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Abstract The In-Parameter-Order (IPO) algorithm is a widely used strategy for the construction of software test suites

for combinatorial testing (CT) whose goal is to reveal faults triggered by interactions among parameters. Variants of IPO

have been shown to produce test suites within reasonable amounts of time that are often not much larger than the smallest

test suites known. When an entire test suite is executed, all faults that arise from t-way interactions for some fixed t are

surely found. However, when tests are executed one at a time, it is desirable to detect a fault as early as possible so that

it can be repaired. The basic IPO strategies of horizontal and vertical growth address test suite size, but not the early

detection of faults. In this paper, the growth strategies in IPO are modified to attempt to evenly distribute the values of

each parameter across the tests. Together with a reordering strategy that we add, this modification to IPO improves the

rate of fault detection dramatically (improved by 31% on average). Moreover, our modifications always reduce generation

time (2 times faster on average) and in some cases also reduce test suite size.
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1 Introduction

Modern software systems are highly configurable.

Their behavior is controlled by many parameters. In-

teractions among these parameters may cause severe

failures, resulting in poor reliability. Therefore, soft-

ware testing and reliability assessment are crucial in

the design of effective software, as discussed in [1-3] for

reliability and in [4-15] for software testing. Software

testing serves two main purposes: 1) to ensure that

software has as few errors as possible prior to release,

and 2) to detect and isolate faults in the software. A

generic model of such a software system identifies a fi-

nite set of parameters, and a finite set of possible values

for each parameter. Faults may arise due to a choice

of a value for a single parameter, interactions among

the values of a subset of the parameters, or a result

of environmental conditions not included in the soft-

ware model. We focus on the faults that arise from

the parameters identified and the interactions among

them. It is nearly always impractical to exhaustively

test all combinations of parameter values because of re-

source constraints. Fortunately, this is not necessary

in general: in some real software systems, more than

70 percent of faults are caused by interactions between

two parameters[16], and all known faults are caused by

interactions among six or fewer parameters[17-18].
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For these reasons, combinatorial testing (CT) or t-

way testing chooses a strength t (the largest number of

parameters interacting to cause a fault), and forms a

software interaction test suite as follows. Every row of

the test suite is a test or a test case. For each parameter

in the system, each test specifies an admissible value for

the parameter. The defining property is that, no matter

how one chooses t parameters and an admissible value

for each (a t-way interaction), at least one test has the

specified parameters set to the indicated values. This

coverage property ensures that every possible interac-

tion among t or fewer parameter values must arise in

at least one of the test cases. CT has proved to be an

efficient testing technique for software[6,9,19]. Indeed,

empirical studies have shown that t-way testing can ef-

fectively detect faults in various applications[17-18,20-22].

A primary objective in producing a test suite is to

minimize the cost of executing the tests; hence min-

imizing the number of tests is desired. At the same

time, however, the time to produce the test suite is

also crucial. Hence the most effort has been invested

in finding a variety of test suite generation algorithms.

Some invest additional computational resources in min-

imizing the size of the test suite, while others focus

on fast generation methods for test suites of accept-

able but not minimum size. General methods pro-

viding fast generation have primarily involved greedy

algorithms[9]. One-test-at-a-time methods start with

an empty test suite, and keep track of the as-yet-

uncovered t-way interactions. Then repeatedly a test

is selected, which attempts to maximize the number of

such interactions that are covered by the test, until all

interactions are covered. This strategy was pioneered in

AETG[23], and later proved to be within a constant fac-

tor of the optimal size[24-25]. In practice, maintaining

a list of all t-way interactions can be prohibitive when

the number of parameters is large. One-parameter-at-

a-time methods instead construct a test suite for t of

the parameters (this contains all of the possible tests).

Then it repeatedly adds a new parameter, and chooses

a value for this parameter in each of the existing tests

(horizontal growth). Because it is possible that some

t-way interactions involving the new parameter have

not been covered yet, further tests are selected to cover

all such interactions (vertical growth). This requires

maintaining a list of (t−1)-way interactions, and hence

can involve less bookkeeping. The pioneering exam-

ple here is IPO[26] and its extensions, IPOG[27], and

IPOG-F and IPOG-F2[28], which will be discussed in

more detail in Section 2. Both strategies typically pro-

duce test suites of acceptable size[26,29]. It has been ob-

served that one-test-at-a-time methods produce slightly

smaller test suites in general, while one-parameter-at-

a-time methods are somewhat faster at generation[26].

As mentioned earlier, software interaction test suites

serve as two complementary roles[30]: to verify that no

t-way interaction of SUT (software under test) causes a

fault, or to locate such a fault. These two roles are

different: certifying absence of a fault requires run-

ning the whole test suite, while locating a fault may

not. Indeed in [30], it is shown that minimum test

suite size is not the correct objective for fault location;

the structure of the test suite can be more important

than its size alone. An improved rate of fault detec-

tion can provide faster feedback to testers[31]. Recent

studies have shown that CT is an effective fault de-

tection technique and that early fault detection can

be improved by reordering the generated test suites

using interaction-based prioritization approaches[32-34].

Many strategies have been proposed to guide priori-

tization using evaluation measures such as interaction

coverage based prioritization[30,35-39] and incremental

interaction coverage based prioritization[40-41]. In [30],

an evaluation measure of the expected time to fault de-

tection is given.

Test case prioritization techniques have been ex-

plored for the one-test-at-a-time methods, but lit-

tle is known for the one-parameter-at-a-time meth-

ods. Bryce et al.
[35-36,42] presented techniques

that combine generation and prioritization. Pure

prioritization[32-34,39] instead reorders an existing inter-

action test suite, using the metric of normalized average

percentage of faults detected (NAPFD). However, ex-

isting pure prioritization techniques use explicit fault

measurements of real systems, and hence are not di-

rectly suitable for the IPO algorithm.

The main contributions of our work are:

1) We modify the IPO algorithm in order to accele-

rate the method and make it effective for fault detec-

tion. Our modifications attempt to make the values of

each parameter more evenly distributed during genera-

tion. We focus on choosing values for the extension to

an additional parameter during the horizontal growth

of the algorithm and filling values for don’t care posi-

tions. (See Section 3.)

2) We develop a pure prioritization technique (a re-

ordering strategy) for the IPO algorithm based on the

evaluation measure presented in [30]. Our method can

reduce the expected time to fault detection effectively.

(See Section 4.)
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3) We conduct experiments to demonstrate the ef-

fectiveness of the modifications (see Section 5). We

conclude that the modifications to the IPO strategy re-

sult in faster generation (2 times faster on average ac-

cording to the experimental results in Subsection 5.1),

sometimes in smaller test suites, and together with the

pure prioritization, in less time to detect the first fault

(improved by 31% on average according to the experi-

mental results in Subsection 5.2).

2 Framework of the IPO Algorithm

IPO comprises a family of methods of the one-

parameter-at-a-time type. We focus on IPOG as a rep-

resentative implementation. The basic operation is to

add a new parameter to an existing interaction test

suite of strength t. To initialize the method, whenever

the number of parameters is at most t, all possible rows

are included, which is necessary and sufficient to obtain

a test suite.

Thereafter, to introduce a new parameter, the set π

of all t-way interactions involving the new parameter is

computed. Horizontal growth adds a value of the new

parameter to each existing row so that this extended

row covers the most interactions in π; the interactions

covered are removed from π. Then if π still contains

uncovered interactions, vertical growth adds new rows

to cover them. This process is outlined in the flowchart

in Fig.1.

Existing variants of the IPO strategy alter the se-

lection of values for the new parameter during horizon-

tal growth and the selection of additional rows during

vertical growth. During both horizontal and vertical

growth, it frequently happens that the value for one

or more parameters in a row can be chosen arbitrarily

without affecting the coverage of the row. Such entries

are don’t care positions[26] in the test suite. The IPO

methods exploit the fact that selecting values for don’t

care positions can be deferred; then they can be filled

during horizontal growth when the next parameter is

introduced. Every variant of IPO must therefore deal

with two basic problems:

• choose values for the new parameter to maximize

the number of uncovered interactions covered during

horizontal growth;

• assign values for don’t care positions that arise.

In the next section, we explore an implementation

of this IPO framework in which the objective is not

just to ensure coverage, but also to attempt to make

each value appear as equally often as possible for each

parameter. The latter is a balance condition.

3 Balance in the IPO Algorithm

A test suite must cover all t-way interactions. Con-

sider a specific parameter and the t-way interactions

that contain it. For each value of the parameter, the

numbers of these t-way interactions with each different

value of the parameter are the same. Now consider the

frequencies of values of the parameter within the tests

of a test suite. Because each value must provide the

coverage of the same number of interactions, it appears

to be reasonable to attempt to make the frequencies

Create Set π of Uncovered t-Way
Combinations of Values Involving

the Next Parameter

π  Is Empty?

No

START

END

All the Parameters
Are Included in the Set?

No

Build a t-Way Test Set
for the First t Parameters

Yes

Yes

Vertical Growth
(Remove the Covered 
Combinations from π)

Horizontal Growth
(Remove the Covered 
Combinatons from π)

Fig.1. Flowchart of IPOG algorithm.
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close to equal. The same argument applies to fault de-

tection.

Two issues arise. First, current IPO algorithms do

not make any explicit effort to balance the frequencies

of values. Second, it is not at all clear how such an ob-

jective might affect the sizes of test suites produced, or

the time to generate them, or their rates of fault detec-

tion. In this section, we develop modifications of IPO

to address frequencies of values. Subsequent sections

treat their impacts.

3.1 Choosing a New Parameter’s Values

During horizontal growth, the IPOG algorithm

chooses to add a value of the new parameter to cover

the greatest number of interactions in π. In many situa-

tions, more than one value achieves this goal, and we

must choose one. A naive strategy treats the values as

ordered, and selects the smallest value that covers the

most interactions in π. This introduces a bias towards

the smaller values of each parameter, sometimes result-

ing in smaller values appearing much more frequently

than larger ones.

Here a different strategy, shown in Algorithm 1, is

proposed. The essential change is to treat the values

as being cyclically ordered, recording the value selected

for the previous row. Then possible values for this row

are considered by starting from the value following the

previous one selected. For this modification, vertical

growth remains unchanged.

Algorithm 1. Modified Horizontal Growth

1. Cov[r; v] is the number of interactions that

the extended row (r; v) covers

2. q ← |P |

3. prev← q

4. for each row r in the covering array ca do

5. max← (prev + 1) mod q

6. j ← (max + 1) mod q

7. while j 6= ((prev + 1) mod q) do

8. if Cov[r, vj ] > Cov[r, vmax] then

9. max ← j

10. end if

11. j ← (j + 1) mod q

12. end while

13. r ← (r, vmax)

14. prev ← max

15. end for

Algorithm 1 incurs additional time to track the pre-

vious value selected, but this small addition is domi-

nated by the computation of coverage, and hence makes

no change in the complexity of the method.

While shown in Algorithm 1 for IPOG, this simple

strategy can also be used in IPOG-F and IPOG-F2. We

show the modification for IPOG-F. The IPOG-F algo-

rithm greedily selects over both the row and the value

with which the covering array is extended, and the ex-

tended row/value pair (i; a) is greedily selected by the

following formula[28]:

tn =

(

n− 1

t− 1

)

− Tc[i; a],

where n is the number of parameters, Tc[i; a] denotes

the t-tuples that have previously been covered by al-

ready extended rows, and tn denotes the number of new

t-tuples the row/value pair would cover if we extend row

i with value a. The metric of optimal selection for the

extended row (i; a) is that the extended row (i; a) would

maximize tn.

The original pseudo-code for horizontal growth in

IPOG-F is shown in Algorithm 2. The modification

replaces line 6 to line 10 of Algorithm 2 as shown in

Algorithm 3. Similar modifications can be applied to

IPOG-F2.

Algorithm 2. Horizontal Growth of IPOG-F

1. Tc[r; a] is the number of t-tuples covered by (r; a)

2. Cov[Λ, v] is true if the interaction with column

tuple Λ and value tuple v is covered

false otherwise

3. Tc[i; a]← 0,∀i, a

4. Cov[Λ, v]← false,∀Λ, a

5. while some row is non-extended do

6. Find non-extended row i and value a

7. so that tn =
(

k−1

t−1

)

− Tc[i; a] is maximum

8. if tn = 0 then

9. Stop horizontal growth

10. end if

11. Extend row i with value a

12. for all non-extended row j do

13. S ← set of columns where rows i and j

have identical entries

14. for all column tuples Λ ⊂ S do

15. v ← the value tuple in row i and

column tuple Λ

16. if Cov[Λ, v] = false then

17. Tc[j;a]← Tc[j;a] + 1

18. end if

19. end for

20. end for

21. for all column tuples Λ do

22. v ← the value tuple in row r and

column tuple Λ

23. if Cov[Λ, v] = false then

24. Cov[Λ, v]← true

25. end if

26. end for

27. end while
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Algorithm 3. Modification (Lines 6∼10)

1. max← (prev + 1) mod q

2. j ← (max + 1) mod q

3. while j 6= ((prev + 1) mod q) do

4. if Tc[i; vj ] < Tc[i, vmax] then

5. max ← j

6. j ← (j + 1) mod q

7. end if

8. end while

9. a← vmax

10. tn ←
(

k−1

t−1

)

− Tc[τ, a]

11. if tn = 0 then

12. Stop horizontal growth

13. end if

14. Extend row i with value a

15. prev ← max

3.2 Addressing don’t care Positions

In horizontal growth, when the maximum number

of interactions that the extended row (r; v) can cover is

0, the value at this position is a don’t care. The don’t

care positions can be addressed using the method of

Subsection 3.1.

In vertical growth, new rows that are created to

cover the t-way combinations in π not covered by hori-

zontal growth can leave positions not needed to cover

interactions in π as don’t care. The selection of these

values can influence the extension for the remaining pa-

rameters. To exploit these don’t care positions, one

strategy focuses on coverage, and the other on balance.

The balance strategy attempts to make values of

all parameters distributed evenly: as each don’t care

arises, it is filled with a value for this parameter that

currently appears the least often; ties are handled by

taking the next in the cyclic order of values after the

previous selection.

The coverage strategy is greedy. Don’t care posi-

tions produced in vertical growth are left unassigned

until the next horizontal growth. Then a value is chosen

so that the row covers the most uncovered interactions,

using the method described in Subsection 3.1.

Focusing on coverage is generally slightly superior in

reducing the size of test suites. However, the balance

strategy reduces the time to generate the test suite.

Because of our interest in fault detection, and the fact

that existing IPO variants use a coverage strategy, we

adopt the balance strategy here. The pseudo-code for

the balance strategy is shown in Algorithm 4.

Vertical growth treating don’t care positions using a

coverage strategy examines all t-way interactions, while

Algorithm 4. Addressing don’t care Positions

1. Number the values of Pi as v1, v2, . . . , v|Pi|

2. freq[Pi, j] is the frequency of value vj of Pi

appears in the existing test set

3. e is an entry in column i

4. if e is a don’t care position then

5. Find min that freq[Pi, min] is minimum

in freq[Pi, 1], . . . , freq[Pi, |Pi|]

6. Assign e with vmin

7. end if

our balance strategy only examines frequencies. Sav-

ings are only incurred with the balance strategy when

don’t care positions arise during vertical growth. In

both cases, the worst-case complexity is dominated by

the cost of horizontal growth, so in principle the two

methods have the same asymptotic complexity. How-

ever, in practice, every don’t care position results in a

saving in computation time for the balance strategy.

4 Reducing the Expected Time to Fault

Detection

In [30], a measurement of the goodness of a test suite

at detecting a fault is defined. Suppose that every test

takes the same time to run. Further suppose that faults

are randomly distributed among the t-way interactions,

and that there is no a priori information about their lo-

cation. For a system with s faults, the expected time to

fault detection is determined by the expected number

of tests to detect the presence of a fault. Φs denotes

the expected number of tests to detect the first fault in

a system with s faults.

Φs =

∑N

i=1

(

ui

s

)

(

Λ
s

) .

Here ui is the number of uncovered interactions be-

fore executing the i-th row, N is the number of rows

of the test suite, and Λ is the total number of t-way

interactions.

This measure applies to any test suite when faults

arise randomly, and is not intended to examine particu-

lar patterns of faults in specific systems. As such, it can

serve as a means to evaluate test suites for use in an

as-yet-unknown application.

Minimizing the expected time to fault detection

means constructing a test suite to minimize Φs given

s. Rather than constructing a test suite to minimize

Φs directly, we can reorder the rows of a test suite to

reduce Φs.

Because all faults of interest are caused by parame-

ter interactions, the more uncovered interactions con-
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tained in the test, the more likely a fault is to be re-

vealed. Hence placing the tests that cover the greatest

number of the uncovered interactions early can increase

the probability of detecting a fault. To see this, we

rewrite the formula as follows:

Φs =

∑N

i=1

(

ui

s

)

(

Λ
s

) =

N
∑

i=1

(

ui

s

)

(

Λ
s

) .

Then the problem becomes minimizing the average

value of
(ui

s )
(Λs)

, the likelihood that all faults remain unde-

tected after running i tests. The method for reordering

the test suite is Algorithm 5. There may be a tie for

row rj where Tc[rj ] is the largest — if there is, the tie

would be broken randomly.

Algorithm 5. Reordering Test Suites

1. n← N

2. for j from 1 to n do

3. for each row r1, . . . , rn

4. Determine the number Tc[ri] of t-way

interactions covered in ri

but not covered in r1, . . . , ri−1

5. end for

6. Choose a row rj from ri, . . . , rn for which

Tc[rj ] is the largest

7. if Tc[rj ] = 0 then

8. Remove all rows ri, . . . , rn from the suite

9. n← i− 1

10. else

11. Swap ri and rj in the suite

12. end if

13. end for

5 Experiments

We employ the tool ACTS-2.8 (Advanced Combi-

natorial Testing System)[43], including implementations

of IPOG, IPOG-F and IPOG-F2, etc. We compare the

tool ACTS-2.8 with our variants of IPOG, IPOG-F and

IPOG-F2 in which the handling of don’t care positions

attempts to balance frequencies of values; our versions

are coded in C++. All of the experimental results re-

ported here are performed on a laptop with CoreTM 2

Duo Intelr processor clocked at 2.60 GHz and 4 GB

memory.

5.1 Test Suite Size and Execution Time

First we examine the relative performance for dif-

ferent numbers of values for the parameters. The nota-

tion dt indicates that there are t parameters, each with

d values. To start, we vary the number of values. Ta-

ble 1 shows execution time and test suite sizes when

the strength is 4, and there are five parameters whose

number of values is 5, 10, 15, or 20. As expected, the

execution time for our methods is substantially smaller

(see Fig.2). What is more surprising is that our met-

hods consistently produce test suites no larger than the

original methods, and sometimes produce much smaller

ones.

Now we vary the number of parameters. Table 2

shows results when the strength is 4, the number of pa-

rameters is 10, 15, 20, or 25, and the number of values

is 5. Again the execution time for our methods shows

improvements (see Fig.3). However, as the number of

parameters increases, the deferral in filling don’t care

positions by the original methods generally produces

smaller test suite sizes.

Now we vary the strength. Table 3 presents re-

sults for 106 when the strength is 2, 3, 4, or 5. Once

again, the execution time for our methods is substan-

tially lower (see Fig.4). Our methods do not fare as

well with respect to test suite size, but appear to be

very effective when the strength is larger.

Our methods appear to improve execution time con-

sistently as expected. Nevertheless, they also improve

on test suite sizes in some cases, especially when the

strength is large or the number of values is large. Real

systems rarely have the same number of values for each

parameter, so we also consider situations in which dif-

ferent parameters can have different numbers of values.

Table 4 presents results with strength 4 for five

different sets of numbers of values for 10 parameters.

Execution time improvements again arise for our algo-

rithms. Moreover, a pattern for test suite sizes is clear:

our methods improve when there is more variation in

numbers of values.

Next we examine the relative performance using

the Traffic Collision Avoidance System (TCAS), which

has been utilized in several other studies of software

testing[27,44-46]. TCAS has 12 parameters: seven pa-

rameters have two values, two parameters have three

values, one parameter has four values, and two parame-

ters have 10 values. Table 5 gives the results. (In [46],

similar results for the original IPOG versions are given

for the TCAS system.) While our improvements in exe-

cution time are evident, no obvious pattern indicates

which method produces the smallest test suite.

Our methods have simplified the manner in which

don’t care positions are treated in order to balance the

frequencies of values. Our experimental results all con-
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Table 1. Results for Five Parameters with 5 to 20 Values for 4-Way Testing

Parameter Our IPOG IPOG(ACTS) Our IPOG-F IPOG-F(ACTS) Our IPOG-F2 IPOG-F2(ACTS)

Config. Size Time (s) Size Time (s) Size Time (s) Size Time (s) Size Time (s) Size Time (s)

55 000 745 0.001 000 790 000.015 000 625 000.000 000625 1 000.047 000 625 000.000 100 788 1 000.031

105 011 990 0.078 012 298 000.827 010 000 000.673 010 000 1 006.109 010 000 000.500 112 394 1 004.859

155 058 410 1.101 061 945 016.329 050 625 018.469 050 625 1 146.730 050 625 012.782 161 615 1 184.450

205 184 680 9.666 191 652 120.220 160 000 200.020 160 000 1 376.000 160 000 209.290 192 082 1 966.200

5 10
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Our IPOG
IPOG(ACTS)

Our IPOG-F
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Fig.2. Execution time, varying the number of values (4-way). (a) IPOG. (b) IPOG-F. (c) IPOG-F2.

Table 2. Results for 10 to 25 5-Value Parameters for 4-Way Testing

Parameter Our IPOG IPOG(ACTS) Our IPOG-F IPOG-F(ACTS) Our IPOG-F2 IPOG-F2(ACTS)

Config. Size Time (s) Size Time (s) Size Time (s) Size Time (s) Size Time (s) Size Time (s)

510 1 890 0.056 1 859 00.188 1 833 000.625 1 882 001.750 1 965 0.187 1 905 0.297

515 2 584 0.517 2 534 00.954 2 461 007.109 2 454 014.579 2 736 1.282 2 644 1.421

520 3 114 2.140 3 032 04.094 2 951 034.361 2 898 060.987 3 308 4.329 3 180 4.344

525 3 540 7.012 3 434 16.049 3 338 111.150 3 279 176.340 3 763 8.752 3 589 9.188

(a) (b)
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20 25
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Fig.3. Execution time, increasing the number of parameters (4-way). (a) IPOG. (b) IPOG-F. (c) IPOG-F2.

Table 3. Results for Six 10-Value Parameters for 2∼5-Way Testing

t Our IPOG IPOG(ACTS) Our IPOG-F IPOG-F(ACTS) Our IPOG-F2 IPOG-F2(ACTS)

Size Time (s) Size Time (s) Size Time (s) Size Time (s) Size Time (s) Size Time (s)

2 000 149 0.000 000 130 000.005 000 133 00.000 000 134 000.031 000 135 00.000 000 134 000.016

3 001 633 0.010 001 633 000.059 001 577 00.047 001 553 000.266 001 629 00.032 001 625 000.140

4 016 293 0.195 016 496 004.276 015 594 02.704 015 467 018.126 015 631 01.594 016 347 009.297

5 123 060 5.139 130 728 116.470 100 000 88.692 100 000 575.150 100 000 54.971 132 428 449.330
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Table 4. Results for Five Systems with Different Numbers of Values in 4-Way Testing

Parameter Config. Our IPOG IPOG(ACTS) Our IPOG-F IPOG-F(ACTS) Our IPOG-F2 IPOG-F2(ACTS)

Size Time (s) Size Time (s) Size Time (s) Size Time (s) Size Time (s) Size Time (s)

1010 29 915 1.942 29 466 28.040 28 437 129.57 28 079 359.17 31 744 045.237 30 986 053.440

10595 23 878 1.295 23 961 14.583 22 521 094.27 22 726 248.04 25 222 031.611 24 741 039.736

15310453 41 128 1.734 45 128 13.689 41 505 236.87 43 306 757.68 46 509 162.850 48 295 262.170

1611521045241 42 913 1.750 47 591 14.532 43 774 249.37 45 693 289.72 48 660 148.510 51 147 149.510

1711611511045142 47 248 1.844 52 991 14.860 48 847 235.95 50 287 333.89 54 099 189.290 57 634 199.810
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Fig.4. Execution time, increasing the test strength. (a) IPOG. (b) IPOG-F. (c) IPOG-F2.

Table 5. Results for TCAS

t Our IPOG IPOG(ACTS) Our IPOG-F IPOG-F(ACTS) Our IPOG-F2 IPOG-F2(ACTS)

Size Time (s) Size Time (s) Size Time (s) Size Time (s) Size Time (s) Size Time (s)

2 00 100 0.001 00 100 0.002 00 100 00.002 00 100 000.015 00 100 00.004 00 100 00.017

3 00 404 0.009 00 400 0.007 00 400 00.025 00 402 000.087 00 431 00.044 00 438 00.061

4 01 306 0.065 01 359 0.031 01 269 00.323 01 349 001.117 01 639 00.489 01 653 00.572

5 04 464 0.411 04 233 0.219 04 068 04.104 04 245 013.405 05 129 04.133 05 034 04.379

6 11 774 1.463 11 021 3.233 11 381 32.870 11 257 101.330 13 323 18.030 13 379 20.959

firm that this can dramatically reduce the execution

time. One might have expected a substantial degra-

dation in the test suite sizes produced. However, our

results indicate not only that the balancing strategy

is competitive, but also that it can improve test suite

sizes.

Fast methods such as IPO do not generally pro-

duce the smallest test suites possible. To illustrate

this, we apply a post-optimization method from [47-

48] to some of the TCAS results. For strength 4, we

treat the solutions for IPOG-F2; within 10 minutes of

computation, post-optimization reduces the solution by

our method from 1 639 to 1 201 rows, and the solution

by the original method from 1 653 to 1 205 rows. For

strength 5, we treat the solutions for IPOG-F; within

one hour of computation, post-optimization reduces the

solution by our method from 4 068 to 3 600 rows, and

the solution by the original method from 4 245 also

to 3 600 rows. For strength 6, we treat the solutions

for IPOG; within 10 hours, post-optimization reduces

the solution by our method from 11 774 to 9 794 rows,

and the solution by the original method from 11 021 to

9 798 rows. By contrast, in a comparison of six diffe-

rent one-parameter-at-a-time methods[46], the best re-

sult has 10 851 rows. While the test suites from one-

parameter-at-a-time methods are therefore definitely

not the smallest, post-optimization is much more time-

consuming and it requires a test suite as input. As the

number of parameters increases, the speed with which

an initial test suite can be constructed is crucial.

5.2 Expected Time to Fault Detection

Accelerating the IPO methods, even with a possi-

ble loss of accuracy in test suite size, can be worth-

while. However, a second concern is with potential per-

formance in revealing faults. We examine the TCAS

system, using our and the original versions of the three

IPO variants. We examine the time to find the first
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fault when 1, 2, or 3 faults are present and when the

strength is between 2 and 6. In our model, the time to

execute each test is the same, so the expected time is

directly proportional to the expected number of tests or

rows needed. We consider test suites before and after

our reordering.

Table 6 gives the results. To assess the efficacy of

our modifications, we report two lines for each method

and each strength; the first reports results for our meth-

ods, and the second for the original methods. Φ1, Φ2

and Φ3 denote the expected number of tests to detect

the first fault when there are one, two or three faults

that are randomly chosen.

These results indicate that reordering is effective in

reducing the time to fault detection, both for our met-

hods and for the original ones. Fig.5 shows Φ2 for each

strength before and after the reordering for our met-

hods, showing a substantial reduction from reordering.

Fig.6 instead shows the expected number of tests when

zero, one, two, or three faults are present. It appears

that the reordering method is the most effective when

the number of faults is small. This should be expected,

because the presence of many faults ensures that one

will be found early no matter what ordering is used.

Our methods, despite often producing larger test

suites, fare well with respect to expected time to fault

detection. Comparing the performance of ours and the

original IPOG when t = 6, for example, although our

test suite is larger, it would yield smaller expected time

to detect faults once reordered. Evidently the size of the

Table 6. Expected Time to Fault Detection for TCAS Before and After Reordering

Algorithm t Number of Faults

Φ1 Φ2 Φ3

Before After Before After Before After

IPOG 2 00 24.80 00 19.65 00 10.72 000 9.26 000 6.27 005.83

00 24.81 00 19.65 00 10.73 000 9.26 000 6.27 005.85

3 0 117.90 00 82.15 00 53.30 00 38.57 00 30.08 023.69

0 117.68 00 82.12 00 53.18 00 38.47 00 30.03 023.56

4 0 407.20 0 275.38 0 200.45 0 131.93 0 118.33 082.38

0 408.42 0 276.34 0 201.60 0 132.73 0 119.08 082.77

5 1 348.26 0 850.74 0 707.82 0 421.49 0 436.03 268.03

1 348.14 0 848.20 0 708.24 0 421.30 0 436.40 268.37

6 3 015.32 2 127.94 1 682.31 1 095.54 1 097.27 719.43

3 007.69 2 140.04 1 680.95 1 106.03 1 096.56 725.45

IPOG-F 2 00 28.36 00 20.43 00 12.73 000 9.58 000 7.29 006.01

00 27.19 00 20.67 00 12.18 000 9.67 000 7.08 006.02

3 0 120.96 00 81.47 00 55.81 00 38.33 00 31.84 023.71

0 120.94 00 81.34 00 55.99 00 38.18 00 32.13 023.72

4 0 411.37 0 272.86 0 204.59 0 132.18 0 121.66 082.83

0 411.97 0 269.36 0 204.73 0 129.68 0 121.75 081.77

5 1 353.42 0 828.83 0 716.08 0 411.92 0 444.08 263.23

1 354.28 0 822.73 0 715.52 0 410.22 0 443.26 261.36

6 3 076.17 2 090.57 1 722.82 1 065.49 1 129.80 698.08

3 017.29 2 059.33 1 693.94 1 063.99 1 109.05 700.68

IPOG-F2 2 00 26.44 00 20.52 00 11.90 000 9.75 000 6.98 006.13

00 26.27 00 20.19 00 11.67 000 9.56 000 6.80 006.00

3 0 120.61 00 82.75 00 55.26 00 38.36 00 31.49 023.84

0 121.04 00 81.63 00 55.61 00 38.15 00 31.76 023.55

4 0 419.07 0 275.05 0 207.11 0 130.39 0 123.20 081.95

0 421.75 0 278.10 0 208.20 0 131.82 0 123.79 082.43

5 1 378.15 0 844.54 0 724.94 0 412.79 0 449.34 263.65

1 377.84 0 838.77 0 725.02 0 409.71 0 449.50 261.35

6 3 129.21 2 127.62 1 732.44 1 068.73 1 133.78 699.08

3 138.02 2 121.97 1 736.29 1 062.64 1 136.22 695.18
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test suite, while relevant, is not the only factor affect-

ing the expected time. Our results suggest that faster

IPO implementations remain competitive, and hence

that the objective of balancing frequencies of values is

a reasonable one to pursue.

6 Conclusions

We identified three main goals in generating a test

suite: time to generate the test suite, time to execute

the test suite (test suite size), and the rate of fault

detection. Our methods focus on reducing the time

for generation, without severe negative impact on test

suite size and fault detection. We accelerated variants

of the IPO method by simplifying the manner in which

don’t care positions are filled. This results in a consis-

tent improvement in the execution time to construct a

test suite, but sacrifices to some extent the algorithm’s

ability to exploit such positions in repeated horizontal

growth phases. This is reflected in our experimental re-

sults. While in numerous cases, our modifications find

smaller test suites, in the others they do not. This

occurs particularly when the number of parameters is

large.

Any method to fill don’t care positions immediately

would be expected to accelerate the methods; however

we devised a simple method that strives to balance the

frequency of values for each parameter. We argued that

such an objective can result in more effective horizon-

tal growth, and that it can permit us to retain effective

rates of fault detection. Both of these motivations are

borne out by the experimental data.

One-test-at-a-time generation methods explicitly

aim for good rates of fault detection by covering in-

teractions early in the test suite, while one-parameter-

at-a-time methods like IPO do not. Nevertheless, we

showed that a reordering strategy can be applied to

make dramatic improvement on the rate of fault detec-

tion.

If test suite size is a primary objective, us-

ing our methods together with randomized post-

optimization[47-48] appears to be worthwhile. If ex-

pected time to fault detection is paramount, extending

reordering to discover and replace don’t care positions

appears to be viable. Both merit further study. We

suggest that both can benefit from balancing frequen-

cies of values, a fast and simple way to generate useful

test suites.
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