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Abstract Social trust aware recommender systems have been well studied in recent years. However, most of existing

methods focus on the recommendation scenarios where users can provide explicit feedback to items. But in most cases,

the feedback is not explicit but implicit. Moreover, most of trust aware methods assume the trust relationships among

users are single and homogeneous, whereas trust as a social concept is intrinsically multi-faceted and heterogeneous. Simply

exploiting the raw values of trust relations cannot get satisfactory results. Based on the above observations, we propose

to learn a trust aware personalized ranking method with multi-faceted trust relations for implicit feedback. Specifically,

we first introduce the social trust assumption — a user’s taste is close to the neighbors he/she trusts — into the Bayesian

Personalized Ranking model. To explore the impact of users’ multi-faceted trust relations, we further propose a category-

sensitive random walk method CRWR to infer the true trust value on each trust link. Finally, we arrive at our trust strength

aware item recommendation method SocialBPRCRWR by replacing the raw binary trust matrix with the derived real-valued

trust strength. Data analysis and experimental results on two real-world datasets demonstrate the existence of social trust

influence and the effectiveness of our social based ranking method SocialBPRCRWR in terms of AUC (area under the receiver

operating characteristic curve).

Keywords social recommendation, matrix factorization, random walk, Bayesian personalized ranking

1 Introduction

With the exponential growth of information gene-

rated on the World Wide Web, recommender systems

as one of the efficient information filtering techniques

have attracted a lot of attentions in the last decade.

Recommender systems focus on solving the information

overload problem by suggesting the items that are po-

tential of their interests to users. Typical recommender

systems are based on collaborative filtering, which is a

technique that can predict the preference of a given user

by only collecting rating information from other similar

users or items[1-2]. Examples of successful applications

of recommender systems can be found in many indus-

tries, such as movie recommendation at Netflix 1○ and

product recommendation at Amazon 2○.
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However, traditional recommender systems only uti-

lize the user-item rating matrix for recommendation,

and ignore the social connections or trust relations

among users. But in our real life, we always turn to our

friends we trust for recommendations of products, con-

sultations, music and movies. The social trust relation

helps us locate the items we are potentially interested

in. Hence, with the advent of online social networks,

social trust aware recommender systems have drawn

lots of attentions. For example, Ma et al.[3-4] explored

several ways to incorporate trust relations into the ma-

trix factorization framework. Noel et al.[5] improved

the existing social matrix factorization objective func-

tions, and proposed a new unified framework for social

recommendation.

Unfortunately, most of these existing trust aware

recommendation methods are proposed for social net-

works with explicit feedback of users. In these cases, a

user can tell us to what extent he/she likes a specific

item by giving a real-valued rating, and we can explic-

itly know what he/she likes and hates. Nevertheless,

explicit feedback is not always available. Most of the

feedback in real social networks is not explicit but im-

plicit. In implicit feedback social networks, we can only

get a user’s positive behaviors from the history of what

he/she has clicked, purchased or connected, but never

know to what degree he/she likes and what he/she does

not like. The learning task for this kind of data is how

to infer the user preferences from only positive observa-

tions. Rendle et al. explored this problem in [6], where

they made use of partial order of items and presented a

generic Bayesian optimization criterion for personalized

ranking. Their work provides us a general way to learn

users’ interests from implicit data. However they did

not consider the impact of social trust relations, which

have been demonstrated in the rating prediction based

tasks.

Moreover, most of the existing social trust aware

recommendation methods assume the trust relation-

ships among users are single and homogeneous. For

example, Jamali and Ester[7] incorporated the mecha-

nism of trust propagation into a matrix factorization

method, and the binary social relations were consi-

dered. However, trust as a social concept is intrinsically

multi-faceted and heterogeneous. Simply exploiting the

raw values of trust relations cannot get satisfactory re-

sults. Intuitively, a user may trust different people in

different domains/categories. For example, in multi-

category recommender systems, a user may trust an

expert in movies category but not trust him/her in cars

category. Treating trust relationships of different cate-

gories equally will not capture the multi-faceted fea-

tures hidden below the surface (especially when the so-

cial relations only have binary values).

Based on the above observations, we propose to

learn a trust aware item ranking model on multi-

category social networks. In order to learn from implicit

feedback, we reconstruct the user-item rating matrix

using the data policy proposed by Rendle et al.[6], and

learn the user and item latent factors by making use of

the partial order of items. To investigate the impact of

social trust relations, we derive a social based persona-

lized item ranking criterion from a Bayesian analysis of

the problem, where we make the learned user feature

vectors be close to those of their neighbors. To explore

the impact of users’ multi-faceted trust relations, we

propose a category-sensitive random walk method to

infer the category-specific trust value on each link. By

replacing the original social trust value, we arrive at our

final item ranking model. Data analysis and experimen-

tal results on real-world social networks demonstrate

the existence of social influence, and the proposed item

ranking method can better utilize users’ social trust in-

formation in multi-category systems, where our meth-

ods can perform better than other state-of-the-art item

recommendation methods in terms of AUC.

The primary contributions of this paper can be sum-

marized as follows.

1) We derive a social based item ranking criterion

from a Bayesian analysis of the problem for the implicit

feedback.

2) We propose a category-sensitive random walk

method CRWR to estimate the true trust relations.

3) We replace the raw binary social relation with

inferred trust strength and learn the latent feature vec-

tors on multi-category systems.

4) We conduct data analysis and experiments to

demonstrate the existence of social influence and the ef-

fectiveness of our social based method SocialBPRCRWR.

The remaining of this paper is organized as follows.

Section 2 discusses the related recommendation meth-

ods. Section 3 first derives the social based ranking cri-

terion from the Bayesian analysis of the problem, and

then proposes a category-sensitive random walk method

CRWR to estimate the true trust relations. Section 4

conducts data analysis and experiments to demonstrate

the existence of social influence and the effectiveness

SocialBPRCRWR. Section 5 outlines some conclusions

and directions for future work.
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2 Related Work

Typical traditional recommender systems are based

on collaborative filtering techniques, where two types

of methods are well studied: memory-based and

model-based. Memory-based methods mainly focus

on employing different strategies to find similar users

and items for making predictions, which are known

as user-based[1] and item-based[2] approaches, respec-

tively. Contrary to memory-based methods, which di-

rectly make predictions based on the original rating

data, model-based methods focus on employing ma-

chine learning and statistical techniques to learn models

from the data for making predictions. Algorithms in

this category can be grouped as aspect models[8], latent

factor models[9], ranking models[10] and the clustering

models[11]. For example, Salakhutdinov and Mnih[9]

proposed a probabilistic linear model with Gaussian

observation noise, which provides a probabilistic way

to learn latent matrices from the known rating data.

Shi et al.[10] exploited a list-wise learning to rank tech-

niques to improve the performance of the state-of-the-

art matrix factorization techniques for the task of item

ranking.

The above traditional model-based methods only

utilize user-item rating matrix for recommendations

and ignore the social trust and friend relations in social

networks. But in real life, we always turn to our friends

we trust for recommendations. Based on this intui-

tion, many researchers have recently started to analyze

trust-based recommender systems[4,12-14]. Jamali and

Ester[12] proposed a random walk based recommenda-

tion method, where they considered not only the ratings

of the target item, but also those of similar items. Ma

et al.[4] introduced social trust restrictions into recom-

mender systems, where they naturally fused the users’

tastes and those of their friends together in a proba-

bilistic factor analysis framework. Jiang et al.[14] pro-

posed a social contextual recommendation framework

to incorporate individual preference and interpersonal

influence to improve the accuracy of social recommen-

dation. Huang et al.[15] proposed a Hybrid Multigroup

CoClustering recommendation framework, where they

used user-item rating records, user social networks, and

item features extracted from the DBpedia knowledge

base to mine meaningful user-item groups. Ma[16] stud-

ied the problem of social recommendation with implicit

social information and in his work, a general matrix

factorization framework was employed to incorporate

different implicit social information.

However, most of these existing social trust aware

recommendation methods focus on the optimization

of the squared error loss on user-item ratings, and

few of them are directly optimized for ranking, espe-

cially for the task of ranking in implicit feedback so-

cial networks[17-19]. For example, Yang et al.[17] con-

ducted a comprehensive study on improving the ac-

curacy of top-k social recommendation by extending

the training objective function to include both the ob-

served ratings and the missing ratings. But their work

resorts to optimizing the squared error, where the par-

tial order of items is left out. Jamali and Ester[18] ex-

ploited a trust network to improve the top-n recom-

mendation, where they first performed a random walk

on the trust network, and then performed a weighted

merge of the results from trust-based and collabora-

tive filtering approach. Nonetheless, their work is con-

ducted on explicit feedback social networks, and needs

users to provide explicit ratings for items. Although

there is some work directly optimized for ranking, none

can handle the trust propagation phenomenon and the

multi-faced trust relations. For example, Du et al.[20]

extended the BPR (Bayesian Personalized Ranking)

method, and proposed a user graph regularized pair-

wise matrix factorization to seamlessly integrate user

information into pair-wise matrix factorization proce-

dure. Krohn-Grimberghe et al.[21] formalized the prob-

lem of recommendation in social networks as a multi-

relational learning problem and solved it by extending

the BPR method to the multi-relational case. Pan and

Chen[22] proposed a GBPR (Group Bayesian Persona-

lized Ranking) method by introducing the richer inter-

actions among users to relax the individual and inde-

pendence assumptions made in the BPR method.

Moreover, most of these existing methods assume

a single type of trust relations, and the role of multi-

faceted trust for social recommendation has not been

fully considered. Matsuo and Yamamoto[23] modeled

the bidirectional effects between trust relations and

product ratings, but they used binary trust relations.

Tang et al.[24] studied the multi-faceted trust relations

between users in product review sites. They demon-

strated that people with trust relationships have more

similar multi-faceted interests than those without trust

relationships and proposed a fine-grained approach to

capture multi-faceted trust relationships. Yang et al.[25]

focused on inferring category-specific social trust circles

from available rating data and social networks to im-

prove recommendation accuracy. The key idea of their

work is to determine the best subset of a user’s friends
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for making recommendations in an item category.

As a conclusion, the social recommendation problem

for implicit feedback in multi-faceted trust networks has

not been well studied. In this paper, we systematically

analyze this problem, and propose a social trust aware

ranking method to improve recommendation results.

3 Our Approach

In this section, we first describe the social recom-

mendation problem with only positive observations.

Then we derive the social trust aware ranking criteria

from the Bayesian analysis of the problem. Finally, we

explore the influence of users’ multi-faceted trust rela-

tions by inferring category-specific trust value on each

link.

3.1 Problem Description

Let us consider the item recommendation problem

(also called personalized ranking) in implicit feedback

social networks, where we can only observe positive

rating behaviors of users, that is, we can only know

a user has rated an item, but do not know the exact

rating value. Now the task in this scene is to pro-

vide a user with a ranked list of items that he/she

is likely to rate. In real world, this process includes

three central elements: users’ trust network, the in-

terests of users and their friends, and users’ favorite

categories/domains. The typical trust network can be

shown in Fig.1(a), where six users (from u1 to u6) are

connected by 11 relations (edges), and each relation is

weighted by sij ∈ (0, 1] to indicate to what extent user

ui trusts user uj . Normally, the trust value will be

domain-specific. Users in different domains (as shown

in Fig.1(c)) will place different trust strengths to others,

as there are naturally experts of different domains.

As we can see in Fig.1(b), each user also rated some

items (from v1 to v3) to express his/her favors, but

only positive behaviors can be observed. The remain-

ing unknown data (denoted as ?) is a mixture of ac-

tually negative and missing values. We cannot use a

common approach to learn user features directly from

unobserved data, as they are unable to be distinguished

from the two levels anymore. The problem we study in

this paper is how to make use of trust relations and

categories to predict the personalized ranking of items.

3.2 Review of BPRMF

Suppose we have an m × n rating behavior matrix

R = (rui)m×n ∈ {1, ?}m×n denoting m users’ rating

behaviors on n items, where rui = 1 denotes user u has

rated item i in the past, and rui =? denotes an unknown

rating status of user u to item i. To learn from this im-

plicit feedback, we reconstruct the user-item rating ma-

trix using the following data policy proposed by Rendle

et al.[6], that is, if an item i has been rated by user u,

i.e., (u, i) ∈ R, then we assume that u prefers i over all

other non-rated items. But for the items that have been

rated by the same user, we cannot infer any preference.

The same is true for the items that a user has not rated

yet. Formally, the training data DR : U ×I × I can be

created by:

DR = {(u, i, j)|i ∈ I+
u ∧ j ∈ I \ I+

u },

where U is the user set, I is the item set, and I+
u and

I \ I+
u are the observed item set and the missing item

set associated with user u, respectively. The meaning

of (u, i, j) ∈ DR is that user u is assumed to prefer item

i over item j.

In order to find the correct personalized ranking for

all items i ∈ I, Rendle et al.[6] proposed the BPR

method to solve this problem. BPR is derived by a
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Fig.1. Example for trust-based recommendation. (a) Social trust graph. (b) User-item rating matrix. (c) User-category matrix.
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Bayesian analysis of the problem using the likelihood

function for p(i >u j|θ) and the prior probability for

the model parameter p(θ) (i >u j denotes user u prefers

item i over item j). The original objective function of

BPR is written as:

BPR = −
∑

(u,i,j)∈DR

ln σ(r̂uij(θ)) + λθ||θ||
2,

where σ(x) is the logistic sigmoid function σ(x) =

1/(1 + e−(x)), λθ is the regularization parameter of θ,

and r̂uij(θ) is an arbitrary real-valued function of the

model parameter θ. By decomposing the estimator r̂uij
as:

r̂uij = r̂ui − r̂uj ,

any standard collaborative filtering model can be ap-

plied to predict the preference of user u to item i (r̂ui).

BPRMF[6] is the model that delegates the task of

modeling the relationship between u, i and j to matrix

factorization (MF) method[9]. The objective function

of BPRMF can be achieved as:

BPRMF = −
∑

(u,i,j)∈DR

lnσ(r̂uij) +

λU

2
||U ||2F +

λV

2
||V ||2F ,

where r̂uij = r̂ui − r̂uj = Uu
TVi − Uu

TVj , λU and

λV are the regularization parameters, U ∈ R
l×m and

V ∈ R
l×n are the latent user and item feature matri-

ces, with column vectors Uu and Vi or Vj representing

user-specific and item-specific latent feature vectors re-

spectively. As in MF, the zero-mean spherical Gaussian

priors[9] are placed on user and item feature vectors:

p(U |σ2
U
) =

m
∏

u=1

N (Uu|0, σ
2
U
I),

p(V |σ2
V ) =

n
∏

k=1

N (Vk|0, σ
2
V I), (1)

where N (x|µ, σ2) is the probability density function of

the Gaussian distribution with mean µ and variance σ2

and I is the identity matrix.

3.3 Social Trust Aware Ranking Criteria

3.3.1 Social Trust Assumption

Suppose we have a directed social trust graph G =

(U , E), where U is the set of nodes and E is the set of

edges. Each node in U represents a user in the network

and each edge in E represents a trust relation between

two users. Let S = (suv)m×m denote the m×m social

trust matrix of graph G.

BPRMF makes an assumption, that is, for any two

users u and v, the pair-wise preference of user u is in-

dependent of that of user v. But in real world, we al-

ways turn to our friends we trust for recommendations.

In the theory of social influence[26], the behavior of a

user u is affected by his/her direct neighbors Nu. User

u’s taste is close to those of the neighbors that he/she

trusts. In other words, the latent feature vector of u is

close to the latent feature vectors of all his/her trusted

neighbors v ∈ Nu. This influence can be formulated as

follows[7,27]:

Ûu =

∑

v∈Nu
suvUv

∑

v∈Nu
suv

=
∑

v∈Nv

s∗uvUv,

where Ûu is the estimated latent feature vector of

u, suv is the trust value of how much user u trusts

user v. In most cases, the statement of trust rela-

tions only takes on positive values (suv = 1), which

will not fully reflect the true relationship between two

users. In Subsection 3.4, we will investigate how to esti-

mate the true trust strengths in multi-category systems.

s∗uv = suv/
∑

v∈Nu
suv is the row normalization form of

the trust matrix S = (suv)m×m, so that
∑m

v=1 s
∗
uv = 1.

The user latent feature vector U now has two fac-

tors: the zero-mean spherical Gaussian prior, and the

conditional distribution of U given the latent features

of his/her trusted neighbors. Hence,

p(U |S, σ2
U , σ2

S) ∝ p(U |σ2
U )p(U |S, σ2

S)

=

m
∏

u=1

N (Uu|0, σ
2
UI) ×

m
∏

u=1

N (Uu|
∑

t∈Nu

s∗utUt, σ
2
S
I). (2)

3.3.2 Bayesian Inference

Like in BPR, the Bayesian formulation of finding

the correct personalized ranking for all items i ∈ I is

to maximize the posterior probability over the user and

item latent feature vectors:

p(U ,V |DR,S, σ2
S , σ

2
U , σ2

V )

∝ p(DR|U ,V )p(U |S, σ2
S , σ

2
U )p(V |σ2

V ).

Note that taking the trust network into account does

not change the equation for the conditional distribution

of the observed item pairs. It only affects the user fea-

ture vectors. The Bernoulli distribution over the binary

random variable δ((u, i, j) ∈ DR) can also be used:
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p(DR|U ,V )

=
∏

(u,i,j)∈U×I×I

p(i >u j|Uu,Vi,Vj)
δ((u,i,j)∈DR) ×

(1 − p(i >u j|Uu,Vi,Vj))
(1−δ((u,i,j)∈DR)),

where δ is the indicator function[6]. Due to the tota-

lity and anti-symmetry of a sound pair-wise ordering

scheme[6], the above formula can be simplified to:

p(DR|U ,V ) =
∏

(u,i,j)∈DR

p(i >u j|Uu,Vi,Vj). (3)

In order to get a personalized total order, we resort to

the MF model by defining the individual probability

that a user really prefers item i over item j as:

p(i >u j|Uu,Vi,Vj) = σ(r̂uij(Uu,Vi,Vj)),

where r̂uij(Uu,Vi,Vj) = Uu
TVi −Uu

TVj captures the

partial order relationship between user u, item i and

item j. For convenience, in the following, we will skip

the arguments Uu,Vi,Vj from r̂uij .

To complete the Bayesian inference of the persona-

lized ranking task, we also place zero-mean spherical

Gaussian prior on item feature vector V (see (1)).

Based on (2) and (3), the posterior probability of la-

tent feature vectors can be achieved as follows:

p(U ,V |DR,S, σ2
S , σ

2
U , σ2

V )

∝ p(DR|U ,V )p(U |S, σ2
S
, σ2

U
)p(V |σ2

V
)

=
∏

(u,i,j)∈DR

r̂uij ×
m
∏

u=1

N (Uu|
∑

t∈Nu

s∗utUt, σ
2
S
I)×

m
∏

u=1

N (Uu|0, σ
2
UI)×

n
∏

k=1

N (Vk|0, σ
2
V I).

The log of the posterior probability can be computed

as follows:

ln p(U ,V |DR,S, σ2
S
, σ2

U
, σ2

V
)

=
∑

(u,i,j)∈DR

lnσ(r̂uij)−

1

2σ2
S

n
∑

u=1

(

Uu −
∑

v∈Nu

s∗uvUu

)T

·

(

Uu −
∑

v∈Nu

s∗uvUu

)

−
1

2σ2
U

n
∑

u=1

Uu
TUu −

1

2σ2
V

n
∑

k=1

Vk
TVk −

1

2
((n× l) lnσ2

U
+

(m× l) lnσ2
V

+ (n× l) lnσ2
S
) + C,

where C is a constant that does not depend on the

parameters. Maximizing the log-posterior over user

and item features with hyper-parameters kept fixed is

equivalent to minimizing the following objective func-

tion L1:

L1(DR,S,U ,V )

= −
m
∑

u=1

∑

i∈I+
u

∑

j∈I\I+
u

lnσ(r̂uij) +

β

2

m
∑

u=1

(

Uu −
∑

v∈Nu

s∗uvUv

)T

·

(

Uu −
∑

v∈Nu

s∗uvUv

)

+
λU

2
‖U‖2F +

λV

2
‖V ‖2F ,

where λU = 1/σ2
U
, λV = 1/σ2

V
, β = 1/σ2

S
are the social

regularization parameters determining the trade-off be-

tween the user rating data and the social trust network

information, and v ∈ Nu is the direct neighbor set user

u trusts. Gradient-based approaches can be applied to

find a local minimum.

Note that our Social Based Bayesian Personalized

Ranking method (SocialBPR) is a pair-wise approach,

and its training object is not to directly predict the

list of items. Instead, it cares about the relative or-

der between two items. Compared with the point-wise

or rating-based approach, it is closer to the concept of

“ranking” as it does not focus on accurately predict-

ing the rating of each item. However, the output of

SocialBPR is still the user and item latent factors U

and V . The main difference is that we optimize them

by correctly ranking item pairs instead of scoring single

items. Another advantage of our approach is that it

models the trust propagation in social networks. More

specifically, for any user u, the feature vector of u is de-

pendent on the feature vectors of his/her trusted neigh-

bors Nu. Recursively, the feature vector of each trusted

neighbor v ∈ Nu is also dependent on the feature vector

of v’s trusted neighbors Nv.

3.4 Learning the Strengths of Multi-Faceted

Trust Relations

SocialBPR assumes the social trusts in different

categories have the same influence on the target user

and the trust relations only take on values from either

1 or 0, which do not truly reflect their impact on user

behaviors. However, in real-world social networks, trust

is multi-faceted, that is, a user places different trusts in

different categories. Hence, it is desirable to understand

the true trust strengths from multi-category systems.
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In multi-category systems, each user can have multi-

ple favorite categories, and will make social trusts based

on his/her category interests. Let W = (wij)m×m de-

note the m × m category similarity matrix between

users, where wij ∈ (0, 1] denotes the similarity value

associated with the edge from ui to uj in trust graph

G, and wij = 0, otherwise. The physical meaning of a

similarity value wij can be interpreted as how much a

user ui is similar to user uj in different categories.

Let Pu ∈ R
1×h be the user category preference

vector 3○ of user u, with each entry puk denoting the

probability that user u has interest in category k, which

is formally defined as:

puk =
nuk

nu

,

where nu is the total number of items rated by user

u, and nuk is the number of items in category k rated

by user u. The ordered set of categories is determined

by their preferences puk over the categories. And the

category interest similarity wuv between users u and

v can be measured by the Kendall rank correlation

coefficient[28]:

wuv = 1−
4×

∑

i,j∈Cu∩Cv
I−((pui − puj)(pvi − pvj))

|Cu ∩ Cv| × (|Cu ∩ Cv| − 1)
,

where Cu is the observed category set associated with

user u and I−(x) is the indicator function defined as:

I−(x) =

{

1, if x < 0,

0, otherwise.

The approach of Kendall will take values between −1

and +1, where −1 is obtained when one order is the ex-

act reverse of the other order and +1 is obtained when

both orders are identical. In our experiments, we only

keep positive values (wij > 0), as a negative wij de-

notes that the ordered set of categories is negatively

correlated.

Given the social trust network and category simi-

larity, we propose a Category-Sensitive Random Walk

with Restart (CRWR) method to learn the intrinsic

relevance between two users. For a standard random

walk with restart approach, a random walker starts

from the i-th vertex, iteratively with probability 1− α

jumps to other vertices according to transition prob-

abilities qi = {qi1, · · ·, qin}, and with probability α

jumps back to itself. After reaching the steady state,

the probability of the random walker staying at the j-

th vertex corresponds to the relevance score of vertex i

to vertex j.

To reflect users’ multi-category interests, we bias

the transition matrix Q by users’ category similarity

matrix W , which can be defined as follows:

Q = D−1 ·W , (4)

where D is the degree matrix of trust graph G. In this

scene, when the random walker jumps to other vertices,

the walker will not only consider the graph structure

but also consider the category similarity between two

users. The final steady-state probability matrix can be

obtained by iterating the following updates:

B(t+ 1) = (1 − α)QB(t) + αI, (5)

whereB(t) andB(t+1) are the state probability matri-

ces at time t and time t+1 respectively. The iterations

will finally converge when t → ∞. For any two ver-

texes i and j, the value of steady-state probability bij
represents how well user i trusts/knows user j in social

graph.

Algorithm 1 summarizes the whole procedure of the

category-sensitive random walk method for estimating

the strength of social trusts.

Algorithm 1. CRWR(G, D, W , α, ǫ, B, t)

1: Initialize B, t, and the stop condition ǫ

2: Compute transition probabilistic matrix Q using (4)
3: repeat

4: Update the state matrix B using (5)
5: until |B(t)−B(t− 1)| < ǫ

6: return the steady state matrix B∗

3.5 Learning Algorithm

Using the (normalized) estimated trust strength B∗

to replace users’ direct trust matrix S, we arrive at our

final item recommendation method SocialBPRCRWR

and train the following objective function:

L2(R,B∗,U ,V )

= −
m
∑

u=1

∑

i∈I+
u

∑

j∈I\I+
u

lnσ(r̂uij) +

β

2

m
∑

u=1

(

Uu −
∑

v∈Nu

b∗uvUv

)T(

Uu −
∑

v∈Nu

b∗uvUv

)

+

λU

2
‖U‖2F +

λV

2
‖V ‖2F , (6)

where b∗uv denotes the trust value from user u to user v

estimated by CRWR.

3○h is the number of categories.
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As the optimization criterion derived by (6) is diffe-

rentiable, gradient descent based algorithms are an ob-

vious choice for minimization. But as we can see, due to

the huge number of preference pairs (O(|R||I|)), stan-

dard gradient descent is expensive to update the latent

features over all pairs. To solve this issue, we exploit

the strategy proposed in the BPR[6] method, which is

a stochastic gradient descent algorithm based on boot-

strap sampling of the training triples (u, i, j). Then,

the corresponding latent factors can be updated by the

following gradients:

∂L2

∂Uu

= −
e−r̂uij

1 + e−r̂uij
(Vi − Vj) + λUUu +

β

(

Uu −
∑

v∈Nu

b∗uvUv

)

−

β
∑

{v|u∈Nv}

b∗vu

(

Uv −
∑

w∈Nv

b∗vwUw

)

, (7)

∂L2

∂Vi

= −
e−r̂uij

1 + e−r̂uij
Uu + λV Vi, (8)

∂L2

∂Vj

= −
e−r̂uij

1 + e−r̂uij
Uu + λV Vj . (9)

The learning algorithm of estimating the latent low-

rank matrices U and V is described in Algorithm 2.

Algorithm 2. LEARN(R, B∗, η, λU , λV , β, ǫ)

1: Initialize U ,V , step t, and the stop condition ǫ

2: repeat

3: Draw (u, i, j) from U × I × I
4: r̂uij ← r̂ui − r̂uj

5: Update Uu, the u-th row of U according to (7)
6: Update Vi, the i-th row of V according to (8)
7: Update Vj , the j-th row of V according to (9)
8: Compute training loss L(t) using (6)
9: until |L(t)− L(t− 1)| < ǫ

10: return U and V

3.6 Complexity Analysis

The main cost of training the objective function of

SocialBPRCRWR is to compute the loss function L2 and

its gradients against feature vectors. Assuming the ave-

rage number of direct neighbors per user is s. Then,

the complexity of evaluation of L2 is O(|R||I|l +msl),

where l is the dimension of latent feature vectors. Since

the estimated trust matrix B∗ is very sparse, s is rela-

tively small. Therefore, the time complexity of com-

puting the objective function L2 mainly depends on

the number of training triples O(|R||I|), which does

not increase the time complexity much (compared with

the BPRMF method). The computational complexities

for gradients ∂L2

∂U
, ∂L2

∂V
are O(Ns2l) and O(Nl), respec-

tively (N is the number of sampled triples). There-

fore, the total computational complexity for gradients

is O(Ns2l), which is linear with respect to the number

of sampled triples.

4 Data Analysis and Experimental Results

In this section, we first investigate the relationship

between trust networks and users’ preferences on real-

world social networks, and then conduct several experi-

ments to compare the recommendation performance of

our approach with other state-of-the-art collaborative

filtering methods.

4.1 Datasets

We make use of two datasets Epinions and Ciao[29]

as the data source for our experiments. The Epinions

dataset is from the online review site Epinions.com,

which is a well-known consumer review site that was

established in 1999. The purpose of this website is to

help people to be informed of buying decisions from

other consumer reviews. To post a review, users need

to first rate the product or service using a 5-scale integer

(from 1 to 5). Note that Epinions.com groups products

into different categories (e.g., Movies, Books, and Mu-

sic). Members of Epinions can maintain a “trust” list,

which presents a trust network between users. This

trust network is used to determine in which order pro-

duct views are shown to visitors.

The second dataset Ciao is a European based online-

shopping portal, which provides a forum for users to

write reviews and give their opinions on products with

different categories to help others make decisions. The

registered user in Ciao can also give an overall rating

from 1 star (poor) to 5 stars (excellent) for a partic-

ular product, and can nominate others to join his/her

trusted network when he/she finds a member’s reviews

consistently interesting and helpful. Typically, both of

these two websites are binary trust networks, where

users can only express trust or distrust (0 or 1). As

we want to solve an implicit feedback task, we get rid

of the rating scores from these two datasets. Now the

task is to predict a personalized ranked list starting

with the item that the user is most likely to rate next.

Table 1 presents some descriptive statistics of the two

datasets.
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Table 1. Statistics of User-Item Rating Matrix

Statistics Epinions Ciao

# of users 4 276 2 016

# of items 6 031 4 361

# of ratings 190 093 74 852

# of categories 27 28

# of trust relations 21 101 39 885

Min. # of ratings per user 20 15

Min. # of ratings per item 20 15

Rating sparsity 99.416 99.327

Trust network density 0.002 7 0.018 9

4.2 Analysis of Preference and Social Trust

In the view of the theory of homophily and so-

cial influence, similar users are more likely to estab-

lish trust relations, and users with trust relationships

are supposed to have similar interests. In this subsec-

tion, we investigate the existence of homophily in social

networks and answer the following question: “Do peo-

ple with trust relationships have similar rating behavior

to those without trust relationships?” To answer this

question, we need to define how to measure the inte-

rest similarity between a pair of users from their rating

behaviors.

Let A(u) be the set of items rated by user u, A(v) be

the set of items rated by user v. The similarity between

users u and v can be simply computed by the Cosine

similarity:

xuv =
|A(u) ∩ A(v)|
√

|A(u)||A(v)|
,

where |A(u)| denotes the length of set A(u). However,

the basic Cosine similarity function ignores the influ-

ence of popular items, that is, when two users rate

many common popular items, we cannot deduce that

they have similar interests. But when two users rate

many common cold items, we can say they have similar

interests with high confidence. Hence, Breese et al.[30]

adjusted the Cosine similarity function as follows:

xuv =

∑

i∈A(u)∩A(v)
1

log(1+A(i))
√

|A(u)||A(v)|
, (10)

where A(u)∩A(v) is the set of items user u and user v

both have rated. The term 1/ log(1 + (A(i)) punishes

the influence of popular items.

For each user u, we compute two similarities, i.e.,

xt(u) and xr(u), where xt(u) is the average similarity

between user u and his/her trust network, and xr(u)

is the average similarity between user u and randomly

chosen users who are not in the trust network of user

u. The randomly chosen users have the same size with

user u’s trust network.

For a visual comparison, in Fig.2, we plot the

Kernel-smoothing density estimations 4○ based on vec-

tors xt and xr. For both Epinions and Ciao, we can

observe that compared with xt, xr has smaller simila-

rity values. This evidence from Fig.2 suggests a posi-

tive answer to our question: users with trust relations

have more similar interests than those without trust

relations.
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Fig.2. Density estimates of users’ similarity. (a) Epinions. (b)
Ciao.

4.3 Analysis of Multi-Faceted Trust Relations

In this subsection, we investigate the multi-faceted

trust relations among users and want to answer the

following two questions. 1) For each facet, do users

with trust relationships have more similar interests than

those without trust relationships? 2) Do users trust

their friends differently in multi-category systems? To

answer the first question, we randomly choose six cate-

gories from Epinions and Ciao, and study the preference

similarity between users in each category. For each user

u in a specific category c, we compute two similarities

based on (10), i.e., xc(u) and xr(u), where xc(u) is the

average similarity between user u and his/her trust net-

works in category c, and xr(u) is the average similarity

4○http://en.wikipedia.org/wiki/Kernel density estimation/, July 2015.
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between user u and randomly chosen users. The Kernel-

smoothing density estimations based on the similarity

vectors of six categories and xr are plotted in Fig.3. For

both datasets, xr has smaller concentrated values com-

pared with the similarity vectors in the six categories,

which indicates the answer for the first question: for

each category, users with trust relationships have more

similar preferences than those without trust relation-

ships.

To answer the second question, for each user, we fur-

ther calculate the variance 5○ of similarities with her/his

trust network in the six categories and randomly chosen

users. Let vc(u) denote the variance of the similarities

with the trust network of user u in category c, and vc
denote the average of variances of all users in category

c. vr is the average variance of the similarities with

randomly choose users. Table 2 shows the results in

Epinions and Ciao datasets, where vc is always larger

than vr. This answers our second question: in multi-

category systems, users trust their friends differently

and they have greater trust in some friends than in

others, that is, it demonstrates the existence of multi-

faceted trust relationships between users.
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Fig.3. Density estimates of users’ category similarity. (a) Epin-
ions. (b) Ciao.

Table 2. Average of Variances of Category Similarities

Category Epinions Ciao

1 3.882 5× 10−5 8.363 7× 10−5

2 1.070 4× 10−4 1.121 0× 10−4

3 7.086 7× 10−5 1.089 4× 10−4

4 4.090 5× 10−5 9.119 4× 10−5

5 3.895 4× 10−5 1.174 3× 10−4

6 3.683 1× 10−5 1.345 6× 10−4

vr 3.474 2× 10−5 6.619 6× 10−5

4.4 Metric

We use the popular metric, the average area under

the ROC curve (AUC), to measure the personalized

ranking performance of our proposed approach. The

metric AUC[6] is defined as:

AUC =
1

|U|

∑

u

1

|E(u)|

∑

(i,j)∈E(u)

δ(x̂ui > x̂uj),

where x̂ui is the predicted preference value of user u to

item i, and δ(x) is the Heaviside loss function[31]. E(u)

is the evaluation item pairs with respect to user u in

test dataset:

E(u) = {(i, j)|(u, i) ∈ I+
u ∧ (u, j) ∈ I \ I+

u }.

The AUC of a random guess method is 0.5 and the best

performance that can be achieved is 1. A higher value

of the AUC indicates a better performance.

4.5 Comparisons

In order to evaluate the recommendation perfor-

mance of our proposed approach, we compare the

recommendation results with the following methods.

Random. This method provides the basic recom-

mendation result in our experiments, which ranks the

items randomly for the users in the test set.

MostPopular. This method sorts the items based

on how often they have been rated in the training data,

where the popularity of the items determines the order

of the ranked list. This simple method is supposed to

have reasonable performance, since many people tend

to access the popular items.

WRMF. This method was proposed by Pan et al.[32]

and Hu et al.[33] for item prediction in implicit feed-

back, which extends the matrix factorization method

and adds weights in the error function to increase the

impact of positive feedback.

5○http://en.wikipedia.org/wiki/Variance/, July 2015.
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BPRMF. This method was introduced in Subsec-

tion 3.2, which only utilizes the user-item rating matrix

for item ranking.

MR-BPR. This method was proposed by Krohn-

Grimberghe et al.[21], which extends the BPR method

to the multi-relational case. This method is a state-of-

the-art method for implicit feedback recommendation

with social information.

SocialBPR. This is our social item ranking method

proposed in Subsection 3.3, where the social influence

from trusted neighbors is considered.

SocialBPRCRWR. This is our social item ranking

method with multi-faceted trust relations (see more de-

tails in Subsections 3.4 and 3.5).

In our experiments, we split the training data with

different ratios to test the above algorithms. For exam-

ple, training data 80% means we select randomly 80%

actions (80% user-item pairs) of each user for training,

and predict the remaining 20% actions. The random

selection is conducted five times independently. The

parameter settings of our approaches are: in both 80%

and 70% training data, for Epinions, we set the social

regularization parameter β = 0.000 4, and for Ciao, we

set β = 0.15. The regularization parameters 6○ of latent

factors are set as 0.008.

Table 3 shows the comparison results with set-

ting the latent factor dimension l as 5 and 10 re-

spectively. We can observe that, although the Most-

Popular method just ranks the items based on their

popularity, this simple method has reasonable perfor-

mance, since many people tend to focus on popular

items. WRMF as the state-of-the-art matrix factoriza-

tion method for item recommendation using binary in-

formation achieves a better AUC value than the Most-

Popular method, but does worse than the BPRMF

method. BPRMF achieves a substantial AUC improve-

ment over WRMF, which indicates optimizing the pair-

wise rank criteria directly in item rank problem is more

reasonable. In this work, we also include compari-

sons with one state-of-the-art implicit feedback recom-

mendation method considering social information (MR-

BPR). We find our social network based methods (So-

cialBPR and SocialBPRCRWR) outperform MR-BPR in

both Eipnions and Ciao datasets. This result indicates

social trusts play an important role in users’ decision

process and our methods can model this information

more effectively. From the results, we can observe that

in Ciao dataset, SocialBPR improves more obviously

than that in the Epinions data, since in Ciao, users are

more likely to trust others and make decisions based on

their trust network (as we have plotted in Fig.2).

To explore the influence of users’ multi-faceted trust

relationships, we conduct experiments on these two

datasets by utilizing the category information, where

the method SocialBPRCRWR outperforms ScoialBPR.

This result demonstrates that simply taking the row

values of trust relations will not get satisfactory re-

sults, and it is beneficial to model trust strength in

recommender systems. Note that, with small value

of latent factor dimensions, the results of MF-based

methods, WRMF, BPRMF, MR-BPR, SocialBPR and

SocialBPRCRWR, can achieve a reasonable AUC value,

which can significantly reduce the computational com-

plexity. Hence, in our following experiments, we set the

latent factor dimension to 5.

Table 3. Performance Comparisons with Different Training Datasets in the Measure of AUC (Training = 80%)

Dimensionality Dataset Random MostPopular WRMF BPRMF MR-BPR SocialBPR SocialBPRCRWR

50 Epinions 0.499 8 0.714 1 0.821 2 0.835 4 0.830 9 0.843 1 0.848 1

Ciao 0.503 8 0.672 2 0.789 2 0.788 9 0.791 8 0.806 4 0.809 4

10 Epinions 0.499 4 0.714 2 0.832 0 0.835 7 0.832 7 0.845 6 0.849 7

Ciao 0.503 3 0.672 4 0.795 8 0.789 0 0.801 3 0.810 9 0.812 0

4.6 Impact of Parameter β

In SocialBPR, the social regularization parameter

β plays an important role, which balances the informa-

tion from users’ interests and the preferences of their

trusted friends. It controls the degree that our trust-

aware method SocialBPR should depend on the inter-

ests of users’ trusted friends. If β = 0, we will only

utilize users’ own history rating matrix for recommen-

dation. If β → ∞, we will derive the latent feature

vectors only from those of direct neighbors. In other

cases, we make recommendations from users’ own rat-

ing behaviors as well as the preferences of their trusted

neighbors.

6○λU = λV = 0.008.
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Fig.4 illustrates how the changes of β affect the

recommendation results on the measure AUC. We no-

tice that the value of parameter β affects the recom-

mendation results significantly, which denotes that in-

corporating the preferences of users’ trusted neighbors

considerably improves the recommendation accuracy.

To get an appropriate β value, we use a 5-fold cross-

validation for learning and testing. For each experi-

ment, we conduct five times and take the mean value as

the final result. In both Epinions and Ciao datasets, as

β increases, the values of AUC increase (recommenda-

tion accuracy increases) at first, but when β surpasses

a certain threshold, the values of AUC decrease (rec-

ommendation accuracy decreases) with the further in-

crease of the value of β. The experimental results are

consistent with the intuition that purely utilizing users’

own rating history or purely utilizing the interests of

their direct trusted neighbors for recommendations can-

not make better results than fusing them together.
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Fig.4. Impact of social regularization parameter β on the per-
formance of recommendation in (a) Epinions and (b) Ciao.

4.7 Recommendation on Cold Start Users

To explore the recommendation performance on

cold start users, we evaluate a cold-start scenario in

which the social trust network is already available for

some users, but the training data does not contain any

information about the users in the test set. For Epi-

nions, we create four split percentages from 50% to 80%

of the rating data being used for training. For Ciao, we

use 10% to 40% for training (a setting in which only a

little of rating information remains available).

The recommendation performance is shown in Fig.5.

BPRMF and MR-BPR as two representative state-of-

the-art rank methods have done better than WRMF in

Epinions, but worse in Ciao. Our trust-based ranking

method SocialBPRCRWR can do better than BPRMF

and MR-BPR in both two datasets, which indicates

that our method is also suitable to model the social

influence of cold start users. However, we also notice

that, as the rating data used for training decreases, the

improvement of our method becomes less obvious, since

the available trust information has also decreased. The

more rating and social trust information can be used,

the better performance our method SocialBPRCRWR

can achieve.
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Fig.5. Impact of different training ratios on the performance of
recommendation in (a) Epinions and (b) Ciao.

4.8 Convergence Analysis

We further compare the convergence of the So-

cialBPR and the BPRMF methods. Fig.6 shows the

comparison results on Epinions and Ciao data. For

these two methods, in each iteration, we select the

same number of instances for training and set the learn-

ing rate both as 0.07. From the results, we see that

both BPRMF and SocialBPR can converge within 50

iterations in Epinions data, and within 60 iterations in
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Ciao data. Incorporating social trust information does

not slow down the convergence rate of SocialBPR, but

makes it achieve a higher AUC value than BPRMF.
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5 Conclusions

With the rapid growth of online social networks, the

social based recommender systems have become more

and more popular and important. In this work, we fo-

cused on the social item recommendation problem in

the implicit feedback and proposed a novel social item

ranking method called SocialBPRCRWR. We derived

the optimization criterion of SocialBPRCRWR from a

Bayesian analysis of the problem, where we introduced

the social trust interactions among users from the the-

ory of social influence to improve the performance of

item recommendation. To understand the true social

trust relations, we further proposed a category-sensitive

random walk method CRWR to estimate the multi-

faceted trust strengths. By replacing the direct trust

matrix of the original social network, we arrived at

our final strength aware social item recommendation

method SocialBPRCRWR. Data analysis and experi-

mental results on real-world datasets demonstrated the

existence of trust influence and the effectiveness of our

social based ranking method SocialBPRCRWR.

In our work, we mainly focused on the social trust

relation in multi-category systems, but we did not dif-

ferentiate the categories of social trust relations, such

as friends or colleagues. As future work, we plan to

develop new trust category aware algorithms to further

improve our social based ranking methods.
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