
Fan LJ, Wang YZ, Li JY et al. Privacy Petri net and privacy leak software. JOURNAL OF COMPUTER SCIENCE AND

TECHNOLOGY 30(6): 1318–1343 Nov. 2015. DOI 10.1007/s11390-015-1601-7

Privacy Petri Net and Privacy Leak Software

Le-Jun Fan 1 (�W�), Member, IEEE, Yuan-Zhuo Wang 2,∗ (��R), Senior Member, CCF, ACM, IEEE

Jing-Yuan Li 2 (o·�), Xue-Qi Cheng 2 (§Æá), Distinguished Member, CCF, and
Chuang Lin 3 (� L), Fellow, CCF, Senior Member, IEEE

1National Computer Network Emergency Response Technical Team/Coordination Center of China, Beijing 100029, China
2Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
3Department of Computer Science and Technology, Tsinghua University, Beijing 100083, China

E-mail: fanlejun@cert.org.cn; {wangyuanzhuo, lijingyuan, cxq}@ict.ac.cn; chlin@tsinghua.edu.cn

Received March 27, 2014; revised June 2, 2015.

Abstract Private information leak behavior has been widely discovered in malware and suspicious applications. We refer

to such software as privacy leak software (PLS). Nowadays, PLS has become a serious and challenging problem to cyber

security. Previous methodologies are of two categories: one focuses on the outbound network traffic of the applications;

the other dives into the inside information flow of the applications. We present an abstract model called Privacy Petri Net

(PPN) which is more applicable to various applications and more intuitive and vivid to users. We apply our approach to

both malware and suspicious applications in real world. The experimental result shows that our approach can effectively

find categories, content, procedure, destination and severity of the private information leaks for the target software.

Keywords privacy Petri net, privacy leak software, privacy function, private information, malware analysis

1 Introduction

Internet and various kinds of software increase the

relationship of people and make their life convenient,

though lots of private information is collected and

spread without proper protection. The private infor-

mation can be used to invade and leak people’s privacy

by malware authors or illegal software providers for evil

purposes. In fact, private information leak behavior has

been widely discovered in a lot of malware and suspi-

cious applications. We refer to such software as privacy

leak software (PLS). Nowadays, PLS has become a se-

rious and challenging problem to cyber security.

However, anti-virus software (AVS) companies do

not value PLS properly, and do not have enough ca-

pability to handle PLS issues as well. PLS can easily

avoid the detection of AVS and threaten the privacy

security of the users. On one hand, some privacy leak

behaviors are not identified as malicious by AVS; on

the other hand, some PLS is not given enough informa-

tion by AVS to let users understand their threat level.

Therefore, it is necessary to find more effective methods

for analyzing the behavior of PLS.

Recent research on analyzing software behaviors fol-

lows two kinds of road map: the black-box one focuses

on the input data and the outbound network traffic of

application, while the white-box one dives into the in-

side information flow of application. The approaches

which focus on network traffic can rapidly find privacy

data such as credit card number whose data format is

well-defined[1-3]. But these approaches encounter the

extreme complexity of packet obfuscating techniques

such as encrypted connections, message reordering and

traffic randomization. Other approaches which focus

on insider information flow can analyze more accurate

details about privacy leak behaviors[4-7]. These ana-

lyzing methods can be further divided into two cate-

gories: static analysis and dynamic analysis. The static

Regular Paper

This work is supported by the National Natural Science Foundation of China under Grant Nos. 61402124, 61402022, 61173008,
60933005, and 61572469, the National Key Technology Research and Development Program of China under Grant No. 2012BAH39B02,
the 242 Projects of China under Grant No. 2011F45, and Beijing Nova Program under Grant No. Z121101002512063.

∗Corresponding Author

©2015 Springer Science +Business Media, LLC & Science Press, China

Le-Jun Fan et al.: Privacy Petri Net and Privacy Leak Software 1319

analysis method finds the accurate data flow from bi-

nary executable file of a target application[8-11], but

also confronts code obfuscating problems such as code

morphing, packer and opaque constant[12-14]. Thus the

dynamic method which gets the runtime data flow by

tracing the execution of the target application is ap-

plied more widely[15-17] for application behavior analy-

sis. However, dynamic analysis still has its disadvan-

tages, such as the lack of ability to detect and cope with

multiple paths[18] and dormant functionality[19].

To sum up, existing methods lack the ability for

analyzing the behavior of PLS. The ideal methods

should answer the following four questions which pre-

vious methods have not worked out about PLS at the

same time.

• What is the content of the leaked information?

• Which kind of private information is leaked?

• How does an application leak the information?

• How serious is the leak behavior?

The goal of this paper is to propose a new model

method to cover the above four questions and help the

major software providers or end users to analyze and

detect PLS. Early model methods focus on the formu-

lation definition for software behavior modeling such as

specification language or semantic template[20]. These

methods can accurately describe certain software be-

havior, but the models are hard to build, understand

or extend. This is the reason why graphic models such

as control flow graph, behavior graph and hierarchi-

cal behavior graph are adopted[21-24]. Some high-level

Petri net models such as stochastic Petri nets (SPN)

and stochastic game nets (SGN) are also used to build

quantitative analysis[25-26]. Nevertheless, there is still

a lack of models which focus on privacy leak problem.

This paper presents an abstract model called Pri-

vacy Petri Net (PPN) to characterize the whole leaking

procedure of PLS by more high-level description, mak-

ing analysis results more applicable to most kinds of

software and more meaningful to the users. PPN is a

kind of high-level Petri net which focuses on PLS ana-

lysis and has three main features.

1) PPN provides a formal mathematical definition of

syntax and semantics for privacy attribution and func-

tion calculation.

2) PPN has concise and powerful modeling primi-

tives for graphical abstraction of privacy leak proce-

dure.

3) PPN is modularized and can be used to build

various hierarchical models.

Petri net is a useful tool for describing system status

and calculating some system properties. In this paper,

we consider a running program as an independent sys-

tem. In this perspective, to find some specific behavior

of this program can be considered as to find some spe-

cific status transformation of this system. Therefore,

we apply Petri net to find the specific status transfor-

mation which stands for privacy leak behavior. More

concretely, we depend on a useful property of Petri

net called reachability to find the status transforma-

tion from a data access status to network transmission

status.

We divide PLS into more accurate categories and

trace the insider data flow. We also divide the execution

of PLS into two phases: unauthorized data access and

covert network transmission. We adopt PPN to model

the two phases respectively and get the sub-model of

different privacy leak behavior procedures.

We apply our approach on different kinds of real-

world PLS. The experimental results show that our ap-

proach not only effectively detects private information

leaks for the target software, but also finds the cate-

gories, content, procedure, destination and severity in

detail.

The rest of this paper is organized as follows. Sec-

tion 2 gives the overview of privacy leak behaviors. Sec-

tion 3 discusses the definition of PPN. In Section 4, we

model different leaks categories with PPN. Section 5 in-

troduces our approach framework and algorithms. Sec-

tion 6 shows the experiment on real-world PLS. Sec-

tion 7 gives related work. Finally, Section 8 concludes

the paper.

2 Privacy Leak

In this section, we give the details of the privacy

leak by firstly giving the definition of privacy in this

paper, and then discussing the details of privacy leak

behaviors.

2.1 Privacy Leak Definition

It is hard to give an overall definition for privacy be-

cause of its diversity and ambiguity. In a broad sense,

privacy is the independence of individual. In computer

science, the privacy equals the data which contains pri-

vate information and is called data privacy. Data pri-

vacy is an issue about how uniquely identifiable data

related to a person or persons are stored, collected and

transferred in digital form.

Privacy leak in this paper is also a kind of mali-

cious behavior to invade the data privacy. It can be

1320 J. Comput. Sci. & Technol., Nov. 2015, Vol.30, No.6

described from four aspects: content, source, proce-

dure and severity. Leak content refers to what kind

of privacy data is leaked. Leak source means the sto-

rage form of privacy data. Leak procedure records the

related system call sequence and the final destination

of privacy data. Leak severity calculates the damage

degree of such a privacy leak behavior. The details of

the four aspects are as follows.

2.2 Privacy Leak Content

The content of privacy data includes many aspects

such as financial privacy, Internet privacy, medical pri-

vacy, political privacy, and so on.

Financial privacy, in which the information about a

person’s financial transactions is guarded, is important

for the avoidance of fraud or identity theft. The in-

formation about a person’s purchases can also reveal a

great deal of his/her history, such as the places he/she

has visited, the persons he/she has contacted with, the

products he/she uses, and his/her activities and habits.

Internet privacy is the ability to control what in-

formation one reveals about oneself over the Internet,

and to control who can access that information. These

concerns include whether emails can be stored or read

by third parties without consent, or whether the third

parties can track the websites someone has visited. An-

other concern is whether the visited websites collect,

store, or possibly share personally identifiable informa-

tion about users. Tools used to protect privacy on the

Internet include encryption tools and anonymity ser-

vices like I2P and Tor.

Medical privacy means the secrecy of a person’s

medical records, because of his/her insurance coverage

or employment, or because he/she would not wish oth-

ers to know about medical or psychological conditions

or treatments that might be embarrassing. Revealing

medical data could also reveal other details about one’s

personal life.

Political privacy has been a concern since voting sys-

tems emerged in ancient times. The secret ballot is the

simplest and most widespread measure to ensure that

political views are not known to anyone other than the

original voter — it is nearly universal in modern democ-

racy, and considered as a basic right of citizenship. In

fact, even if other rights of privacy do not exist, the

political privacy holds in most of the situations.

2.3 Privacy Leak Data Source

According to the storage type in the computer, we

divide the privacy data source into the following four

categories. Our later discussion will focus on privacy

leak behavior from the four data sources. This clas-

sification is concluded from usual privacy leak events.

Many real-world attacks focus on these four categories

of privacy data. This classification is not able to cover

all the categories of privacy data, but our model is easy

to expand by adding new modules for other categories

of privacy data.

Normal File Data Source. Most privacy data

sources are stored statically as normal text file, im-

age file, audio file and video file such as personal

notes, resumes, confidential documents, photos and

video records. These kinds of data sources are likely

to be read and sent out.

Application Associated Data Source. Some fre-

quently used applications such as web browser, video

player, email client and address book manager can store

lots of user related privacy data with special data for-

mat. These kinds of data source can be utilized and

inferred to gather user favorite, website cookies, usage

habit and social relationship, etc.

System Associated Data Source. System informa-

tion is also an important kind of privacy data source.

The basic machine information of computer, operating

system profile, system configuration and user configura-

tion are all prone to leakage, and analyzed to gather pri-

vacy information. For example, MAC address is unique

to a network interface, and can therefore be used for

tracking a device and its users. A machine name can

also reveal personal information.

Dynamic Data Source. Another important kind of

privacy data source is different from the above three

kinds. They are dynamically input into the system and

are not statically stored. For example, many applica-

tion clients require user registration or login, and the

username and the password are dynamic input from

keyboard. The messages in instant message software

also contain privacy data. The registration forms of

many applications which include private information

such as real name, gender, home address are dynamic

privacy data sources too.

2.4 Privacy Leak Procedure

We divide the process of private information leaks

into two kinds of procedures: unauthorized data access

and covert network transmission.

Le-Jun Fan et al.: Privacy Petri Net and Privacy Leak Software 1321

Unauthorized Data Access. Unauthorized data ac-

cess means two kinds of illegal data manipulation on

privacy data source. One is that non-associated appli-

cation accesses the associated data source, e.g., a non-

web-browsing application accesses the browsing history

or website cookie file. The other is that applications

manipulate important system data source beyond con-

straint, e.g., a calculator requests network configura-

tion.

Covert Network Transmission. Covert network

transmission may take advantage of different transport

protocols. We focus on raw socket, FTP and HTTP for

their prevalence and easy usage. In general, PLS sends

out privacy data in a similar way as benign software

by firstly building a connection, and then transferring

some data. But PLS can still be differentiated from be-

nign software by mainly three features: 1) sensible data

which come from unauthorized data access; 2) abnor-

mal communication port and remote server address; 3)

suspicious control command exchange.

2.5 Privacy Leak Severity

The severity of privacy leak behavior is the overall

evaluation index about PLS. It refers to two factors:

effect and stealth. The effect factor values the negative

effect caused by PLS. It can be calculated from the im-

portance and the amount of leaked privacy data. The

stealth factor describes the resistance of PLS against

the detection. It is mainly estimated by the concealing

tricks used in the privacy data leak procedure.

3 Privacy Petri Net

Our analysis of PLS mainly depends on an abstract

model we present called Privacy Petri Net (PPN). PPN

is a high-level Petri net which focuses on PLS and has

three main features. Firstly, PPN has a formal mathe-

matical definition of syntax and semantics. This pro-

vides the precise specification of the target PLS be-

havior and is the foundation to define various behavior

properties. Secondly, PPN has concise and powerful

modeling primitives for graphical abstraction. Specific

graph structures can be used to identify unique pri-

vate information leak behaviors of PLS. Finally, PPN

is modularized and can be used to build hierarchical

models of PLS. We can use PPN to model different

sub-types of privacy leaks and form complicated mod-

els. The details of the formal definition of PPN are as

follows.

3.1 Basic Element

As shown in Fig.1, we define the basic element of

Privacy Petri Net as follows.

p1

t1

expr1

vs1i vs1o

a1oa1i

p2

Fig.1. Basic element of Privacy Petri Net.

Definition 1 (Privacy Petri Net (PPN)). A PPN is

a seven-tuple (P, T,A, INST, fpos, ftrans, farc), where:

1) P is a finite set of places. Each element in P

denotes a local status for the subroutine of application

execution.

2) T is a finite set of transitions and P ∩ T 6= Ø.

Each element in T denotes a system call or API call.

3) A ⊆ P × T ∪ T × P is a set of directed arcs

that connect the positions and the transitions. The arcs

which head to one transition are called input arcs of the

transition, and the ones which emit from it are called

output arcs.

4) INST = {(ctg, cont, proc) : ctg ∈ Ctg, cont and

proc are Strings} is the set of instance of privacy data.

It is the most important element in PPN and is denoted

by token with special attributes. Each token has three

attributes that are related to privacy leakage.

The first attribute denotes the four categories of data

source we mentioned in Subsection 2.3, which has some

string values:

Ctg = {“File”, “Application”, “System”,

“Dynamic”}.

The Content attribution is different according to the

Category attribute. For example, it would be the file

path and file name for normal file data source, or the

registry key name and key value for some kinds of sys-

tem data source.

The Proc attribution denotes the steps that the to-

ken traverses through the whole PPN. It is a sequence

of positions and transitions that can be denoted as:

Proc = p1t1p2 . . . pn−1tn−1pn, n > 1,

where pi ∈ P, i = 1, 2, . . . , n, and tj ∈ T , j =

1, 2, . . . , n− 1.

The three attributes depict the fundamental infor-

mation of the privacy leakage. All the attributes are

initialized with empty value when a token is created.

1322 J. Comput. Sci. & Technol., Nov. 2015, Vol.30, No.6

5) fpos is a position function denoted by:

fpos : P → {“Start”, “Source”, “Absorb”,

“Mid”, “Discrim”}.

This mapping assigns property that denotes the role

of privacy leaks to each position. Different positions are

indicated with distinctive icons as follows in Fig.2.

Start AbsorbDiscrimMidSource

Fig.2. Position icons.

Start position is unique, which spawns new tokens

with unassigned privacy attributes. Source position de-

notes the access point of privacy data sources. Discrim

position denotes that the behavior of privacy leaks can

be discriminated when a token reaches such positions.

Absorb position denotes that the operation on the re-

lated data source has been checked and considered to

have no privacy leak behaviors. Mid positions are all

the other positions in PPN except the above four kinds

of positions.

6) farc is an arc function set that assigns a variable

set to each arc, which is depicted as:

farc : A → V ARSET .

Each variable set VARSET mapping to input arc is

called input variable set. The ones mapping to output

arc is called output variable set. In Fig.2, vs1i and vs1o

are input variable set and output variable set mapping

to arcs a1i and a1o respectively. These variable sets can

also be divided into two different categories: one is the

parameter used to support the system call or API call,

such as integer, float, handle, pointer, string and struct;

the other is to support the privacy attributions and is

mainly computed from the parameter variables.

7) ftrans is a transition function that maps an ex-

pression to each transition:

ftrans : T → EXPR.

EXPR is a Boolean operation of some privacy leaks

checking conditions that fire the related transition. In

Fig.1, the expr1 is the expression mapped from tran-

sition t1. These conditions include many categories

such as the current system call or API call name check-

ing, current system environment variable value check-

ing, globe system configuration checking, user opera-

tion checking and other predefined constraint condi-

tions. There must be at least one condition that checks

the current system call or API call name because we

mainly depict the application behaviors with the call se-

quence.

Definition 2 (PPN Module). Assuming that m is a

PPN, p is a position in its position set: m is PPN mod-

ule ⇔ ∃p : fpos(p) = “start”∧∃p : fpos(p) = “absorb”∧

∃p : fpos(p) = “source” ∧ ∃p : fpos(p) = “discrim”.

PPN module is a special sub PPN with certain posi-

tions. Each PPN module must have at least one “start”

position, one “absorb” position, one “source” position

and one “discrim” position to depict the complete pri-

vacy leak procedure.

PPN module is defined for the privacy leak proce-

dure to implement the modularization of PPN.

Definition 3 (Global PPN). Global PPN is de-

signed for the whole privacy leak behaviors:

GP = (dm1 ∪ dm2 ∪ . . . ∪ dmi) ∩ (nm1 ∪ nm2 ∪ . . .

∪nmj),

where i > 1 and j > 1.

It contains a set of PPN modules as components.

dm1, dm2, . . . , dmj are PPN modules for unauthorized

data access and nm1, nm2, . . . , nmj are PPN modules

for convert network transmission. There must be at

least one dm and one nm to form a complete privacy

leak behavior. ∩ denotes that the modules have diffe-

rent behavior procedure types and can be connected by

transitions from the discrimination position in the for-

mer module to the start position in the later module.

∪ denotes that the modules have the same behavior

procedure type and should not be connected.

Definition 4 (Constraint Set). Constraint set is

used to further differentiate benign application beha-

viors from privacy leak behaviors. The elements in con-

straint set are described as:

cs = (rule, scoreeffect, scorestealth).

In some occasions, it is difficult to judge the appli-

cation behaviors with only the position-transition se-

quence triggered by system call name. Therefore, the

system call parameters and the return value are con-

sidered. Each rule is about the parameters and the

return value that benign applications should obey. The

other two scores, effect and stealth, are used to calcu-

late the severity of the privacy leak behavior which we

will discuss later. Higher effect score means privacy in-

formation is more important, while high stealth score

means that the leak behavior is well disguised.

Le-Jun Fan et al.: Privacy Petri Net and Privacy Leak Software 1323

3.2 Main Operation

We now describe the work mode of PPN. PPN con-

tains four main operations that change the status of

positions, arcs, transitions and tokens.

Definition 5 (Privacy Instance Spawning and Re-

moving). Privacy instance spawning is the operation on

PPN positions denoted as:

SPAWN(p, inst),

where fpos(p) = “start”, inst is a new privacy instance.

As defined above, token denotes the instance of pri-

vacy data source. Spawning of privacy instance is the

operation that creates a new token in the start position

with empty attributions. After the target application

starts running, whenever the start position is empty, a

new token is spawned in the start position with empty

attributions.

Privacy instance removing is also the operation on

PPN positions:

REMOVE(p, inst),

where fpos(p) = “absorb” and inst, a privacy instance

in p.

If the token arrives at a discrimination position and

all the privacy attributions are assigned, then the leak

procedure of this privacy data source is discovered and

recorded completely. However, if the token finally stops

in an absorb position, it is discarded and removed from

the PPN.

Definition 6 (Privacy Variable Binding). Privacy

variable binding is the operation that assigns values to

the variables in the variable set of the target arc a:

BIND(a, valueset),

where ∀x ∈ farc(a) : x has been assigned, valueset con-

tains values for the related variables in VARSET of a.

Privacy variable binding means two kinds of variable

assignment. The first one is to give a value to each free

variable appearing in the input variable set. These val-

ues are mainly obtained from two sources: one is the

parameters of call sequence of target application, the

other is the output variable set of the previous transi-

tion. The second assignment is for the free variables

in the output variable set. These values are mainly

used for computing the attributes in the privacy in-

stance denoted by tokens and are generated after pri-

vacy leak condition triggering which will be defined in

Definition 7.

Definition 7 (Privacy Leak Condition Triggering).

Privacy leak condition triggering is the operation that

moves the tokens from position to position through tar-

get transition t:

TRIGGER(t, inst1, inst2, . . . , insti),

where ∀e ∈ ftrans(t) : e is true and insti (i > 1) is the

token in the position connecting to the position t.

A transition can occur when all the variables ap-

pearing in the input variable set are assigned and all

the conditions defined by transition function ftrans are

satisfied. After the occurring of a transition, the to-

kens in the positions that connect to it will move into

the positions that connect from it. The variable values

in the output variable set are also used to compute the

privacy attributes of the tokens.

3.3 Discrimination Theorems

We give some important theorems of PPN for check-

ing the privacy leak behaviors.

Definition 8 (Behavior Path Set). Assuming that

C = c1c2 . . . cn is the call sequence of the target applica-

tion, inst1, inst2, . . . , instm are the privacy instances

which are spawned when the calls in C are checked one

by one to trigger the transitions. Then the behavior path

set BPS is the union of move trace of all the privacy

instances:

BPS = {inst1.proc, inst2. proc, . . . , instm.proc}.

Behavior path set BPS is the mapping from the be-

havior of the target application to the move traces of

tokens in PPN. Each call sequence Ccan be mapped to

one unique BPS to describe the behavior of privacy leaks

in all the behaviors of the target application.

Definition 9 (Leak Path and Leak Reachabi-

lity). Leak path is a special privacy instances’ move

traces in behavior path set BPS. Let instk.proc =

p1t1p2 . . . pn−1tn−1pn and instk.proc ∈ BPS:

instk.proc is a leak path ⇔ the privacy instance instk

has leak reachability ⇔ ∃i, j: fpos(pi) = “source” ∧

fpos(pj) = “discrim”.

A leak path must have one source position and one

discrimination position. This definition confirms that a

private instance can move along this path and leak the

private data in source position.

With the leak reachability property, we can verify

the target application about whether certain type of

private information is leaked, as shown in Theorem 1.

1324 J. Comput. Sci. & Technol., Nov. 2015, Vol.30, No.6

Theorem 1. If a privacy instance inst spawned in

a PPN module m is with leak reachability, then the tar-

get application’s call sequence C contains privacy leak

behaviors procedure modeled by the PPN module.

Proof. Since inst is a privacy instance with

leak reachability, by Definition 8, inst.proc =

p1t1p2 . . . pn−1tn−1pn is a leak path and ∃i, j: fpos(pi)

= “source” ∧ fpos(pj) = “discrim”. In addition,

inst is spawned in m, and by Definition 9, m has at

least one source position and one discrimination po-

sition; hence, inst.proc contains a sub path proc′ =

pitipi+1. . . pj−1tj−1pj ∧ pi ∈ m ∧ pj ∈ m. Because

by Definition 8, inst.proc ∈ BPS and it is created by

call sequence C, and by Definition 1, each transition

has at least one condition which checks the current

call name, each ti has a related call ci, and ∃C′ =

cici+1 . . . cj−1cj ∧ ∀k, i 6 k 6 j, ck ∈ C,C′ can trig-

ger the transitions on proc’ in the PPN module m. This

sub-call sequence C′ forms a privacy leak behaviors pro-

cedure modeled by m. Therefore, Theorem 1 holds. �

Theorem 2. Let a privacy instance insta be

spawned in an unauthorized data access PPN module

dm1 and another privacy instance instb be spawned in

a covert network transmission module nm1. If

1) insta is with leak reachability,

2) instb is with leak reachability,

3) insta.Cont ∈ instb.Cont;

then target application’s call sequence C contains com-

plete privacy leak behavior modeled by global PPN gp1

= dm1 ∩ nm1.

Proof. By Theorem 1, since 1), ∃C′

a ∈ C,C′

a can

trigger the transitions on insta.proc in the PPN mod-

ule dm1; since 2), ∃C′

b ∈ C,C′

b can trigger the transi-

tions on instb.proc in the PPN module nm1. By Def-

inition 3, since gp1 = dm1 ∩ nm1, assuming that the

discrimination position in insta.proc is pa and the start

position in instb.proc is pb. Since 3), the two sub be-

havior procedures have consistent content, let a new

transition t0 connect from pa to pb for simply trans-

porting the output value set of pa to the input value

set of pb, and c0 is an abstract related call of t0. Hence

there will be a new leak path p1t1 . . . pat0pb . . . tn−1pn

through the two modules and the call sequence C′

ac0C
′

b

forms a complete privacy leak behaviors modeled by

gp1. Therefore, Theorem 2 holds. �

3.4 Privacy Leak Calculating Rules

At last, we give the definition of privacy leak model

which is the core of our approach to analyze privacy

leaks by PPN.

Definition 10 (Privacy Leak Behavior). We for-

mulize the privacy leak behavior with the four-tuple

PL(pctg, pcont, pproc, pseverity). pctg, pcont, pproc are simi-

lar to the three privacy attributes of the tokens in Defi-

nition 1 but are related to the whole PPN rather than a

single token. pseverity is used to judge the damage degree

of leak behavior and is calculated from the constraint set

in Definition 4:

pseverity =

(

∑

i

csi.scoreeffect,
∑

i

csi.scorestealth

)

,

where csi is the element in the constraint set.

The privacy leak four-tuple PL is then mapped from

the target application app with PPN. It is calculated

according to the static features of PPN including the

position property, the variable set of arcs and the tran-

sition expression. And the final output value is com-

puted with the execution of the target application and

the privacy attributes of the tokens.

There are three calculating rules defined for PPN:

global rule, module rule and path rule. The global rule

evaluates the whole privacy leak behaviors. The module

rule is defined for the sub-procedures of leak behaviors.

The path rule is defined for the single leak path.

Rule 1 (Path PL Calculating). By Theorem 1,

the path PL is calculated by the privacy instance

moving through the path. Assume that path1 =

p1t1p2. . . pn−1tn−1pn that connects a source position

and a discrimination position is a leak path, and their

transition expressions are denoted by ei, 1 6 i 6 n− 1.

If a private instance inst1 has leak reachability on

path1, then all the transitions on this path must be trig-

gered. Thus the sub privacy leak tuple of this path is

computed:

PLpath
1

= (inst1.Ctg, inst1.Cont, inst1.P roc,

Pseverity),

where E1 = e1 ∧ e2 ∧ . . . ∧ ei is true. Pseverity is the

severity computed by the constraints broken by path1.

Rule 2 (Module PL Calculating). The module PL

is computed from all the possible leak paths. If there

are j different paths in the PPN module m1, the mod-

ule privacy leak tuple can be computed by:

PLm1 = PLpath
1
∨ PLpath

2
∨ . . . ∨ PLpathj

,

where Em = E1 ∨ E2 ∨ . . . ∨ Ej is true.

The conjunction symbol from PLpath
1
to PLpathj

describes the union of elements of the tuples.

Rule 3 (Global PL Calculating). By Theorem 2,

there should be at least one leak path in unauthorized

Le-Jun Fan et al.: Privacy Petri Net and Privacy Leak Software 1325

data access module and another leak path in covert net-

work transmission module. Therefore, the global PL is

computed as follows:

PLglobal = (PLda1
∨ PLda2

∨ . . . ∨ PLdaN
) ∧

(PLct1 ∨ PLct2 ∨ . . . ∨ PLctM).

PLglobal is the global privacy leak tuple that gives

the output of the entire leak behavior. It is com-

puted by the privacy leak tuples of the modules da1

to daN which denote the unauthorized data access and

the modules ct1 to ctM which denote the covert net-

work transmission. Since there may be many different

leak data sources in one application, we use conjunction

symbol between da1 to daN and ct1 to ctM to describe

the union of items such as “pctg” and “pcont” in the

output value of privacy leak tuple. However, by Theo-

rem 2, there must be a composition of at least one data

source access procedure and one covert network trans-

mit procedure to form a complete privacy leak behavior,

and we therefore use disjunction symbol to describe the

concatenation of “pproc” between the two kinds of pro-

cedures. “pseverity” is the sum of all the module severity

scores.

4 Modeling PLs with PPN

In this section, we first build the global PPN for

the whole privacy leak behaviors, and then build some

PPN modules for typical privacy leak procedures.

4.1 Global PPN for Whole Privacy Leak

Behaviors

According to Definition 3, global PPN consists of

unauthorized data access modules and covert network

transmission modules. It can be expanded easily by

inserting new modules to enhance its modeling ability.

As shown in Fig.3, in global PPN gp, we consider

four kinds of data access modules: normal file, applica-

tion data, system data and dynamic data. We further

consider three kinds of network transmission modules:

raw socket connection, FTP connection and HTTP con-

nection. All other details except start position, source

position and discrimination position are omitted and

will be discussed later. According to Theorem 2, these

modules are connected by a special transition t0 to form

complete privacy leak behavior. This t0 is not a tran-

sition for a single system call or API call, but for any

correlation between the output value set of data access

modules and the input value set of network transmis-

sion modules.

Normal File Data Access Module

HTTP Connection Module

FTP Connection Module

Raw Socket Connection Module

Dynamic Data Access Module

System Data Access Module

Application Data Access Module

t0

Fig.3. Global PPN gp which contains seven modules.

Next, we build PPN modules for different privacy

leak behavior procedures and discuss modeling applica-

tions on Windows platform. We first give the graphic

presentation, then summarize the leak behavior pro-

cedures and find the possible leak paths. Finally, we

present some details of positions, transitions and arcs.

4.2 PPN Modules for Unauthorized Data

Access

We first give PPN modules unauthorized data ac-

cess. There are four kinds of data access modules: nor-

mal file, application data, system data and dynamic

data.

4.2.1 PPN Module for Normal File Data Access

In Fig.4, to access data in a normal file, the target

application should first check the possible directories to

find the file by “NtQueryDirectoryFile” or “NtNotify-

ChangeDirectoryFile”, then achieve the file handle by

“NtCreateFile” or “NtOpenFile”, and at last get the

file properties or read the file content by “NtFsCon-

trolFile” or “NtReadFile”. The details of this module

are shown in Table 1. There are three possible leak

p2. Dir p3. File
Checked Opened

p7. File
Read

p8. File
Closed

p1. File Data
Access Start

p4. File
Info Got

p5. Volume
Info Got

p6. File
Attribute Got

t6

t5

t2 t9

t12t10

t11

t7

t8

t3

t4

t1

Fig.4. Module mnfda: PPN module for normal file data access.

1326 J. Comput. Sci. & Technol., Nov. 2015, Vol.30, No.6

Table 1. Details of Module mnfda

EXPR Input Variable Set Output Variable Set

t1 “NtQueryDirectoryFile” Dir name “Ctg”

t2 “NtCreateFile”∧ Path Check File name File handle

t3 “NtOpenFile”∧ Path Check File name File handle

t4 “NtNotifyChangeDirectoryFile” Dir name File handle

t5 “NtFsControlFile” Ctl Code Pointer,“Cont”

t6, t7, t8 “NtQueryInformationFile” “NtQueryAttributeFile”
“NtQueryVolumeInformationFile”

File handle Pointer,“Cont”

t9, t10, t11 “NtReadFile” File handle Pointer,“Cont”

t12 “NtClose” File handle NULL

paths: p3t6p4t9p7, p3t7p5t10p7 and p3t8p6t11p7. To dif-

ferentiate from the legitimate file access, we check the

file path for further verification. Only application in-

stallation path, system path and application creation

path are permitted to be accessed.

4.2.2 PPN Module for Application Data Access

As depicted in Fig.5, application data includes

many categories and almost each frequently-used ap-

plication has its own privacy-related dataset. We

mainly discuss IE kernel web browser here as an

example. The browser contains lots of private

data: browser page history can be leaked by “Enu-

mUrls” interface of “IUrlHistoryStg” object, favorite

pages can be revealed by “ImportExportFavorites” of

“IShellUIHelper” object, typed URL history can be

got from register key “Software\\Microsoft \\Internet

Exploer\\TypedURLs”, website cookies can also be

leaked from “InternetGetCookie” API, and even pro-

tected cookies may be obtained by “IEGetProtected-

ModeCookie”. The details of this module are shown

in Table 2. There are five possible leak paths:

p2t5p5, p2t6p6, p1t2p3, p1t3p3, p4t8p7. The start position

p1 is also a source position. We need to check the ap-

plication itself to confirm leak behaviors. Only web

browser and other browsing tools can invoke such API

and system calls.

p1. App Data

Access Start

p2. Object

Created

p3. Cookie Got

p4. Key Opened p7. Typed

URL Got

p6. Browse

History Got

p5. Favorite

Website Got

p8. App Data

Access End

t2

t1

t3

t5 t9

t10

t11

t6

t7

t4 t8

Fig.5. Module mada: PPN module for application data source.

4.2.3 PPN Module for System Data Access

As depicted in Fig.6, system data is about ba-

sic system statuses and configurations such as basic

computer info, network info and user info. We only

Table 2. Details of Module mada

EXPR Input Variable Set Output Variable Set

t1 “CoCreateInstance” ∧ object name check Object name “Ctg”, COM Obj

t2 “InternetGetCookie” ∧ application check URL name, cookie name “Ctg”, “Cont”, cookie value

t3 “IEGetProtectedModeCookie” ∧ application check URL name, cookie name “Ctg”, “Cont”, cookie value

t4 “NtOpenKey” ∧ application check Key name “Ctg”, key handle

t5 “EnumUrls” COM object “Cont”, URL list

t6 “ImportExportFavorites” COM object “Cont”, favorites

t7 “NtDeleteFile” File handle NULL

t8 “NtQueryValueKey” Key handle “Cont”, keyvalue

t9, t10 “CoUninitialize” COM object NULL

t11 “NtClose” Key handle NULL

Le-Jun Fan et al.: Privacy Petri Net and Privacy Leak Software 1327

list frequently-used calls here, such as “GetWindows-

Directory” or “GetVersion” for basic computer info,

“GetAdaptersInfo” or “GetNetworkParams” for local

network info and “NetUserEnum” for use info. The de-

tails of this module are shown in Table 3. All paths

which connect p1 and p2, p3, p4 are leak paths.

p2. System

Info Got

p3. Network

Info Got

p4. Users

Info Got

p1. System
 Data
Access Start

p5. System
 Data
Access End

t1

t2

t3

t8

t9

t10

t4

t5

t6

t7

Fig.6. Module msda: PPN module for system data access.

Table 3. Details of Module msda

EXPR Input Output

Variable Set Variable Set

t1 “GetWindowsDirectory” String pointer “Ctg”, “Cont”

t2 “GetVersion” String pointer “Ctg”, “Cont”

t3 “GlobalMemoryStatus” Struct pointer “Ctg”, “Cont”

t4 “GetAdaptersInfo” Struct pointer “Ctg”, “Cont”

t5 “GetNetworkParams” Struct pointer “Ctg”, “Cont”

t6 “GetUserName” String pointer “Ctg”, “Cont”

t7 “NetUserEnum” Struct pointer “Ctg”, “Cont”

t9, t10,
t11

“NtClose” Handle NULL

4.2.4 PPN Module for Dynamic Data Access

In Fig.7, for dynamic data access, we mainly con-

sider keyboard and mouse input. There are two meth-

ods to get keyboard and mouse input: use the hook

function by first setting hook by “SetWindowsHook”,

then use the keyboard or mouse callback function, then

release the hook; or get window handle by “GetAc-

tiveWindow”, then get key stroke by “GetKeyState”

or “GetAsyncKeyState” and get mouse state by “Get-

MouseMovePoints”. The details of this module are

shown in Table 4. There are four possible leak paths:

p2t3p4t7p8, p2t4p5t8p9, p3t5p6t9p10, p3t6p7t10p10.

p2. Active
Window Got

p4. Keyboard
Focus Got

p1. Dynamic
Data Access

Start

p11. Dynamic

Data Access
End

p3. Hook Set

p5. Mouse
Captured

p7. Mouse
Process

p6. Keystroke
Process

p10. Next
Hook

p8. Key
Status Got

p9. Mouse
Status Got

t1

t3 t7 t11

t12

t13

t10

t9t5

t2

t4 t8

t6

Fig.7. Module mdda: PPN module for dynamic data access.

4.3 PPN Modules for Covert Network

Transmission

We give PPN modules for covert network transmis-

sion in this subsection. We consider three kinds of

connections: socket connection, FTP connection and

HTTP connection.

4.3.1 PPN Module for Socket Connection

In Fig.8, to build socket connection, the target

application should first create a socket by “socket”,

and then build server side by “listen” or client side

by “connect”. The application can now transfer pri-

vacy data by “send” or “sendto”, and receive re-

mote data by “recv” or “recvfrom”. After the data

transfer phase, the application ends the process by

“closesocket”. The details of this module are shown

in Table 5. There are three possible leak paths:

p2t3p3t6p5t8p6, p2t3p3t7p5t8p6, p2t2p4t5p6.

p1. Socket
Transmit

Start

p2. Socket

Created

p4. Server
Created

p3. Client
Connect

p5. Request
Process

p7. Socket
Transmit

End

p6. Transfer
Processed

t1

t2 t5

t3

t4 t7 t9

t6 t8 t10

Fig.8. Module msocket : PPN module for socket connection.

4.3.2 PPN Module for HTTP Connection

HTTP connection can be implemented by two func-

tion libraries: WinInet and WinHTTP. WinINet is

widely used for client building and WinHTTP has

1328 J. Comput. Sci. & Technol., Nov. 2015, Vol.30, No.6

Table 4. Details of Module mdda

EXPR Input Variable Set Output Variable Set

t1 “GetActiveWindow” NULL “Ctg”, handle

t2 “SetWindowsHook” Hook type, hook proc “Ctg”, hook handle

t3 “GetFocus” NULL Window handle

t4 “GetCapture” NULL Window handle

t5 “KeyboardProc” Keystroke info “Cont”, key status

t6 “MouseProc” Mousemove info “Cont”, mousemove

t7 “GetKeyState” Key name “Cont”, key status

t8 “GetMouseMovePoints” Struct pointer “Cont”, mousemove

t9, t10 “CallNextHook” Hook name Next hook handle

t11 “Close” Window handle NULL

t12 “ReleaseCapture” Window handle NULL

t13 “UnSetWindowsHook” Hook handle NULL

Table 5. Details of Module msocket

EXPR Input Variable Set Output Variable Set

t1 “Socket” Address type, protocol Socket handle

t2 “Connect” Socket handle, Sockaddr “Dest”

t3 “Listen” Socket handle, Sockaddr “Dest”

t4 “Bind” Socket handle, Sockaddr “Dest”

t5, t8 “Send” ∨ “Sendto” Socket handle, buff pointer “Cont”, status code

t6 “Accept” Socket handle, Sockaddr Status code

t7 “Select” Socket handle, Sockaddr Status code

t9 “Recv” ∨ “Recvfrom” Socket handle, buff pointer “Cont”, status code

t10 “Closesocket” Socket handle NULL

http server implementation. For building HTTP con-

nection and leaking privacy data, the target applica-

tion firstly creates Internet handle by “InternetOpen”,

then sets up the connection to remote HTTP server

by “InternetConnect”, and then creates HTTP re-

quest by “HttpOpenRequest” adding HTTP head-

ers by “HttpAddRequestHeader”. Finally the ap-

plication sends data by post HTTP request with

“HttpSendRequest” or directly writes Internet file by

“InternetWriteFile”, as depicted in Fig.9. The details

of this module are shown in Table 6. Two leak paths to

send data are p2t2p3t3p4t6p6 and p2t2p3t3p4t4p5t7p7.

p1. HTTP p8. HTTP p2. HTTP
Transmit

Start

Transmit
End

Handle

Created

p3. Connect
Remote
Server

p4. Set

Request

p5. Got
File

Handle

p7. File
Sent

p6. Field

Post

t1 t2 t3

t5

t6 t8

t4 t7

t9

Fig.9. Module mHTTP: PPN module for HTTP connection.

4.3.3 PPN Module for FTP Connection

As shown in Fig.10, FTP connection is used to

transfer privacy data in files, which is especially use-

ful for transferring a large number of files or a large

file in size. In windows API, FTP service is also im-

plemented in WinINet library and the leak procedure

is similar to HTTP connection. An Internet handle

and connection is to be created. The application then

sets file transferring directory by “FtpSetCurrentDirec-

tory” or “FtpCreateDirectory”. Then, the privacy data

are sent by “FtpPutFile” directly in files, or the data

p1. FTP
Transmit

Start

p8. FTP
Transmit

End

p2. FTP
Handle

Created

p3. Connect

Remote

Server

p6. Got File
Handle

p7. File
Sent

p4. Check

Directory

p5. Set
Directory

t1 t2

t3 t4

t5 t8 t9

t7t6

Fig.10. Module mFTP: PPN module for FTP connection.

Le-Jun Fan et al.: Privacy Petri Net and Privacy Leak Software 1329

Table 6. Details of Module mHTTP

EXPR Input Variable Set Output Variable Set

t1 “InternetOpen” Access type, proxy info “Dest”, Internet handle

t2 “InternetConnect” Internet handle, server info “Dest”, Internet handle

t3 “HttpOpenRequest” Internet handle “Cont”, Internet handle

t4, t6 “HttpSendRequest” Internet handle, request header “Cont”, status code

t5 “HttpAddRequestHeader” Internet handle, request header “Cont”, Internet handle

t7 “InternetWriteFile” Internet handle, buff pointer “Cont”, status code

t8, t9 “InternetCloseHandle” Internet handle NULL

Table 7. Details of Module mFTP

EXPR Input Variable Set Output Variable Set

t1 “InternetOpen” Access type, proxy info “Dest”, Internet handle

t2 “InternetConnect” Internet handle, server info “Dest”, Internet handle

t3 “FtpGetCurrentDirectory” Internet handle, string pointer Status code

t4 “FtpSetCurrentDirectory” Internet handle, dir name “Cont”, status code

t5 “FtpCreateDirectory” Internet handle, dir name “Cont”, status code

t6 “FtpOpenFile” Internet handle, file name “Cont”, file handle

t7 “InternetWriteFile” Internet handle, buff pointer “Cont”, status code

t8 “FtpPutFile” Internet handle Status code

t9 “InternetCloseHandle” Internet handle NULL

are to be written to FTP file handle by “FtpOpen-

File” and “InternetWriteFile”. The details of this mod-

ule are shown in Table 7. Two main leak paths are

p2t2p3t5p5t8p7, p2t2p3t5p5t6p6t7p7.

5 Analyzing PLS with PPN

We first describe our analysis framework for PLS

based on PPN and then present the related algorithms.

5.1 Approach Framework

Our framework includes three main components:

call tracer, PPN module library and privacy leaks ana-

lyzer. The details are as follows.

As shown in Fig.11, PLS instance runs in the vir-

tual OS. First the call sequence is captured by the call

tracer. Then the filtered call sequence is sent to the

analyzer for generating PPN instance with the related

PPN modules from the module library. After the pri-

vacy leaks analyzer checks the leak path and calculates

the privacy leak tuple, the analysis result is output as

the four-tuple we defined in Definition 10.

5.1.1 Call Tracer

The call tracer mainly focuses on the system call

and API call of the application instance. We use hook

functions to intercept important calls which are related

to the privacy leak behavior of application. To get more

precise information and build more accurate model, we

not only get the call name, but also obtain the parame-

ters and return values. Details of the sequence of call

are recorded into log files.

Call Tracer

Privacy Leak Result Output

Virtual OS

PPN Module Library

Privacy Leaks Analyzer

PLS

Instance

File Data Module

App Data Module

System Data Module

Dynamic Data Module

HTTP Module

FTP Module

Call Sequence

Filtering

Leak Path Checking

Privacy Function Calculating

Privacy

Severity

Privacy

Procedure

Privacy

Content

Privacy

Category

Socket Module

PPN Instance Generating

Fig.11. Analysis framework of private information leaks.

5.1.2 PPN Module Library

The PPN module library stores all the PPN mod-

ules we build in Section 4: modules for unauthorized

data access and modules for covert network transmis-

sion. New modules can be simply added to the library.

1330 J. Comput. Sci. & Technol., Nov. 2015, Vol.30, No.6

Such modularization of PPN enables the flexibility and

scalability for PLS analysis.

5.1.3 PPN Analyzer

This component is the core of our framework. The

component consists of three parts: PPN instance gene-

rating, Leaks path checking and privacy leak tuple cal-

culating. Firstly, new PPN instances are generated

from PPN module library for PLS that is considered

suspicious, and then the filtered call sequence is used to

spawn new token or trigger the transitions in the PPN

instance as we defined in Definitions 5∼7. Secondly,

all the privacy instances which arrive at discrimination

position are checked to find the possible leak paths.

Thirdly, privacy leak tuples are calculated from path

PL tuple to module PL tuple and then global PL tuple

as we defined in Definition 10.

5.2 Analyzing Algorithm

After building the PPN model, we can analyze the

behavior of the target application to answer the four

questions about privacy data leaks we mentioned in

Section 1. We have made four algorithms to accom-

plish this goal.

In Algorithm 1, the call sequence gathered from run-

time execution tracer and network traffic sniffer is fil-

tered to keep only the calls that we care about. Algo-

rithm 2 uses parameters in call sequence to do BIND

operation to the variable set defined in arc function farc

and checks the conditions defined in transition function

ftrans in order to do TRIGGER operation to transitions.

Algorithm 3 collects all move traces of tokens as BPS

in Definition 8 and finds all the leak paths. Algorithm

4 synthesizes the privacy instance behavior which has

leak reachability and computes the final output about

the privacy leak behaviors of the target application.

Algorithm 1. Call Sequence Filtering

procedure Filter (C; F)

input

C = c1c2. . . cm : call sequence of target application

F = {f1, f2, . . . , fn} : set of filter conditions

output

C′: filtered set of call sequence

begin

C′ := Ø

for i := 1 to m

if (f1 ∧ f2 . . .∧ fn)

C′ := C′ + ci

return C′

end

Algorithm 2. PPN Instance Generating

procedure Generate (C′; M)
input
C′ = c1c2. . . cm : filtered call sequence
ci = (callname, params, results) : call object
callname : name string
params : input parameter set
results : output results
M = {mnfda,mada, msda,mdda, msocket ,mHTTP,mFTP} :

n PPN modules
vars
aki: input arc of transition tk
ako: output arc of transition tk
pki: the position that aki emits from
pko: the position that ako heads to
output
INST : privacy instance set
begin

{Initialize private instance in all start positions}
for i := 1 to n

for pj in mi.P
iffpos(pj) = “start”

inst1 := new inst

SPAWN(inst1, pj)
inst1.proc := pj
INST := INST ∪ {inst1}

{Check each call to activate PPN operations}

for i := 1 to m

for j := 1 to n

if BIND(aki, ci.params) then
if (ci ∈ mj .T ∧ tk.expr)

TRIGGER(tk)
if “Ctg” ∈ ako.varset

instk.Ctg := ci.results.Ctg

if “Cont” ∈ ako.varset
instk.Cont := ci.results.Cont

if “Dest” ∈ ako.varset
instk.Dest := ci.results.Dest

instk.proc := instk.proc + tkpko
BIND(ako, ci.results)
if fpos(pki) = “start”

instk+1 := new inst

SPAWN(instk+1, pki)
instk+1.proc := pki
INST := INST ∪ {instk+1}

{Remove the instances trapped in absorb position}
for inst in INST

if exists pi ∈ inst.proc ∧ fpos(pi) = “absorb”
INST := INST – {inst}

return INST

end

Algorithm 3. Leaks Path Checking
procedure Search (INST)
input
INST : private instances set
output
INST’ : private instances which have leak reachability
begin

INST’ := Ø
for inst in INST

if exists pi ∈ inst.proc ∧fpos(pi) = “source”∧
exists pi ∈ inst.proc ∧ fpos(pi) = “discrim”
INST’ := INST’ ∪ {inst}

return INST’

end

Le-Jun Fan et al.: Privacy Petri Net and Privacy Leak Software 1331

Algorithm 4. Privacy Leak Tuple Calculating

procedure Synthesize (INST; M)

input

INST : private instances which have leak reachability

M = {mnfda, mada,msda,mdda,msocket ,mHTTP,mFTP}

vars

FP ={fp1, fp2, . . . , fpn} : path privacy leak tuple set

FM = {fmnfda, fmada, fmsda, fmdda, fmsocket, fmHTTP,

fmFTP}: module privacy leak tuple set for modules

in Mda and Mct

output

Ctg : category of privacy leak behaviors

Cont : content of privacy leak behaviors

Proc : procedure of privacy leak behaviors

Dest : destination of privacy leak behaviors

begin

{Compute the PL tuple for each leak path}

for insti in INST

fpi = (insti.Ctg, insti.Cont, insti.Proc, insti.Dest)

{Compute the PL tuple for each module}

for fmj in FM

for fpi in FP

if insti ∈ mj

fmj := fmj∨ fpi

{Compute the global PL tuple}

for fmi in {fmnfda, fmada, fmsda, fmdda}

for fmj in { fmsocket , fmHTTP, fmFTP}

if fmi.Cont ∈ fmj .Cont

fg := fg ∨ (fmi∧ fmj)

return fg.Ctg, fg.Cont, fg.Proc, fg.Severity

end

Filtering is the first step to process the call sequence.

Each call in call sequence C will be checked by all the

conditions in F . These conditions are divided into two

kinds: one is to check whether the call name is in our

PPN modules, the other is to consider whether the pa-

rameters are related to our definition in variable sets.

Since the amount of call sequence is quite large, this

step will remove irrelevant calls and decrease the com-

plexity of consequent analyzing steps. The time com-

plexity is O(mn) which is mainly related to the length

m of call sequence C and the size n of filter condition

set F .

PPN instance generating procedure follows the PPN

module library and uses the filtered call sequence from

Algorithm 1 and the modules we defined in Section 4

as the input. At the beginning, all the start positions

spawn one empty privacy instance. For each call in C′,

we first find the related transition from all the modules

and bind the input arc with the input parameters, then

trigger the transition and move the token to the next

position. Then the privacy attribute is calculated and

the call results are to be bound to the output arc. A

new instance is spawned in the start position. At the

end, the instances trapped in absorb position are re-

moved. The time complexity is O(mn) which is mainly

related to the length m of filtered call sequence C’ and

the size n of PPN module set M .

After generating the PPN instance and activating

PPN with the call sequence, all the possible privacy in-

stances that can have leak reachability are collected in

INST. According to Theorem 1, the privacy instance

we look for must have a leak path in its proc attribute.

We search in INST and find all the leak reachable pri-

vacy instances. The time complexity is O(n) which is

mainly related to the size n of INST.

According to the definition of PL tuple, the global

PL tuple is computed by the module PL tuple, and the

module PL tuple is computed by the path PL tuple.

Therefore, we first compute all the path PL tuple out-

put value from all the reachable privacy instances by

rule 1 we defined in Subsection 3.4. We then calculate

module PL tuple output value from the path leak tu-

ples by rule 2. There must be a pair of privacy instances

in both the data access module and the covert trans-

mission module, and according to rule 3, we can there-

fore check all the combinations between the four data

access modules {fmnfda, fmada, fmsda, fmdda} and the

three network transmission modules {fmsocket, fmHTTP,

fmFTP}. Finally, we calculate the output value fg.Ctg,

fg.Cont, fg.Proc, fg.Dest of global PL tuple to answer

the four questions we posed in Section 1. The time com-

plexity is O(mn) which is mainly related to the size m

of PPN module set FM and the size n of instance set

INST .

6 Real-World PLS

To understand the details of private information

leaks and answer the four questions we put forward,

we collect some real-world applications to apply our

PPN-based approach. We first give an overview of our

experimental environment and our application set, and

then show some case studies of different privacy leak

behaviors. We discuss the experimental results in the

end of Section 6.

6.1 Experimental Settings

The experimental environment is designed on the

basis of the architecture we presented in Section 3. We

use VMware Workstation 7.0 as the virtual machine

platform to build Windows OS image. The functiona-

lity of runtime execution tracer is undertaken by API

1332 J. Comput. Sci. & Technol., Nov. 2015, Vol.30, No.6

monitor2 r9. Wireshark 1.6.4 is used as network traffic

sniffer to capture the details of privacy information leak

destination. The core algorithm of PPN model is im-

plemented by Python 3.1. All the software samples are

installed and tested in different snapshots of the virtual

host to avoid mutual interference.

Our experiment software sample set contains two

kinds of applications.

1) Malware announced by anti-virus software con-

tains privacy leak behaviors. We choose malware sam-

ples set from VXheaven 1○ which has collected more

than two million malware corpses. These samples con-

tain prevalent trojan, worm, virus and other kinds of

malware such as backdoor, exploiter, rootkit and hack-

tool. The fundamental functionality of our approach is

analyzing malicious applications. Although anti-virus

tools can identify these applications as malware, our

approach can collect more details about their privacy

leak behaviors.

2) Suspicious applications which are prevalent on

free software download website Download 2○. These ap-

plications contain anti-virus software, multimedia tools

(such as player, viewer and manipulator), instant mes-

saging tools, download tools, web tools (such as browser

and email client) and desktop utilities. Popular appli-

cations are basically safe and not likely to contain pri-

vacy leak behaviors. Therefore most of the anti-virus

tools based on white-list are difficult to identify the sus-

picious behaviors of these applications. Our approach

can fill in the gap.

Next we give experiments on each type of applica-

tion in a case study way, and show more details about

their privacy leak behaviors. We named the selected

cases in a popular applications set with symbols but not

their real name. This is not only for simplicity reasons,

but also in order to keep the privacy of the software

vendor. The malicious and suspicious applications are

named Mi and Ai.

6.2 Malicious Applications Case Study

We first choose one typical malware sample for each

kind of data source type and describe in more details

about its privacy leak behaviors.

6.2.1 Normal File Data Source

M1 is a variant of Ldpinch family. This malware is

a trojan-PSW which is designed to collect privacy in-

formation from local files. The call sequence fragments

are depicted in Fig.12.

(a)

(b)

(c)

(d)

(e)

Fig.12. Call sequence fragment of M1. (a) M1 creates file
handle with “NtOpenFile” in Fig.2. (b) M1 reads the local file
with “NtReadFile” in Fig.2. (c) M1 creates the Internet handle
with “InternetOpen” in Fig.7. (d) M1 creates Http request with
“HttpOpenRequest” and adds the leaked data in request head-
ers with “HttpAddRequestHeaders” in Fig.7. (e) M1 posts the
cookies to web server with “HttpSendRequest” in Fig.7.

According to the call sequence: “NtOpen-

File, NtReadFile, InternetOpen, HttpOpenRequest,

HttpAddRequestHeaders, HttpSendRequest”, we can

get the sub PPN model as shown in Fig.13.

In Fig.13, we find that M1 sends the content of some

sensitive local files to a remote FTP server. The leaked

files include the username and password file of different

applications such as ICQ, TotalCommand, Cuteftp and

SmartFTP.

The PLglobal is {pctg = “File”, pcont =

“Account file”, pproc = “p1t1p2t4p2t3p3t7p4t9p7
-t1p2t2p3t3p4t4p5t7p7”, pseverity = (“high effect”,

“medium stealthy”)}.

6.2.2 Application-Associated Data Source

M2 is a variant of Netdex family. This malware is

an exploiter. It exploits a security breach of Internet

Explorer and creates and runs backdoor components.

The call sequence fragments are shown in Fig.14.

According to the call sequence: “InternetGet-

Cookie, InternetOpenW, FtpCreateDirectory, FtpPut-

File”, we can establish the sub PPN model, as shown

in Fig.15.

1○http://vxheaven.org/, Nov. 2015.
2○http://download.cnet.com/, June 2015.

Le-Jun Fan et al.: Privacy Petri Net and Privacy Leak Software 1333

p2. Dir
Checked

p3. File
Opened

p7. File
Read

p8. File
Closed

p1. File Data
Access Start

p4. File
Info Got

p5. Volume
Info Got

p6. File
Attribute Got

p1. HTTP p2. HTTP p8. HTTP

Transmit
Start

Transmit
End

Handle
Created

p3. Connect
Remote
Server

p4. Set
Request

p5. Got
File

Handle

p7. File
Sent

p6. Field
Post

t1

t2

t3

t4

t5

t6

t7

t8
t11

t10 t12 t1 t2 t3

t5

t6
t8

t9

t7t4

t9

Fig.13. PPN for M1’s behavior.

(a)

(b)

(c)

Fig.14. Call sequence fragment of M2. (a) M2 gets the coo-
kies of selected website with “InternetGetCookie” in Fig.3. (b)
M2 creates the Internet handle with “InternetOpen” in Fig.8.
(c) M2 creates remote directory with “FtpCreateDirectory” and
sends the local file to remote server with “FtpPutFile” in Fig.8.

In Fig.15, we find that the cookies of some websites

are posted by M2 in the background to a remote server

in accordance with FTP protocol.

The PLglobal is {pctg = “App”, pcont = “Cookies”,

pproc = “p1t1p2t4p2t3p3t7p4t9p7-t1p2t2p3t3p4t4p5t7p7”,

pseverity = (“medium effect”, “low stealthy”)}.

6.2.3 System-Associated Data Source

M3 is a variant of scanner family. This malware is

a hacktool. It hides itself and leaks the system configu-

ration and user info in order to help other malware.

The call sequence fragments are listed in Fig.16.

According to the call sequence: “GetComputer-

Name, GetUserName, Socket, Bind, Connect, Send”,

we can get the sub PPN model as shown in Fig.17. M3

collects the machine name and the user name, and sends

them to its server by the background socket connection.

The PLglobal is {pctg =“System”, pcont =“computer

name” | “user name” | “network params”, pproc =

“p1t1p2t4p2t3p3t7p4t9p7-t1p2t2p3t3p4t4p5t7p7”, pseverity

= (“low effect”, “medium stealthy”)}.

p1. FTP

Transmit
Start

p8. FTP
Transmit

End

p2. FTP

Handle

Created

p3. Connect

Remote

Server

p6. Got File

Handle

p7. File
Sent

p4. Check

Directory

p5. Set
Directory

p1. App Data

Access Start

p2. Object

Created

p3. Cookie Got

p4. Key Opened p7. Typed

URL Got

p6. Browse

History Got

p5. Favorite

Website Got

p8. App Data

Access End

t1

t2

t3

t4 t8

t7

t6

t5 t9

t10

t11

t1 t2

t3

t5

t4

t8

t6 t7

t9

Fig.15. PPN for M2’s behavior.

1334 J. Comput. Sci. & Technol., Nov. 2015, Vol.30, No.6

(a)

(c) (d)

(b)

Fig.16. Call sequence fragment of M3. (a) M3 gets the machine name with “GetComputerName” in Fig.4. (b) M3 gets the user
name with “GetUserName” in Fig.4. (c) M3 builds socket handle with “Socket” and “Bind”, and then connects to remote server with
“Connect” in Fig.6. (d) M3 sends the leaked data to remote server with “Send” in Fig.6.

p2. System

Info Got

p3. Network

Info Got

p4. Users

Info Got

p1. System
 Data
Access Start

p5. System
 Data
Access End

p1. Socket

Transmit Start
p2. Socket
Created

p4. Server

Created

p3. Client
Connect

p5. Request

Process

p7. Socket

Transmit End

p6. Transfer

Processed

t1

t1

t2

t3

t4 t7 t9

t10t6 t8

t5

t8

t9

t10

t2

t3

t4

t5

t6

t7

Fig.17. PPN for M3’s behavior.

6.2.4 Dynamic Data Source

M4 is a variant of Aohy family, which is considered

as a trojan. It hooks keyboard events and mouse events.

The call sequence fragments are listed in Fig.18.

(a)

(b)

(c)

Fig.18. Call sequence fragment of M4. (a) M4 sets hook func-
tion with “SetWindowsHook” in Fig.5. (b) M4 builds socket
handle with “Socket” and “Bind”, and then connects to remote
server with “Connect” in Fig.7. (c) M4 sends the leaked data to
remote server with “Send” in Fig.7.

According to the call sequence: “SetWindow-

sHook, InternetOpen, InternetConnect, HttpOpenRe-

quest, HttpSendRequest”, we can get the sub PPN

model, as shown in Fig.19. M4 leaks the keystoke log

and sends to its server by the background HTTP con-

nection.

The PLglobal is {pctg = “Dynamic data”,

pcont = “keystroke”, pproc = “p1t1p2t4p2t3p3t7p4t9p7-

t1p2t2p3t3p4t4p5t7p7”, pseverity = (“high effect”, “high

stealthy”)}.

6.2.5 Result Overview

Based on the description of anti-virus software, we

choose 133 malware samples which at least contain one

kind of data privacy leak behaviors in the four kinds of

privacy data source we classified and modeled above.

We test the sample set with our approach and sum-

marize the result in Table 8. We calculate the number

of malware samples in each privacy data type, and ev-

ery malware type is detected by our approach based on

PPN. For instance, 19/20 in the Trojan/File Data cell

means that we detect 19 out of 20 trojan samples which

have privacy file data leak behavior.

As shown in Table 8, we have achieved 95%

(121/128) detection rate for the whole sample set. Our

approach effectively detects the behavior of privacy

leaks of malware for various malware categories includ-

ing trojan, backdoor, worm, hacktool, etc. We also

prove that our approach can deal with different kinds

of privacy data source such as file data, app data, sys-

Le-Jun Fan et al.: Privacy Petri Net and Privacy Leak Software 1335

p2. Active
Window Got

p4. Keyboard

Focus Got

p1. Dynamic

Data Access
Start

p11. Dynamic

Data Access
End

p3. Hook Set

p5. Mouse

Captured

p7. Mouse
Process

p6. Keystroke
Process

p10. Next
Hook

p8. Key
Status Got

p9. Mouse
Status Got

p1. HTTP p2. HTTP
Transmit

Start

p8. HTTP

Transmit
End

Handle
Created

p3. Connect
Remote
Server

p4. Set

Request

p5. Got File

Handle

p7. File
Sent

p6. Field
Post

t1

t3 t7

t8t4

t11

t1 t2 t3

t5

t6 t8

t7

t9

t4

t12

t13

t9

t10t6

t5

t2

Fig.19. PPN for M4’s behavior.

Table 8. Privacy Leak Behaviors Detection Result

File Data App Data System Data Dynamic Data Sum

Trojan 19/20 5/5 4/4 49/52 77/81

Backdoor 1/1 12/13 5/6 18/20

Hacktool 9/10 5/5 14/15

Worm 3/3 1/1 1/1 5/5

Others 2/2 3/3 1/1 1/1 7/7

Sum 25/26 21/22 20/22 57/58 121/128

tem data and dynamic data.

According to the experimental results, we found use-

ful information in three aspects.

1) Trojan samples with privacy leak behaviors are

the majority of the malware categories (81/128, or 81

trojans in all the 128 samples) because of their unique

characteristics. Trojan is designed to get control of tar-

get host from inside and then collect useful information,

most of which concerns user privacy and has economic

value. Specifically speaking, the dedicated trojan that

leaks the bank account and online game accounts has

formed a main branch in trojan family tree. Therefore,

the privacy leak behaviors of trojans have been one of

the most important factors to be considered in contem-

porary malware.

2) Backdoor malware tends to leak the application

association privacy (13/20) and the system association

privacy (6/20). Since backdoors usually utilize the vul-

nerability of applications or systems to set up covert en-

trance on target host, the related info is leaked for fur-

ther movements and tactics of the attacker. Hacktool

is similar to backdoor, which leaks system association

privacy (10/15) even worse than backdoor. Worm in

some occasions leaks privacy for fast and wide spread-

ing, for instance, email-worm leaks the contact list for

forwarding its copy.

3) In all the four privacy data sources, dynamic data

leaks are of the most importance (58/128) because tro-

jans (52/81) collect the privacy data such as account

and password by recording user keystrokes. File data

privacy leaks also outnumber other data sources be-

cause malware often searches for files storing privacy

data such as configuration files storing user account

name and password.

6.3 Suspicious Applications Case Study

In a similar way, we first choose one typical suspi-

cious application sample for each kind of data source

type. Because suspicious applications rarely collect the

dynamic data source in our selected application set, we

only list the samples of other three data sources.

6.3.1 Normal File Data Source

A1 is a p2p client. It is widely used for downloading

and sharing file. The call sequence fragments are listed

in Fig.20.

According to the call sequence: “NtOpenFile,

NtReadFile, InternetOpen, FtpCreateDirectory, Ftp-

PutFile”, we can get the sub PPN model, as shown

in Fig.21.

A1 sends a sensitive local file such as user contact

info or favorite folder to a remote FTP server.

The PLglobal is {pctg = “File”, pcont = “Contact”,

1336 J. Comput. Sci. & Technol., Nov. 2015, Vol.30, No.6

(a)

(c) (d)

(b)

Fig.20. Call sequence fragment of A1. (a) A1 creates a file handle with “NtOpenFile” in Fig.2. (b) A1 reads the local file with
“NtReadFile” in Fig.2. (c) A1 creates an Internet handle with “InternetOpen” in Fig.7. (d) A1 creates remote directory with “Ft-
pCreateDirectory” and sends the local file to remote server with “FtpPutFile” in Fig.7.

p2. Dir
Checked

p3. File
Opened

p7. File

Read
p8. File
Closed

p1. File Data
Access Start

p4. File

Info Got

p5. Volume

Info Got

p6. File

Attribute Got

p1. FTP p2. FTP

Transmit
Start

Handle

Created

p3. Connect

Remote
Server

p6. Got File
Handle

p7. File
Sent

p4. Check
Directory

p5. Set
Directory

p8. FTP
Transmit

End

t1

t2

t3

t4

t5

t9

t10

t11

t12 t1 t2

t3

t5

t6

t4

t8 t9

t7

t6

t7

t8

Fig.21. PPN for A1’s behavior.

pproc = “p1t1p2t4p2t3p3t7p4t9p7-t1p2t2p3t3p4t4p5t7p7”,

pseverity = (“medium effect”, “medium stealthy”)}.

6.3.2 Application Associated Data Source

A2 is a web browser, which has lots of users for its

plug-in functionality. However, if a user installs a plug-

in for managing the browse history and the favorite

folder, it exposes leak behaviors. The call sequence

fragments are listed in Fig.22.

According to the call sequence: “InternetGet-

Cookie, InternetOpenW, HttpOpenRequest, HttpAd-

dRequestHeader, HttpSendRequest”, we can get the

sub PPN model as in Fig.23.

The cookies of some website will be posted by A2 in

the background to remote server with HTTP protocol.

The PLglobal is {pctg = “App”, pcont = “Cookies”,

pproc = “p1t1p2t4p2t3p3t7p4t9p7-t1p2t2p3t3p4t4p5t7p7”,

pseverity = (“medium effect”, “low stealthy”)}.

6.3.3 System Associated Data Source

A3 is a multimedia player. Its functionalities in-

clude online searching and media playing for new music

or video. Fig.24 shows the call sequence fragments.

According to the call sequence: “GetComputer-

Name, GetUserName, Socket, Bind, Connect, Send”,

we can get the sub PPN model as depicted in Fig.25.

(a)

(b)

(c)

(d)

Fig.22. Call sequence fragment of A2. (a) A2 gets the cook-
ies of selected website with “InternetGetCookie” in Fig.3. (b)
A2 creates the Internet handle with “InternetOpen” in Fig.6.
(c) A2 creates Http request with “HttpOpenRequest” and adds
the leak data in request headers with “HttpAddRequestHead-
ers” in Fig.6. (d) A2 posts the cookies to web server with
“HttpSendRequest” in Fig.6.

Le-Jun Fan et al.: Privacy Petri Net and Privacy Leak Software 1337

p1. HTTP p2. HTTP
Transmit

Start

p8. HTTP

Transmit EndHandle

Created

p3. Connect

Remote

Server

p4. Set

Request

p5. Got File

Handle

p7. File

Sent

p6. Field

Post

p1. App Data

Access Start

p2. Object
Created

p3. Cookie Got

p4. Key Opened p7. Typed

URL Got

p6. Browse

History Got

p5. Favorite

Website Got

p8. App Data
Access End

t1

t2

t3

t4
t8

t7

t6

t5 t9

t10

t11

t1 t2 t3

t5

t6

t7

t8

t9

t4

Fig.23. PPN for A2’s behavior.

(a)
(b)

(c) (d)

Fig.24. Call sequence fragment of A3. (a) A3 gets the machine name with “GetComputerName” in Fig.4. (b) A3 gets the user
name with “GetUserName” in Fig.4. (c) A3 builds socket handle with “Socket” and “Bind”, and then connects to remote server with
“Connect” in Fig.5. (d) A3 sends the leak data to remote server with “Send” in Fig.5.

p2. System

Info Got

p3. Network

Info Got

p4. Users

Info Got

p1. System
 Data
Access Start

p5. System
 Data
Access End

p1. Socket

Transmit
Start

p2. Socket

Created

p4. Server

Created

p3. Client
Connect

p5. Request

Process

p7. Socket

Transmit End

p6. Transfer

Processed

t1

t2

t3

t4

t5

t6

t7
t10

t9

t8

t1

t2

t3

t4 t7

t6 t8

t5

t10

t9

Fig.25. PPN for A3’s behavior.

A3 collects the machine name and the user name

and sends them to its server by the background socket

connection.

The PLglobal is {pctg = “System”, pcont = “com-

puter name” | “user name” | “network params”, pproc =

“p1t1p2t4p2t3p3t7p4t9p7-t1p2t2p3t3p4t4p5t7p7”, pseverity

= (“low effect”, “medium stealthy”)}.

6.3.4 Result Overview

Although most of the popular applications are nor-

mal and are not going to harm the data privacy, there

are still some suspicious samples that contain the pri-

vacy leak behaviors that we have defined, as shown in

Fig.26. We summarize the experiment results and find

1338 J. Comput. Sci. & Technol., Nov. 2015, Vol.30, No.6

Communication
9%

Anti-Virus
4%

Web Tools
41%

Desktop
21%

Download
Tools
24%

Multimedia
28%

Dynamic
Data
4%

File
Data
9%

App Data
29%

System
Data
58%

HTTP
26%

FTP
9%

Socket
65%

(a) (b) (c)

Fig.26. Overview of (a) content, (b) data source category and (c) connection type.

some useful information in three aspects as follows.

1) The desktop, download and multimedia applica-

tions contain more leak behaviors than other categories.

We think that plug-in and bundles embedded in these

applications are the main reason. Advertising compa-

nies or other third-party companies depend on these

popular applications for business motives such as in-

vestigating user habits.

2) In different data sources, the system data are

much more prone to leak than other kinds of data, such

as the application data and the normal file data. This

is because system information is not always defined as

privacy. In fact, they are important security related

data. As we mentioned in Section 2, system informa-

tion such as user name, machine name can be used to

leak the user’s identity. The network parameters such

as IP address and Mac address can also be used to leak

the geographic information.

3) Most of the privacy leak applications use socket

connection because it is easy to use and hard to de-

tect. HTTP connection is widely used in web tools

especially the web browsers since the application must

build HTTP connection in the first place to complete

its legal tasks. FTP connection is often used when the

privacy data is stored in large or encrypted files.

6.4 Comparison and Discussion

To evaluate our PLS analysis approach based on

PPN, we first compare it with recent related research

work, and then consider commercial privacy related se-

curity software. Because privacy leak behavior is de-

fined as a four-tuple: content, source, procedure and

severity in this paper, we mainly evaluate the four fea-

tures of different methods. Moreover, we discuss the

extra aspects of privacy leak that the other methods

consider to some extent.

6.4.1 PPN and Related Research Work

We compare three recent research studies with our

method. Their names are Privacy Oracle[3], PiOS[4]

and TaintDroid[5], which focus on privacy leak analy-

sis. Privacy Oracle treats each application as a black

box and reports on application leaks of user informa-

tion via the network traffic that they send. PiOS uses

static analysis to detect data flows in binary files to ana-

lyze programs for possible leaks of sensitive information

from a mobile device to third parties. TaintDroid pro-

vides system-wide dynamic taint tracking and analysis

for simultaneously tracking multiple sources of sensi-

tive data. The comparison result is listed in Table 9.

PPN can get content of leaked privacy data of all the

four data sources, and record the runtime leak proce-

dure. Privacy Oracle does not consider the privacy file

data, and cannot trace the leak procedure as a black-

box method. PiOS depends on static analysis so that

it cannot get runtime content and procedure and trace

the dynamic data source. TaintDroid does not take

account of the application data source. PPN also eva-

luates the severity of the leak behavior, but none of the

other three methods does.

6.4.2 PPN and Commercial Software

The privacy related commercial software considers

privacy leak problems mainly from privacy data clear-

ing, behavior monitoring and data protection. Accord-

Le-Jun Fan et al.: Privacy Petri Net and Privacy Leak Software 1339

Table 9. Compared with Other Research Work

PPN Privacy Oracle PiOS Taint Droid

Content Runtime, any format Runtime, limited format Not runtime, any format Runtime, any format

Source All four sources App system dynamic App system File system dynamic

Procedure Runtime, full path N/A Not runtime, full path Runtime, partial path

Severity Effect, stealth N/A N/A N/A

Table 10. Compared with Commercial Privacy Software

PPN Privacy Guardian SpyAgent Sophos Data Protection

Content Runtime, any format Not runtime, any format Runtime, limited format Runtime, any format

Source All four sources File app system File dynamic File system dynamic

Procedure Runtime, full path N/A Runtime, partial path N/A

Severity Effect, stealth Effect Effect, stealth N/A

ing to the description on ToptenReview 3○, we select

Privacy Guardian, SpyAgent and Sophos Data Protec-

tion to make a comparison.

As shown in Table 10, the Privacy Guardian can

scan and clear the privacy data which is stored as a log

file, a config file or other usage trace file but cannot de-

tect the privacy leak procedure of PLS. The SpyAgent

can monitor many kinds of leak behavior such as file

transferring and keylogger, but does not consider some

important system data as privacy data. The Sophos

Data Protection can filter unauthorized access to pri-

vacy data and block the outgoing connection to un-

known remote server, only for selected files and well

formatted data such as social security numbers and

banking information.

7 Related Work

In this section, we first discuss the closest research

findings to this paper which use Petri net as abstract

model. We then present some work using other graphic

and non-graphic models for software behavior model-

ing, especially the malicious behavior modeling. At

last, some studies for software behavior analysis on

other platforms such as smart phone are described.

Petri Net. To the best of our knowledge, we are

the first ones to analyze the behavior of privacy leaks

with Petri net[27-28]. But there are still lots of stu-

dies of analyzing other behaviors of applications or sys-

tem with Petri net. Wang et al. for the first time

presented Stochastic Game Nets (SGN) model and ap-

plied it in the competitive game analysis of network

behavior[29-30]. They further solved the modeling and

quantitative analysis of competitive game behaviors

based on SGN[31-32]. Gao et al.[33] judged Trojan-like

features of software using stochastic Petri nets and sup-

ported quantitative analysis for the behaviors of the tar-

get software. Tokhtabayev et al.[34] tried to find inter-

process and intra-process malicious functionalities in

software behaviors. The interesting functionalities were

defined in the abstract system domain through activity

diagrams and the specified functionalities were recog-

nized by colored Petri net (CPN). They also built be-

havior based intrusion detection systems based on this

approach to offer an effective solution against modern

malware[35]. Liu et al.[36] used a combination of tech-

niques from the behavior monitors and colored Petri net

for detecting virus and worms. The malicious behavior

was represented as Petri net and the notions of initial

states and final states are used to define matching in

this model. Ho et al.[37] proposed an intrusion detec-

tion architecture combining partial order planning and

executable Petri nets to detect intrusions with multiple

sources and intrusions where only incomplete behav-

ioral data is available. They presented Partial Order

State Transition Analysis to increase the flexibility of

the traditional state analysis approach by allowing un-

ordered events in the signature action sequence.

Other Graphic Models. Petri net is not the only

graphic model that suits for analyzing behavior data,

and other graphic models such as control flow graph,

behavior graph and hierarchical behavior graph are also

adopted to analyze the program behavior. Bruschi et

al.[21] found that next generation malware will be cha-

racterized by the intense use of polymorphic and meta-

morphic techniques. They proposed a strategy for the

detection of metamorphic malicious code inside a pro-

gram P based on the comparison of the control flow

3○http://www.toptenreviews.com/, June 2015.

1340 J. Comput. Sci. & Technol., Nov. 2015, Vol.30, No.6

graphs of P against the set of control flow graphs of

known malware. Christodorescu et al.[22] defined a new

graph representation of program behavior and a min-

ing algorithm that constructs a malicious specification.

Their algorithm inferred the system-call graphs from

execution traces and derived a specification by com-

puting the minimal differences between the system-call

graphs of malicious and benign programs. Fredrikson

et al.[24] implemented HOLMES to extract data depen-

dence graphs and distinguish the malware from benign

applications based on graph mining and concept analy-

sis techniques. Martignoni et al.[23] addressed the se-

mantic gap problem in behavioral monitoring by using

hierarchical behavior graphs to infer high-level beha-

viors from myriad low-level events. Johnson et al.[38]

proposed a differential slicing approach that automates

the analysis of two runs of the same program which ex-

hibits a difference in program state or output. A causal

difference graph that captures the input differences that

triggered the observed difference is outputted. Our ap-

proach may be similar to the control/data flow track-

ing about the privacy data tracing and checking, but

our starting point is to describe software behavior with

status transformation but not just to track the flow.

Therefore, our approach has two main contributions.

One is that ours can find more behavior detail besides

data/control flow. The other one is that ours is flexible

and can be easily expanded to be suitable for software

behavior which is unrelated to data/control flow.

Other Formal Models. Some formal models without

graphic presentation were also used to abstract the ap-

plication behaviors from system calls. Christodorescu

et al.[20] described malicious behavior by templates and

presented a malware detection algorithm that addresses

this deficiency by incorporating instruction semantics

to detect malicious program traits. Jacob et al.[39] de-

fined a generic approach for behavioral detection based

on two layers. The abstraction layer is specific to a plat-

form and a language. It interprets the collected instruc-

tions, API calls and arguments and classifies these oper-

ations. The detection layer relies on parallel automata

parsing attribute-grammars where semantic rules are

used for object typing (object classification) and ob-

ject binding (data-flow). Kinder et al.[9] introduced

the specification language CTPL (Computation Tree

Predicate Logic) which extends the well-known logic

CTL, and described an efficient model checking algo-

rithm. Lanzi et al.[40] proposed a system-centric view

to model the activity of benign programs. They argued

that benign programs in general follow certain ways in

which they use OS resources (such as the file system,

the registry).

Other Platform. Local host is not the only victim of

privacy leak behaviors. The wireless network and mo-

bile device with growing performance and functionality

has become another important platform on which lots

of private data are stored. Lou and Ren[41] presented a

novel authentication framework that integrates a new

key management scheme to simultaneously achieve se-

curity, privacy, and accountability in wireless access

networks. Liu et al.[42] proposed a new metric to quan-

tify the system’s resilience to location privacy attacks,

and suggested using multiple mix zones to tackle this

problem. A mathematical model is presented to treat

the deployment of multiple mix zones as a cost con-

strained optimization problem. Lin et al.[43] proposed

an efficient social-tier-assisted packet forwarding proto-

col, called STAP, for achieving receiver-location privacy

preservation in VANETs. On smart phones, the detec-

tion and the analyzing of privacy leaks were discussed in

recent studies. Egele et al.[4] studied the privacy threats

of applications written for Apple’s iOS, and presented

a novel approach and a tool, PiOS, which uses static

analysis to detect data flows and allow users to ana-

lyze programs for possible leaks of sensitive information

from a mobile device to third parties. Enck et al.[5] pro-

vided the users with adequate control over and visibility

into how third-party applications use their private data

with TaintDroid, a system-wide dynamic taint tracking

and analysis system capable of simultaneously tracking

multiple sources of sensitive data. Gilbert et al.[44] pro-

posed AppInspector, an automated privacy validation

system that analyzes apps on smart phone and gene-

rates reports of potential privacy risks. Enck et al.[45]

also unmasked the complexity of Android security and

noted some possible development pitfalls that occurred

when they defined an application’s security.

8 Conclusions

In this paper, we presented an abstract model called

PPN for private information leaks analysis to incorpo-

rate application dynamic behavior with network traffic.

We built PPN of different privacy leak data sources and

network connection to analyze the detail of private in-

formation leak. We applied our approach on real-world

applications and found the details of the category, con-

tent, data source and destination of privacy leaks. In

future work, we are going to apply privacy leaks to more

platforms such as Linux systems and smart phone OSs.

Le-Jun Fan et al.: Privacy Petri Net and Privacy Leak Software 1341

References

[1] Backes M, Kopf B, Rybalchenko A. Automatic discovery

and quantification of information leaks. In Proc. the 30th

IEEE Symposium on Security and Privacy, May 2009,

pp.141-153.

[2] Borders K, Prakash A. Quantifying information leaks in

outbound Web traffic. In Proc. the 30th IEEE Symposium

on Security and Privacy, May 2009, pp.129-140.

[3] Jung J, Sheth A, Greenstein B, Wetherall D, Maganis G,

Kohno T. Privacy oracle: A system for finding application

leaks with black box differential testing. In Proc. the 15th

ACM Conference on Computer and Communications Se-

curity, Oct. 2008, pp.279-288.

[4] Egele M, Kruegel C, Kirda E, Vigna G. PiOS: Detecting

privacy leaks in IOS applications. In Proc. the 18th Annual

Network & Distributed System Security Symposium, Feb.

2011.

[5] Enck W, Gilbert P, Chun B G, Cox L P, Jung J, McDaniel

P, Sheth A. TaintDroid: An information-flow tracking sys-

tem for realtime privacy monitoring on smartphones. In

Proc. the 9th USENIX Symposium on Operating Systems

Design and Implementation, Oct. 2010, pp.393-407.

[6] Kirda E, Kruegel C. Behavior-based spyware detection.

In Proc. the 15th USENIX Security Symposium, July 31-

August 4, 2006.

[7] Egele M, Kruegel C, Kirda E, Yin H, Song D. Dynamic spy-

ware analysis. In Proc. the 2007 USENIX Annual Technical

Conference, June 2007, pp.233-246.

[8] Kruegel C, Kirda E, Mutz D, Robertson W, Vigna G. Poly-

morphic worm detection using structural information of ex-

ecutables. In Proc. the 8th International Symposium on Re-

cent Advances in Intrusion Detection, Sept. 2005, pp.207-

226.

[9] Kinder J, Katzenbeisser S, Schallhart C, Veith H. Detecting

malicious code by model checking. In Proc. the 2nd Interna-

tional Conference on Detection of Intrusions and Malware

and Vulnerability Assessment, July 2005, pp.174-187.

[10] Kruegel C, Robertson W, Vigna G. Detecting kernel-level

rootkits through binary analysis. In Proc. the 20th Annual

Computer Security Applications Conference, Dec. 2004,

pp.91-100.

[11] Christodorescu M, Jha S. Static analysis of executables to

detect malicious patterns. In Proc. the 12th USENIX Secu-

rity Symposium, Aug. 2003.

[12] Moser A, Kruegel C, Kirda E. Limits of static analysis for

malware detection. In Proc. the 23rd Annual Computer Se-

curity Applications Conference, Dec. 2007, pp.421-430.

[13] Sharif M, Lanzi A, Giffin J, Lee W. Impeding malware anal-

ysis using conditional code obfuscation. In Proc. the 15th

Annual Network and Distributed System Security Sympo-

sium, Feb. 2008.

[14] Sharif M, Lanzi A, Giffin J, Lee W. Automatic reverse en-

gineering of malware emulators. In Proc. the 30th IEEE

Symposium on Security and Privacy, May 2009, pp.94-109.

[15] Rhee J, Riley R, Xu D, Jiang X. Kernel malware analysis

with un-tampered and temporal views of dynamic kernel

memory. In Proc. the 13th International Symposium on Re-

cent Advances in Intrusion Detection, Sept. 2010, pp.178-

197.

[16] Lanzi A, Sharif M, Lee W. K-tracer: A system for extract-

ing kernel malware behavior. In Proc. the 16th Annual Net-

work & Distributed System Security Symposium, Feb. 2009.

[17] Yin H, Liang Z, Song D. HookFinder: Identifying and un-

derstanding malware hooking behaviors. In Proc. the 15th

Annual Network & Distributed System Security Sympo-

sium, Feb. 2008.

[18] Moser A, Kruegel C, Kirda E. Exploring multiple execution

paths for malware analysis. In Proc. the 28th IEEE Sympo-

sium on Security and Privacy, May 2007, pp.231-245.

[19] Comparetti P M, Salvaneschi G, Kirda E, Kolbitsch C,

Kruegel C, Zanero S. Identifying dormant functionality in

malware programs. In Proc. the 31st IEEE Symposium on

Security and Privacy, May 2010, pp.61-76.

[20] Christodorescu M, Jha S, Seshia S A, Song D, Bryant R E.

Semantics-aware malware detection. In Proc. the 26th IEEE

Symposium on Security and Privacy, May 2005, pp.32-46.

[21] Bruschi D, Martignoni L, Monga M. Detecting self-

mutating malware using control-flow graph matching. In

Proc. the 3rd International Conference on Detection of In-

trusions and Malware & Vulnerability Assessment, July

2006, pp.129-143.

[22] Christodorescu M, Jha S, Kruegel C. Mining specifications

of malicious behavior. In Proc. the 6th Joint Meeting of the

European Software Engineering Conference and the ACM

SIGSOFT Symposium on the Foundations of Software En-

gineering, Sept. 2007, pp.5-14.

[23] Martignoni L, Stinson E, Fredrikson M, Jha S, Mitchell J.

A layered architecture for detecting malicious behaviors.

In Proc. the 11th International Symposium on Recent Ad-

vances in Intrusion Detection, Sept. 2008, pp.78-97.

[24] Fredrikson M, Jha S, Christodorescu M, Sailer R, Yan X.

Synthesizing near-optimal malware specifications from sus-

picious behaviors. In Proc. the 31st IEEE Symposium on

Security and Privacy, May 2010, pp.45-60.

[25] Wang Y, Lin C, Ungsunan P D, Huang X. Modeling and

survivability analysis of service composition using Stochas-

tic Petri Nets. The Journal of Supercomputing, 2011, 56(1):

79-105.

[26] Yu M, Wang Y, Liu L, Cheng X. Modeling and analy-

sis of email worm propagation based on stochastic game

nets. In Proc. the 12th International Conference on Parallel

and Distributed Computing, Applications and Technologies,

Oct. 2011, pp.381-386.

[27] Fan L, Wang Y, Jin X, Li J, Cheng X, Jin S. Comprehensive

quantitative analysis on privacy leak behavior. PloS One,

2013, 8(9): e73410.

[28] Fan L, Wang Y, Cheng X, Li J, Jin S. Privacy theft malware

multi-process collaboration analysis. Security and Commu-

nication Networks, 2015, 8(1): 51-67.

[29] Wang Y, Lin C, Meng K, Yang H, Lv J. Security analy-

sis for online banking system using hierarchical stochastic

game nets model. In Proc. IEEE Global Communications

Conference, Nov. 30-Dec. 4, 2009.

1342 J. Comput. Sci. & Technol., Nov. 2015, Vol.30, No.6

[30] Wang Y, Lin C, Wang Y, Meng K. Security analysis of en-

terprise network based on stochastic game nets model. In

Proc. IEEE International Conference on Communications,

June 2009.

[31] Wang Y, Lin C, Meng K, Lv J. Analysis of attack actions for

e-commerce based on stochastic game nets model. Journal

of Computers, 2009, 4(6): 461-468.

[32] Wang Y, Yu M, Li J, Meng K, Lin C, Cheng X. Stochastic

game net and applications in security analysis for enter-

prise network. International Journal of Information Secu-

rity, 2012, 11(1): 41-52.

[33] Gao H, Wang Y, Wang L, Liu L, Li J, Cheng X. Trojan

characteristics analysis based on Stochastic Petri Nets. In

Proc. IEEE International Conference on Intelligence and

Security Informatics, July 2011, pp.213-215.

[34] Tokhtabayev A, Skormin V, Dolgikh A. Dynamic, resilient

detection of complex malicious functionalities in the system

call domain. In Proc. Military Communications Conference,

Oct. 31-Nov. 3, 2010, pp.1349-1356.

[35] Tokhtabayev A, Skormin V, Dolgikh A. Expressive, efficient

and obfuscation resilient behavior based IDs. In Proc. the

15th European Symposium on Research in Computer Secu-

rity, Sept. 2010, pp.698-715.

[36] Liu P, Wang J, He D. Worm detection using CPN. In Proc.

IEEE International Conference on Systems, Man and Cy-

bernetics, Oct. 2004, pp.4941-4946.

[37] Ho Y, Frincke D, Tobin D. Planning, Petri nets, and in-

trusion detection. In Proc. the 21st National Information

Systems Security Conference, Oct. 1998.

[38] Johnson N M, Caballero J, Chen K Z, McCamant S,

Poosankam P, Reynaud D, Song D. Differential slicing:

Identifying causal execution differences for security appli-

cations. In Proc. the 32nd IEEE Symposium on Security

and Privacy, May 2011, pp.347-362.

[39] Jacob G, Debar H, Filiol E. Malware behavioral detection

by attribute-automata using abstraction from platform and

language. In Proc. the 12th International Symposium on

Recent Advances in Intrusion Detection, Sept. 2009, pp.81-

100.

[40] Lanzi A, Balzarotti D, Kruegel C, Christodorescu M, Kirda

E. AccessMiner: Using system-centric models for malware

protection. In Proc. the 17th ACM Conference on Com-

puter and Communications Security, Oct. 2010, pp.399-

412.

[41] Lou W, Ren K. Security, privacy, and accountability in

wireless access networks. IEEE Wireless Communications,

2009, 16(4): 80-87.

[42] Liu X, Zhao H, Pan M, Yue H, Li X, Fang Y. Traffic-aware

multiple mix zone placement for protecting location privacy.

In Proc. INFOCOM, Mar. 2012, pp.972-980.

[43] Lin X, Lu R, Liang X, Shen X. STAP: A social-tier-assisted

packet forwarding protocol for achieving receiver-location

privacy preservation in VANETs. In Proc. INFOCOM, Apr.

2011, pp.2147-2155.

[44] Gilbert P, Chun B G, Cox L P, Jung J. Automating pri-

vacy testing of smartphone applications. Technical Report,

TR-CS-2011-02, Duke University, 2011.

[45] Enck W, Ongtang M, McDaniel P. Understanding Android

security. IEEE Security & Privacy, 2009, 7(1): 50-57.

Le-Jun Fan received his B.S. and

M.S. degrees in circuit and system

from the University of Science and

Technology of China, Hefei, in 2004

and 2007 respectively. He received his

Ph.D. degree in information security

in 2013 from the Research Center of

Web Data Science & Engineering of the

Institute of Computing Technology, Chinese Academy of

Sciences, Beijing. His research interests include software

malicious behavior analysis, data privacy and Petri nets.

He is a member of IEEE. He is now working at Na-

tional Computer Network Emergency Response Technical

Team/Coordination Center of China.

Yuan-Zhuo Wang is an associate

professor at the Institute of Comput-

ing Technology, Chinese Academy of

Sciences, Beijing. His current research

interests include network and informa-

tion security analysis, Web behavior

analysis, stochastic Petri nets and

stochastic game nets. So far he has

published over 90 publications in journals and international

conferences. He is a senior member of CCF, ACM, and

IEEE. He is currently serving on Transactions on Parallel

and Distributed Systems, International Journal of Internet

Protocol Technology, Journal of Parallel and Distributed

Computing, Journal of Computer Science and Technology,

Chinese Journal of Computers, and Chinese Journal of

Electronics.

Jing-Yuan Li is with Institute

of Computing Technology, Chinese

Academy of Sciences, Beijing. He

got his Bachelor’s degree in computer

science at Harbin Institute of Tech-

nology in 2004, and his Ph.D. degree

in computer software and theory at

University of Science and Technology

of China, Hefei, in 2009. His research interests includes

stochastic game theory, data mining in social network and

social media, etc.

Le-Jun Fan et al.: Privacy Petri Net and Privacy Leak Software 1343

Xue-Qi Cheng is a professor at

the Institute of Computing Technology

(ICT), Chinese Academy of Sciences

(CAS), and the director of the Re-

search Center of Web Data Science &

Engineering (WDSE) in ICT, CAS.

His main research interests include

network science, Web search and data

mining, P2P and distributed system, and information

security. He has published over 100 papers in presti-

gious journals and international conferences, including

New Journal of Physics, Physical Review E, Journal of

Statistical Mechanics, IEEE Trans. Information Theory,

SIGIR, WWW, CIKM, WSDM, AAAI, IJCAI and so

on. He is currently serving on the editorial board of

Journal of Computer Science and Technology, Journal

of Computer Research and Development, and Chinese

Journal of Computers. Professor Cheng is a recipient of

the Youth Science and Technology Award of Maoyisheng

Science and Technology Award (2008), the CVIC Software

Engineering Award (2008), the Excellent Teachers Award

from Graduate University of Chinese Academy of Sciences

(2006), the Second-Class Prize for the National Science

and Technology Progress (2004), the Second-Class Prize

for the Chinese Academy of Sciences and Technology

Progress (2002), and the Young Scholar Fellowship of

Chinese Academy Sciences (2000).

Chuang Lin is a professor of the

Department of Computer Science

and Technology, Tsinghua University,

Beijing. He is an Honorary Visiting

Professor of University of Bradford,

UK. He received his Ph.D. degree

in computer science from Tsinghua

University in 1994. His current research

interests include computer networks, performance evalua-

tion, network security analysis, and Petri net theory and

its applications. He has published more than 600 papers

in research journals and IEEE conference proceedings

in these areas and has published six books. Professor

Lin serves as the technical program vice chair of the

10th IEEE Workshop on Future Trends of Distributed

Computing Systems (FTDCS 2004), the general chair of

ACM SIGCOMM Asia Workshop 2005, and the 2010 IEEE

International Workshop on Quality of Service (IWQoS

2010). He is an associate editor of IEEE Transactions on

Vehicular Technology and an area editor of Journal of

Computer Networks.

