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Abstract Android is currently one of the most popular smartphone operating systems. However, Android has the largest

share of global mobile malware and significant public attention has been brought to the security issues of Android. In

this paper, we investigate the use of a clone detector to identify known Android malware. We collect a set of Android

applications known to contain malware and a set of benign applications. We extract the Java source code from the binary

code of the applications and use NiCad, a near-miss clone detector, to find the classes of clones in a small subset of the

malicious applications. We then use these clone classes as a signature to find similar source files in the rest of the malicious

applications. The benign collection is used as a control group. In our evaluation, we successfully decompile more than 1 000

malicious apps in 19 malware families. Our results show that using a small portion of malicious applications as a training

set can detect 95% of previously known malware with very low false positives and high accuracy at 96.88%. Our method

can effectively and reliably pinpoint malicious applications that belong to certain malware families.
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1 Introduction

Smartphones and mobile devices are incredibly

popular and widely adopted. The Android platform is a

widely used open source operating system for mobile de-

vices, and it accounts for over 84.7% of the global smart

phone market in the second quarter 2014 according to

International Data Corp. (IDC) 1○. Android is sup-

ported by the large number and wide variety of feature-

rich applications. For example, there are already more

than 1 400 000 applications (apps) in Google Play (De-

cember 2014) and there have been more than 50 bil-

lion downloads 2○ from this pool of apps. These apps

provide useful features, but also become a target for

criminals and other miscreants and bring certain pri-

vacy and security risks. Malware, short for malicious

software, is any software used to disrupt computer ope-

ration, gather sensitive information, or gain access to

private computer systems 3○, such as viruses, worms,

Trojan horses, and spyware.

Android is an easy target for attackers due to the

open policy that allows anyone to publish apps in ei-

ther official markets or third-party markets. Indeed,

apps can often be downloaded from arbitrary web sites

and installed. Decompiling the apps is also easy due to

the structural characteristics of the app building pro-

cess, making them vulnerable to forgery or modification

attacks. A large quantity of malware has been found

hidden in applications[1]. These applications are also

known as repackaged applications, because they look

like and work as existing genuine applications, but they

contain new code that misbehaves in the background.

Android accounted for 97% of all mobile malware in
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2014 4○. Therefore, Android malware detection has be-

come increasingly important.

Researchers have explored different ways to iden-

tify these threats. Prior studies[2-3] showed that there

are many cloned applications in mobile markets. It is

straightforward to reverse-engineer an Android appli-

cation and repackage it with additional malicious func-

tionalities. If we can obtain the malicious code from the

malware version of the application, then we might be

able to use the malicious code as a malware pattern to

identify other malware applications at the source code

level. Hence, code clone detection technique could be

an ideal technique for malware detection. Code clone

detection is used to identify duplicated or similar code.

Applying clone detection techniques to detect malware

apps should provide more accurate results. There may

also be additional benefits including detecting bugs,

program understanding, and finding usage patterns.

Clone detection is an active research area and

has been investigated to detect malicious software[4-5].

Various tools for detecting clones within and between

source files have been developed by researchers with

varying degrees of efficacy[6]. The NiCad[7] clone de-

tection tool is one such tool that has proven effective in

finding near-miss clones in source code. In this paper,

we demonstrate the detection of malware in Android

applications using a static clone detection method. Our

hypothesis is that near-miss clone detection will pro-

vide a means of detecting mutations of known mali-

cious code. We collect both malicious apps and benign

applications. The malicious apps are divided into the

training set and the evaluation set. The training set is

used to form malware faulty signatures, which are used

to find the malware in the evaluation set. We address

the following research questions.

RQ1. Can we use clone detection techniques to

generate a signature set of malicious code extracted

from malicious apps?

The clone detection result presents the clone class

information. A clone class is the clustering of a set

of similar or identical code fragments. The same mal-

ware family should contain the same malicious code.

Thus, the common code can be identified and extracted

using clone detection. If we apply clone detection to

apps within the same malware family, we can extract

the source code based on the clone class information to

generate the malware signature of that specific malware

family.

RQ2. Can we use the malware signature set to de-

tect similar malicious apps in the rest of the malicious

set?

Clone detection identifies similar or identical code.

Hence, we can use clone detection as a pattern matching

engine to find the similar malware signature pattern in

the evaluation set. We can achieve the highest accuracy

at 96.88% in finding malware.

RQ3. Can we find the variants of one malware fam-

ily in the entire malicious apps?

Malware can evolve over time. The changes can be

incremental. Therefore, the new versions should con-

tain similar code to the original. We use known mal-

ware to detect variants in the same family of malware

using the near-miss clone detector. There are four vari-

ants of DroidKungFu malware family, and we can use

DroidKungFu1 malware signature to identify the other

variants.

In this paper, we make the following contributions:

1) conducting experiments to evaluate clone detec-

tion to identify Android malware;

2) evaluating the use of clone detection as a pattern

matching engine for Android malware detection.

The detector is intended more for use by app mar-

kets rather than an approach that would be embedded

inside an Android device. The particular apps we are

interested in are those that repackage an existing app

while adding a malware package. The malware is often

also copied from other apps and included with a few, if

any, changes.

This paper is organized as follows. Section 2 sum-

marizes related studies in Android malware detection.

Section 3 presents our approach in using clone detection

to detect malware. Section 4 explains our study design

and details the tools. Section 5 explains the research

questions and describes the study results and findings.

Section 6 lists some threats to the validity of the study.

Finally, Section 7 summarizes and concludes the paper.

2 Related Work

In Android malware detection field, researchers have

presented various approaches to detect malware by ap-

plying static analysis, dynamic analysis, and signature-

based techniques.

Signature-based malware detection is a popular

technique that is similar to our approach. Patterns are

derived from knownmalware and used to identify a mal-

ware family. In general, these patterns are sequences of

4○http://www.forbes.com/sites/gordonkelly/2014/03/24/report-97-of-mobile-malware-is-on-android-this-is-the-easy-way-you-st-
ay-safe/, Aug. 2015.
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bytes of instructions[8]. Previous work[9] detected these

syntactic patterns using semantic-preserving transfor-

mations and considered semantics-aware malware de-

tection. Our approach can be seen as a form of sig-

nature generation. However, our signatures are at

a higher level compared with templatized instruction

sequences[9] and we directly compare the pattern at the

source code level. Furthermore, the underlying signa-

ture matching techniques are also very different.

An example of approaches using signature-based

technique is feature hashing detection. Juxtapp[10] is a

code similarity detection system based on feature hash-

ing among Android apps. Basic blocks are generated

and labeled from XML representation converted from

the DEX file. k-grams of opcodes from a code sequence

within each basic block of an app are extracted using

a moving window of size k as features and then a hash

function is applied to feature hash the k-grams into bit

vectors. The Jaccard similarity between two bit vec-

tors is computed to determine the similarity between

two apps. Juxtapp is able to effectively identify various

Android security issues, including buggy code, piracy,

repackaging, and malware. DroidMOSS[2] applies fuzzy

hashing technique to detect malware. App’s instruc-

tions and author information are considered as features.

Instead of processing the entire program instruction set,

the instruction sequence is divided into smaller pieces

to compute a hash value for each piece. All computed

hash values are combined into the final fingerprint of

an app. The similarity of two apps is determined by

a similarity score, which is from the calculation of the

edit distance between two fingerprints. DroidMOSS can

efficiently identify the repackaged smartphone apps.

Both dynamic and static taint analyses have been

proposed for tracking information flow in mobile appli-

cations. TaintDroid[11] is an example of dynamic taint

analysis that tracks threat information flow by instru-

menting the Dalivk virtual machine. FlowDroid[12] is a

highly precise static taint analysis for Android applica-

tions.

Zhou and Jiang[1] collected more than 1 200 malware

samples and aimed to systematize or characterize exis-

ting Android malware. Juxtapp[10] extracts the DEX

file, and analyzes it for code similarity analysis among

Android applications. Crowdroid[13] applies dynamic

analysis to analyze application behaviours for detect-

ing Android malware. Static analysis[14] is based on

source code or binaries inspection looking at suspicious

patterns. DroidMat[15] presents a static feature-based

mechanism to provide a static analyst paradigm for de-

tecting the Android malware.

DNADroid[3] is a tool that detects malicious ap-

plications through the establishment of a program de-

pendence graph (PDG). A PDG represents the depen-

dences of each operation in a program. DNADroid uses

dex2jar 5○ to convert Dalvik byte codes to java byte

codes so that DNADroid can utilize WALA 6○ to con-

struct PDGs for every method. The detection of simi-

larity between two applications is based on the compari-

son of matched PDG pairs. PDG technique is an often-

used means in clone detection. It uses semantic infor-

mation about the program, so the result has a better

accuracy.

AnDarwin[16] extends DNADroid to avoid compar-

ing apps pairwise and uses Android apps’ semantic in-

formation to detect similar apps. AnDarwin starts with

computing a PDG of the Android application. The se-

mantic vectors are then extracted from the PDG to

represent the application. AnDarwin identifies similar

apps by clustering semantic vectors through more effi-

cient algorithm locality-sensitive hashing (LSH)[17] to

improve the scalability. One advantage of AnDrarwin

is its reliability because it analyzes the apps only at the

Java byte code level and does not depend on other in-

formation. In our approach, we use a further level of

code, Java source code. We identify similar apps using

clone detection technique at Java source code level.

Some novel semantic-based approaches have been

developed to detect Android malware. Pegasus[18] is

one of the new techniques that apply model checking

on a new program representation, Permission Event

Graph (PEG), to verify the policies specified by users.

PEG presents the Android event dependencies and their

API/permission level behaviours. It captures the se-

mantic information about an app to model the effects

of the event system. However, Pegasus needs users to

write the policies of an app’s behaviours using tempo-

ral logic formulas. Apposcopy[19] is another semantics-

based tool, which constructs a new form of program

representation, Inter-Component Call Graph (ICCG),

with specific control and dataflow properties as a part

of a malware detection analysis. It extracts seman-

tic patterns and generates a unique signature match-

ing that particular malware. The constructions of both

PEG and ICCG are based on Java byte code and the

semantic information is extracted from the Java byte

5○https://code.google.com/p/dex2jar/, Mar. 2015.
6○http://wala.sourceforge.net/wiki/index.php/Main Page, Mar. 2015.
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code. Our method is based on the pattern-matching

approach, which is purely syntactic.

In this paper, we demonstrate a clone detection

approach to detect malware in the Android platform.

Clone detection technique has been investigated to de-

tect malicious software. Walenstein and Lakhotia[5]

showed that it is possible to find the evidence where

parts of one software system match parts of another

by comparing one malicious software family with an-

other. Bruschi et al.[4] demonstrated a method to de-

tect self-mutating malware (a particular form of code

obfuscation) with clone detection techniques.

3 Proposed Approach

Android malware detection techniques use static,

dynamic, or combined program analysis. Our approach

uses static analysis to perform the detection of malware

in Android applications. Our intention is to develop an

approach that would identify all possible malicious apps

to achieve a high recall and precision.

The general approach of the malware detection is

shown in Fig.1.

APK files 7○ are the files used to distribute Android

applications and are used as input for a reverse engi-

neering step to obtain Java source code files. The source

files are then passed to the clone detection phase that

comprises two phases: signature generation and signa-

ture matching. The NiCad clone detector is used in

the clone detection phase. It is used to identify clone

classes for these two phases.

In order to understand the general approach, we

present basic information about the building processes

of Android apps and code clone detection techniques.

3.1 Building Android Apps

Android is a Linux-based smart phone operating

system designed by Google to run Android apps. An-

droid apps are written in Java and distributed as APK

files, which are similar to Java jar files. The APK file

is a zip archive which contains all the code and data

needed to install and run the app. The types of files

included in the app are:

• DalVik Executable (DEX) file: the executable file

resulting from the compilation of Java source code;

• Manifest file: a file containing app properties such

as privileges, the app package file, and version;

• eXtensible Markup Language (XML) file: a file

in which the user interface (UI) layout and values are

defined;

• Resource file: a file containing resources required

for app execution, such as images.

Fig.2 shows the series of steps for the building and

packaging of files that make up the APK. First, the Java

source code is compiled using the Java compiler (in-

cluded in the Java development kit) producing a class

file that runs on the Java virtual machine (JVM). The

class file is converted to a DEX file using the dx con-

verter included in the Android SDK. The DEX file runs

on the Dalvik virtual machine.

APK Files Reverse Engineering Clone Detection Results Analysis

Fig.1. General process procedure of malware detection.

.java

Java Files

.class

Dx Tool .dex

.apk

APK Files

.xml

.so

Resource Files

APK Builder

.dex Files

AndroidManifest

.class

.class Files

Other .class Files

Java
Compiler

Fig.2. Android app building process. When we de-compile an APK file, it is from right to left.

7○http://developer.android.com/google/play/expansion-files.html, Mar. 2015.
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The manifest and other XML files needed for app

execution are encoded in binary form. The manifest

document contains a number of parameters that the

Android framework needs in order to run the app. This

includes the names of the activities, which are the dif-

ferent screens of the app, the permissions the app re-

quires and the API version. Developers may also use

this XML document to store any additional information

the app may use. For example, advertising parameters

are sometimes specified here. After that, the dex, XML,

manifest, and resource files are packaged in an APK

file, which is in ZIP format. The initially created APK

file does not include the developer signature, which is

needed in order to distribute it. The unsigned APK file

can be self-signed with the developer’s private key us-

ing Jarsigner. The developer’s signature and the public

key are then added to the APK file, which completes

the Android app building process.

3.2 Code Clone Detection

Clones are segments of code that are similar accord-

ing to some definition of similarity[20]. Roy et al.[6]

demonstrated that NiCad can yield an outstanding re-

sult among the text-based techniques and tools. We

adapt NiCad, a near-miss code clone detection tool,

to help us identify the malicious code clones in mal-

ware apps. There are two sets of results generated by

NiCad, each reported in both HTML and XML for-

mats. First, the results of the comparison are reported

as clone pairs. A clone pair is a pair of code fragments

for which one is a clone of the other. Second, the clones

in the input source are grouped into clone classes. Each

clone class contains all the clones in the input which are

similar and differ in the number of lines only up to the

specified difference threshold. Both formats contain the

source of the clones, specifying the degree of similarity,

start and end line numbers of the clones found, and

the size of the clones. NiCad provides the ability to

find clones at various granularities (classes, functions,

blocks, statements, etc.), with varying degrees of near-

miss similarity (e.g., 70%, 80%, 90% or 100% similar).

NiCad can operate in two modes. In the first mode,

called standard mode, it is given a set of code files.

NiCad identifies the clones and clusters these clones into

classes. In the second mode, called increment mode, it

is given two sets of files. NiCad finds elements in the

second set that are similar within the threshold to the

elements of the first set.

NiCad is based on TXL[21], which is a programming

language specifically designed to support computer

software analysis and source transformation tasks.

TXL is a structural transformation and parser-based

language. For instance, it parses the Java source code

based on a TXL Java grammar.

3.3 Overview of Our Approach

Fig.3 shows the detailed clone signature generation

process steps and malware signature matching steps of

our approach. Our approach consists of three main

stages: file selection, reverse engineering, and clone de-

tection. Detailed description of the stages is presented

in the following subsections.

APK

APK

Benign APK
Files

Reverse
Engineering

.java

.java
.xml

Cross-Clone
Detection
Results

Recall/Precision
Report

Results Analysis

.java

.java

Benign
Evaluation
Source Files

Malicious
Evaluation
Source Files

NiCad
Cross-Clone
Detection

Malicious
Signature Set

Malicious
Source Files

Malicious
APK Files

NiCad Signature
Clone Detection

Fig.3. Clone signature process steps and malware signature matching steps of our approach.
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3.3.1 File Selection

We select two sets of Android applications: one con-

tains known malicious applications, while the other con-

tains known benign applications. The first set of mali-

cious applications are divided into two sets, a training

set and an evaluation set.

3.3.2 Reverse Engineering

Reverse engineering of the Android apps is done pri-

marily through the decompilation of the dex file, which

can be decompiled into Java code. To obtain the Java

code, tools such as dex2jar can be used to convert the

Dalvik VM bytecode into JVM bytecode and a Java

decompiler such as JD-CORE 8○ can then be used to

recover the Java code. This allows us to do the clone

detection on high level code. Since the byte codes were

optimized during the conversion from Java byte codes

to Dalvik byte codes, the generated Java is not iden-

tical to the original Java source code. But since all of

the malware apps were decompiled by the same con-

verter and they were optimized by the same process,

the source code recovered by the reverse engineering

process is similar.

3.3.3 Clone Detection

Two clone detection phases are used: signature

generation and signature matching. In the first phase,

NiCad is used to find the clone classes within the mali-

cious training set. NiCad can compute clones at various

levels of abstraction. For our approach, we search for

clones at the function level. This allows partial match-

ing of classes in two ways. First based on the thres-

hold of similarity, the methods may be slightly different.

But also, our classes with additional methods are also

matched based on the subset of similar methods. That

is the sets of similar malware. Different malware will be

clustered into different classes of clones. We then take

one exemplar from each of the clone classes to act as a

signature for that class. This set of exemplars is called

the signature set. In the second phase, NiCad is used

in incremental mode to find clones of the members of

the signature set in the malicious and benign evaluation

sets. NiCad gives us the clone report, which we can do

the further investigation of the malware analysis.

3.3.4 Results Analysis

Finally, we analyze our results to evaluate our ap-

proach to see if we can find the malware Android appli-

cations effectively. We evaluate our approach through

two parameters, recall and precision, based on the two

evaluation sets (malicious evaluation set and benign

evaluation set). Recall is the fraction of all relevant

files retrieved by a query. It is a measure of how many

documents are missed. It is defined as[22]:

recall =
number of relevant files

⋂
retrieved files

number of relevant files
.

In our context, the relevant files are the files in the ma-

licious evaluation set. The retrieved files are those that

NiCad identifies as clones of the signature set. Thus

recall measures the fraction of the malicious evaluation

set that was identified by NiCad.

Precision is the fraction of relevant documents re-

trieved by a query. It measures how many irrelevant

documents are retrieved in error. It is defined as[22]:

precision =
number of relevant files

⋂
retrieved files

number of retrieved files
.

In our context, precision measures the fraction of

identified malicious code that is in the malicious evalua-

tion set. The precision is less than 100% when any of

the benign files are identified as clones of the signature

set.

F -measure, or accuracy, of a query is the harmonic

mean of its precision and recall. It is a weighted ave-

rage between the precision and the recall. It is defined

as[22]:

F -measure = 2×
recall× precision

recall+ precision
.

4 Case Study Design

In this section, we present our experiment envi-

ronmental setup, dataset collection, and data pre-

processing phase.

4.1 Setup

To achieve this result, various resources are needed.

We build our working environment on a Linux plat-

form. We install all the following tools we used in this

research on the Linux platform:

• Dex2jar: a tool that can convert .dex files into

.class format;

• JD-CORE: a Java decompiler;

• NiCad[7]: a scalable, flexible code clone detection

system based on TXL;

• TXL[21]: software analysis and source transforma-

tion programming language.

8○http://jd.benow.ca, Mar. 2015.
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4.2 Data Collection

In terms of dataset, we collect two groups of APK

files: benign APK files and malicious APK files. The

benign group APK files are from a third party market

AppChina 9○. The malicious group APK files are from

Android Malware Genome Project 10○.

There are two reasons we choose AppChina as our

benign group source. First, it is easier to obtain APK

files from AppChina than to get those from Google

Play. AppChina offers a client side assistant applica-

tion, which runs on PC platform and assists to down-

load APK files as many as you can. Second, we can

assume the APK files from AppChina are clean. Ap-

pChina has a review mechanism, which will check each

uploaded app from developers who want to publish

their apps on AppChina before the apps are released.

We download 484 apps in total from 15 different

categories of AppChina, such as browser, camera, com-

munication, finance, news, social and so on. Only the

top apps in each category are downloaded.

This malware group contains 1 260 Android mal-

ware samples in 49 malware families. The malware

data samples are collected from August 2010 to October

2011. It has a very good coverage of existing Android

malware. However, we could not fully use all the sam-

ples in our evaluation. Our approach is based on clone

detection technique and we need more than one sam-

ple to form a clone class. Some malware families have

only one sample, which is hard to form clone class, and

also we separate the malware samples into two subsets:

malicious extractions set and evaluation set. Thus, we

need to choose the malware data samples that belong to

a malware family which has multiple samples. Finally,

total 1 170 APK files are included in our evaluation and

they are from 19 malware families. We take a portion

of each malware family as the malicious code extraction

set and the rest are kept as the evaluation set. Table 1

shows the detail of separation of each malware family.

4.3 Pre-Processing

We use a pre-processing phase to process the APK

files, so that we can take the advantage of clone detec-

tion technique. The first step of this phase is to gene-

rate the source code from the APK files. The APK file

is in .zip file format. We extract classes.dex and then

transform it to JAVA source code. The processing steps

for each APK file are as following:

1) extraction of classes.dex file from the APK file;

2) using dex2jar to transform .dex file to .jar file;

3) using JD-CORE to decompile the .jar file to a

Java source file.

Table 1. Number of Apps of the Two Subsets of the Malware

Sample Set: Malicious Extraction Set and Evaluation Set

Malware Family Malicious Evaluation Total

Extraction Set Set

ADRD 10 012 022

AnserverBot 10 177 187

BaseBridge 10 112 122

DroidDream 08 008 016

DroidDreamLight 10 036 046

DroidKungFu1 10 024 034

DroidKungFu2 10 020 030

DroidKungFu3 10 299 309

DroidKungFu4 10 086 096

Geinimi 10 059 069

GoldDream 10 037 047

jSMSHider 08 008 016

KMin 10 042 052

Pjapps 10 048 058

Plankton 05 006 011

SndApps 10 005 010

YZHC 10 012 22

zHash 05 016 011

Zsone 06 016 012

Total 167 1 003 1 170

We write a script to automatically process all the

APK files at once according to the above steps. The

source code gathered from the pre-processing phase is

also categorized into benign group and malicious group,

and the malicious source code is categorized by malware

families.

The decompiled Java source files do not completely

conform with the standard Java grammar. The follow-

ing figures show some examples of errors in the decom-

piled Java files, such as empty labels, using an keyword

“finally” as a variable, using an empty type cast for an

assignment, and dot number(a.2()) as function. Fig.4

shows some examples of the abnormal decompiled Java

source code.

Fig.4. Examples of abnormal decompiled Java statements.

9○http://www.appchina.com, Mar. 2015.
10○http://www.malgenomeproject.org/, Mar. 2015.
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Since NiCad by default uses the standard Java

grammar, a modification of the grammar is necessary so

that clone detector can parse the decompiled Java files.

Specifically, we have added the ability to handle empty

labels, variables with keyword names and empty type

casts, and numbers as method names. Fig.5 shows the

examples of the modification to allow NiCad to parse a

label without a target.

Fig.5. Examples of the modification of NiCad Java grammar in
TXL.

During the pre-processing phase, 473 apps were suc-

cessfully decompiled from a total of 484 downloaded

apps. We successfully decompiled 1 180 863 Java files

in total. Among the apps that were successfully de-

compiled, there are 375 apps containing at least one

Java file with only null in the Java file, which represents

0.43% of the total decompiled Java files. Without any

modification of Java grammar, NiCad can parse 89.3%

of the total decompiled Java files. After the grammar

modification, this percentage of successfully decompiled

files increased to 99.82%.

5 Case Study Results

This section presents the results of our three re-

search questions. For each question, we present its mo-

tivation, the analysis approach, and a discussion of our

finding.

5.1 RQ 1: Can We Extract Malicious Code

from Malware Apps to Generate a Mal-

ware Signature Set by Using Clone Detec-

tion Technique?

Motivation. Several researchers have explored

the possibility of applying clone detection to detect

malware[23-25]. Karademir et al.[23] used clone detec-

tion to identify JavaScript malware in Adobe Acrobat

(PDF) files. Both [24] and [25] identify the code clone

fragments at binary level. None of them detect the mal-

ware at Java source code level. If we can extract the

malicious code contained in the malware, it not only

will help to identify the malware, but also can help to

remove the malware.

Approach. First, we need to obtain the malicious

code from the source code to form a malicious signa-

ture as a malware pattern. We separate our data into

three groups: benign set, malicious code extraction set,

and testing set. In RQ1, we mainly focus on the ma-

licious code extraction set, which still keeps the same

directory structure as the testing set. Both of them are

categorized into 19 malware families.

To generate the malware signature set, we apply the

clone detection technique to the malicious code extrac-

tion dataset for each malware family separately. The

NiCad clone detector is used in this step. In each mal-

ware family folder, there are several sub-folders which

contain the decompiled Java source code of each APK

sample, and they should contain the identical or simi-

lar malicious code fragments that belong to one mal-

ware family. Thus, NiCad can easily cluster the iden-

tical code into one class. The clone detection report of

NiCad presents the clone classes within the malicious

data extraction set. Based on the clone class informa-

tion, we can extract the code of one member of each

clone class to form a signature set for 19 different mal-

ware families and the code extracted from each malware

family is saved as a new Java file called malewarefamily-

name.java. Following these steps, we are able to obtain

the malicious code from the sample set.

Findings. Malicious code can form a clone class.

We examine the result of NiCad to each malware family

in the extraction set to see if a set of malicious code

fragments can form a clone class. Table 2 shows the

preliminary result of this signature generation phase

at 100% similarity level. Column 3 presents the num-

ber of clone classes generated from malicious classes.

We only keep those clone classes across all samples

within one malware family. In our malware code ex-

traction experiment, we conduct sensitivity analysis.

We run clone detection at several different similarity

thresholds: 70%, 80%, 90% and 100% and three types

of clones. Most of malware signature code is simi-

lar or identical. Therefore, threshold does not affect

a lot. In terms of the malware code extraction, the

clone detection results for different similarity thresh-

olds and clone types of these various settings do not

have significant differences. Since the malware code ex-

traction is performed within one single malware family
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Table 2. Experimental Results on the

Malicious Extraction Dataset

Malware Family Number of Number of Similarity (%)

APK Clone Classes

ADRD 10 3 100

AnserverBot 10 8 100

BaseBridge 10 8 100

DroidDream 08 8 100

DroidDreamLight 10 1 100

DroidKungFu1 10 25 100

DroidKungFu2 10 72/18 100

DroidKungFu3 10 2 100

DroidKungFu4 10 3 100

Geinimi 10 3 100

GoldDream 10 11 100

jSMSHider 08 33 100

KMin 10 56 100

Pjapps 10 2 100

Plankton 05 2 100

SndApps 10 4 100

YZHC 10 4 100

zHash 05 180 100

Zsone 06 129 100

and the decompiled Java code of applications should

contain the identical malware code, we only show the

result in Table 2 at 100% similarity. Android app de-

velopment often uses the third party or open source

libraries. We take this into account when we gene-

rate the malware code signature from the decompiled

code. The decompiled apps have a clear folder struc-

ture, where each directory name indicates the function

of the code, for example, ads, util, and sdk. We skip

the code if the code is within a library folder such as

sdk. Though apps within one malware family contain

same malicious code, these apps are not the same apps.

The chance of containing same library is low. Thus it

is difficult to form a clone class across all apps within

the same malware family.

Giving an example, the first row of Table 1 is the

malware family ADRD. We use 10 sample apps as the

malicious extraction set. Accordingly, there are 10 sub-

folders under folder ADRD. We assign a sequence num-

ber for each subfolder, and in this way, we can easily

identify the source file of each clone class. Fig.6 shows

the partial result of the phase 1 clone detection. We

only show two clone classes: class “1” and class “27”

in this example. Obviously, class “27” is the malicious

code clone class, which contains the ten identical code

fragments from each different APK sample source code.

Although class “1” is a clone class, which does not cover

all the sub-samples, we do not take it as the malicious

code clone class.

The clone report gives the location information of

the identical code, such as file name, startline, and end-

line. Thus, we can extract each malicious code fragment

of one member of each malicious clone class to a new

java file called ADRD.java (see Fig.7).

The above example is extracted from

com.xxx.yyy.UdateHelper.java from the ADRD mal-

ware family. ADRD is a Trojan that can open several

system services. It can also upload infected cell phone’s

information (IMEI, IMSI, and version) to the control

Fig.6. Example of phase 1 clone detection result of NiCad.
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server and then receive its commands. In addition, it

can download an installation file (.apk) to a specified

directory of the SD card. Infected cell phones will

generate significant network traffic and cause users ex-

tra expenses. The example code shows the code set, a

new host to “10.0.0.172”, can create a new folder, and

save the download APK as “myupdate.apk”. Based on

the clone class information, we can extract the mali-

cious code.

Fig.7. ADRD.java.

The identical or similar malicious code may not

cross the entire malicious extraction set within one mal-

ware family. This is a very interesting finding, as we

assume that the malicious code should cross the whole

extraction set within one malware family at beginning.

However, we could not find any clone class within the

DroidKungFu2 family across the ten extraction set in-

stead of some clone classes from six of ten and other

clone classes from the rest of four extractions set. In

another word, the signature set is formed by two kinds

of clone class: one kind is the clone class containing six

pieces of similar or identical code, and the other kind

is the clone class containing four pieces of similar or

identical code. Thus, we extract the code from both

different malicious sample clone classes. In Table 2, we

show the numbers from different sample clone classes.

For DroidKungFu2, 72 clone classes can be clustered

from six sample sets and 18 clone classes can be formed

from the rest four sample sets.

5.2 RQ 2: Can We Use the Malware Signa-

ture Set to Detect the Malware Apps in

the Rest of the Malicious Set?

Motivation. Clone detection is to identify similar or

identical code. Hence, we can use clone detection as

a pattern matching engine to find the similar malware

signature pattern in the evaluation set.

Approach. NiCad has two modes of clone detection:

standard mode clone and incremental mode clone. The

standard mode gives NiCad a single source folder to

examine and all source files inside this folder are exa-

mined for clones, which is the way used in RQ1. The

second incremental mode compares two separate folders

of source code to find code clone pairs between the two

systems; no clones are detected within the single fold-

ers in this mode. When testing in incremental mode,

NiCad is run to compare a “malware” and a “testing/-

malwarefamliy” folder. The malware folder contains

the 19 malware java files of known malware and the

“testing/malwarefamliy” folder represents the evalua-

tion set of each malware family’s decompiled java source

files.

Precision, recall, and F -measure values are used to

evaluate the clone detection means of malware detect-

ing.

Findings. NiCad can cluster the malware file and

the evaluation set into clone class. In other word,

our clone detection technique can detect successfully the

malware. This result proves the ability of clone detec-

tion technique in finding malware in Android platform.

Fig.8 shows the partial incremental mode clone detec-

tion report for ADRD malware family. In this exam-

ple, 13 files are clustered into one clone class, and one
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Fig.8. Phase 2 incremental mode clone detection result of NiCad.

file is from the malware signature set, which is “mal-

ware/ADRD.java”. From Table 1, we know there are

12 malware app samples in the evaluation set, and the

result of 12 malware files plus one malware signature

file matches the clone detection result in the example.

Thus, we can use one malware family signature to de-

tect all the same malware family apps in this exam-

ple. It demonstrates that the clone detection technique

can be as a pattern matching engine to detect the mal-

ware. The results of incremental mode clone detection

between the signature set and the evaluation set are

shown in Table 3.

Table 3. Experimental Results on the

Malicious Evaluation Dataset

Malware Family Number of Number of Similarity (%)

Total Malicious Detected

Apps Malware

ADRD 0012 012 100

AnserverBot 0177 175 100

BaseBridge 0112 077 100

DroidDream 0008 007 100

DroidDreamLight 0036 009 100

DroidKungFu1 0024 023 100

DroidKungFu2 0020 020 100

DroidKungFu3 0299 298 100

DroidKungFu4 0086 078 100

Geinimi 0059 059 100

GoldDream 0037 037 100

jSMSHider 0008 008 100

KMin 0042 042 100

Pjapps 0048 039 100

Plankton 0006 005 100

SndApps 0005 005 100

YZHC 0012 012 100

zHash 0006 006 100

Zsone 0006 006 100

Total 1 003 918

Clone detection technique can achieve a very high

accuracy in finding malware. Our experiment is mainly

evaluated through two parameters, recall and precision,

based on the two evaluation sets (malicious evaluation

set and benign evaluation set).

The result of the evaluation sets is shown in Table 4.

These results are calculated against all 1 003 malicious

apps and 473 benign apps. We set the similarity thres-

hold at 100% for type 1 and type 2, and set it to 70%

for type 3. As we know, type 1 clone is exact clone, and

type 2 is renamed clone, so we set threshold at 100%

that can yield a better precision. Type 3 clone has more

alteration on code, so we set threshold at 70% to allow

a better recall. A significant portion of the files in the

malicious testing set (91%) are detected only with type

1 clone detection. Type 2 clone detection improves the

detection a little bit, and type 3 does not improve the

result of clone detection if we compare the type 3 result

with the type 2 result. In terms of accuracy, the overall

best detection was found to be type 2 clone detection at

the accuracy of 96.88%. Table 4 is the result of apply-

ing incremental clone detection to the evaluation set.

Since type 1 is too strict, we could not identify more

malware apps. Since type 3 is too loose, we lost the

precision.

5.3 RQ 3: Can We Find the Variants of One

Malware Family in the Entire Malicious

Apps?

Motivation. Malware also evolves over time. How-

ever, the variant is from its original malware family,

which means it may contain the similar code with the

original malware. Hence, we can use one known mal-

ware family to detect its variant. We try to use known

malicious code to identify the unknown malware.

Approach. In our data sample, DroidKungFu mal-

ware has several variants. They are DroidKungFu1,

DroidKungFu2, DroidKungFu3, and DroidKungFu4.

We use NiCad in the standard mode to detect if there

exist clone classes among the extracted malicious code

of DroidKungFu malware families. Then we use NiCad

in incremental mode to detect the testing set to exa-

mine the cross detection, and use known malware to

detect their variants.
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Table 4. Experimental Results on the Evaluation Dataset

Parameter Number of Number of Recall (%) Precision (%) Accuracy

Malicious Clones Benign Clones (F -Measure)

Type 1 (exact) 0918 003 91.52 99.67 95.42

Type 2 (rename) 0948 006 94.51 99.37 96.88

Type 3 (near-miss) 0948 384 94.51 71.17 81.19

Total files 1 003 473

Findings. The malicious code of variants changed

a lot over time. When we execute clone detection

on the DroidKunFu malware family, where the ex-

tracted malicious code files include DroidKunFu1.java,

DroidKunFu2.java, DroidKunFu3.java, and Droid-

KunFu4.java, the clone detection report indicates that

only DroidKunFu1 and DroidKunFu2.java contain the

identical or similar code and the number is limited.

From Table 2, we know DroidKunFu1 has 25 pieces

of code which are identical and DroidKunFu2 has 90

pieces of code in total, but NiCad can identify that

they have four pieces of identical code. On the other

hand, NiCad cannot identify any similar or identi-

cal code among DroidKunFu1, DroidKunFu2, Droid-

KunFu3, and DroidKunFu4. The variants of the Droid-

kunFu family do not share too much code between each

other. They only keep some same basic functions in

each variant. Fig.9 shows the snippet of DroidKungFu1

malicious signature. In this example, DroidKungFu1

and DroidKungFu2 keep the downlaodFile function and

the onCreate function.

It is possible to detect the unknown malware us-

ing signature set within the same malware family vari-

ants. We use the previous variant malware signature

set to detect the next version variant. For example,

we execute incremental mode clone detection among

DroidKungFu1 malicious signature and DroidKungFu2,

DroidKungFu3, DroidKungFu4 evaluation sets. Next,

DroidKungFu2 malicious signature set is used to do in-

cremental mode clone detection. Table 5 shows the

variants of incremental mode clone detection results.

We can use DroidKungFu1 malicious signature to de-

tect the most of DroidKungFu2 and DroidKungFu4

malware apps in the evaluation set and all the Droid-

KungFu3 malware apps within the evolutions set.

Fig.9. Snippet of DroidKungFu1 malicious code.

The extracted malicious code does not cover the

entire malicious code existing in the malware sample

set. From the result of previous finding, it seems that

Table 5. Experimental Results on the Variants Clone Detection

Signature Set DroidKungFu2 DroidKungFu3 DroidKungFu4

DroidKungFu1 13/43% 299/97% 79/82%

DroidKungFu2 299/97% 79/82%

DroidKungFu3 000/0%
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the DroidKungFu2 malicious signature set has a bet-

ter coverage than the other signature sets. Droid-

KungFu2 signature set does not have any common

code with DroidKungFu3 or DroidKungFu4 signature

set, but using DroidKungFu2 signature still can detect

DroidKungFu3 and DroidKungFu4 malware. Thus, we

examine the result further, and find that the clone

classes between DroidKungFu2 signature set and Droid-

KungFu3 or DroidKungFu4 are totally different from

the clone classes formed by DroidKungFu3 signature

set or DroidKungFu4 signature set. Thus, the extracted

malicious code for DroidKungFu3 or DroidKungFu4 is

not the entire malicious code. We mentioned before

that DroidKungFu2 malicious signature set is formed

by two different groups of the same extraction sample

set: one group contains six sample apps and the other

group contains the rest of four sample apps. When

extracting the malicious code, we need to take into ac-

count the clone classes that are not across entire sample

set. The root cause of this is the quality of decompiled

code. We found some files only contain a word “null”,

which means something went wrong when the decom-

piler tried to decompile this file.

6 Threats to validity

In this section, we discuss the threats to validity of

our study, following common guidelines for empirical

studies[26].

Construct Validity Threats. The threats concern the

relation between theory and observations. One major

issue of our method is that we only take Java code into

account and the code quality highly relies on the quality

of decompiler. Some malware apps contain enciphered

payloads and they are not regular code. Our method

is impossible to detect them. The code quality factor

may prevent our method from finding all malicious code

within one malware family. Another issue is that not

all APK files can be decompiled. We downloaded 484

benign apps in total from AppChina, and 11 apps could

not even be unzipped. To avoid or alleviate such issue,

we could use some intermediate representation of Java

byte code as the target code of clone detection in the

future. Jimple[27] and Smali[28] are intermediate repre-

sentations. We can obtain the intermediate code using

exiting tools such as Dexpler[29]. Then, we add the cor-

responding grammars to NiCad, so that we are able to

parse and apply clone detection to the code.

Threats to Internal Validity. They concern factors

that can affect our results. Our clone detection method

is a signature-based approach, which has a known limi-

tation that it can only detect instances of known mal-

ware families. Though our method can detect variants

in malware, the variants are limited to the threshold

used for clone comparison. The malicious code extrac-

tion in our method is based on clone class information.

To form a clone class, we need two or more pieces of

identical or similar code fragments. If there is only one

sample file, it cannot form a clone class. In our case,

we could not extract the malware signature if there is

only one malware app sample within one malware fam-

ily. Thus, we have to eliminate some samples from the

original malware sample set. We cannot guarantee the

benign apps are 100% clean. Even Google Play store

still has malware in it[30].

Threats to External Validity. These threats concern

the possibility to generalize our results. Our malware

data sample set is not the most up-to-date, and it only

contains the malware sample from August 2010 to Oc-

tober 2011. Thus, we could not detect the latest mal-

ware. The benign data set is only from AppChina. We

should test more benign apps against Google Play store

and more other third markets. We cannot detect zero-

day malware. Our method requires that we identify

malicious code first.

7 Conclusions

In this paper, we applied a clone detection tech-

nique, a static analysis approach for detecting malware

in Android mobile apps ecosystem. Malware that be-

longs to one family shares a common set of character-

istic code, which can be clustered through the NiCad

clone detector. We applied clone detect technique in

both standard mode and incremental mode in our ap-

proach. The research aim of determining the feasi-

bility of clone detection techniques in detecting An-

droid malware was achieved by the clone signature on

NiCad. Our experiments indicated that our approach

can detect malware with high accuracy of 96.88%. Our

method can effectively and reliably pinpoint malicious

applications that belong to certain malware families.
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