
Jiang J, He JH, Chen XY. CoreDevRec: Automatic core member recommendation for contribution evaluation. JOURNAL

OF COMPUTER SCIENCE AND TECHNOLOGY 30(5): 998–1016 Sept. 2015. DOI 10.1007/s11390-015-1577-3

CoreDevRec: Automatic Core Member Recommendation for

Contribution Evaluation

Jing Jiang (ö ¿), Member, CCF, Jia-Huan He (åZ�), and Xue-Yuan Chen (�Æ�)

State Key Laboratory of Software Development Environment, Beihang University, Beijing 100191, China

E-mail: jiangjing@buaa.edu.cn; lightbot.johnson@gmail.com; 429817468@qq.com

Received March 19, 2015; revised July 16, 2015.

Abstract The pull-based software development helps developers make contributions flexibly and efficiently. Core members

evaluate code changes submitted by contributors, and decide whether to merge these code changes into repositories or not.

Ideally, code changes are assigned to core members and evaluated within a short time after their submission. However, in

reality, some popular projects receive many pull requests, and core members have difficulties in choosing pull requests which

are to be evaluated. Therefore, there is a growing need for automatic core member recommendation, which improves the

evaluation process. In this paper, we investigate pull requests with manual assignment. Results show that 3.2%∼40.6% of

pull requests are manually assigned to specific core members. To assist with the manual assignment, we propose CoreDevRec

to recommend core members for contribution evaluation in GitHub. CoreDevRec uses support vector machines to analyze

different kinds of features, including file paths of modified codes, relationships between contributors and core members, and

activeness of core members. We evaluate CoreDevRec on 18 651 pull requests of five popular projects in GitHub. Results

show that CoreDevRec achieves accuracy from 72.9% to 93.5% for top 3 recommendation. In comparison with a baseline

approach, CoreDevRec improves the accuracy from 18.7% to 81.3% for top 3 recommendation. Moreover, CoreDevRec even

has higher accuracy than manual assignment in the project TrinityCore. We believe that CoreDevRec can improve the

assignment of pull requests.

Keywords core member recommendation, contribution evaluation, pull-based software development

1 Introduction

The pull-based software development is an emerg-

ing paradigm for distributed software development[1-2].

Developers pull code changes from other repositories

and merge them locally, rather than push changes to a

central repository. Various open source software host-

ing sites, notably GitHub, provide support for pull-

based development and allow developers to make con-

tributions flexibly and efficiently.

The pull request process mainly includes three roles

in GitHub: contributors, core members, and com-

menters. Contributors modify codes to fix bugs or im-

prove features. When a set of changes is ready, con-

tributors create pull requests and submit code changes

to main repositories. Core members are trusted mem-

bers of the community. Only experienced and ex-

cellent developers are chosen as core members, and

they are granted the privilege of directly committing

codes to project repositories[3]. Core members eval-

uate submitted codes and decide whether to merge

these code changes into repositories or not. All develo-

pers in the community can become commenters of pull

requests[4-5]. Commenters freely discuss code changes

and leave comments. Their peer review provides sug-

gestions for core members to make decisions[6]. Core

members and commenters play different roles in the

evaluation process. Core members are necessary and

they make final decision of pull requests. Commenters

assist core members to make judgement, but they are

not essential. Some pull requests are directly evaluated

by core members, without any suggestions from com-

menters.

Regular Paper

Special Section on Software Systems

This work is supported by the National Natural Science Foundation of China under Grant No. 61300006 and the State Key
Laboratory of Software Development Environment of China under Grant No. SKLSDE-2015ZX-24.

©2015 Springer Science +Business Media, LLC & Science Press, China

Jing Jiang et al.: CoreDevRec: Automatic Core Member Recommendation 999

Ideally, pull requests are assigned to core members

and evaluated within a short time after their submis-

sion. However in reality, some popular projects receive

many pull requests, and core members have difficulties

in prioritizing pull requests which are to be merged[7].

Since a great number of code changes must be reviewed

before the integration, finding appropriate core mem-

bers can be a labor-intensive and time-consuming task.

There is a growing need to automatically recommend

suitable core members for contribution evaluation.

Current assignment of pull requests includes two

ways: pull requests can be freely chosen by core mem-

bers who prefer to review them; pull requests can also

be manually assigned to specific core members, who

are expected to do evaluation. In this paper, we set

out to understand current manual allocation of pull re-

quests in GitHub. In particular, we investigate how

often pull requests are manually assigned for evalua-

tion. We collected 18 651 pull requests through GitHub

API. We also collected the assignment information to

identify pull requests with manual assignment. Results

show that 3.2%∼40.6% of pull requests are manually

assigned to specific core members. Automatic recom-

mendation is required to shorten the assignment time

and improve the evaluation process.

We propose a method called CoreDevRec to solve

the core member recommendation problem. We utilize

various kinds of features, including file paths of modi-

fied codes, relationships between contributors and core

members, and activeness of core members. Based on

these features, we use support vector machines (SVM)

to build our classifier CoreDevRec. Given a new pull

request, CoreDevRec generates a list of top k most

suitable core members who have the highest probabi-

lity of evaluating codes. We evaluate CoreDevRec on

18 651 pull requests of five popular projects in GitHub.

As there is no previous work of core member recom-

mendation for pull requests, we modify the approach

RevFinder[8] to recommend core members, and use

it as the baseline approach for comparison. Results

show that CoreDevRec achieves accuracy from 72.9%

to 93.5% for top 3 recommendation, and achieves mean

reciprocal rank from 0.63 to 0.83. In comparison with

RevFinder, CoreDevRec improves the accuracy from

18.7% to 81.3% for top 3 recommendation, and im-

proves the mean reciprocal rank from 15.3% to 70.3%.

Moreover, CoreDevRec even has higher accuracy than

manual assignment in the project TrinityCore; CoreDe-

vRec has better performance than manual assignment

for top 4 and top 5 recommendation in all projects.

Therefore, we believe that CoreDevRec can improve the

assignment of pull requests.

The main contributions of this paper are as follows.

• We make an exploratory study on manual assign-

ment.

• We propose CoreDevRec to solve the core member

recommendation problem in contribution evaluation.

Experimental results show that CoreDevRec achieves

good accuracy.

2 Methodology

Before diving into the recommendation of core

members, we begin by providing background informa-

tion about contribution evaluation process in GitHub.

Then, we introduce how our datasets are collected. Fi-

nally, we report statistics of our datasets.

2.1 Contribution Evaluation Process

GitHub is a web-based hosting service for software

development repositories. It has become one of the

world’s largest open source communities. The typical

contribution process includes following steps[4]. First of

all, a contributor forks a repository and makes changes

to implement new features or fix bugs. The contribu-

tor submits a pull request when he or she wants to

merge code changes into the main repository. This

pull request needs to be evaluated by a core member.

The pull request may be chosen by a voluntary core

member, who chooses to evaluate this pull request by

him/herself. The pull request may also be manually

assigned to a specific core member, who is expected to

do evaluation. The core member inspects code changes,

evaluates potential contributions, and decides whether

to merge code changes into the main repository or

not. The core member sometimes asks the contribu-

tor to make updates and submit new commits for re-

evaluation. Commenters sometimes participate in the

evaluation process[4-5]. Commenters freely discuss the

pull request and suggest improvements. Their sugges-

tions assist the core member to make decision.

Core members and commenters play different roles

in the evaluation process. Core members are necessary

and they make final decision of pull requests. Com-

menters provide suggestions and assist core members

to make judgements, but they are not essential. Some

pull requests are directly evaluated by core members,

without any suggestions from commenters. Core mem-

bers can leave comments and become commenters, but

commenters are not necessarily core members.

1000 J. Comput. Sci. & Technol., Sept. 2015, Vol.30, No.5

To illustrate the contribution process, Fig.1 shows

an example of the pull request ID 1414 in the project

rails 1○. Firstly, a contributor (crx) created a pull re-

quest and submitted it for evaluation. Secondly, a core

member (josevalim) was assigned to evaluate this pull

request. Thirdly, a commenter (samlown) left the sug-

gestion. Finally, another core member (guilleiguaran)

made a review of modified codes and decided to reject

the pull request.

Fig.1. Example of pull request evaluation.

In the above example, the pull request was manua-

lly assigned to a core member josevalim. But this pull

request was finally evaluated by another core member

guilleiguaran. The manual assignment was incorrect in

this pull requests. A developer samlown thought that

code modification in the pull request was unnecessary.

However, samlown was not a core member, and he was

not allowed to make the decision of this pull request.

guilleiguaran was a core member, and he decided to

reject the pull request. In this pull request, samlown

is a commenter, and guilleiguaran is the core member

for evaluation. Previous studies[4-5] recommended re-

viewers, who were actually commenters. In this paper,

we make research on the recommendation of core mem-

bers, who make final decision of pull requests. Core

members and commenters are different. In the above

example, samlown was the correct recommendation by

previous studies[4-5], while guilleiguaran is the correct

recommendation by our work.

2.2 Data Collection

GitHub provides access to its internal data stores

through an API 2○. It allows us to access a rich collec-

tion of open source software (OSS) projects, and pro-

vides valuable opportunities for research. We gather

information from GitHub API and create datasets of

core members and pull requests.

First of all, we choose five popular projects in

GitHub. The project rails is a framework to cre-

ate database-backed web applications according to the

Model-View-Controller pattern; the project zf2 is the

framework for modern, high-performing PHP applica-

tions; the project scala is built for the Scala program-

ming language; the project xbmc is the open source

software media player and entertainment hub for digital

media; the project TrinityCore is an MMORPG frame-

work based mostly in C++. All these projects provide

fundamental functions for software development. In

GitHub, starring allows users to keep track of projects

that they find interesting; the number of forks is a met-

ric for measuring the active involvement of the develo-

per community. While these metrics are not absolute,

they provide good insights into the popularity of a

project. In our datasets, all projects have more than

2 000 stars, and the project rails even has 23 815 stars.

Moreover, all projects have more than 900 forks, and

the project rails even has 9 897 forks. Projects in our

datasets are popular in GitHub.

Next, we collected pull requests of these projects

through GitHub API in July 2014. We sent queries to

GitHub API, received its replies, and extracted datasets

from project creation time to July 2014. For each pull

request, we crawled its ID, the contributor who sub-

mitted it, the creation time, comments, the number of

commits, the number of files modified, the number of

added lines, and the number of deleted lines. Each pull

request included paths of modified files, which were also

collected in our datasets. Furthermore, we collected the

close time and the developer who closed the pull re-

quest. The pull request could be closed by the contribu-

tor or a core member. We ignored pull requests closed

by their contributors, because their final decisions were

not made by core members and do not need core mem-

ber recommendation. In GitHub, the pull request can

1○https://github.com/rails/rails/pull/1414, July 2015.
2○http://developer.github.com/v3/, July 2015.

Jing Jiang et al.: CoreDevRec: Automatic Core Member Recommendation 1001

be manually assigned to a specific core member for eva-

luation. We crawled information about whether the

pull request was manually assigned, who it was assigned

to and when it was assigned. This information is use-

ful to understand current manual assignment of pull

requests.

GitHub provides an API to return a list of all

available assignees to which issues may be manually

assigned 3○. These assignees include the owner and col-

laborators, namely core members in the project. In

GitHub, pull requests belong to a special kind of issues.

We collected core member lists through this API.

GitHub is a social coding site[9], and allows users

to attract followers. Users build social connections and

follow interesting developers[10]. Tsay et al. found that

pull request acceptance was influenced by social connec-

tions between core members and contributors[2]. Social

relationships may be useful in core member recommen-

dation. Therefore, we also collected follower and fol-

lowing relationships in our datasets.

2.3 Basic Statistics

Finally, we report statistics of our datasets in Ta-

ble 1. The project rails has 8 333 pull requests, which is

a large burden for 44 core members. These pull requests

should be carefully assigned to correct core members,

so as to take some load off core members’ backs. Other

projects also face the pull request assignment problem.

Table 1. Basic Statistics of Projects

Project Project # Pull # Core % of Manually Date of First

Owner Name Requests Members Assigned Pull Requests Pull Request

rails rails 8 333 44 03.2 2010/9/2

zendframework zf2 4 024 13 40.6 2010/9/4

scala scala 2 603 19 19.9 2011/12/1

xbmc xbmc 2 150 73 15.6 2011/1/5

TrinityCore TrinityCore 1 541 35 07.2 2010/12/31

Note: # stands for “Number of”; % stands for “Percentage”.

In GitHub, commenters provide suggestions and

assist core members to make judgement. We wonder

whether commenters are necessary in the contribution

evaluation. In every pull request in the project rails, we

compute the number of comments. We also calculate

this metric for other projects. Fig.2 shows cumulative

distribution function (CDF) of results. In the project

rails, 29.1% of pull requests have no comments. 65.3%

of pull requests have less than three comments, and only

34.7% of pull requests have more than four comments.

It shows that a part of pull requests are directly eva-

luated by core members, without any suggestions from

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

P
e
rc

e
n
ta

g
e
 o

f
P
u
ll

 R
e
q
u
e
st

s
(C

D
F
)

Number of Comments

rails

zf2

scala

xbmc

TrinityCore

Fig.2. Number of comments.

commenters. Other projects have similar results, and

commenters are not essential in contribution evalua-

tion.

3 Analysis of Manual Assignment

In GitHub, some pull requests are manually as-

signed to core members, who are expected to do eva-

luation. Little is known about manual assignment in

GitHub. Therefore, we set out to investigate how often

pull requests are manually assigned for evaluation.

As described in Subsection 2.2, our datasets include

the information about whether a pull request is manua-

lly assigned, and who it is assigned to. Based on these

datasets, we compute the percentage of manually as-

signed pull requests and plot results in Table 1. The

project zf2 has 40.6% of pull requests manually as-

signed to specific core members. Projects rails, scala,

xbmc, and TrinityCore have 3.2%, 19.9%, 15.6%, and

7.2% of manually assigned pull requests, respectively.

3.2%∼40.6% of pull requests are manually assigned to

specific core members. Results show that a part of pull

requests need manual allocation.

We take a further step and explore how the per-

centage of manually assigned pull requests evolves over

3○https://developer.github.com/v3/issues/assignees/, July 2015.

1002 J. Comput. Sci. & Technol., Sept. 2015, Vol.30, No.5

time. For each project, we compute the percentage of

manually assigned pull requests each year after the first

pull request. As shown in Table 1, the first pull request

in the project rails was created in September 2010. We

collected our datasets in July 2014. The interval time

between the first pull request and data collection is less

than four years. Therefore, we report statistics of three

years for the project rails. We also report statistics of

three years for projects zf2, xbmc and TrinityCore. The

first pull request in the project scala was created in De-

cember 2011, and we report statistics of two years for

the project scala.

Fig.3 shows the evolution trend of manually as-

signed pull requests. In the project rails, the per-

centage of manually assigned pull requests gradually

increases over time. In the project zf2, none of pull

requests are assigned in the first year. In the second

year, 14.9% of pull requests are manually allocated to

specific core members. In the third year, the percen-

tage of assigned pull requests is even as high as 70.6%.

 0

 20

 40

 60

 80

rails zf2 scala xbmc TrinityCore

P
e
rc

e
n
ta

g
e
 o

f
M

a
n
u
a
ll
y
 A

ss
ig

n
e
d

 P
u
ll
 R

e
q
u
e
st

s
in

 E
a
ch

 Y
e
a
r

Year 1
Year 2
Year 3

Fig.3. Evolution of the percentage of manually assigned pull
requests.

Pull request assignment becomes more and more popu-

lar in the project zf2. In projects scala and TrinityCore,

we observe similar growth trend of manually assigned

pull requests. This is probably because with the evolu-

tion of projects, more pull requests are submitted and

more developers become core members, which makes

the pull request allocation more complex. The auto-

matic recommendation is required to save the assign-

ment time, and accelerate the evaluation process.

4 CoreDevRec: An SVM-Based Method to

Recommend Core Members

In this section, we describe our method CoreDevRec

to solve the core member recommendation problem.

Fig.4 presents the overall framework of CoreDevRec.

The entire framework contains two phases: a model

building phase and a prediction phase. In the model

building phase, our goal is to build a model from histori-

cal pull requests and their evaluators. In the prediction

phase, the model is used to recommend core members.

Our framework firstly collects various fields from a

set of training pull requests with known core members.

As described in Subsection 2.2, we crawled modified file

paths; we collected social related information, such as

follower and following relations; we also collected his-

torical records of pull requests, which could be used

to calculate activeness of core members. Next, we ex-

tract path features, relationship features, and active-

ness features from crawled information. We describe

detailed definitions and why we choose these features

in Subsections 4.1, 4.2 and 4.3 respectively. To check

whether features are sufficiently independent, we leve-

rage Spearman’s rank correlation coefficient (ρ)[11]. We

Model Building Phase

Path FeaturesFile Paths

Prediction Phase

New Pull
Requests

Feature
Extraction

Pull Request
Assignment

Activeness
Features

Historical
Records

Social
Interactions

Relationship
Features

Support Vector

Machines

Training Pull
Requests &
Core Members

CoreDevRec

Fig.4. Overall framework for our method CoreDevRec.

Jing Jiang et al.: CoreDevRec: Automatic Core Member Recommendation 1003

set a threshold of ρ = ±0.8, above which we eliminate

features. This statistical analysis ensures the indepen-

dence of features. According to pull request features

and their evaluators, we use support vector machine

learning techniques to build our method CoreDevRec,

as described in Subsection 4.4.

In the prediction phase, we use CoreDevRec to pre-

dict whether a pull request is likely to be evaluated by

a specific core member. For each new pull request, we

extract values of features, put these values to CoreDe-

vRec, and predict the probability of evaluating pull re-

quests by core members. Core members with the high-

est probability are recommended.

4.1 Path Features

As described in Subsection 2.2, we collected paths

of modified files of pull requests. Directory distance

between files was studied in latent social structure[12]

and focus-shifting patterns of OSS developers[13]. Ini-

tial study[8] observed that files located in similar paths

would be reviewed by similar experienced code review-

ers. Therefore, we utilize the similarity of modified file

paths to recommend core members. Different from the

initial study[8], we compute the path similarity by ma-

chine learning techniques, instead of string comparison

techniques. The detailed steps are as follows.

First of all, we transfer modified file paths into

multiple strings. For each file path, we extract con-

secutive substrings from the beginning of the path.

We also take pull request ID 1414 in the project

rails as an example. This pull request has one mod-

ified file path, namely “actionpack/lib/action view/he-

lpers/form helper.rb”. For this file path, we extract

five consecutive substrings from the beginning of the

path, including “actionpack”, “actionpack/lib”, “ac-

tionpack/lib/action view”, “actionpack/lib/action vi-

ew/helpers”, “actionpack/lib/action view/helpers/fo-

rm helper.rb”. Some pull request has several modified

file paths, and the pull request’s path substrings include

substrings extracted from all modified file paths.

Secondly, we use path substrings to build path fea-

tures. Each path substring is one path feature. All

unique path substrings of pull requests in the train-

ing set construct the path vocabulary. The number

of path substrings in the vocabulary is the length of

path features. We use term frequency-inverse docu-

ment frequency (tf-idf), and assign a weighting to path

substring s in pull request pr as follow:

weightpr,s = tfpr,s ×

(

log

(

NT

dfs

)

+ 1

)

,

where tfpr,s is the number of times that substring s oc-

curs in pull request pr, dfs is the number of pull requests

that contain path substring s, and NT is the number

of pull requests. weightpr,s is the weight of substring s

in pull request pr, namely the value of path feature s.

If two pull requests have similar file paths, their

path features are also similar. We use support vector

machines to identify pull requests with similar modi-

fied file paths. Details are described in Subsection 4.4.

Note that we delete path substrings which only appear

in one pull request. The deletion decreases the size of

vocabulary, and reduces the running time of machine

learning techniques.

4.2 Relationship Features

According to the previous work[2], core members

prefer to accept codes, which are submitted by their

followers. Relationships between contributors and core

members are important factors in the code evaluation.

In order to recommend suitable core members, we also

consider relationships between contributors and core

members. We use four features to present their social

distance and prior interactions as follow.

Follower Relation. Different from traditional OSS

platforms, GitHub is a social coding site[9], and allows

developers to build social relationships. The contribu-

tor decides to follow the core member, when the con-

tributor is interested in the core member’s activities.

The follower relation is a dichotomous variable indi-

cating whether the contributor is the follower of the

core member or not. We use this feature as a proxy

of the social closeness between the contributor and the

core member.

Following Relation. It is a dichotomous variable in-

dicating whether or not the core member follows the

contributor. The following relation shows the core

member’s interest towards the contributor.

Prior Evaluation. The contributor co submit-

ted several pull requests before, and some of them

might be evaluated by the core member cm. The

prior evaluation feature is the total number of the con-

tributor co’s pull requests which was evaluated by the

core member cm before. It describes whether the core

member cm likes to evaluate pull requests submitted

by the contributor co.

Recent Evaluation. The feature recent evaluation

is the number of contributor co’s pull requests evaluated

by core member cm in recent m months. The setting

of m is discussed in Section 5. The recent evaluation

1004 J. Comput. Sci. & Technol., Sept. 2015, Vol.30, No.5

feature describes interactions between the contribu-

tor and the core member in recent months, while the

prior evaluation feature shows all previous interactions

between the contributor and the core member.

GitHub is a social coding site, and allows develo-

pers to directly build follower or following relations.

These direct relationships are not supported in some

OSS projects, such as Apache and Mozilla. In other

OSS platforms, social relationships can be built by min-

ing emails[14], synchronized co-commits[15], version con-

trol system[16] and bug tracking system[16]. Some social

relationships are similar to follower and following rela-

tions, and they can be used to recommend core mem-

bers.

4.3 Activeness Features

Core members have the great responsibility of code

evaluation. However, core members may be inactive or

short-term active in the evaluation of code contribu-

tions. Due to the principle of voluntary participation,

core members always have the freedom to decide their

activities and even leave the community[17]. Core mem-

bers may not always be available, and may choose to

leave the project[18]. Therefore, we need to recommend

core members who are active and available. Some core

members might evaluate similar pull requests before,

but they have already left the project and they are not

suitable for recommendation. In this subsection, we

consider six features to predict activeness of core mem-

bers.

Total Pulls. In order to measure the project scale,

we count the total number of pull requests accumulated

in the project. We also consider several features to de-

scribe the project scale, including the number of core

members and the number of contributors who have sub-

mitted pull requests before. We compute Spearman’s

rank correlation coefficient (ρ) between features. We

observe that ρ between any two features is more than

0.8. The number of core members and the number of

contributors are both highly correlated with the total

number of pull requests. Therefore, the total number of

pull requests is a representative feature, and we only use

this feature to describe the project scale in our method.

Evaluate Pulls. In order to measure the liveness of

core members, we consider the total number of pull re-

quests evaluated by the core member before, namely

the evaluate pulls feature.

Recent Pulls. The feature recent pulls is the total

number of pull requests evaluated by the core mem-

ber in recent m months. The recent pulls feature de-

scribes the core members’ recent activeness, while the

evaluate pulls feature shows the core member’s active-

ness after he or she joins the project.

Evaluate Time. After the contributor submits the

pull request, it takes some time for a core member to

evaluate the contribution and give feedback. The fea-

ture evaluate time is computed as the average inter-

val time between the pull request submission and the

core member evaluation in recent m months. It de-

scribes whether the core member evaluates pull requests

quickly or slowly. Note that the core member may take

several actions towards a pull request, such as leaving

comments and then closing the pull request. We use

the close action in this feature. We do not consider the

interval time between the pull request submission and

other activities of the core member, because it is highly

correlated with the evaluate time feature.

Latest Time. We measure the close time of the lat-

est pull request evaluated by the core member. In ex-

periments, latest time is computed as the interval time

between the close time of the latest evaluated pull re-

quest and the start time of the test set. We use the

start time of the test set here, because training set in-

cludes all core members’ evaluation made before this

time. The small latest time means that the core mem-

ber is recently active in evaluating pull requests.

First Time. In order to measure the core member’s

age in the project, we define the first time feature,

which is the interval time between the close time of

the first evaluated pull request and the start time of

the test set. It measures whether the core member is

new or old in the project. The age of the core member

in GitHub can be measured by the interval time be-

tween the core member’s registration time in GitHub

and the start time of the test set. We compute the

Spearman’s rank correlation coefficient. We find that

the core member’s age in the project is strongly corre-

lated with the core member’s age in the GitHub. There-

fore, the first time feature describes the core member’s

age in both the project and GitHub.

4.4 CoreDevRec

The final step is to use machine learning techniques,

build CoreDevRec, and recommend core members for

contribution evaluation.

We use the vector space model to represent each

pull request as a weighted vector. Each feature is an

element in the vector. For a pull request pr submitted

Jing Jiang et al.: CoreDevRec: Automatic Core Member Recommendation 1005

by the contributor co, we firstly compute values of NV

path features in the vector. NV is the number of sub-

strings in the path vocabulary here. Secondly, we com-

pute the relationship features between the contributor

co and any core member cm who ever evaluates pull

requests in the project. It ensures that candidates in-

clude all core members who have joined the project and

have the right to make evaluation. We consider four re-

lationship features for every core member. If there are

NC core members, the vector has 4 × NC elements

about relationships. Thirdly, activeness features of any

core member cm are included in the vector. Since we

consider six activeness features for each core member,

the vector has 6 × NC elements about activeness. Fi-

nally, we combine all features together to generate a

large vector, which includes NV + 4 × NC + 6 × NC

elements for each pull request.

For each pull request in the training set, we know

the core member who really evaluates the pull request.

Each core member is considered as a category, and the

pull request belongs to the category of its evaluator. We

run training datasets and build the CoreDevRec clas-

sifier through support vector machines (SVM)[19]. We

implement CoreDevRec on top of the tool Weka 4○. The

SVM classifier is a supervised classification algorithm

that finds a decision surface that maximally separates

the classes of interest. The SVM classifier assigns la-

bels (in our case: the core member) to a data point

(in our case: a pull request) with a certain likelihood.

We use the SVM classifier to get the likelihood that the

pull request pr will be assigned to a specific core mem-

ber cm. Core members with the highest probability are

recommended in OSS projects.

Several machine learning algorithms are known to

perform well and have been used in previous work in-

volving prediction models[1,20]. In Subsection 5.7, we

run each dataset through four classification algorithms,

namely support vector machines, naive Bayes, decision

tree C4.5, and Ripper[21]. We do not perform any addi-

tional tuning to these classification algorithms. Results

show that the SVM classifier performs better than the

other classifiers. Therefore, we choose the SVM algo-

rithm to build our method CoreDevRec.

5 Evaluation

In this section, we evaluate our method CoreDe-

vRec. The experimental environment is a Windows

server 2012, 64-bit, Intelr Xeonr 1.90 GHz server with

24 GB RAM. We first present our experimental setup,

evaluation metrics, and research questions (Subsec-

tions 5.1, 5.2, and 5.3 respectively). We then present

our experimental results that answer these research

questions (Subsections 5.4∼5.8).

5.1 Experimental Setup

In order to simulate the usage of methods in prac-

tice, previous studies[22-23] chronologically sort all bug

reports, divide these bug reports into 11 folds, and

perform experiments in 10 rounds. This experimen-

tal setting is suitable for methods which are not time-

sensitive. We also sort pull requests in chronological

order of creation time. However, we do not divide pull

requests into 11 folds. Instead, pull requests created in

the same month are put into a group, and the whole

datasets are divided into N groups. N depends on

the interval time between the first pull request and the

data collection. For example, the project rails’ first

pull request was created in September 2010. We col-

lected datasets in July 2014, which was 46 months after

the first pull request. Therefore, we divide the project

rails’ pull requests into 46 non-overlapping frames. Our

method CoreDevRec utilizes relationship features and

activeness features, which are both real-time. If we di-

vide pull requests into 11 folds, pull requests in the

same fold may be created in completely different time,

and we cannot accurately compute their activeness or

relationship features.

Next, we use divided frames to build training set

and test set. As show in Fig.5, the validation process

is proceeded as follows: first of all, the training set is

built by pull requests evaluated between month 1 and

month m. The test set is built by pull requests cre-

ated in month m + 1. Then in round 2, we build a

training set using pull requests created between month

1 and month m+ 1, and build a test set using pull re-

quests created in month m+2. We use the similar way

to build training set and test set for each month. Fi-

nally, in round N −m, the training set is built by pull

requests created between month 1 and month N − 1.

The test set is built by pull requests created in month

N . We use the training set and the test set to com-

pute the performance of CoreDevRec in each round,

and then compute the average performance value of all

rounds. This setup ensures that only past pull requests

are used to predict pull requests submitted in the fu-

ture. In the initial stage, some projects have no pull

4○http://www.cs.waikato.ac.nz/ml/weka/, July 2015.

1006 J. Comput. Sci. & Technol., Sept. 2015, Vol.30, No.5

requests and the corresponding set is null. For exam-

ple, in the project rails, no pull requests are submitted

in month 5 after its creation. We ignore these rounds

with null training or test tests, and do not make any

prediction.

Pull Requests, Sorted Chronologically

Months 1bm Month m+1 Month m+2 Month N Split into

Training Set Test Set

Training Set Test Set

Round 1

Round 2

Training Set Test SetRound N֓m

⊲⊲⊲

⊲⊲⊲

Fig.5. Experimental setup.

For each pull request, modified file paths are ex-

tracted to build path features. The core member who

really evaluates the pull request is extracted as a label

for the classifier. Relationship features and activeness

features are computed monthly. It ensures that fea-

tures are updated, and the computation overhead is

acceptable. More specifically, we build the contributor

set for each month, including all developers who sub-

mit pull requests in the month. We also build the core

member set for each month, including all core mem-

bers who have evaluated pull requests before. It ensures

that these core members have already joined the project

and made evaluation of code contributions. Every core

member is the candidate for evaluating pull requests.

Therefore, we compute relationship features for pairs

between any contributor and any core member in cor-

responding sets. For any core member in the set, we

also compute activeness features to judge whether he

or she is still active in evaluating pull requests.

Three features, recent evaluation, recent pulls,

and evaluate time, depend on the number of recent

months m. By default, we set m as 1, and compute

recent activities of core members in recent one month.

In Subsection 5.8, we explore how different parameter

settings ofm influence the performance of CoreDevRec.

Results show that CoreDevRec always has the best per-

formance when m is set as 1.

5.2 Evaluation Metrics

In order to evaluate our method, we use the top k

accuracy, Gaink, and the mean reciprocal rank (MRR).

These metrics are commonly used in recommendation

approaches for software engineering[8,24-26].

We evaluate experiments with the accuracy of top

k predicted core members, as described in initial

study[24]. The definition of the top k accuracy is as

follows:

Accuracyk =

∑

pr∈PR IsCorrect(pr)

|PR|
, (1)

where k is the number of recommended core members

and PR is the test set of pull requests. |PR| is the

number of pull requests in the test set. If one of top

k recommended core members really evaluates the pull

request, the prediction is correct and the IsCorrect(pr)

function returns value of 1; otherwise, the prediction is

incorrect and the IsCorrect(pr) function returns value

of 0. The accuracy describes the percentage of pull re-

quests which are correctly assigned to core members.

Inspired by the previous study[25], we choose k to be 1,

2, 3, 4, and 5 in the experiments.

According to the previous work[8], mean reciprocal

rank (MRR) measures the average value of reciprocal

ranks of correct core members in a recommendation list.

The definition of MRR is as follows:

MRRk =

∑

pr∈PR
1

rank(candidates(pr))

|PR|
,

where k is the number of recommended core mem-

bers and PR is the test set of pull requests.

rank(candidates(pr)) returns the value of the first

rank of actual core member in the recommendation

list candidates(pr). If the recommendation list does

not include the actual core member, the value of
1

rank(candidates(pr)) is 0. Ideally, the method with the

perfect ranking should achieve the MRR value of 1.

In order to compare two methods, we define the gain

to compare how method 1 outperforms method 2. As

described in the initial study[22], the gain for accuracy

and MRR is defined as follows:

Gainaccuracy =
(Accuracyk(1)−Accuracyk(2))

Accuracyk(2)
, (2)

GainMRR =
(MRRk(1)−MRRk(2))

MRRk(2)
, (3)

where Accuracyk(1) and MRRk(1) are top k perfor-

mance for method 1, and Accuracyk(2) and MRRk(2)

are top k performance for method 2. If the gain value

is above 0, it means method 1 has better accuracy than

method 2; otherwise, method 2 has better prediction

results.

5.3 Research Questions

We are interested in answering following research

questions.

Jing Jiang et al.: CoreDevRec: Automatic Core Member Recommendation 1007

RQ1: What is the performance of CoreDevRec? We

propose CoreDevRec to find appropriate core members

for contribution evaluation. We aim to evaluate the

performance of our method in terms of accuracy and

MRR. The better performing method can improve the

assignment of pull requests.

RQ2: What is the performance of CoreDevRec in

comparison with RevFinder? How much improvement

can it achieve over the method proposed in [8]?

In the previous work[8], Thongtanunam et al. pro-

posed a method RevFinder to recommend reviewers for

submitted patches. As there is no previous work of core

member recommendation for pull requests, we modify

RevFinder to recommend core members, and use it as

the baseline approach for comparison.

RQ3: What is the performance of CoreDevRec in

comparison with manual assignment? How much im-

provement can it achieve over the manual assignment?

Some pull requests are manually assigned in

projects. As shown in Fig.1, the manual assignment

may be incorrect. We compare the accuracy of Core-

DevRec and manual assignment.

RQ4: What is the benefit of SVM algorithm in core

member recommendation?

Several machine learning algorithms are known to

perform well and have been used in previous work

involving prediction models[1,20]. To our knowledge,

there are few studies that investigate the effectiveness

of machine learning algorithms for the task of recom-

mending core members. CoreDevRec uses SVM to

retrieve dominant features and build the prediction

model. We would like to investigate whether SVM al-

gorithm could achieve better performance than some

other machine learning algorithms. To answer this

question, we run each dataset through four classifica-

tion algorithms, namely SVM, naive Bayes, decision

tree C4.5, and Ripper. We compare the performance

of these machine learning algorithms in the recommen-

dation of core members.

RQ5: Do different numbers of recent months affect

the performance of CoreDevRec?

CoreDevRec has a parameter m which describes the

number of recent months. By default, we set m as 1,

and compute recent activities of core members in recent

one month. In this research question, we would like to

investigate whether different numbers of recent months

affect the performance of CoreDevRec. To answer this

research question, we vary the number of recent months

from 1 to 6, and compute CoreDevRec’s performance.

RQ6: How long is the allocation time of different

methods?

The allocation time is defined as the interval be-

tween a pull request’s submission time and its assign-

ment time. We also compare the allocation time of

CoreDevRec, RevFinder, and manual assignment.

RQ7: What is the performance of CoreDevRec in

different rounds?

In experiments, we compute the average value of

the accuracy in all rounds. We wonder whether Core-

DevRec has similar or different performance in various

rounds.

RQ8: What is the performance of CoreDevRec with

definite social relationships?

Follower and following relations were cross-sectional

at the time of data collection (July 2014), rather than at

the time when pull requests were submitted. Without

knowing exact creation time, follower and following re-

lations are estimated in previous experiments. Though

we cannot be certain about follower and following re-

lations before July 2014, these social relationships are

definite after July 2014. We collected datasets of pull

requests again in November 2014. We use definite social

relationships to make recommendation for pull requests

submitted between July 2014 and November 2014.

5.4 RQ1: Performance of CoreDevRec

Table 2 shows the accuracy and MRR (mean recip-

rocal rank) of CoreDevRec by recommending different

numbers of candidate core members. When we only

recommend one core member for each pull request, the

project rails has 51.3% of correctly assigned pull re-

quests, and the project zf2 has 72.3% of correctly as-

signed pull requests. The accuracy increases as the

number of recommended core members grows. Core-

DevRec achieves the accuracy from 72.9% to 93.5% for

top 3 recommendation. When we recommend top 5

core members, projects zf2 and scala have the accuracy

higher than 94%. CoreDevRec achieves MRR from 0.63

to 0.83. Results show that CoreDevRec has high accu-

racy and MRR.

Table 2. Performance of CoreDevRec

Project Accuracy (%) MRR

Top 1 Top 2 Top 3 Top 4 Top 5

rails 51.3 70.5 79.6 84.4 87.3 0.67

zf2 72.3 88.4 93.5 95.0 95.8 0.83

scala 57.0 77.5 88.0 92.8 94.8 0.73

xbmc 55.1 70.1 77.0 79.4 81.0 0.67

TrinityCore 49.3 63.8 72.9 77.2 80.2 0.63

1008 J. Comput. Sci. & Technol., Sept. 2015, Vol.30, No.5

5.5 RQ2: Comparison Between CoreDevRec

and RevFinder

Thongtanunam et al. proposed a method RevFin-

der to recommended reviewers for submitted patches[8].

Since RevFinder is recent work, we modify it to recom-

mend core members in GitHub. RevFinder is a core-

reviewer recommendation method based on the as-

sumption that “files that are located in similar file paths

would be managed and reviewed by similar experienced

code-reviewers”[8]. We use RevFinder to recommend

core members using modified file paths in pull requests.

The calculation of RevFinder can be summarized as fol-

lows. Given a new pull request, 1) a list of candidates

is generated and it includes all core members who ever

evaluated pull requests before. 2) The algorithm calcu-

lates a similarity score between every past pull request

and the new pull request. The score is the average path

similarity value of every modified file path in the past

and the new pull request. 3) The score of a core mem-

ber is the sum of similarity scores of past pull requests

evaluated by this core member. 4) The candidates who

have the highest scores will be recommended as appro-

priate core members.

Table 3 shows the performance comparison between

CoreDevRec and RevFinder. The gain is calculated

using (2)∼(3). It measures how CoreDevRec outper-

forms RevFinder. In project scala, CoreDevRec out-

performs RevFinder by 175.4% for top 1 recommended

core member. Compared with RevFinder, CoreDevRec

improves the accuracy from 18.7% to 81.3% for top 3

recommendation. Its top 5 accuracy values outperform

those of RevFinder by 38.8%, 11.7%, 17.2%, 26.2%,

and 46.9% in projects rails, zf2, scala, xbmc, and Trini-

tyCore, respectively. CoreDevRec has obviously higher

accuracy than RevFinder.

Table 3 also shows the MRR values of CoreDevRec

and RevFinder. In comparison with RevFinder, Core-

DevRec improves MRR from 15.3% to 70.3%. This in-

dicates that CoreDevRec can recommend correct core

members at lower rank than RevFinder does.

We use the receiver operating characteristic (ROC)

analysis[27-28], and compare core member rankings ob-

tained by CoreDevRec and RevFinder. ROC curve il-

lustrates the performance of a binary classifier, when

its discrimination threshold is varied. As described in

(1), k core members with the highest scores are con-

sidered as positive examples, and the other core mem-

bers are considered as negative examples. We vary the

threshold k from 1 to the total number of core mem-

bers. We classify a candidate as a recommended core

member (predicted positive) if its rank is less than or

equal to k; otherwise, a candidate is not classified as

recommended (predicted negative). Therefore, as k in-

creases, both false positive rate (FPR) and true positive

rate (TPR) increase[27].

Fig.6 plots ROC curves for CoreDevRec and

RevFinder. For a given FPR, the method with larger

TPR is considered better. When FPR is 0.2, CoreDev-

Rec has TPR as 0.85, and RevFinder has TPR as 0.62

in the project rails. Other projects have similar results.

ROC curves further prove that CoreDevRec behaves

better than RevFinder in all projects.

We discuss why CoreDevRec outperforms

RevFinder. RevFinder only uses the similarity of pre-

Table 3. Performance Comparison Between CoreDevRec and RevFinder

Project Method Accuracy (%) MRR

Top 1 Top 2 Top 3 Top 4 Top 5

rails RevFinder 24.3 40.5 49.1 57.0 62.9 0.42

CoreDevRec 51.3 70.5 79.6 84.4 87.3 0.67

Gain 111.1 74.1 62.1 48.1 38.8 59.50

zf2 RevFinder 60.8 70.2 78.8 82.8 85.8 0.72

CoreDevRec 72.3 88.4 93.5 95.0 95.8 0.83

Gain 18.9 25.9 18.7 14.7 11.7 15.30

scala RevFinder 20.7 51.1 53.7 69.2 80.9 0.46

CoreDevRec 57.0 77.5 88.0 92.8 94.8 0.73

Gain 175.4 51.7 63.9 34.1 17.2 58.70

xbmc RevFinder 33.2 46.3 53.7 60.3 64.2 0.48

CoreDevRec 55.1 70.1 77.0 79.4 81.0 0.67

Gain 66.0 51.4 43.4 31.7 26.2 39.60

TrinityCore RevFinder 21.8 32.6 40.2 46.1 54.6 0.37

CoreDevRec 49.3 63.8 72.9 77.2 80.2 0.63

Gain 126.1 95.7 81.3 67.5 46.9 70.30

Jing Jiang et al.: CoreDevRec: Automatic Core Member Recommendation 1009

 0.2

 0.4

 0.6

 0.8

 1.0

 0 0.2 0.4 0.6 0.8 1.0

 0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

 0 0.2 0.4 0.6 0.8 1.0

T
P
R

FPR

RevFinder
CoreDevRec

T
P
R

FPR

T
P
R

FPR

T
P
R

FPR

 0.2

 0.4

 0.6

 0.8

 1.0

RevFinder
CoreDevRec

 0.2

 0.4

 0.6

 0.8

 1.0

RevFinder
CoreDevRec

 0.2

 0.4

 0.6

 0.8

 1.0

RevFinder
CoreDevRec

(a) (b) (c)

(d) (e)

 0

 0.2

 0.4

 0.6

 0.8

1.0

 0 0.2 0.4 0.6 0.8 1.0

T
P
R

FPR

RevFinder

CoreDevRec

Fig.6. ROC curves for CoreDevRec and RevFinder. (a) Project rails. (b) Project zf2. (c) Project scala. (d) Project xbmc. (e) Project
TrinityCore.

viously evaluated file paths. CoreDevRec not only

utilizes file paths, but also considers the activeness of

core members and relationships between core members

and contributors. In the discussion section of the previ-

ous study of [8], Thongtanunam et al. mentioned that

one threat of RevFinder was the lack of core reviewer

retirement information: “It is possible that code re-

viewers are retired or no longer involve the code review

system.” CoreDevRec addresses this problem by mea-

suring the activeness of core members. Retired core

members have low values of activeness features, and

they are excluded from recommendation. Furthermore,

CoreDevRec uses relationships between core members

and contributors, so as to improve accuracy and MRR

of core member recommendation.

5.6 RQ3: Comparison Between CoreDevRec

and Manual Assignment

As described in Subsection 2.1, some pull requests

are manually assigned to specific core members. In or-

der to get the accuracy of manual assignment, we com-

pute the percentage of pull requests which are really

evaluated by manually assigned core members. Then

we compare results between our CoreDevRec and man-

ual assignment in Table 4. Only one core member can

be manually allocated to a pull request in GitHub. In

comparison, we only consider manual assignment when

one core member is recommended. Moreover, manual

assignment does not provide complete orders of core

members. We do not know the first rank of actual core

member in the recommendation list. Therefore, we do

not compare the MRR value of CoreDevRec and man-

ual assignment.

When the number of recommended core members

is 3, CoreDevRec outperforms manual assignment by

12.6%, 40.1%, 17.9%, and 72.3% in projects rails, scala,

xbmc, and TrinityCore, respectively. CoreDevRec has

better accuracy than the manual assignment for top

4 and top 5 recommendation in all projects. In the

project TrinityCore, CoreDevRec has higher accuracy

than manual assignment, when only top 1 core mem-

ber is recommended; CoreDevRec outperforms manual

assignment by 89.6% for top 5 recommendation.

Although CoreDevRec sometimes recommends

more core members than manual assignment, CoreDev-

Rec greatly reduces the size of candidate set of core

members. CoreDevRec can be used to assist with man-

ual assignment and reduce the allocation time.

5.7 RQ4: Comparison of Different Machine

Learning Algorithms

Several machine learning algorithms are known to

perform well and have been used in previous work in-

volving prediction models[1,20]. In Fig.4, several ma-

chine learning algorithms can be used to retrieve domi-

nant features and build the model for core member

recommendation. In this subsection, we investigate the

performance of different machine learning algorithms.

1010 J. Comput. Sci. & Technol., Sept. 2015, Vol.30, No.5

Table 4. Accuracy Comparison Between CoreDevRec and Manual Assignment

Project Method Accuracy (%)

Top 1 Top 2 Top 3 Top 4 Top 5

rails Manual 70.7 N/A N/A N/A N/A

CoreDevRec 51.3 70.5 79.6 84.4 87.3

Gain −27.4 −0.3 12.6 19.4 23.5

zf2 Manual 94.6 N/A N/A N/A N/A

CoreDevRec 72.3 88.4 93.5 95.0 95.8

Gain −23.6 −6.6 −1.2 0.4 1.3

scala Manual 62.8 N/A N/A N/A N/A

CoreDevRec 57.0 77.5 88.0 92.8 94.8

Gain −9.2 23.4 40.1 47.8 51.0

xbmc Manual 65.3 N/A N/A N/A N/A

CoreDevRec 55.1 70.1 77.0 79.4 81.0

Gain −15.6 07.4 17.9 21.6 24.0

TrinityCore Manual 42.3 N/A N/A N/A N/A

CoreDevRec 49.3 63.8 72.9 77.2 80.2

Gain 16.5 50.8 72.3 82.5 89.6

We use different machine learning algorithms to

build classifiers, including SVM, naive Bayes, decision

tree C4.5, and Ripper[21]. Each classifier assigns labels

(in our case: the core member) to a data point (in our

case: a pull request) with a certain likelihood. We im-

plement these classifiers on top of the tool Weka. Then

we run datasets through four classification algorithms,

and plot their performance in Table 5.

In Table 5, SVM has higher MRR than naive Bayes,

decision tree C4.5, and Ripper in projects rails, scala,

xbmc, and TrinityCore. In projects xbmc and Trini-

tyCore, SVM also has the highest accuracy for all top

k recommendation. In the project rails, SVM has the

highest accuracy for top 2, top 3, top 4 and top 5 rec-

ommendation. The accuracy for SVM is 51.3% for top

1 recommendation, which is close to the accuracy of

C4.5 algorithm. In projects zf2 and scala, SVM also

outperforms other three algorithms on the accuracy for

top 2, top 3, top 4 and top 5 recommendation. Al-

though SVM does not have the best performance for

Table 5. Performance Comparison of Different Machine Learning Algorithms

Project Algorithm Accuracy (%) MRR

Top 1 Top 2 Top 3 Top 4 Top 5

rails SVM 51.3 70.5 79.6 84.4 87.3 0.67

Naive Bayes 42.9 58.4 67.3 73.4 77.5 0.58

C4.5 54.3 63.9 68.9 71.9 73.9 0.64

Ripper 52.9 60.2 66.6 71.1 74.6 0.63

zf2 SVM 72.3 88.4 93.5 95.0 95.8 0.83

Naive Bayes 67.7 80.4 86.1 90.0 92.5 0.78

C4.5 75.7 85.5 89.6 91.5 92.3 0.83

Ripper 76.8 82.3 85.6 88.5 90.3 0.83

scala SVM 57.0 77.5 88.0 92.8 94.8 0.73

Naive Bayes 47.7 69.5 79.6 85.5 87.6 0.66

C4.5 54.3 70.2 74.9 76.9 79.2 0.67

Ripper 58.0 71.6 79.4 83.6 87.5 0.71

xbmc SVM 55.1 70.1 77.0 79.4 81.0 0.67

Naive Bayes 44.8 58.3 65.6 70.3 74.1 0.57

C4.5 53.4 61.8 65.0 66.9 68.7 0.62

Ripper 54.9 63.5 67.3 70.4 72.2 0.64

TrinityCore SVM 49.3 63.8 72.9 77.2 80.2 0.63

Naive Bayes 30.7 44.3 53.4 59.6 64.6 0.47

C4.5 45.6 53.2 57.4 60.9 61.9 0.54

Ripper 47.5 54.7 59.8 62.3 64.7 0.57

Jing Jiang et al.: CoreDevRec: Automatic Core Member Recommendation 1011

top 1 recommendation, its accuracy is close to that of

Ripper.

Table 5 shows that SVM performs better than

the other machine learning algorithms. Therefore, we

choose SVM to build our method CoreDevRec.

5.8 RQ5: Effect of Varying the Number of

Recent Months

CoreDevRec has a parameter m which describes

the number of recent months. As described in Sec-

tion 4, three features recent evaluation, recent pulls,

and evaluate time depend on the number of recent

months m. In this subsection, we investigate the effect

of the number of recent months on the performance of

CoreDevRec. We vary the number of the recent months

m from 1 to 6. Then we plot results of accuracy and

MRR in Fig.7.

Fig.7(a) shows the accuracy with the parameter m

varying from 1 to 6 in the project rails. For top 1, top

2, and top 3 recommendation, the accuracy drops sub-

stantially as the number of recent months increases. For

top 4 and top 5 recommendation, the accuracy drops

slightly with the parameter m varying from 1 to 6.

CoreDevRec achieves the highest accuracy when it con-

siders core members’ evaluation in recent one month.

Fig.7(c) shows that the project scala has the similar

performance.

Fig.7(d) shows accuracy results of the project xbmc.

As the number of recent months increases, the line of

accuracy declines slightly for top 1 and top 2 recom-

mendation; the line of accuracy remains stable for top

3 and top 4 recommendation. For top 5 recommenda-

tion, the accuracy with the setting ofm = 1 is 81%, and

the accuracy with the setting of m = 5 is 82.1%. The

accuracy with the setting of m = 1 is lower than that

of the setting of m = 5, but the difference is small. The

setting of m = 1 can achieve good accuracy. Projects

zf2 and TrinityCore have similar performance to the

project xbmc.

Fig.7(f) shows MRR results for five projects. It also

shows stable MRR performance for projects zf2, xbmc,

and TrinityCore, i.e., there is little difference in the

varying number of recent months. In projects rails and

scala, MRR lines drop slightly as the value of m in-

creases. CoreDevRec always has the best performance

when m is set as 1. Therefore, m is set as 1 in CoreDev-

Rec by default.

5.9 RQ6: Allocation Time of Different

Methods

The aim of CoreDevRec is to shorten the interval

time between a pull request’s submission and its as-

signment. In this subsection, we compare the allocation

time of RevFinder, manual assignment, and CoreDev-

Rec. For RevFinder and CoreDevRec, the computa-

tion of core members immediately begins after the pull

request’s submission, and the allocation time is com-

puted as the run time of the algorithm. As described

 0

 0.2

 0.4

 0.6

 0.8

 1.0

 0

 0.2

 0.4

 0.6

 0.8

 1.0

 0

 0.2

 0.4

 0.6

 0.8

 1.0

 1 2 3 4 5 6

A
c
c
u
ra

c
y

Number of Recent Months

Top 1
Top 2
Top 3

Top 4
Top 5

 0.4

 0.6

 0.8

 1.0

 1 2 3 4 5 6

A
c
c
u
ra

c
y

Number of Recent Months

Top 1
Top 2
Top 3
Top 4
Top 5

 0

 0.2

 0.4

 0.6

 0.8

 1.0

 1 2 3 4 5 6

A
c
c
u
ra

c
y

Number of Recent Months

Top 1
Top 2
Top 3
Top 4
Top 5

 1 2 3 4 5 6

A
c
c
u
ra

c
y

Number of Recent Months

Top 1
Top 2
Top 3
Top 4
Top 5

 1 2 3 4 5 6

A
c
c
u
ra

c
y

Number of Recent Months

Top 1
Top 2
Top 3

Top 4
Top 5

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1 2 3 4 5 6

M
R

R

Number of Recent Months

rails
zf
scala
xbmc
TrinityCore

(a) (b) (c)

(d) (e) (f)

Fig.7. Performance with the number of recent months (m) varying from 1 to 6. (a) Project rails. (b) Project zf2. (c) Project scala.
(d) Project xbmc. (e) Project TrinityCore. (f) Mean reciprocal rank (MRR).

1012 J. Comput. Sci. & Technol., Sept. 2015, Vol.30, No.5

in Subsection 2.2, we crawled information about when

a pull request was assigned. For manual assignment,

the allocation time is computed as the interval time

between the pull request’s submission and its manual

assignment.

We compute allocation time for pull requests in a

project. Table 6 shows the minimum, maximum, ave-

rage value and median value of allocation time, respec-

tively. In the project rails, the median value of alloca-

tion time is only 1.7 seconds for CoreDevRec, and it is

only 4.2 seconds for RevFinder. In contrast, the median

value of allocation time is 99 372.5 seconds for manual

assignment. Other projects have similar results. Allo-

cation time is very short for RevFinder and CoreDev-

Rec, while manual assignment has much larger alloca-

tion time. This is because manual assignment waits for

developers to assign pull requests. CoreDevRec has the

allocation time within 3 seconds, which is much shorter

than manual assignment.

5.10 RQ7: Performance in Different Rounds

As shown in Fig.5, we compute the performance

of CoreDevRec in each round, and then compute the

average performance value of all rounds. In this sub-

section, we investigate the effect of the round on the

performance of CoreDevRec. In previous work[23], the

accuracy increases over nearly all rounds for the bug

triage model. This is because that machine learners

have longer time datasets and more available infor-

mation in the higher numbered rounds. We wonder

whether the accuracy and MRR also increase as the

number of round grows in our method.

We plot the accuracy and MRR in each round in

Fig.8. As described in Subsection 5.1, only five pull re-

quests are created before month 6 in the project rails,

which does not provide enough information for machine

learning. Therefore, we do not compute accuracy re-

sults for rounds from 1 to 7.

In the project rails, the accuracy does not increase

as the round number grows in Fig.8(a). The accuracy

even drops greatly in some rounds. The accuracy also

sometimes rises and drops as the round number grows

in projects zf2, scala, xbmc, and TrinityCore. Fig.8(f)

also shows the fluctuation of MRR values in all projects.

More available training datasets do not increase the pre-

diction performance of CoreDevRec. This is probably

because that some features in our method are real-time,

and longer time datasets do not provide more useful in-

formation for SVM. For example, the activeness of core

members mainly depends on their activities in recent

months, and longer time datasets do not include more

useful information.

5.11 RQ8: Performance with Definite Social

Relationships

Follower and following relations were cross-sectional

at the time of data collection (July 2014), rather than

at the time when pull requests are submitted. With-

out knowing exact creation time, we cannot be certain

about the direction of causality for these latter features

using our datasets. But we are sure that these social

relationships were established before July 2014. We col-

lected datasets of pull requests again in November 2014.

We evaluate the performance of different methods for

pull requests submitted between July 2014 and Novem-

Table 6. Comparison of Allocation Time (s)

Project Method Minimum Maximum Average Median

rails RevFinder 0.6 10.8 4.7 4.2

CoreDevRec 1.1 2.0 1.7 1.7

Manual 7.0 39 298 305.0 2 903 953.6 99 372.5

zf2 RevFinder 0.3 17.4 5.2 4.2

CoreDevRec 1.2 1.9 1.5 1.5

Manual 8.0 54 929 265.0 1 008 702.8 252 849.5

scala RevFinder 1.0 8.4 3.9 4.0

CoreDevRec 0.8 1.6 1.2 1.2

Manual 4.0 4 235 916.0 271 776.7 25 599.0

xbmc RevFinder 0.1 2.7 0.8 0.5

CoreDevRec 1.1 2 1.7 1.7

Manual 5.0 30 596 537.0 1 377 610.4 34 827.0

TrinityCore RevFinder 0.2 7.1 2.5 1.8

CoreDevRec 1.4 2.3 1.9 1.9

Manual 57.0 9 447 707.0 1 040 281.2 90 014.0

Jing Jiang et al.: CoreDevRec: Automatic Core Member Recommendation 1013

 0

 0.2

 0.4

 0.6

 0.8

 1.0

A
c
c
u
ra

c
y

 0.2

 0.4

 0.6

 0.8

 1.0

A
c
c
u
ra

c
y

 0.2

 0.4

 0.6

 0.8

 1.0

M
R

R

0 20

Top 1
Top 2
Top 3

Top 1
Top 2
Top 3

Top 1
Top 2
Top 3

Top 1
Top 2
Top 3

Top 4
Top 5 Top 4

Top 5

Top 4
Top 5

Top 4
Top 5

4010 30

Round

50

(a)

0 20 4010 30
Round

50

(d)

0 20 4010 30

Round

50

(b)

0 20 4010 30
Round

50

(f)

0 20 4010 30

Round

(c)

0 20 4010 30
Round

(e)

 0

 0.2

 0.4

 0.6

 0.8

 1.0

A
c
c
u
ra

c
y

 0

 0.2

 0.4

 0.6

 0.8

 1.0

A
c
c
u
ra

c
y

 0

 0.2

 0.4

 0.6

 0.8

 1.0

A
c
c
u
ra

c
y

Top 1
Top 2

Top 4
Top 5

Top 3

rails
zf2

scala
xbmc
TrinityCore

Fig.8. Performance in different rounds. (a) Project rails. (b) Project zf2. (c) Project scala. (d) Project xbmc. (e) Project TrinityCore.
(f) Mean reciprocal rank (MRR).

ber 2014. In this experiment, follower and following

relations are definite.

Table 7 shows the accuracy of RevFinder, manual

assignment, and CoreDevRec. CoreDevRec has obvi-

ously higher accuracy than RevFinder in all projects.

In comparison with manual assignment, CoreDevRec

has better accuracy for top 1 recommendation in

projects xbmc and TrinityCore. CoreDevRec has bet-

ter accuracy than manual assignment for top 2 recom-

mendation in project scala and top 3 recommendation

in project rails. Results show that CoreDevRec also

achieves good performance, when definite social rela-

tionships are used.

6 Threats to Validity

Threats to internal validity relate to experimenter

bias and errors. Firstly, we extract features to

predict the activeness of core members in future.

follower relation and following relation are cross-

sectional at the time of data collection, rather than at

the time when pull requests are submitted. Without

knowing exact values of features, we cannot be certain

about the direction of causality for these latter features

using our datasets. In order to validate our results, we

use definite social relationships to make recommenda-

tion, and CoreDevRec also achieves good performance

in Subsection 5.11. Secondly, CoreDevRec uses dif-

Table 7. Accuracy (Recommending Core Members for Pull Requests Submitted Between July 2014 and November 2014)

Project Method Accuracy (%)

Top 1 Top 2 Top 3 Top 4 Top 5

rails RevFinder 24.6 37.9 42.6 45.6 48.2

CoreDevRec 48.3 68.5 77.4 83.1 87.6

Manual 72.0 N/A N/A N/A N/A

zf2 RevFinder 07.1 10.9 11.8 12.5 19.4

CoreDevRec 35.3 44.6 54.5 90.6 93.9

Manual 94.8 N/A N/A N/A N/A

scala RevFinder 13.4 14.5 29.8 44.1 69.8

CoreDevRec 43.9 74.6 88.3 94.8 97.7

Manual 57.9 N/A N/A N/A N/A

xbmc RevFinder 16.4 44.6 50.5 52.6 53.9

CoreDevRec 47.8 70.8 79.4 83.4 83.7

Manual 39.4 N/A N/A N/A N/A

TrinityCore RevFinder 24.2 37.3 39.5 42.6 44.6

CoreDevRec 38.1 62.7 75.5 79.2 81.0

Manual 12.5 N/A N/A N/A N/A

1014 J. Comput. Sci. & Technol., Sept. 2015, Vol.30, No.5

ferent kinds of features to recommend core members.

Some features may be more important than the others

in the recommendation. In future work, we will study

the relative significance of features and find important

features.

Threats to external validity relate to the generaliza-

bility of our study. Firstly, our empirical results are lim-

ited to five projects, rails, zf2, scala, xbmc, and Trinity-

Core. We cannot claim that the same results would be

achieved in other projects. Our future work will focus

on the evaluation in other projects to better generalize

results of our method. Secondly, our empirical findings

are based on open source projects in GitHub, and it

is unknown whether our results can be generalized to

other OSS platforms. In the future, we plan to study a

similar set of research questions from other platforms,

and compare their results with our findings in GitHub.

Thirdly, the goal of our method is to recommend core

members who are likely to evaluate pull requests. In

experiments, we mainly evaluate whether one of top k

recommended core members really evaluates the pull

request. However, we do not consider whether recom-

mended core members are responsible and they make

correct decision of pull requests. The quality of evalua-

tion is beyond the scope of this paper, but it is impor-

tant for the evolution of OSS projects. Correct evalua-

tion not only merges good codes into projects, but also

encourages developers to make contribution.

7 Related Work

Several previous studies explored review process

of code contribution. Nurolahzade et al. discovered

that core members were often overwhelmed with many

patches they had to review[29]. Rigby et al. observed

that if modified codes are not reviewed immediately,

they are likely not to be reviewed[30]. Rigby and Storey

further understood broadcast based peer review in open

source software projects[6]. They found that code re-

views were expensive, because they needed core review-

ers to read, understand and judge code changes. Bosu

and Carver made empirical studies to evaluate code re-

view process using a popular open source code review

tool in OSS communities[31]. Baysal et al. found that

nontechnical factors significantly impacted contribution

review outcomes[32]. However, none of these studies ad-

dresses the problem of automatic recommendation of

core members. Moreover, none of them investigates the

use of manual recommendation. Different from above

studies, we make a study of manual recommendation,

and design a method to automatically recommend ap-

propriate core members.

Finding relevant expertise is an important need in

collaborative software engineering. We mainly describe

developer recommendation in bug triage, change re-

quest, and code review.

Firstly, many studies designed approaches to as-

sign bug reports or change requests[26,33-41]. Hossen

et al. considered source code authors, maintainers, and

change proneness to triage change requests[36]. Anvik et

al. applied a machine learning algorithm and suggested

a small number of developers suitable to resolve bug

reports[38]. Linares-Vásquez et al. utilized source code

authorship for assigning expert developers to change

requests[33]. Jeong et al. used bug tossing history to

assign developers to bug reports[34]. Matter et al. used

a text-based method to identify expertise of developers

for bug reports[35]. Core member recommendation is

different from above studies. Recommending expertise

for bugs or new features is to find suitable developers,

who write codes and satisfy requirements. Any deve-

loper can be a candidate. Recommending core members

for pull requests is to find suitable core members and

make evaluation. Only a core member can be a can-

didate. Furthermore, the core member does not need

to write codes, but he or she needs to review modified

codes and decide whether to merges codes into projects.

Secondly, we review researches in code review. Yu et

al. proposed a method to predict relevant commenters

of incoming pull requests in GitHub[4-5]. As shown in

Subsection 2.3, commenters are not essential in con-

tribution evaluation. Many pull requests are directly

evaluated by core members, without any comments

from commenters. Core member recommendation is

required in contribution evaluation, and it is much dif-

ferent from reviewer recommendation in GitHub. Lee

et al. proposed a graph-based method to automatically

recommend suitable reviewers for patches[42]. Bala-

chandran designed a tool called Review Bot to pre-

dict developers who modified related code sections fre-

quently as appropriate reviewers[25]. Thongtanunam et

al. proposed a method RevFinder to recommend devel-

opers who examined files with similar directory paths[8].

These studies recommend code reviewers in traditional

open source software platforms, while CoreDevRec rec-

ommends core members in a pull-based development

platform. Moreover, we modify RevFinder to recom-

mend core members in GitHub. Experiments in Subsec-

tion 5.5 show that our method CoreDevRec has better

accuracy than RevFinder.

Jing Jiang et al.: CoreDevRec: Automatic Core Member Recommendation 1015

8 Conclusions

In this paper, we empirically investigated pull re-

quests with manual assignment. Results showed that

3.2%∼40.6% of pull requests are manually assigned to

specific core members. Automatic recommendation is

required to shorten the assignment time and improve

the evaluation process.

We proposed CoreDevRec to recommend core mem-

bers for contribution evaluation in GitHub. CoreDev-

Rec considers different kinds of features and uses

SVM to predict suitable core members. We evalu-

ated CoreDevRec on 18 651 pull requests of five popular

projects in GitHub. Results showed that CoreDevRec

achieves accuracy from 72.9% to 93.5% for top 3 recom-

mendation, and achieves mean reciprocal rank from

0.63 to 0.83. In comparison with RevFinder, CoreDev-

Rec improves the accuracy from 18.7% to 81.3% for top

3 recommendation, and improves the mean reciprocal

rank from 15.3% to 70.3%. Moreover, CoreDevRec has

better accuracy than manual assignment for top 4 and

top 5 recommendation. CoreDevRec has the best per-

formance when SVM is used and the parameter m is

set as 1. Therefore, we believe that CoreDevRec can

improve the assignment of pull requests.

References

[1] Gousios G, Pinzger M, van Deursen A. An exploratory

study of the pull-based software development model. In

Proc. the 36th ICSE, May 31-June 7, 2014, pp.345-355.

[2] Tsay J, Dabbish L, Herbsleb J. Influence of social and tech-

nical factors for evaluating contribution in GitHub. In Proc.

the 36th ICSE, May 31-June 7, 2014, pp.356-366.

[3] Zhou M, Mockus A. What make long term contributors:

Willingness and opportunity in OSS community. In Proc.

the 34th ICSE, June 2012, pp.518-528.

[4] Yu Y, Wang H, Yin G, Ling C X. Who should review this

pull-request: Reviewer recommendation to expedite crowd

collaboration. In Proc. the 21st APSEC, December 2014,

pp.335-342.

[5] Yu Y, Wang H, Yin G, Ling C X. Reviewer recommender of

pull-requests in GitHub. In Proc. the 30th ICSME, Septem-

ber 29-October 3, 2014, pp.609-612.

[6] Rigby P C, Storey M A. Understanding broadcast based

peer review on open source software projects. In Proc. the

33rd ICSE, May 2011, pp.541-550.

[7] Gousios G, Zaidman A, Storey M A, van Deursen A. Work

practices and challenges in pull-based development: The in-

tegrator’s perspective. In Proc. the 37th ICSE, May 2015.

[8] Thongtanunam P, Tantithamthavorn C, Kula R G, Yoshida

N, Iida H, Matsumoto K. Who should review my code? A

file location-based code-reviewer recommendation approach

for modern code review. In Proc. the 22nd SANER, March

2015, pp.141-150.

[9] Dabbish L, Stuart C, Tsay J, Herbsleb J. Social coding in

GitHub: Transparency and collaboration in an open soft-

ware repository. In Proc. CSCW, February 2012, pp.1277-

1286.

[10] Jiang J, Zhang L, Li L. Understanding project dissemina-

tion on a social coding site. In Proc. the 20th WCRE, Oc-

tober 2013, pp.132-141.

[11] Lehmann E L, D’Abrera H J M. Nonparametrics: Statisti-

cal Methods Based on Ranks. Prentice-Hall, 1998.

[12] Bird C, Pattison D, D’Souza R, Filkov V, Devanbu P. La-

tent social structure in open source projects. In Proc. the

16th SIGSOFT FSE, November 2008, pp.24-35.

[13] Xuan Q, Okano A, Devanbu P, Filkov V. Focus-shifting

patterns of OSS developers and their congruence with call

graphs. In Proc. the 22nd SIGSOFT FSE, November 2014,

pp.401-412.

[14] Bird C, Gourley A, Devanbu P, Gertz M, Swaminathan A.

Mining email social networks. In Proc. the 2006 MSR, May

2006, pp.137-143.

[15] Xuan Q, Filkov V. Building it together: Synchronous de-

velopment in OSS. In Proc. the 36th ICSE, May 31-June 7,

2014, pp.222-233.

[16] Zhang W Q, Nie L M, Jiang H, Chen Z Y, Liu J. Devel-

oper social networks in software engineering: Construction,

analysis, and applications. SCIENCE CHINA Information

Sciences, 2014, 57(12): 1-23.

[17] Crowston K, Wei K, Howison J, Wiggins A. Free/libre open

source software development: What we know and what we

do not know. ACM Computing Surveys, 2012, 44(2): 7:1-

7:35.

[18] Bird C, Gourley A, Devanbu P, Swaminathan A, Hsu G.

Open borders? Immigration in open source projects. In

Proc. the 4th MSR, May 2007, Article No. 6.

[19] Boser B E, Guyon I M, Vapnik V N. A training algo-

rithm for optimal margin classifiers. In Proc. the 5th Annual

Workshop on Computational Learning Theory, July 1992,

pp.144-152.

[20] Xia X, Lo D,Wang X, Yang X, Li S, Sun J. A comparative

study of supervised learning algorithms for re-opened bug

prediction. In Proc. the 17th CSMR, March 2013, pp.331-

334.

[21] Park B, Bea J K. Using machine learning algorithms for

housing price prediction: The case of Fairfax county, Vir-

ginia housing data. Expert Systems with Application, 2015,

42(6): 2928-2934.

[22] Xia X, Lo D, Wang X, Zhou B. Accurate developer rec-

ommendation for bug resolution. In Proc. the 20th WCRE,

October 2013, pp.72-81.

[23] Bettenburg N, Premraj R, Zimmermann T, Kim S. Dupli-

cate bug reports considered harmful . . . Really? In Proc.

the 24th ICSM, September 28-October 4, 2008, pp.337-345.

[24] Xuan J, Jiang H, Ren Z, Zou W. Developer prioritization in

bug repositories. In Proc. the 34th ICSE, June 2012, pp.25-

35.

[25] Balachandran V. Reducing human effort and improving

quality in peer code reviews using automatic static anal-

ysis and reviewer recommendation. In Proc. the 35th ICSE,

May 2013, pp.931-940.

[26] Kagdi H, Gethers M, Poshyvanyk D, Hammad M. Assigning

change requests to software developers. Journal of Software:

Evolution and Process, 2012, 24(1): 3-33.

1016 J. Comput. Sci. & Technol., Sept. 2015, Vol.30, No.5

[27] Zweig M H, Campbell G. Receiver-operating characteris-

tic (ROC) plots: A fundamental evaluation tool in clinical

medicine. Clinical Chemistry, 1993, 39(4): 561-577.

[28] Xuan Q, Fu C, Yu L. Ranking developer candidates by

social links. Advances in Complex Systems, 2014, 7(17):

1550005:1-1550005:19.

[29] Nurolahzade M, Nashehi S M, Khandkar S H, Rawal S. The

role of patch review in software evolution: An analysis of

the Mozilla Firefox. In Proc. IWPSE-Evol, August 2009,

pp.9-17.

[30] Rigby P C, Germán DM, Storey M A. Open source software

peer review practices: A case study of the Apache server.

In Proc. the 30th ICSE, May 2008, pp.541-550.

[31] Bosu A, Carver J C. Peer code review in open source com-

munities using review-board. In Proc. the 4th PLATEAU,

October 2012, pp.17-24.

[32] Baysal O, Kononenko O, Holmes R, Godfrey M W. The

influence of non-technical factors on code review. In Proc.

the 20th WCRE, October 2013, pp.122-131.

[33] Linares-Vásquez M, Hossen K, Dang H, Kagdi H, Gethers

M, Poshyvanyk D. Triaging incoming change requests: Bug

or commit history, or code authorship? In Proc. the 28th

ICSM, September 2012, pp.451-460.

[34] Jeong G, Kim S, Zimmermann T. Improving bug triage with

bug tossing graphs. In Proc. the 17th ESEC/FSE, August

2009, pp.111-120.

[35] Matter D, Kuhn A, Nierstrasz O. Assigning bug reports

using a vocabulary-based expertise model of developers. In

Proc. the 6th MSR, May 2009, pp.131-140.

[36] Hossen M K, Kagdi H, Poshyvanyk D. Amalgamating

source code authors, maintainers, and change proneness to

triage change requests. In Proc. the 22nd ICPC, June 2014,

pp.130-141.

[37] Hu H, Zhang H, Xuan J, Sun W. Effective bug triage based

on historical bug-fix information. In Proc. the 25th ISSRE,

November 2014, pp.122-132.

[38] Anvik J, Hiew L, Murphy G C. Who should fix this bug?

In Proc. the 28th ICSE, May 2006, pp.361-370.

[39] Wu W, Zhang W, Yang Y, Wang Q. DREX: Developer rec-

ommendation withK-nearest-neighbor search and expertise

ranking. In Proc. the 18th APSEC, December 2011, pp.389-

396.

[40] Cubranic D, Murphy G C. Automatic bug triage using text

categorization. In Proc. the 16th SEKE, June 2004, pp.92-

97.

[41] Liu H, Ma Z, Shao W, Niu Z. Schedule of bad smell de-

tection and resolution: A new way to save effort. IEEE

Transactions on Software Engineering, 2012, 38(1): 220-

235.

[42] Lee J B, Ihara A, Monden A, Matsumoto K. Patch reviewer

recommendation in OSS projects. In Proc. the 20th APSEC,

December 2013, pp.1-6.

Jing Jiang received her B.S. and

Ph.D. degrees in computer science from

Peking University, Beijing, in 2007

and 2012, respectively. She is now an

assistant professor in the State Key

Laboratory of Software Development

Environment of Beihang University,

Beijing. Her research interests include

software engineering, data mining, human factors and

social aspects of software engineering.

Jia-Huan He received his B.E.

degree in software engineering from

Beihang University, Beijing, in 2009. He

is now a master candidate in software

engineering of Beihang University. His

research interests include empirical

software engineering, data mining, and

machine learning.

Xue-Yuan Chen is now an under-

graduate student in computer science

of Beihang University, Beijing. His

research interests include software

engineering, data mining, and artificial

intelligence. text text text text text

text text text text text text text text

text text text text text

