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Abstract Wireless networks are developed under the fashion of wider spectrum utilization (e.g., cognitive radio) and

multi-hop communication (e.g., wireless mesh networks). In these paradigms, how to effectively allocate the spectrum to

different transmission links with minimized mutual interference becomes the key concern. In this paper, we study the

throughput optimization via spectrum allocation in cognitive radio networks (CRNs). The previous studies incorporate

either the conflict graph or SINR model to characterize the interference relationship. However, the former model neglects

the accumulative interference effect and leads to unwanted interference and sub-optimal results, while the work based on

the latter model neglects its heavy reliance on the accuracy of estimated RSS (receiving signal strength) among all potential

links. Both are inadequate to characterize the complex relationship between interference and throughput. To this end,

by considering the feature of CRs, like spectrum diversity and non-continuous OFDM, we propose a measurement-assisted

SINR-based cross-layer throughput optimization solution. Our work concerns features in different layers: in the physical

layer, we present an efficient RSS estimation algorithm to improve the accuracy of the SINR model; in the upper layer, a

flow level SINR-based throughput optimization problem for WMNs is modelled as a mixed integer non-linear programming

problem which is proved to be NP-hard. To solve this problem, a centralized (1 − ε)-optimal algorithm and an efficient

distributed algorithm are provided. To evaluate the algorithm performance, the real-world traces are used to illustrate the

effectiveness of our scheme.

Keywords cognitive radio network, wireless mesh network, throughput optimization, centralized algorithm, distributed

algorithm, spectrum allocation

1 Introduction

Wireless networks always desire broader coverage

and wider transmission bandwidth. The coverage could

be enhanced by the wireless mesh networks (WMNs)[1],

which support low-cost broadband internet access over

large areas in a multi-hop fashion; meanwhile cogni-

tive radios (CRs)[2], which opportunistically utilize the

spectrum without interfering with the primary users,

will endow the networks with a much wider and dy-

namic spectrum. Recently, the worldwide implementa-

tion of WMNs was witnessed in the commercial project

of Google Loon 1○. The research topics, such as increas-

ing network capacity and guaranteeing QoS in WMNs

with cognitive radios, are also widely addressed by the

academy society[3].
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For a CR-based WMN, which is illustrated in Fig.1,

optimizing the throughput from the internet gateways

to the mobile clients is the key concern. This prob-

lem in traditional wireless networks is a well-studied

problem[4-7]. Most of them treat the core constraint,

the interference, as a pairwise relationship, and then,

they solve the problem by coloring the conflict graphs.

Such simplification, however, ignores the fact that ra-

dio interference is inherently accumulative and cannot

be accurately represented by pair-wise constraints. As a

result, allocations made on top of the graphmodel could

lead to ineffective allocation or unwanted interference.

To tackle this, some other work employed the physi-

cal interference model (SINR model)[7] into throughput

optimization[8-9]. They devoted most of their efforts

into solving the non-convex nature of the constraint of

SINR.

CR Mesh Nodes
CR Mesh Nodes
as Gateway

CR Clients

Fig.1. Illustration of CR-based WMN.

Previous studies are not applicable in terms of the

throughput optimization in CR-based WMN, as CRs

introduce additional complexities and challenges. The

primary challenge is spectrum diversity. In a traditional

802.11-based WMN, a set of homogeneous spectrums

(channels) are always available to every mesh router,

while, in a CR-based WMN, each node can access a

large number of heterogeneous spectrums. The hetero-

geneity is conveyed by the so-called feature of spectrum

diversity, which implies that different spectrums sup-

port different transmission ranges and data rates. It

has a significant impact on route selection and spec-

trum allocation. Meanwhile, CRs also introduce the

feature of Non-Continuous Orthogonal Frequency Di-

version Multiplex (NC-OFDM), which is considered as

the dominant physical layer technology for CRs[3]. By

allowing different data flows going from one sender to

multiple receivers concurrently, this technology has the

potential to improve the throughput of the network,

but also incurs higher computational cost for spectrum

allocation and link scheduling.

In this paper, we study the throughput optimiza-

tion problem via spectrum allocation in the CR-based

WMNs, like in Fig.1. The major traffic in such a sce-

nario is generated between the CR clients and the gate-

ways. We want to know how to allocate the spectrum

to the potential links so that the aggregated through-

put travelling through the network (from clients to the

gateways) is maximized. In studying this problem,

we take both of the aforementioned challenges into ac-

count. The existing studies of throughput optimization

based on the SINR model[8-9] neglect the property of

spectrum diversity and the fact that the accuracy of

the SINR model greatly affects the result of optimiza-

tion, which is inefficient, as illustrated in our previous

work[10]. To this end, we argue that the efficient mea-

surement of RSS of every possible spectrum in every

possible link is the key to capturing the spectrum di-

versity and improving the accuracy of SINR model. Re-

garding the NC-OFDM feature, it greatly enlarges the

solution space and in turn incurs higher computational

cost, as it allows either the allocation of multiple ranges

of spectrum (channels) into one link, or multiple out-

going links from one node. Thus, we carefully model

this problem into a mixed integer non-linear program-

ming problem, and propose efficient centralized and dis-

tributed solutions. Our contributions are summarized

as follows.

• We present and formulate the throughput opti-

mization problem in CR-based WMN under the SINR

model with considering the physical layer features. The

problem is formulated as a mixed integer non-linear

programming problem, which is generally NP-hard.

• We propose a centralized cross-layer solution.

Specifically, it consists of three parts. We first design

an efficient SINR measurement algorithm to obtain the

accurate SINR. Based on the collected SINR values,

a centralized algorithm based on the simplified flow

graph is introduced. This algorithm is mainly based

on the specification of branch and bound framework.

Finally, the approximate result could be further en-

hanced by a heuristic-based approach. This heuristic-

based enhancement could also help greatly improve the

efficiency of the whole solution.

• We propose a low-cost distributed solution requir-

ing several rounds of broadcasting and small-scale op-

timization. Our simulations show that the proposed
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algorithm converges after a constant number of rounds

(less than six rounds) for most cases.

• A comprehensive simulation study based on the

real datasets from the SWIM platform 2○ is performed.

The results show that our centralized solution gua-

rantees an approximate ratio of 95% compared with the

optimal result, while the distributed solution achieves

more than 75% on average.

The rest of this paper is organized as follows. The

network model and assumptions are presented in Sec-

tion 2. Following this, we formally define our problems

in Section 3. An approximating centralized solution

and a distributed solution are proposed in Sections 4

and 5, consecutively. Section 6 states our experimental

methods and results. In Section 7, we introduce related

papers. Finally, we conclude this paper in Section 8.

2 System Model and Assumptions

In this section, we develop our network model and

assumptions.

2.1 System Model

We consider a wireless mesh network (as shown

in Fig.1) with several CR mesh routers N consisting

of internet gateway nodes NG and non-gateway nodes

N \ NG. Each mesh router is associated with client

nodes Ci. Each node i ∈ N senses its environment and

finds a set of available spectrum Mi for the given time

(i.e., those bands that are currently not used by pri-

mary users), which may not be the same as the available

spectrum at other nodes. Without the loss of genera-

lity, we assume that the bandwidth of each spectrum

band (channel) is denoted as W . Denote M as the

union of all spectrum bands among all the nodes in the

network, i.e., M =
⋃

i∈NMi, and each band is identi-

cally denoted as m. We also denote Mij = Mi

⋂Mj ,

which is the set of common bands between nodes i and

j.

2.1.1 Interference Model

Different interference models have been extensively

studied in the literature, such as Protocol Interfe-

rences Model[7], Fixed Protocol Interferences Model[11],

RTS/CTS Model[4], and Physical Interference Model

(SINR model). We apply the physical interference

model here, for its unique advantage to characterize the

accumulative feature of interference. The physical in-

terference model is relying on the computation of SINR

(signal-to-noise ratio). In this model, concurrent trans-

missions are allowed and interference (due to transmis-

sions by non-intended transmitter) is treated as noise.

A transmission is successful if and only if SINR at the

receiver is greater than or equal to a threshold.

The key to computing SINR is to get the values of

RSS. Without loss of generality, we assume that every

node sends at a uniform power of Pmax. Considering

a transmission from node i to node j on band m, we

use Pm
ij to denote the power of signal propagation from

node i to node j. Based on the above assumptions, we

define SINR. When there is interference from concur-

rent transmissions on the same band, SINR at node of

transmission from node i to node j on band m, denoted

as smij , is

smij =
Pm
ij

N0 +
∑

k∈N ,k 6=i

∑
w∈N ,w 6=k,j P

m
kj

.

Here, N0 = σW and σ is the ambient Gaussian noise

density.

According to the Shannon capacity formula, the cor-

responding capacity is always positive. In practice, if

SINR is too small, then the achieved capacity will also

be very small. In this case, the loss rate of such a link is

too high. Thus, we may use a threshold to remove such

weak links from consideration. In this regard, we in-

troduce a threshold for SINR, i.e., a transmission from

node i to node j on band m is considered successful if

and only if smij > α.

2.1.2 Throughput Model

CRs deal with spectrums in a dynamic boundary

way, rather than the channels with a fixed width. More-

over, the emergence of NC-OFDM technology enables

the wireless nodes to combine separate portions of spec-

trum to form an integrated communication band. Thus,

although we previously assumed that the CR nodes

sense the spectrum in a fixed width channel manner,

each communication link is able to work on multiple

channels concurrently. In turn, we introduce the bi-

nary indicator amij , which is equal to 1 if node i trans-

mits data to node j on spectrum band m and is equal

to 0 otherwise. We also assume that a wireless node

cannot transmit and receive in the same channel simul-

taneously. Although new progress in duplex wireless

communication makes such type of communication pos-

sible, it requires high computational power. Thus it is

not considered here. Once a band m ∈ Mi is used

2○SWIM platform. http://cs.nju.edu.cn/lwz/swim/swim.html, Mar. 2015.
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by node i for transmission or reception, this band can-

not be used again by node i for other transmissions or

receptions. Formally, we have
∑

j∈N

amij +
∑

k∈N

amki 6 1.

According to the Shannon capacity formula, the ca-

pacity of band m on the link, from i to j, denoted as

cmij , will be

cmij = W log2(1 + smij ).

Thus, the total capacity of the link, from i to j, as

cij , will be

cij =
∑

m∈Mij

amijW log2(1 + smij ).

2.2 Assumptions

For the algorithm presented in this paper, we as-

sume that the traffic between a node and the gateway

nodes could be divided and routed on multiple paths.

Thus, we do not have to take specific routing into ac-

count. We also assume that the achievable data rate

in each link over the whole network is uniformly pro-

portional to the capacity of each link. Therefore, the

optimization of the capacity is equal to the optimiza-

tion of the throughput between clients and gateways.

In turn, we will not work on the rate assignment here.

In fact, by only adding a set of variables, our solution

could achieve rate assignment as well.

3 Problem Formulation

Given a set of mesh nodes and the available spec-

trum in each node, we ask the question: “How do we

allocate the spectrum into the links between nodes so

that the aggregated throughput from the gateways to

the clients could be maximized?”

Note that the major traffic in WMNs travels be-

tween the mesh clients associated with Ci and NG. The

nodes in N\NG only serve to relay the traffic. Thus, we

can model this kind of network as a flow graph G with

NG as the source nodes and C as the flow destination

nodes. In graph G, Ei
out is the endpoint set of outgoing

edges starting with node i, and Ei
in is the endpoint set

of incoming edges to i. The throughput optimization

problem in this situation could be defined as follows.

Definition 1 (Aggregated Throughput Optimiza-

tion Problem in CR-Based WMNs). Given a CR-based

WMN {N ,NG, C}, and available spectrum set Mij be-

tween nodes i and j, try to find a spectrum allocation

vector X = {amij |i, j ∈ N ,m ∈ Mij , a
m
ij ∈ {0, 1}},

so that the aggregated throughput between C and NG

is maximized.

In short, we try to find a spectrum allocation vector

so that the minimum cut of G can be maximized.

The aggregated throughput could be formally de-

fined as
∑

u∈N ,v∈NG
fuv, and the flow in each link must

follow the constraint of

fij 6
∑

m∈Mij

amijW log2(1 + smij ).

Next, we can give the formulation of this problem:

Max
∑

u∈Ev
in,v∈NG

fuv

s.t.
∑

k∈Ei
in

fki −
∑

w∈Ei
out

fiw = 0,

∀i ∈ N \ NG,

fij 6
∑

m∈Mij

amijW log2(1 + smij ), (1)

∀i ∈ N
⋃

C, j ∈ Ei
out,

∑

k∈Ei
in

amki +
∑

w∈Ei
out

amiw 6 1, (2)

∀i ∈ N , ∀m ∈ Mij ,Mij 6= Ø,

smij =
Pm
ij

N0 +
∑

k∈N ,k 6=i

∑
w∈N ,w 6=k,j a

m
kwP

m
kj

, (3)

∀i ∈ N
⋃

C, i /∈ NG, j ∈ Ei
out,m ∈ Mij ,

smij > αamij , (4)

∀i ∈ N
⋃

C, i /∈ NG, j ∈ Ei
out,

m ∈ Mij ,Mij 6= Ø, (5)

fij > 0,

∀i ∈ N
⋃

C, i /∈ NG, j ∈ Ei
out,

m ∈ Mij ,Mij 6= Ø, (6)

where constraint (1) is the flow reservation condition

for each relay mesh router. Constraint (2) means the

flow in link (i, j) must be smaller than the capacity.

Constraint (5) implies smij > α when m is allocated to

link (i, j), otherwise this constraint always holds. Con-

straint (6) is the positive flow condition.

A more useful variant of this problem is fair alloca-

tion. Basically, for each node i ∈ N , demands can be

routed in proportion to its aggregate user traffic load

fki, k ∈ C, i ∈ N . In other words, we consider the prob-

lem of maximizing such that a fraction of each node

demand can be routed. For this problem, the fraction

of demand that can be routed is the same for each node.

It is defined as follows.
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Definition 2 (Demands Fair Fulfillment Prob-

lem in CR-Based WMNs). Given a CR-based WMN

{N ,NG, C}, available spectrum set Mij between nodes

i and j, try to find a spectrum allocation vector X =

{amij |i, j ∈ N ,m ∈ Mij , a
m
ij ∈ {0, 1}}, so that traffic

demands of each Ci ∈ C can be proportionally fulfilled.

The proportion could be denoted as λ, and here,

λ ∈ (0, 1]. We denote the demands of Ci as di, which

are the aggregated traffic demands of all clients associ-

ated with mesh router i. Then, we can formulate this

problem as

Max λ

s.t. λdi = fki,

∀i ∈ N , k ∈ Ci,
constraints (1) ∼ (6).

Note that in both formulations, different targets are

defined, but they share the same constraint. From the

view of optimization, both problems could be solved

uniformly. We denote the formulated problem as P .

In the rest of the paper, we will not present the solu-

tion for both problems separately. Also, both problems

are modeled in the form of a mixed integer non-linear

program (MINLP), which is NP-hard in general[12]. As

a result, we propose approximation methods to solve

them. All the notations used in this paper are summa-

rized in Table 1.

Table 1. Notations

Notation Description

N Collection of mesh router nodes

NG Collection of gateway nodes in N

N0 White Gaussian noise

amij Allocation indicator

fij Actual flow on link ij

Ei
in

Incoming nodes set of node i

W Bandwidth of channel m

α Constant of SINR lower-bound

λ Proportional fairness constant

N Number of nodes

C Collection of client nodes

smij SINR value on node j when node i is sending to j

on band m

cij Capacity of link ij

Ei
out Outgoing nodes set of node i

fm Central frequency of band m

Pmax Transmitting power in each node

η Path loss component

Pm
ij RSS from i to j on band m

4 Centralized Solution

In this section, we present a centralized solution for

both problems defined above. In this solution, we as-

sume that a central server or node is responsible for

carrying out the algorithm. The environment informa-

tion collection is conducted distributively, and propa-

gates to the central server through a common channel

which is also responsible for the conveying of allocation

results.

4.1 Solution Framework

As defined in Definition 1 and Definition 2, the

target problems are NP-hard and could not be opti-

mally solved in polynomial time. One of the gene-

ral performance guaranteed solutions to this kind

of MINLP problem is following the branch-and-

bound framework[13]. Previous work on throughput

optimization[8], although also using the same opti-

mization technique based on branch-and-bound frame-

work, failed to capture the problem specific features

to enhance the algorithm efficiency. The core variable

SINR values are derived via PathLoss signal attenua-

tion model[7], which is proved to have low accuracy and

will finally harm the optimization results[10]. To tackle

above drawbacks, we propose our solutions, whose basic

framework could be summarized as follows.

• Efficient SINR Measurement. The inaccurate sig-

nal propagation models could greatly compromise the

optimization results of SINR-based throughput opti-

mization. To tackle this, we introduce how to improve

the optimization result through efficient measurement

of accurate SINR values based on the compressive sens-

ing method.

• Flow Graph Construction. As the flows in the

mesh network always transmit between the clients and

the gateways, there is no need to search the solution in

the cases where the flow goes in a long detour between

the clients and the gateways. Hence, in this step, we

construct flow graph, so that the variables of Ei
in and

Ei
out will be ensured. This will help us to reduce the

problem complexity and the number of variables.

• MINLP Solving. We adopt the branch-and-bound

framework to obtain the (1−ε)-approximation result for

the MINLP. We specify the branch-and-bound frame-

work to solve our problem, including both the upper-

bound form of problem and the fast method to find the

upper-bound and lower-bound results.

• Heuristic-Based Enhancement. After the per-

formance guaranteed allocation via branch-and-bound
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framework, a simple heuristic is used to enhance the

result efficiently. This simple method could serve to

balance the trade-off between the efficiency and the ac-

curacy of the optimization.

4.2 Solution Process

As mentioned in Subsection 4.1, our proposed algo-

rithm consists of four steps. In this subsection, we will

depict each step in a detailed way.

4.2.1 Efficient SINR Measurement

The advantage of our modeling of the problem is the

utilization of SINR interference model. However, it also

introduces extra complexity over the other model by

requiring the transmitting and receiving power at each

node. Previous studies usually use PathLoss propaga-

tion gain model to estimate the receiving power, which

is Pm
ij = Pd−η

ij . Here, dij denotes the distance be-

tween node i and node j, and η is the path-loss com-

ponent. However, this model is far from the real condi-

tion. Basically, this model is only valid when the signal

is transmitting in line of sight. However, most wireless

transmissions may travel through obstacles or endure

the multipath effect. Thus, spectrum allocation with

the SINR estimated in this model will lead to unpre-

dicted interference, and in turn compromise the whole

optimization results. The performance gap between op-

timization based on propagation model and real data

could be found in Fig.3(a). In large area CRNs, the

channel condition is even more complex. As a result,

the measurement-calibrated SINR is inevitable.

Meanwhile, our optimization scheme requires the

SINR in every possible transmission scenarios. Even

if we derive the SINR through the RSS of every peer

of node, it still requires N2 time slots to get the mea-

surement result, which is prohibitive in implementa-

tion. In our previous work[10], we deal with this prob-

lem through a model-based measurement and estima-

tion method. However, it requires the position of each

node, and costs the time in the order of O(N). In this

subsection, we propose a compressive sensing based so-

lution whose time cost is in order of O(log(N)), which

means in the real implementation with on-the-shelf net-

work interfaces, the duration of whole process is in the

level of centiseconds.

Our efficient SINR estimation method consists of

two components. First, we use a compressive sensing

based solution to estimate the RSS between nodes in

one spectrum. Then, we introduce how to extend the

result in one spectrum into the others.

1) Single Spectrum Condition

According to the SINR model, the signal strength

is linearly additive. Thus, a linear combination of

measurements could be regarded as a linear system

Y = AX, where Y ∈ RN is the measurement re-

sult in each node, XRN×N is the signal strength, and

A ∈ {0, 1}M×N is the sending schedule. According to

Cramer’s rule[14], the linear system has a unique solu-

tion if only M = N . But our target is to generate a

matrix A with M << N . In this situation, the linear

system could be resolved with the prevalent Compres-

sive Sensing[15] concept.

The success of the solution depends on two crucial

components. The first one is the generation of the mea-

surement matrix with good RIP. Here, good RIP, ac-

cording to the theorem in [16], refers to that RIC (re-

stricted isometry constant) is smaller than
√
2−1. Fur-

ther, we should also find representation basics in which

the signal strength matrix could be represented in the

form of a K-sparse matrix. Note that in our problem,

we deal with a matrix rather than a vector, which is

concerned in the previous work. In the context of ma-

trices, low rank is analogous to sparsity because the

spectrum formed by the singular values of a low-rank

matrix is sparse. Thus, in our problem, the K-sparse

matrix implies that the rank of the matrix is K.

Assume that the signal matrix is K-sparse in a cer-

tain domain, formally stated as:

X
′ = ΨX,

where X ′ is a K-sparse matrix. Then we have

Y = ΦΨX
′,

where Φ is the measurement matrix. Based on these

formalizations, we now proceed to the determination of

the measurement matrix and representation basics.

Note that, in the matrix, most of the elements are

in fact close to but not equal to zero. This situation

requires us to carefully drop off some elements to make

the matrix sparse. With all these considerations, we

apply the singular value decomposition here.

Simply stated, our N × N matrix could be decom-

posed such that:

X = UΣV
T, (7)

where U and V are the N × N unitary matrices (i.e.,

UUT = UTU = I), and Σ is an N × N diagonal

matrix containing the singular values. The rank of a

matrix is the number of linearly independent rows or

columns, which equals the number of nonzero singular

values of Σ.
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In our method, the measurement matrix is a binary

matrix, with each row as the sending plan of all nodes in

one time slot. The number of rows represents the num-

ber of time slots used to perform measurement. In addi-

tion, because the representation basics are usually com-

posed of an orthonormal matrix, the restricted isometry

constraints of matrix ΦΨ are the same as those of Φ.

Thus, our target is to find a binary matrix, which has

good RIP and a small number of rows.

As aforementioned, the measurement matrix in CS

is usually drawn from a random matrix whose en-

tries are i.i.d. Guassian variables complying to N ∼
(0, 1/M)[17]. In our application, a binary measurement

matrix is required. A simple way to generate a binary

matrix is to generate each entry of Φ complying to the

Bernoulli distribution with success probability p. Ac-

cording to the proof in [18], this kind matrix bears good

RIP w.h.p.

According to [19], the perfect recovery to a matrix

is equal to solving the following question:

min rank(X) s.t. Y = ΦX.

However, minimizing the rank would be rather hard to

solve. Thus, in [19], the authors give out an equivalent

form of problem:

min ||X||∗ s.t. Y = ΦX,

when Φ has a good RIP. Here, ||X||∗ is the nuclear

norm, which is the sum of all elements of Σ in (7).

In summary, a central server is needed here to gene-

rate the random binary measurement matrix. Each

node performs the sending and measuring according to

the measurement plan, as defined by the measurement

matrix, and collects the RSS in every time slot. The

recovery is performed in the central node.

2) Multiple Spectrum Condition

Now we introduce how to extend the measurement

result of a channel to other channels over the same link.

A frequency related signal propagation model which is

specified for cognitive radios, is introduced in [20]. The

formulation is:

PLm
ij = 32.4 + 20 log10 (fmdkm) + Sdkm

dB, (8)

where fm is the frequency of channel m, and S is the

channel fading. The signal attenuation is represented

in unit of dB. According to [20], the channel fading

is hardly related to the frequency band. Thus, in the

following discussion, the channel fading is only repre-

sented by a variable Sdkm
.

With (8), we can have following results. Suppose

pf1 is the received power at n2 when the transmission

happens using carrier frequency f1, and similarly pf2 is

defined. Then, we can obtain:

pf1 − pf2 = 20 log

(
f2
f1

)
. (9)

Without loss of generality, assume f1 < f2. The

equation shows that if either pf1 or pf2 is known, the

other can be inferred. With this equation, a measure-

ment on one spectrum could derive the RSS of another

spectrum in the same link.

It is worth to mention that (9) could fail if there

exists severe channel selective fading which is caused

by obstacles and multipath effect. In this case, we

can use the two-channel measurement to firstly examine

whether the channel selective fading is large enough. If

it is, per-channel measurement could be conducted to

improve the accuracy. Otherwise, we can still use (9)

to perform the SINR measurement.

4.2.2 Flow Graph Construction

The flow graph, which defines the outcoming node

set Ei
out of node i, and its ingoing node set Ei

in, plays

an important role in our algorithm. The main reason

we construct the flow graph is to reduce the problem

complexity. Note that, if we do not specify Ei
out and

Ei
in, it means Ei

out = Ei
in including all adjacent nodes

of i. This will increase the number of variables and

greatly increase the complexity of the problem.

We construct the flow graph based on the intuition

that the spectrum would be assigned on the path which

connects the gateway with the best spectrum utiliza-

tion. The details of the algorithm are presented in Al-

gorithm 1.

For this algorithm, we have the following theorem.

Theorem 1. Let Fmax be the maximum possible

throughput of network N , and FG be the maximum

possible throughput of the flow graph G, which is con-

structed with Algorithm 1 on N . If we have a correct

metric to mark the spectrum utilization in the link, then

we have FG = Fmax.

Proof. We prove this via Reductio ad absurdum.

Assume we have Fmax > FG. Then, there exists one

link from node i to node j, when the hop count of i

is smaller than the one of j. Let the graph with Fmax

be noted as G′. Then, we have FG′ = Fmax. From the

flow graph’s view, the link (i, j) must take extra flow

l from i to j, and then to the gateways. Due to the

NC-OFDM feature, we can allocate multiple channels



Yan-Chao Zhao et al.: SINR-Based Throughput Optimization in CRNs with Measurement 1297

to one link. Then, this extra flow could also be realized

in the path from i to the gateway g. It is trivial that

the path from i to j, and then to the gateway, is longer

than the path from i to g with minimum spectrum cost.

In other words, it takes less spectrum resources to real-

ize the flow l. Then, there must be one graph G′′ which

is not G and FG′′ > FG. This contradicts FG = Fmax.

Thus, we have FG = Fmax. �

Algorithm 1. Flow Graph Construction

Require: available band Mi

Ensure: Ei
in

and Ei
out of node i

1: Assign the value of all links between nodes as a spectrum
utilization metric

2: Delete the links with the value smaller than α

3: Perform a Floyd-Warshall algorithm to find the shortest
path between all node pairs

4: for ∀i ∈ N do

5: Let value(i) be the sum of all values in its shortest path

6: end for

7: for ∀i ∈ N do

8: for ∀j ∈ N do

9: if value(i) > value(j) & valueij < α

then

10: Put i into E
j
in

and j into Ei
out

11: end if

12: end for

13: end for

14: Put the sending nodes into Ei
out

This means that the edge trimming performed by

Algorithm 1 will not affect the throughput optimiza-

tion result if we have the correct metric. However, it

is hard to get the correct metric due to that the spec-

trum utilization in one link is affected by nearby links.

In our implementation, we use N0/RSSij as the spec-

trum utilization metric. Because of the utilization of

the Floyd-Warshall algorithm, the time complexity of

Algorithm 1 is O(N3).

4.2.3 MINLP Solving

As stated before, both targeting problems are NP-

hard. Thus, it could only be solved in an approxi-

mate way. We try to follow the branch-and-bound

framework[13] and get a (1−ε)-approximate result. This

framework requires an upper-bound form of original

problem and a lower-bounded one. With both forms,

this framework solves the problem by splitting the so-

lution space into multiple small sets, and it gets the

best results in all branches. We follow this framework

by first trying to relax those non-linear conditions so

that the relaxed form of the problem could serve as the

upper bound in the branch-and-bound framework. We

also provide a method to find a feasible solution to the

problem, which could serve as the lower bound.

Upper Bound. There are two non-linear conditions:

(2) and (4). For the nonlinear term log2(1 + smij ),

we employ convex hull linear relaxation that contains

log2(1+ smij ). Suppose that we have the bounds for s
m
ij ,

i.e., (smij )L 6 smij 6 smij . We introduce a variable tmij =

log2(1+smij ) and consider how to get a linear relaxation

for tmij . The curve of tmij = log2(1+smij ) can be bounded

by four segments (or a convex hull), where segments 1,

2, and 3 are tangential supports and segment 4 is the

chord. In particular, the three tangent segments are

tangential at points (smij , log2(1+ smij )), (β, log2(1+β)),

and (smij , log2(1 + smij )). Clearly, smij is upper-bounded

by P/N0 and is lower-bounded by 0. Thus, smij = P/N0

and smij = 0. For simplicity, we take β = P/(2N0).

Segment 4 is the segment that joins points (0, 0) and

(β, log2(1 + β)) and segment 5 is the one between

(β, log2(1+β)) and (P/N0, log2(1+P/N0)). The convex

region (as shown in Fig.2), defined by the five segments,

can be described by the following linear constraints:

tmij − smij 6 0, (10)

(1 + β)tmij − smij

6 (1 + β)(log2(1 + β) − 1) + 1, (11)

tmij (1 + P/N0)− smij

6 (1 + P/N0)(log2(1 + P/N0)− 1) + 1, (12)

βtmij − log2(1 + β)smij > 0, (13)

(β/2)tmij − log2(1 + P/N0)

> log2(1 + β)smij + (P/N0)(1 + β). (14)

tij
m

P⊳N

Seg.1

Seg.4

Seg.3

Seg.2

Seg.5

sij
mβ0

Fig.2. Convex hull of tmij = log2(1 + smij ). Seg.: Segment.
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As a result, the nonlinear constraint (2) could be

rewritten as

fij 6 W
∑

m∈Mij

amij t
m
ij . (15)

For the SINR constraint in (4), we can rewrite it as

N0s
m
ij + smij

∑

k∈N ,k 6=i

∑

w∈N ,w 6=k,j

amkwP
m
kj − Pm

ij = 0. (16)

We put constraints (1), (3), (5), (6) and (10)∼(16)

together to form a convex optimization problem P . The

value of the target function of its solution, denoted as

Z, could serve as the upper bound. However, solving a

linear programming still costs too much, especially con-

sidering the branch-and-bound framework will conduct

these several rounds. To tackle this, we apply the dua-

lity method here. Hence, a feasible solution, which only

requires linear running time to find one, to the duality

form of the LP could serve as the upper bound.

Lower Bound. The lower-bound solution of the

problem, noted as P , is the solution that satisfies all

the constraints in P . Any feasible solution to P could

serve as P . Here, we provide a fast method to find a

feasible solution. Clearly, the vector {amij = 0, ∀i, j,m}
is a feasible solution. We can find a good feasible solu-

tion by starting from the solution to P . We sequentially

change the non-zero elements of P to 0 until it satisfies

all the constraints in P . The value of the target func-

tion for the P , is denoted as Z.

Algorithm. The main branch and bound algorithm

designed for our problem could be depicted as shown in

Algorithm 2.

Algorithm 2. Main Branch & Bound Algorithm

Require: available band Mi, Mij

Ensure: channel assignment vector {amij }

1: Set k = 1, and add P into the problem list. Pick the first
variable in {amij } as a1

2: Get Z1 and Z
1

3: while Zk < (1 − ε)Z
k
do

4: Divide the problem P k with the variable ak and get two

problems P k
1
(ak = 0) and P k

2
(ak = 1)

5: Get Zk
1
, Zk

2
, Zk

1
, Zk

2

6: Set Z = max(Zk
1 , Z

k
2 )

7: Remove all the P ′ in the problem list with Z′ < Z

8: Add P k
1 and P k

2 into the problem list

9: k = k + 1

10: Sequentially select next variable in {amij } as ak

11: Set P k as the problem with the largest Z in the problem

list

12: end while

13: Set {amij } as P k

By this algorithm, we get a (1 − ε)-approximation

result, where ε determines how many rounds we must

perform to approach the optimal result.

4.2.4 Heuristic-Based Enhancement

Theoretically, in the branch-and-bound process, we

could find an almost optimal result if we set ε = 0.

However, according to our experiment, it is better to

set ε = 0.2, if we want the algorithm terminating at

an acceptable time. Thus, it left us an opportunity

to enhance results with some heuristics. We propose a

problem-specific heuristic to quickly enhance the result.

The basic idea of this enhancement process is to

reallocate the channels among the minimum cut and

its neighbours in the network, so that the maximum

flow of the existing assignment will be enhanced. This

process will be performed for multiple rounds until the

flow value cannot be increased. This process is also

performed in a centralized manner, as depicted in Al-

gorithm 3.

This algorithm will terminate after performing a

certain number of rounds of some maximum flow met-

hods. If one adopts the well-known Edmonds-Karp

algorithm[21], then the complexity is O(N3).

4.3 Discussion

We have to deal with the efficiency problem of

branch-and-bound based solution. As a well-known

MINLP solution framework, it requires several rounds

of solving the linear programming. Consequently, this

will incur severe computational cost and long computa-

tion time. This framework has been applied in solving

spectrum allocation problem[8], where, as the authors

claimed, this method could only serve as the bench-

mark solution. In our centralized solution, we further

improve the efficiency of this framework in two folds.

1) We reduce the number of variables, and thus reduce

the computational complexity. 2) We use a heuristic-

based enhancement algorithm to improve the results

computed by branch-and-bound based solution. This

heuristic-based enhancement is very efficient and effec-

tive. This algorithm also endows us with the opportu-

nity that we could start the enhancement from a com-

paratively low-approximation point (e.g., ε = 0.2), as

the computational complexity grows exponentially with

(1 − ε). Thus, with the heuristic-based enhancement,

we further improve the efficiency of the centralized so-

lution.
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Algorithm 3. Post Allocation Adjustment

Require: available band Mi, Mij

Ensure: channel assignment vector {amij }

1: Perform a maximum flow algorithm on the assigned flow network Gf and get the maximum flow value fv and the minimum
cut set Smin

2: for ∀ij ∈ Smin do

3: ρi = |
∑

k∈Ei
in

cki −
∑

w∈Ei
out

ciw|

4: ρj = |
∑

w∈E
j
out

cjw −
∑

k∈E
j
in

ckj |

5: for ∀m ∈ Mij and amij = 0 do

6: Backup original value and let xm
ki

= 0, xm
lj

= 0, xm
it = 0, xm

jw = 0, ∀k ∈ Ei
in
, w ∈ E

j
out, t ∈ Ei

out, l ∈ E
j
in

and amij = 1

7: Recompute c
′

ki
, c

′

jw, c
′

it, c
′

lj
, ∀k ∈ Ei

in
, w ∈ E

j
out, t ∈ Ei

out, l ∈ E
j
in

8: ρ
′

i = |
∑

k∈Ei
in

c
′

ki
−

∑
w∈Ei

out
c
′

iw|

9: ρ
′

j = |
∑

w∈E
j
out

c
′

jw −
∑

k∈E
j
in

c
′

kj
|

10: if ρ
′

i + ρ
′

j > ρi + ρj then

11: Restore the original values of amij , x
m
ki
, xm

lj
, xm

it , x
m
jw, ∀k ∈ Ei

in
, w ∈ E

j
out, t ∈ Ei

out, l ∈ E
j
in

12: end if

13: end for

14: end for

15: Perform a maximum flow algorithm on the assigned flow network Gf with new {amij } and get the maximum flow value f
′

v and
the minimum cut set Smin

16: if f
′

v > fv then

17: fv = f
′

v

18: goto 2;

19: end if

5 Distributed Solution

The centralized solution is not suitable for condi-

tions without a strong centralized server or it is hard to

find a common channel to transmit the control message.

Besides, the optimization process is relatively costly.

In this section, we present a low-cost, fast conver-

gence distributed solution. The basic idea is as follows.

Our optimization objective is a global one, and could

not be achieved locally. Thus, to achieve the best effort,

we use a local heuristic, which is maximizing the aggre-

gated flow travelling through the current node. The

most sophisticated part of local channel assignment is

to resolve the conflict locally. We manage to do this via

an iterative neighbour consensus process.

The distributed algorithm consists of two phases,

initialization and adjustment. The former produces an

initial assignment with the best try. Then, the initial

assignment will be improved in the second phase.

5.1 Initialization

In the initialization phase, we first perform the ef-

ficient SINR measurement algorithm and flow graph

construction. In this way, each node i is able to get

Pm
wi, ∀w ∈ N ,m ∈ Mi and Ei

in, E
i
out. Then, each node

shares the information of Ei
in, E

i
out and {Pm

wi} with its

one-hop neighbour set(vi1) by performing one round of

broadcasting. After this, each node is able to compute

the value of ŝmki, ∀k ∈ vi1, which is defined by the follow-

ing equation:

ŝmki =
Pm
ki∑

w∈N Pm
wi + σW

.

Then, each node broadcasts {ŝmki} to its neighbor.

After this process, node i is able to compute its proba-

bility to use channel m in any outgoing edges, denoted

by um
i , as defined by the following equation:

um
i = min(1,max({ŝmiw/α,w ∈ Ei

out})).

um
i will also be shared by neighbors. The expected

throughput of each channel is formally defined as:

ĉmkl =
Pm
kl∑

w∈vl
1
um
wPm

wl +
∑

w∈N\vl
1
Pm
wl + σW

.

Another broadcast of ĉmkl is required so that each

node gets the expected throughput of each channel in

all its incoming and outgoing edges.

5.2 Adjustment

In this subsection, we will present the method to

enhance the performance of the initial assignment. In

this process, each node uses the collected information

to solve the following local optimization problem:
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max min


 ∑

k∈Ei
in

fki,
∑

w∈Ei
out

fiw




s.t. fkl =
∑

m∈Mkl

amkl ĉ
m
kl,

∑

k∈Ei
in

amki +
∑

w∈Ei
out

amiw 6 1.

Solution space for one node assignment is very

small; thus, it can be solved efficiently. After grab-

bing the assignment results in node i, denoted as ami
ij ,

each assignment should be the consensus result of both

endpoints. Formally, amij = ami
ij × amj

ij . This requires

another broadcast of the assignment results.

The distributed algorithm is summarized in Algo-

rithm 4.

Because each node has limited number of channels,

and each round will make at least one assignment, this

algorithm will eventually converge. Regarding the com-

putational complexity, as the algorithm only requires

the nodes communicate with the neighboring nodes in

a constant number of rounds, the complexity of the dis-

tributed algorithm is only O(N2).

6 Evaluation

In this section, we introduce the network simula-

tion which examines the effectiveness of our algorithms.

We first present our simulation target and settings, and

then it follows with numerical results.

6.1 Experiments Settings

To illustrate the effectiveness of our algorithms, we

have to provide the results of the following items:

• the performance of efficient SINR measurement in

terms of flow enhancement;

• the effectiveness of heuristic enhancement process

in terms of flow enhancement;

• the performance of our centralized solution and

distributed solution;

• the cost of our distributed solution and heuristic

enhancement in terms of convergent rounds.

For one set of network settings, we have to give out

the mesh node set N , the gateway node set NG, the

available channel set Mi in each node, and finally, the

receiving power from node i to node j in band m as

Pm
ij .

Our network settings are based on the trace col-

lected from SWIM platform. In our experiment, we

treat measured points as user locations, and use the

signal strength in each beacon as the signal or inter-

ference power. We associate each user with the AP

carrying the strongest signal. This produces 151 APs

with at least one user associated.

Clearly, this dataset is not cognitive radio data.

However, we can use the power and position informa-

tion to generate our network scenarios.

Generally, we extract network scenarios in this way:

randomly pick n nodes from our trace. We also set the

total operating bandwidth to approximately 2.4 GHz,

with m orthogonal channels of 20 MHz, which are the

general settings in IEEE 802.11. We use the trace data

to generate {Pm
ij }. We assume that the trace data

of the RSSI (receiving signal strength index) in node

j from node i in band l is P l
ij , where l is the band

centered at 2.4 GHz. In Wi-Fi, the RSSI is enclosed

Algorithm 4. Distributed Algorithm

Require: incoming links Ei
in
, outgoing links Ei

out, and the available spectrum M

Ensure: assignment of spectrum for each link

1: Share the assignment result with two-hop neighbours via two rounds of broadcasting

2: Each node recomputes the expected throughput of each unassigned channel m in each of the incoming links

c̃m
kl

=
Pm
kl∑

w∈vl1

⋃
vl2

am
wl

Pm
wl

+
∑

w∈N\(vl1
⋃

vl2)
Pm
wl

+σW

3: Recompute the aggregated throughput of node i under the current assignment {ai
k
, k > 1}, which is min(

∑
k∈Ei

in
fki,

∑
w∈Ei

out
fiw). If the aggregated throughput is not increased, use {ai

k−1
} as the final assignment of node i and terminate

the algorithm

4: Based on c̃m
kl
, resolve the optimization problem LP1 again for all the unassigned channel m, without modifying the existing

assignment where amij = 1

5: Make a consensus for the assignment from both endpoints

6: if there are channels or links not assigned then

7: Goto step 1

8: end if
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in the packet. Thus, we are not able to get P l
ij when

a packet transmitted from i to j cannot be decoded.

However, the receiving signal in j from i can still be an

interference. As a result, we have to derive P l
ij for each

node pair, which could be computed in this way:

1) For a given P l
iw, compute P̂ lw

ij = (diw

dij
)−αP l

iw .

2) Compute P l
ij using the average value of P̂ lw

ij .

After the fetch of P l
ij , {Pm

ij } in other bands could

be derived through (9).

The available channels in each node are constrained

by the PU nodes. We randomly deploy a certain num-

ber of PU nodes with assigned working channels. All

the nodes within the communication range of PU could

not share the same channels.

In this way, one simulation scenario is generated.

We generate 200 scenarios to perform a statistical per-

formance evaluation.

6.2 Numerical Results

Based on the generated scenarios, we perform a

statistic evaluation on the performance and cost of our

algorithms. The details of 200 generated scenarios are

listed in Table 2. We also set the network parameters,

like α, σ, to commonly used values as shown in Table 3.

Without the loss of generality, we set ε to 0.05.

Table 2. Generated Scenarios

Number Number of Number of Number Number of

of Nodes Scenarios Total Spectrums of PU PU’s Spectrums

05 20 10 03 04

10 30 10 05 04

15 30 20 05 06

20 40 20 10 06

25 40 40 10 10

30 40 40 10 10

Table 3. Simulation Settings

Parameter Value

α 3.0

η 4.0

σ −4.8

Note that, we obtain the optimal solution via

branch-and-bound method with ε = 0, which is too

costly in scenarios with over 20 nodes. Hence, if there

is no specific explanation, the comparison to the opti-

mal result is performed upon the generated scenarios

with nodes numbering no larger than 20.

6.2.1 Performance of SINR Measurement

Compared with previous work, the major difference

is that we use an efficient SINR measurement procedure

instead of the power propagation model to measure the

interference. We conduct a statistical evaluation of its

effectiveness over the propagation model based on the

positions. We adopt the centralized solution based on

the interference computed from the propagation model

and the one with efficient SINR measurement proce-

dures on all our generated scenarios. The cumulative

results are shown in Fig.3(a). From Fig.3(a), we can tell

that the efficient SINR measurement procedure helps

the centralized solution to enhance its performance and

mitigate the performance degradation introduced by

the inaccurate power propagation gain model.

Regarding the accuracy of (9), we use two USRP

devices to perform a validate experiment. The data

are collected in both 900 MHz and 5.7 GHz. One de-

vice transmits a packet in power of 20 dBm (100 mW),

while the other device measures the receiving power in

a certain distance away. Five sets of communications

links are used to collect RSS. We use the measurements

in both 900 Mhz and 5.7 GHz as the ground-truth, and

compare the predicted RSS in both bands computed

by (9). The results are shown in Fig.3(c), from which

the predict lines (5.7 GHz-Cal and 900 MHz-Cal in the

graph) are very close to the averaged measurement lines

(dot-lines named as 5.7 GHz and 900 MHz). We can

also see that the values of the RSS measured in 5.7 GHz

vary much larger than the ones measured in 900 MHz.

A possible explanation is that 5.7 GHz has been used

for 802.11a/ac communication, while the interference

in 900 MHz is much less. Note that the unit used to

measure the RSS is dBm, thus the gap between the

predicted RSSs and the measured ones is in fact larger

in unit of W. In calculating the SINR, the predicted

values should be used carefully. In summary, (9) could

serve to predict the RSS in different bands with accept-

able accuracy.

6.2.2 Performance of Centralized Solution

To better understand the performance of our com-

prehensive centralized solution, we compare our algo-

rithm not only with the optimal results, but also with

the algorithms introduced in Section 5. They are de-

noted as Mobi[22] and B&B[8], respectively. ε is set to

0.05. As we have mentioned before, neither of the algo-

rithms is designed to allocate multiple channels to one

link; thus, we change the flow graph by adding several
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Fig.3. Performance of centralized solution. (a) RSS collection vs propagation model. (b) Centralized solution vs optimal solution
and previous solutions. (c) Accuracy evaluation using cross channel RSS estimation in (9). (d) Computation cost reduction between
branch-and-bound only algorithm and our centralized algorithm.

parallel virtual links, and combine them when comput-

ing the accumulative throughput. To obtain the opti-

mal results, this group of experiments is not conducted

upon scenarios with over 20 nodes.

To illustrate the efficiency of our solution compared

with a branch-and-bound only algorithm, we intro-

duce a set of experiments, whose results are shown in

Fig.3(d). This graph shows that compared with the

centralized only algorithm, our algorithm could greatly

reduce the computational cost with approximately 80%

in average. The results in Fig.3(b) show that our al-

gorithm outperforms both algorithms in the control

group. There is still a margin between ours and the

optimal results.

We also evaluate the effectiveness of heuristic-based

enhancement, and we compare the performance of the

centralized solutions with/without enhancement. Both

algorithms are conducted upon all scenarios. The re-

sults are shown in a CDF form in Fig.4(b). We can

see that the heuristic-based enhancement improves the

overall throughput in a considerable margin.

In terms of the cost of the heuristic enhancement,

we use the benchmark of the number of iterations for

the enhancements conducted. The results can be found

in Fig.4(d). We can see that, regardless of the network

size, the enhancement will be terminated in no more

than seven rounds. In particular, for most of the cases,

the enhancement will be finished in around 3∼6 rounds.

6.2.3 Performance of Distributed Solution

We evaluate our distributed solution by comparing

it with the centralized solution and the optimal results.

They are all conducted in scenarios with less than 20

nodes. We can see the results in Fig.4(a). The ave-

rage result shows that the distributed solution achieves

approximately 78% of optimal results.

Regarding the overhead of the distributed solution,

we measure its convergence speed in terms of the num-

ber of iterations. Our simulation results, illustrated in

Fig.4(c), show that the proposed distributed algorithm

converges before seven iterations. For most cases, the

algorithm could terminate within four rounds.
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7 Related Work

Optimal conflict-free channel assignment satisfying

a global objective is often NP-hard[5]. This problem can

be described as an interference-graph vertex-coloring

or edge-coloring problem. Compared with the tradi-

tional wireless network, channel assignment in a CRN

has to deal with different scopes of spectrum availa-

bility. Thus, various distributed approximations were

proposed, which are based on observing local interfe-

rence patterns[23], local bargaining[24], or on coordina-

tions between CR nodes that aim at maximizing some

system utility[25-26]. Most recently, the channel assign-

ment problems in a CRN are studied from its dynamic

nature. In [6], Yuan et al. proposed a time-spectrum

model of the available band. Based on it, a set of

distributed assignment algorithms were developed. In

[27], Gai et al. assumed the spectrum opportunity is

unknown and modeled it as an arbitrarily-distributed

random variable with bounded support, but unknown

mean. Under this model, the assignment problem is for-

mulated as a combinatorial multi-armed bandit prob-

lem. Different from these studies, our target problem is

on the global optimization target of throughput under

the SINR interference model, and thus is much more

complex.

The SINR model is widely regarded as a better

model for interference characterization. Although such

a model is preferred, there are many difficulties in

carrying out an analysis with this model, due to the

computational complexities SINR involves. As a re-

sult, there are many previous efforts on single-hop net-

works, e.g., [28-29]. For multi-hop networks, some

efforts[30-32] study cross-layer problems involving mul-

tiple layers, aiming at optimal resource allocation or

routing. For example, in [31], Bhatia and Kodialam op-

timized power control and routing, but assumed some

frequency hopping mechanism is in place for scheduling,

which helps simplify the joint consideration of schedul-

ing. For cross-layer optimization in the SINR model

involving three layers (physical, link, and network),

nearly all existing efforts (e.g., [33]) followed a layered

approach to simplify the analysis. Under such an ap-
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proach, the solution is obtained by determining the al-

gorithm/mechanism one layer at a time, and then piec-

ing them up together instead of solving a joint optimiza-

tion problem. These approaches are heuristic at best,

and cannot offer any performance guarantee. Com-

pared with these studies, especially [8], the advance

of our work could be summarized as follows. Firstly,

we work on a more complex problem, considering the

physically layer features, e.g., spectrum diversity and

NC-OFDM. Secondly, we propose the efficient and ac-

curacy controlled method to improve the accuracy of

SINR measurement and estimation, which could greatly

improve the optimization results. Thirdly, we provide

a heuristic-based enhancement algorithm, which could

help to balance the trade-off between the efficiency and

the accuracy. Finally, we propose a fully distributed

and localized algorithm which could efficiently solve the

allocation problem.

8 Conclusions

We studied the throughput optimization problems

via spectrum allocation in CR-based WMNs under the

physical interference model, which is calibrated by mea-

surements. The complexities brought by CRs, e.g., the

NC-OFDM feature, which allows allocating multiple

channels into one link, and the spectrum diversity fea-

ture, which requires more accurate SINR estimation,

are considered. Consequently, we solved this problem

in a cross-layer way. In the lower layer, an efficient RSS

measurement and an estimation process based on com-

pressive sensing were proposed to replace the propa-

gation gain model. In the upper layer, the optimiza-

tion problem is modeled as a mixed integer non-linear

programming. Both the centralized and the distributed

solutions were proposed to solve it, approximately. The

centralized solution provides a (1− ε)-approximate re-

sult, while the distributed algorithm manages to solve

this problem locally and efficiently. Finally, a compre-

hensive statistical evaluation based on real trace was

conducted, whose results illustrate the effectiveness of

our proposed solutions.
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