penalize misalign-

ments. Hence, the min operation in (1) is replaced by a

sum operation in KDTW. A symmetric corridor func-

tion is introduced to limit summation and computa-

tional costs.

dKDTW(Xi, Yj) = dxyKDTW(Xi, Yj) + dxxKDTW(Xi, Yj),

where

dxyKDTW(Xi, Yj)

=
1

3
e

−d(xi,yj )

σ

{

h(i − 1, j)dxyKDTW(Xi−1, Yj) +

h(i− 1, j − 1)dxyKDTW(Xi−1, Yj−1) +

h(i, j − 1)dxyKDTW(Xi, Yj−1)
}

,
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and

dxxKDTW(Xi, Yj)

=
1

3

{

h(i− 1, j)dxxKDTW(Xi−1, Yj)e
−d(xi,yj )

σ +

∆i,jh(i, j)d
xx
KDTW(Xi−1, Yj−1)e

−d(xi,yj)

σ +

h(i, j − 1)dxxKDTW(Xi, Yj−1)e
−d(xi,yj)

σ

}

,

where ∆i,j is the Kronecker’s symbol, h(., .) symmet-

ric positive function that controls symmetric corridor,

σ controls contributions of local elementary costs, and

d(., .) the Euclidean distance defined on R
k.

3.1.4 Derivative Dynamic Time Warping

Time series may have local differences in data point

values as well. For instance, a local peak in one series

may be higher than that in the other sequence. The

elastic distance measures, like DTW, are not able to

deal with this case, leading to aligning a single point

on one temporal sequence to a large subsection of the

other sequence. A modified DTW, called derivative dy-

namic time warping (DDTW)[13], takes the first deriva-

tive of time series into account. Considering a sequence

X = {x1, x2, ..., xn}, we estimate the derivative se-

quence as follows,

x′
i =

(xi − xi−1 + (xi+1 − xi−1)/2)

2
, 1 < i < n.

Note that the first and the last elements are not

given in the above formula, which are replaced by the

second one and the penultimate one respectively. Be-

sides, window parameter w in DTW can be applied in

DDTW as well in order to limit the computational cost

in dynamic programming.

In addition, a weighted-based DDTW

(WDDTW)[14] weights distances by using the logis-

tic function defined in (2).

3.1.5 Longest Common Subsequence

The longest common subsequence (LCSS) was first

applied to find the longest common subsequence be-

tween two strings on the basis of edit distance. It was

extended in [11] for its use in numeric time series by

introducing a threshold ǫ to define the maximum dif-

ference between a pair of data points that can be consi-

dered to be equal. The main idea of LCSS is to calculate

the greatest number of matching pairs in two sequences

by inserting or deleting mismatched elements. It can be

solved by using the following recursion,

LCSS(Xi, Yj) =



































1 + LCSS(Xi−1, Yj−1),

if d(xi, yj) < ǫ and |i − j| < w,

max
{

LCSS(Xi, Yj−1),

LCSS(Xi−1, Yj)
}

,

otherwise,

where w is a window parameter like the one in DTW.

Then the normalized distance based on LCSS can be

transformed as follows,

dLCSS(Xi, Yi) = 1−
LCSS(Xi, Yi)

min(n,m)
.

3.1.6 Time Warp Edit Distance

The time warp edit distance (TWED)[16] incorpo-

rates the properties of LCSS and DTW not only to al-

low time warping, but also to use the edit distance with

the Lp norm. Unlike the normal edit distance, TWED

replaces the insert operation with the delete operation.

It again contains three operations of deletex, deletey
and match, where deletex stands for deleting an ele-

ment from time series X to map series Y . The final

formulation is given as follows:

dTWED(Xi, Yj) = min
{

dTWED(Xi−1, Yj) + Γ(x′
i → Λ),

dTWED(Xi−1, Yj−1) + Γ(x′
i → y′j),

dTWED(Xi, Yj−1) + Γ(Λ → y′j)
}

,

with

Γ(x′
i → Λ) = d(xi, xi−1) + υ(txi

− txi−1) + λ,

Γ(x′
i → y′j) = d(xi, yj) + d(xi−1, yj−1) +

Γ(x′
i → y′j) =υ(|txi

− ty−j |+ |txi−1 − tyj−1 |),

Γ(Λ → y′j) = d(yi, yi−1) + υ(tyi
− tyi−1) + λ,

where x′
i is the i-th sample of time series X . It consi-

ders x′
i ∈ S × T , where S ⊂ R

d with d > 1 embeds the

multidimensional space variables, and T ⊂ R embeds

the time-stamp variable, then we have x′
i = (xi, txi

)

where xi ∈ S and txi
∈ T .

The parameter υ, called stiffness, controls the level

of warping. When υ = 0, TWED is equivalent to DTW,

and when υ = ∞, TWED gives Euclidean distance. λ

is a constant parameter used to penalize misalignment.

3.1.7 Unsupervised-Shapelets

Sometimes, time series contain a lot of significant

noises or extraneous data that limit the performance
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of time series clustering. In this case, the clustering

accuracy can be improved by using only some com-

mon sub-shape features and ignoring the rest of data.

Time series shapelets, introduced by Ye and Keogh[12],

are small and local subsequences that are represen-

tatives of a class. Most of researches on discovering

shapelets require labeled training data to guide the al-

gorithm. Unsupervised-shapelets (u-shapelets)[8], how-

ever, is able to obtain shapelets without any knowledge

of class labels.

The basic idea of u-shapelets is to search greedily for

u-shapelets, which divides and discards a sub-collection

of sequences from the rest of data until none of data is

retained to be divided. A dissociation measure, called

gap, is defined as,

gap = µB − σB − (µA + σA),

where A is the subset of time series similar to the shape-

plet, B the rest of data, µA the mean distance between

the shapelet and the subset A, and σA the standard de-

viation between the shapeplet and the subset A. The

greedy search is aimed to find shapelets that maximize

the separation gap. In order to avoid unbalance be-

tween A and B, for instance, either A or B contains

a single time series only. The ratio of A and B has

to meet the condition of ( 1
k
) < |DA|/|DB| < (1 − 1

k
),

where k is the number of clusters.

With shapelets, a distance matrix DIS between

shapelets and time series is able to be obtained by the

Euclidean distance. The distances of a time series with

all the shapelets can be considered as the new features

of the given sequence. The shapelets-based distances

between temporal sequences are then calculated on the

new feature space using the Euclidean distance.

3.2 Normalized Cut

We use normalized cut (NCut)[35] to group time se-

ries, since it is able to handle any kinds of distance mea-

sures. NCut is the spectral clustering method based on

graph-partitioning. The similarity matrix over data in

NCut is represented as a graph where the similarity be-

tween two instances is the weight of an edge connecting

two samples. The key idea of spectral clustering is to

minimize the number of cuts so that the sum of inter-

cluster similarities is minimized.

NCut has been validated to overwhelm other ex-

isting measures due to the avoidance of the unnatural

bias of separating small groups of points. The NCut is

defined as follows:

NCut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )
,

where cut(A,B) =
∑

u∈A,t∈B w(u, t) is the total con-

nections from the samples in A to the ones in B,

assoc(A, V ) =
∑

u∈A,t∈V w(u, t) is the total connec-

tions from instances in A to all the nodes in a graph,

and so is assoc(B, V ). It can be seen that the origi-

nal problem of minimizing NCut can be cast as one

of minimizing the matrix trace. Although minimizing

normalized cuts has been proved to be NP-hard, it can

be computed efficiently by solving a generalized eigen-

value problem with some proper relaxation. For the

generalized eigenvalue problem, it typically attempts to

project each sample into the eigen-space spanned by K

eigenvectors, and then to apply the K-means algorithm

in the eigen-space. The objective function of NCut is

given below,

FNCut =
K
∑

k=1

X
T
k (G −W )Xk

XT
k GXk

= K − Tr(Y T
G

− 1
2WG

− 1
2Y ),

where Xk = (x1k, x2k, ..., xNk)
T is the binary indica-

tor vector of cluster k, and G is the diagonal matrix

such that we have G · e = W · e, e = (1, 1, ..., 1)T, and

Y = (Y1,Y2, ...,YK), Yk = G
1
2Xk/||G

1
2Xk||.

3.3 Linear Combination Method

A common method to integrate different types of

similarity matrixes is a linear combination method

(LCM)[36]. We first transfer all the distance matrixes

into similarity matrixes and normalize them. Then we

combine them with equal weights linearly as follows:

S =
1

p

ms∈MS
∑

Sms,

where MS is the set of names of distance measures,

which includes DTW, WDTW, KDTW, DDTW, WD-

DTW, LCSS, and U-shapelets in our studies. Sms is

the similarity matrix based on the related distance mea-

sure, S is the final integrated similarity matrix, and p

is the amount of measures used.

3.4 Hybrid Bipartite Graph Formation

The LCM, described previously, is an input-based

(i.e., similarity matrix) integration method. Another
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typical way of combining different measures is to en-

semble predicted labels by different individual mea-

sures. It is in fact an output-based approach as it re-

lies on clustering results on individual measures. As a

well-accepted graph ensemble clustering scheme, hybrid

bipartite graph formation (HBGF)[37] has been well

validated[38-39]. It generates a “meta-graph”(in which

both input instances and input clusters are nodes) as

a bipartite graph, in which nodes are clustered. This

is a one-step procedure which partitions given clusters

into “meta-clusters” and assigns each instance to one

meta-cluster simultaneously.

3.5 Semi-Supervised Normalized Cut

Although LCM and HBGF are able to integrate

multiple distance measures, both of them have the un-

derlying weaknesses. In LCM, on the one hand, choos-

ing a set of suitable weights for different types of simi-

larities is a complicated task, especially when training

data are unavailable. On the other hand, the contribu-

tions of similarity values in a specific similarity matrix

could be different, for instance, similarity values within

the top and bottom ones of a similarity matrix usu-

ally provide more useful information for the boundaries

of such true clusters which should be paid more at-

tention. HBGF integrates clustering results based on

individual similarity matrixes. Sometimes, some dis-

tance measures, however, cannot capture the real rela-

tionship among data points, which leads to very poor

clustering results. As such, the performance of HBGF

would be significantly deteriorated by those poor clus-

tering results as a result of ineffective distance mea-

sures. Nevertheless, we use semi-supervised clustering

to combine multiple distance measures. It makes use of

the most valuable and reliable information from differ-

ent types of distance measures to generate constraints

as prior knowledge. Such knowledge is able to guide the

semi-supervised clustering process efficiently and to ob-

tain the better performance.

We use semi-supervised normalized cut (SSNCut) to

cluster time series over the integrated must-link set and

and cannot-link set. As a stable method, SSNCut has

been proved to outperform multiple well-known semi-

supervised clustering methods[40]. Another reason why

we choose SSNCut is that it can be conducted over any

distance measures. In contrast, many other algorithms

on semi-supervised clustering have a strong restriction

on distance measures for the basic distance/similarity

matrix over instances, such as the use of Euclidean dis-

tance in semi-supervised kernel K-means[29], and the

inner product in semi-supervised non-negative matrix

factorization[31]. This restriction on the distance mea-

sure limits their usage in the time series domain.

One advantage of the constrained Normalized Cut

(CNC) algorithm[41] is able to incorporate must-link

constraints for NCut. To enforce prior knowledge, a

penalty term is added as must-link constraints to the

original NCut cost function. A parameter α is also in-

troduced into the penalty term to control the degree

of enforcement of positive constraints. The larger the

parameter, the stronger the enforcement of prior know-

ledge.

Nevertheless, CNC incorporates only must-link con-

straints into NCut without cannot-link constraints,

which also play a critical role in improving cluster-

ing performance. Therefore, it has been extended[40]

to accommodate cannot-link constraints by develop-

ing a new distinguished scheme called Semi-supervised

Normalized Cut (SSNCut). Similar to CNC, another

penalty item based on cannot-link constraints is added

with a parameter β to adjust the effect of negative con-

straints on the objection function. It has been proved

that SSNCut is able to reveal remarkable performance

improvements with very limited constraints. The ob-

jective function of SSNCut is described as follows.

FSSNC =

K
∑

k=1

X
T
k (G−W

l)Xk

XT
k GXk

+

α||UX||2 + βTr(XT
ZX)

= K − Tr(Y T
G

− 1
2W

l
G

− 1
2Y ) +

αTr(Y T
G

− 1
2U

T
UG

− 1
2Y ) +

βTr(Y T
G

− 1
2ZG

− 1
2Y )

= K − Tr(Y T
G

− 1
2 (W l −

αUT
U − βZ)G− 1

2Y ),

where U = (U1,U2, ..,Us)
T, s is the number of must-

links, and each Up = (u1p, u2p, ..., unp) encodes a con-

straint as we have uip = 1 and ujp = −1 and the rest

of all are 0. Z =
∑

i,j(LiL
T
j + LjL

T
i ) encodes all the

cannot-links. Both L
T
i and L

T
j are selection vectors,

for example, LT
i = (...0, 1, 0, ...), where the element of

1 represents a cluster to be chosen.

To incorporate weights of constraints, we multi-

ply each must-link vector Up with its weight as Uq =

wi,j(u1q, u2q, ..., unq) where i and j are the related in-

stances constrained by must-link q. For cannot-link

constraints, we modify the cannot-link matrix as Z =
∑

i,j wi,j(LiL
T
j + LjL

T
i ). In order to differentiate our

modified SSNCut from the original SSNCut, we name
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our approach as “wSSNCut” standing for weighted

semi-supervised normalized cut.

3.6 Constraint Sets

At first, we generate initial constraints from each

distance measure. A typical approach to obtaining con-

straints is to generate must-links if two time series have

a relatively small distance, and cannot-links, otherwise.

Thus, a cut-off trick is used to generate must-link and

cannot-link constraints from distance matrixes. We

first extract the top p percentage and the bottom p

percentage of elements from every distance matrix cal-

culated by measures described in Subsection 3.1 (except

for TWED, we use it as the basic distance matrix for the

clustering process), and then regard pairs of sequences

within top p% distances as cannot-link constraints, and

pairs of time series within bottom p% distances as must-

link constraints. p is a parameter that controls the num-

ber of constraints. Thus, based on different measures,

we can get multiple constraint sets. Denote MS as

the set of names of distance measures including DTW,

WDTW, KDTW, DDTW, WDDTW, LCSS, and U-

shapelets. Then, we combine all the constraints sets

using union operation to calculate the whole possible

constraints,

Munion =

ms∈MS
⋃

Mms, Cunion =

ms∈MS
⋃

Cms,

where Munion = {(a1, b1), (a2, b2), ..., (as, bs)} and

Cunion = {(c1, d1), (c2, d2), ..., (ct, dt)} are two sets of

points (i.e., pairs of index) representing locations of

must-link and cannot-link, respectively.

To generate weighted constraints, we cal-

culate the frequencies of occurrence of con-

straints and assign them to related constraints.

Then, we get the weighted must-link set

Mweight = {(a1, b1, w1), (a2, b2, w2), ..., (as, bs, ws)}

and the weight cannot-link set Cweight =

{(c1, d1, w1), (c2, d2, w2), ..., (ct, dt, wt)}, where wi is the

weight of related constraint. Obviously, the w of a con-

straint could be considered as the confidence of the link

constraint.

Sometimes some distance measures may not capture

the real relationship among data points. This fact leads

to many noises in the constraints. Therefore, we dis-

card those 1-vote constraints whose w = 1 to reduce

the noises in constraints.

In order to test performance of the link confidence,

we design another scheme to integrate constraint sets

only using union operation and removing 1-vote con-

straints without using constraint weights.

3.7 Overview of Our Approach wSSNCut

Our method consists of the following four steps.

1) Compute the distances for all pairs of time series

in a dataset using different distance measures. For sim-

plicity, we denote a distance matrix as Dms, where ms

stands for a distance measure, such as DTW and LCSS.

Dms(i, j) is the distance between the i-th and the j-th

time series based on the relevant measure. The higher

Dms(i, j) is, the less similar they are.

2) Generate must-link and cannot-link constraints

according to Dms, for each distance measure ms. For

simplicity, we denote the must-link set by Mms =

{(a1, b1), (a2, b2), ..., (as, bs)} and the cannot-link set by

Cms = {(c1, d1), (c2, d2), ..., (ct, dt)}, where two sets of

points (i.e., pairs of index) represent locations of must-

link and cannot-link, respectively.

3) IntegrateMms and Cms into Mweight and Cweight,

respectively, for each measure ms. We have Mweight =

{(a1, b1, w1), (a2, b2, w2), ..., (as, bs, ws)} and Cweight =

{(c1, d1, w1), (c2, d2, w2), ..., (ct, dt, wt)}, which are the

final integrated must-link and cannot-link sets as in-

puts to semi-supervised clustering. wi is the frequency

of the occurrence of a constraint. The value of wi could

be considered as the confidence of a link constraint.

4) Perform semi-supervised clustering over Mweight

and Cweight. Particularly, we preserve the similarity

matrix based on time warping edit distance (TWED)

from generating constraints in 2) and using it as the

fundamental similarity matrix for the semi-supervised

clustering algorithm.

4 Experiments

4.1 Datasets

To demonstrate the performance of our approach,

we have conducted experiments on different time series

datasets. We have compared our approach on 12 UCR

(University of California, Riverside) dataset 1○. In our

experiments, we combine the training dataset and the

test dataset together in UCR datasets, which are all

split into training and testing data for classification.

The statistics of these datasets are given in Table 2.

1○Keogh E, Zhu Q, Hu B et al. The UCR time series classification/clustering homepage, 2011. www.cs.ucr.edu/∼eamonn/time se-
ries data/, Dec. 2014.
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As usual, we use the number of clusters as a known

parameter.

Table 2. Characteristics of the Benchmark Datasets

Name Length Size Number of Clusters

50Words 270 905 50

CBF 128 930 03

Adiac 176 781 37

Beef 470 120 04

ECGFiveDays 136 884 02

Lighting2 637 121 02

Lighting7 319 143 07

MedicalImages 099 1 141 10

WordSynonyms 270 905 25

Synthetic control 060 600 06

TwoLeadECG 082 1 162 25

Trace 275 200 04

4.2 Evaluation Criteria

We use normalized mutual information (NMI) for

evaluating clustering performance, which is widely used

in information retrieval and feature selection. NMI

quantifies the amount of statistical information shared

by the random variables representing cluster assign-

ments and user-labeled class assignments of points. It

has been shown in [42] that mutual information excels

in other criteria. There are several normalized versions

of mutual information. We use the squared version[43]

in our experiments, which is defined as:

NMI(E;Q) =
I(E;Q)

√

H(E)×H(Q)
,

where E and Q are predicted clusters and correct class

labels, respectively, I(E;Q) = H(E) − H(E|Q) is the

mutual information between E and Q, H(E) and H(Q)

are the entropies of E and Q, respectively, and H(E|Q)

the conditional entropy of E given Q.

4.3 Experimental Procedures

To examine the performance of our method, we first

explore the parameters of distance measures by search-

ing in a range of empirical values. Then, we select

a fixed setting for each measure that is able to ob-

tain good clustering performance on all the datasets

generally. Particularly, the range of the window pa-

rameters used in DTW, LCSS, and DDTW is selected

from { 1
20m, 1

10m, 1
5m}, where m is the length of time

series, and 1
5m shows typically good performance in

the experiments. Besides, we traverse all the possible

lengths of shapelets in the u-shapelets method. Finally,

we generate integrated must-link and cannot-link con-

straint sets by incorporating multiple distance sets. To

reduce the noises in constraints, we remove the 1-vote

constraints; that is, constraints whose w = 1 are dis-

carded. We then conduct semi-supervised clustering

on constraint sets and the similarity matrix based on

TWED. As we know, the values of α and β in wSS-

NCut rely on the accuracy of constraints. If we obtain

a higher rate of the correct must-link set, for example,

we may assign a larger α to amplify the power of must-

link constraints; otherwise, a smaller α is set. In the

experiments, we set α = 64 and β = 8 for the high ac-

curacy of must-link and cannot-link constraints, respec-

tively, and α = 0.3 and β = 0.1 for the low accuracy of

must-link and cannot-link, respectively. Actually, the

accuracy can be improved a lot by deleting 1-vote con-

straints. We find that the mean accuracy is 84.5% for

must-link, and 83.5% for cannot-link in our datasets.

4.4 Results

4.4.1 Comparisons with Single Distance Measure

Table 3 reports the NMI scores on 12 datasets by

eight different distance measures under NCut. The last

column lists the NMI scores, which are obtained by our

weighted SSNCut method using top and bottom 1%

elements as cannot-link and must-link constraints, de-

scribed in Subsection 3.6. For each dataset, the highest

NMI value is highlighted in boldface. In the follow-

ing, we first compare the performance of seven exist-

ing distance measures. Except for wSSNCut, there is

no single distance measure that is able to archive the

highest overall NMI scores, even though TWED per-

forms better than the others on six datasets. Generally,

TWED performs better than the other seven measures.

It outperforms LCSS on all the datasets, and DTW

and u-shapelets on 11 datasets, except for only one

dataset. That is Lighting7 for DTW and TwoLeadECG

for u-shapelets, respectively. Besides, TWED outper-

forms WDDTW on 10 out of 12 datasets, WDTW and

KDTW on 9 out of 12 datasets, and DDTW on 7. It

is obvious that no measure is better than the others

overall. Each method has its strength. This validates

the fact that each measure takes different aspects into

account to avoid mismatching. By combining multiple

distance measures evaluating from different aspects, we

believe this way is able to improve the performance.
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Table 3. Comparison with Single Distance Measure

Name DTW WDTW KDTW DDTW WDDTW LCSS TWED U-Shapelets wSSNCut

50Words 0.671 0 0.690 8 0.629 7 0.746 7 0.708 9 0.653 5 0.684 9 0.604 6 0.8114

CBF 0.752 2 0.534 1 0.273 6 0.750 2 0.332 4 0.677 9 0.785 4 0.562 8 0.9591

Adiac 0.549 8 0.567 1 0.658 1 0.671 7 0.667 8 0.643 3 0.649 4 0.518 3 0.6948

Beef 0.319 8 0.321 1 0.366 5 0.258 0 0.331 6 0.329 6 0.366 5 0.220 9 0.3834

ECGFiveDays 0.008 5 0.008 3 0.172 3 0.009 7 0.008 9 0.003 2 0.168 4 0.004 9 0.2135

Lighting2 0.035 6 0.006 7 0.065 2 0.167 0 0.020 7 0.002 7 0.192 8 0.064 1 0.1928

Lighting7 0.604 9 0.535 2 0.428 8 0.528 0 0.460 3 0.396 3 0.512 9 0.273 7 0.6155

MedicalImages 0.281 3 0.280 4 0.207 4 0.312 7 0.286 6 0.190 1 0.332 8 0.237 6 0.3692

WordSynonyms 0.534 3 0.548 5 0.488 1 0.566 8 0.508 6 0.493 0 0.538 5 0.301 0 0.6274

Synthetic control 0.804 8 0.772 6 0.049 0 0.678 4 0.409 6 0.562 1 0.905 4 0.790 3 0.9627

TwoLeadECG 0.066 8 0.071 0 0.008 0 0.000 3 0.000 1 0.141 7 0.241 6 0.314 8 0.8375

Trace 0.750 8 0.751 0 0.501 3 0.799 3 0.728 7 0.530 2 0.752 7 0.739 9 0.752 7

We now compare our approach with others. As

shown in Table 3, it can easily be seen that wSSNCut

outperforms other clustering with a single type of dis-

tance measure. Our method outperforms on 11 out of

12 datasets. In particular, the highest NMI score by

a single measure for the CBF dataset is only around

0.78 (TWED), while the corresponding NMI score is

increased to 0.959 1 by our method. In addition, our

method performs better than NCut with TWED on the

10 datasets, and achieves equal NMI scores on the other

two datasets. This result demonstrates that constraints

generated from other distance measures can help im-

prove clustering performance generally. This is because

we use the TWED-based similarity matrix in wSSNCut

as well.

Additionally, another interesting result is that the

majority of measures perform poorly on some datasets

in Table 3, such as TwoLeadECG. In contrast, our

weighted SSNCut is able to improve performance ef-

ficiently. The reason for this is that although various

distance measure matrixes cannot distinguish true clus-

ters sometimes, the distance values within the top and

the bottom ones usually provide useful information for

the boundaries of such true clusters. Our approach uses

semi-supervised clustering with the constraints[40] that

makes use of these information.

4.4.2 Comparisons with Integrated Methods

In the following, we compare our method with the

other two integrated methods. Table 4 compares the

NMI scores of rival combination methods with those

of SSNCut with various percentages of constraints and

different types of integration schemes. The SSNC

stands for original SSNCut that uses union operation

to combine constraint sets. The percentage implies the

percentage of constraints. For example, the wSSNC1%

column is the results obtained by weighted SSCNut

(wSSNCut) under 1% constraints, while SSNCut2% col-

Table 4. Comparison with Rival Integration Method and Different Percentages of Constraints

Name LCM HBGF wSSNC1% wSSNC0.5% wSSNC2% SSNC1% SSNC0.5% SSNC2%

50Words 0.746 3 0.757 1 0.811 4 0.792 8 0.792 7 0.810 3 0.791 2 0.804 6

CBF 0.784 3 0.782 1 0.959 1 0.965 0 0.808 1 0.976 3 0.941 6 0.971 6

Adiac 0.670 0 0.670 7 0.694 8 0.689 7 0.674 2 0.688 1 0.691 5 0.677 8

Beef 0.283 3 0.318 9 0.383 4 0.392 5 0.374 7 0.386 1 0.386 1 0.374 7

ECGFiveDays 0.018 3 0.013 7 0.213 5 0.192 0 0.235 9 0.204 9 0.191 2 0.205 0

Lighting2 0.064 3 0.023 0 0.192 8 0.192 8 0.173 1 0.192 8 0.192 8 0.173 1

Lighting7 0.561 0 0.550 8 0.615 5 0.534 2 0.616 0 0.554 8 0.519 2 0.595 5

MedicalImages 0.340 1 0.325 7 0.369 2 0.359 4 0.387 8 0.362 0 0.335 7 0.384 0

WordSynonyms 0.586 2 0.588 1 0.627 4 0.606 4 0.631 6 0.601 5 0.596 9 0.624 4

Synthetic control 0.799 5 0.791 3 0.962 7 0.970 0 0.820 8 0.966 1 0.970 0 0.959 5

TwoLeadECG 0.285 9 0.094 5 0.837 5 0.540 6 0.966 8 0.676 0 0.488 8 0.904 0

Trace 0.751 0 0.751 0 0.752 7 0.752 7 0.813 6 0.752 7 0.752 7 0.813 6



Jing Zhou et al.: Semi-Supervised Clustering for Time Series 869

umn lists results achieved by SSNCut under 2% con-

straints. From the results, we can clearly see that

our method outperforms LCM and HBGF against all

the datasets. As an example, SSNCut on the Beef

dataset, among all the six settings, achieves the low-

est NMI score of 0.374 7 with 2% constraints by using

the weighted combination. This score is much higher

than the best one of the other two rival methods, i.e.,

0.318 9 by HBGF. Actually, almost all of NMI scores by

wSSNCut are higher than those by LCM and HBGF,

except for only one case which is under 0.5% constraints

on the Lighting7 dataset. Besides, we find that neither

LCM nor HBGF is able to handle the case in which

most of distance measures fail in differentiating clus-

ters mentioned in Subsection 4.4.1. For example, in

a case of TwoLeadECG, NMI by LCM is 0.285 9, and

NMI by HBGF is 0.094 5, while NMI by wSSNCut is

improved to 0.540 6 at least and 0.966 8 at most. When

the most distance measures perform poorly, the input

information, neither the integrated similarity matrix,

nor cluster labels by NCut with different measures, for

LCM and HBGF is inconclusive. However, the cut-off

method used in the generation of constraints can filter

out most of invaluable information to prevent misguid-

ing in the clustering process.

As for the percentage of constraints, we find that

semi-supervised clustering shows superior performance

at p = 2% under the weighted integration, and p = 1%

under the union form. Specifically, wSSNCut wins 6

out of 12 datasets at p = 2%, while only wining 3 at

both p = 0.5% and p = 1%. This is because the number

of constraints is relatively small. Only around 300 con-

straints, for instance, are created for the Trace dataset

at p = 0.5%, while this number is almost tripled at

p = 2%.

In addition, we can clearly see that the weighted

scheme outperforms the union method. For example,

on TwoLeadECG dataset, NMI by the weighted form

at p = 2% is 0.966 8, while the corresponding NMI score

by the union form is only 0.900 4. It demonstrates that

by summing up all constraint sets generated by different

measures, we are able to obtain the valuable confidence

constraint sets. Each element of the sets indicates not

only whether a constraint exists in the related pair of

time series or not, but also how reliable this particular

constraint is.

4.4.3 Accuracy of Constraint Sets

As we know, different measures quantify the dis-

tances between time series from different aspects.

Among the constraints generated by a measure, some

may be the same as those by other measures, while

the others are totally new. As such, constraints gene-

rated by a measure could be validated by the degree

of their overlapping with those by other measures. On

the other hand, the accuracy of constraints can be mea-

sured by the true labels of data points. If two instances

connected by a must-link constraint have different true

labels, we believe this must-link is incorrect, and an ac-

curate constraint, otherwise. For an accurate cannot-

link constraint, two instances should have different true

labels. To show the accuracy of constraints, we choose

two typical datasets of CBF and MedicalImages, and

plot the results in Fig.2 and Fig.3. The reason for se-

lecting these two datasets is that the performance of

our approach is greatly improved on CBF and shows a

relatively small improvement on MedicalImages. Fig.2

and Fig.3 show the constraint by adding constraints

generated from the relevant measures step by step. The

X-axis denotes the different distance measures. The Y -

axes of Figs.2(a), 2(c), 3(a) and 3(c) are the total num-

ber of accurate constraints, and the Y -axes of Figs.2(b),

2(d), 3(b) and 3(d) are the percentage of accurate con-

straints.

From these two figures, we can easily see that the

number of accurate constraints increases clearly with

that of distance measures combined. This fact vali-

dates our original idea of integrating different measures

to avoid mismatching. Especially, the percentage of ac-

curate must-links in Figs.2(a) and 2(b) is close to 100%.

Furthermore, the number of accurate must-links keeps

increasing. Another observation is that although there

are almost 30% inaccurate cannot-link constraints on

CBF, our method divides data into groups almost cor-

rectly. This indicates the good robustness of wSSNCut.

For the MedicalImages dataset, we can see that the

relatively large percentage of inaccurate constraints is

contained in both must-links and cannot-links. But the

weighted scheme shows better performance than the

union form all the time when p varies from 0.5% to

2%. This explains the efficiency of weighed constraint

sets in another way. The almost completely accurate

positive constraints on the CBF dataset also lead to

the fact that our method archives 0.959 1 NMI score at

p = 1%.

For all the datasets at p = 1%, the accuracies of con-

straints are improved generally by deleting 1-vote con-

straints. In particular, the mean accuracy is boosted

from 74.8% to 84.5% for must-links, and from 82.0%

to 83.5% for cannot-links. For instance, the accuracy
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Fig.2. (a) Number of accurate must-links on CBF. (b) Percentage of accurate must-links on CBF. (c) Number of accurate cannot-links
on CBF. (d) Percentage of accurate cannot-links on CBF.

is improved from 68.1% to 85.5% for must-links, and

from 96.6% to 98.2% for cannot-links on the 50Words

dataset; the accuracy is increased from 62.2% to 78.6%

for must-links, and from 97.2% to 98.6% for cannot-

links on the Lighting7 dataset.

5 Conclusions

A number of distance measures on time series have

been proposed and evaluated on clustering datasets of

time series in the past decade. A good measure may,

however, rely on a specific domain of time series data.

This fact raises a question of how to choose an appro-

priate measure for a given time series data where la-

beled data are unavailable. After finding no winner of

a single measure from the experiments, we presented

a method that is able to integrate multiple distance

measures by using the semi-supervised clustering. Ex-

tensively experimental evaluations on various datasets

have shown that our method outperforms not only in-

dividual measures, but also the typical integration ap-

proaches for clustering. Furthermore, we demonstrated

the efficiency of confidence constraint sets weighted by

multiple distance measures from different perspectives.

In addition, our method has the good robustness in

that it is able to tolerate the high level of inaccurate

constraints.

As performance is improved greatly under the large

percentage of accurate constraints, how to develop a

method that distinguishes incorrect constraints and im-

proves the clustering performance further becomes our

future work.
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