
Li J, Liu L, Wu Y et al. Pragma directed shared memory centric optimizations on GPUs. JOURNAL OF COMPUTER

SCIENCE AND TECHNOLOGY 31(2): 235–252 Mar. 2016. DOI 10.1007/s11390-016-1624-8

Pragma Directed Shared Memory Centric Optimizations on GPUs

Jing Li 1,2, Member, CCF, Lei Liu 1, Member, CCF, Yuan Wu 3, Xiang-Hua Liu 3, Yi Gao 3

Xiao-Bing Feng 1, Member, CCF, ACM, IEEE, and Cheng-Yong Wu 1, Senior Member, CCF, Member, ACM

1State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences

Beijing 100190, China
2University of Chinese Academy of Sciences, Beijing 100049, China
3Beijing Samsung Telecom Research and Development Center, Beijing 100028, China

E-mail: {lijing01, liulei}@ict.ac.cn; {yuan002.wu, xianghua.liu, yi1980.gao}@samsung.com; {fxb, cwu}@ict.ac.cn

Received January 4, 2015; revised August 25, 2015.

Abstract GPUs become a ubiquitous choice as coprocessors since they have excellent ability in concurrent processing. In

GPU architecture, shared memory plays a very important role in system performance as it can largely improve bandwidth

utilization and accelerate memory operations. However, even for affine GPU applications that contain regular access patterns,

optimizing for shared memory is not an easy work. It often requires programmer expertise and nontrivial parameter selection.

Improper shared memory usage might even underutilize GPU resource. Even using state-of-the-art high level programming

models (e.g., OpenACC and OpenHMPP), it is still hard to utilize shared memory since they lack inherent support in

describing shared memory optimization and selecting suitable parameters, let alone maintaining high resource utilization.

Targeting higher productivity for affine applications, we propose a data centric way to shared memory optimization on GPU.

We design a pragma extension on OpenACC so as to convey data management hints of programmers to compiler. Meanwhile,

we devise a compiler framework to automatically select optimal parameters for shared arrays, using the polyhedral model.

We further propose optimization techniques to expose higher memory and instruction level parallelism. The experimental

results show that our shared memory centric approaches effectively improve the performance of five typical GPU applications

across four widely used platforms by 3.7x on average, and do not burden programmers with lots of pragmas.

Keywords GPU, shared memory, pragma directed, data centric

1 Introduction

The proliferation of GPUs has been witnessed over

the past few years for their high processing power. How-

ever, the raw computation power of GPUs is often un-

derutilized by slow accesses to off-chip global memory.

In contrast, shared memory, which locates inside GPU

chip, offers much faster data access with terabyte level

throughput and cycle level latency. Acting as a soft-

ware controlled cache, shared memory facilitates huge

performance gain in numerous applications[1-4].

Efficient management of shared memory in GPU

is a significant yet challenging problem, as it depends

on programmers’ knowledge and experiences, which are

difficult and impractical to automate. Even for affine

loops with relatively regular memory access patterns

(which are typical in GPU applications), programmers

often suffer from “headache” when trying to optimize

for shared memory. With a large number of candidate

arrays which exceed shared memory capacity, smart

choices need to be made on which arrays and how many

array elements are most suitable to load into shared

memory. Things will go even worse if shared memory

usage triggers bank conflicts and limits parallel thread

blocks (TBs), both of which will cause poor resource

utilization.

To address the programing challenges for typical

GPU applications with affine loops, we should consider

the following key factors.

Regular Paper

This work was supported by the National High Technology Research and Development 863 Program of China under Grant
No. 2012AA010902, the National Natural Science Foundation of China (NSFC) under Grant No. 61432018, and the Innovation Research
Group of NSFC under Grant No. 61221062.

©2016 Springer Science +Business Media, LLC & Science Press, China

236 J. Comput. Sci. & Technol., Mar. 2016, Vol.31, No.2

First of all, targeting higher programming pro-

ductivity, we need a simple way to convey program-

mer knowledge and experience to compiler, which

then takes over and automatically optimizes for shared

memory. Taking advice from programmers, pragma

directed programming model (e.g., OpenACC 1○ and

OpenHMPP 2○) has been introduced to simplify GPU

programming. However, none of these models provides

convenient solution to utilize shared memory. Cache

pragma in OpenACC does not target non-coalescing

global accesses, which is a huge performance loss. Be-

sides, it is not the best choice to specify reused elements

of each thread as cache does, since arrays in shared

memory are allocated and shared by each TB. In con-

trast, OpenHMPP regards shared memory as an ad-

vanced optimization, and does not provide additional

support for either reuse or coalescing in shared mem-

ory. Thus, developers are responsible for managing

data between shared and global memory, which is as

complex as CUDA/OpenCL programming. From pre-

vious analysis, we can conclude that data management

hints should include reuse as well as coalescing, and

should be mapped to the working set of a TB. Pro-

grammers are in the right position to provide this in-

formation as arranging parallelism already provides a

clear image on data access patterns.

Secondly, in order to relieve programmers from com-

plex parameter selection, we should devise a frame-

work to develop array correlations and choose shared

array related parameters automatically. This frame-

work should consider both data reuse and coalescing

(see CUDA C Programming Guide 3○ for more details)

to obtain optimal solutions in terms of off-chip traf-

fic. Most of current studies ask programmers to do the

work: they expect programmers to explicitly identify

all subarrays with reuse potentials, which sometimes

might be inconvenient due to complex array access

functions. OpenHMPP further requires programmers

to infer shared array sizes. Though OpenACC develops

shared array sizes automatically, it cannot handle huge

shared memory demand, which is bad for parallelism.

Therefore, it will be a great relief for developers if the

compiler can induce candidate arrays and shared array

size automatically.

Moreover, GPU resources, especially memory band-

width and compute cores, should be carefully managed

to avoid underutilization. Bank conflict and partition

camping are the most common reasons that serialize

memory requests and waste high GPU bandwidth. Pre-

vious studies[1-2,5-8] manage to avoid memory level con-

flicts from different aspects, but none of them provides

solutions in all cases. Improving instruction level para-

llelism (ILP) is believed to be an effective solution to

keep GPU cores busy[9-11]. However, few compilers

have managed to automatically expose ILP of GPU ker-

nels, not to mention determining the suitable amount

of ILP efficiently. In addition, the timing of optimizing

for ILP should be evaluated carefully. Since without

shared memory optimization, increasing ILP of kernels

with inefficient access patterns only aggravates mem-

ory stall and degrades performance. Subsection 3.3.2

on ILP and shared memory discusses this in detail.

With the existing factors in mind, our solution to

improve shared memory utilization is data centric prag-

mas and a supporting compiler framework. We make

the following contributions. 1) We design a set of prag-

mas that can convey data management hints of pro-

grammers including advice on data partition and de-

sired memory patterns. All candidate arrays related to

user pragmas will be analyzed for coalescing and reuse

opportunities. It is worth noting that our pragmas pro-

vide optimization suggestions from a data centric point

of view, which makes our design superior to current

pragma directed solutions. 2) We utilize the polyhedral

model to choose appropriate arrays and array partition

sizes in shared memory. These choices come down to an

optimization problem, which targets minimum off-chip

traffic. 3) We further explore memory and instruction

level parallelism automatically to put GPU resources

into full play. These advanced optimizations eliminate

bank and channel conflicts and expose parallel instruc-

tions, according to underlying architecture.

By extending our pragma to OpenACC, we evaluate

our approach with five typical benchmarks across four

widely used platforms (e.g., NVIDIA GTX 690, AMD

HD7850). The experimental results show that we can

achieve an average of 3.7x performance improvement

with one simple pragma.

We first explore our data centric pragmas designed

for shared memory in Section 2. Section 3 illustrates

corresponding compiler framework based on polyhedral

model for shared memory utilization, along with ad-

vanced optimizations targeting memory and instruction

level parallelism. The experimental methodology and

1○http://www.openacc-standard.org/, Dec. 2014.
2○http://en.wikipedia.org/w/index.php?title=OpenHMPP&oldid=614132944, Oct. 2014.
3○http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html, Dec. 2014.

Jing Li et al.: Pragma Directed Shared Memory Centric Optimizations on GPUs 237

results are presented in Section 4. Finally, we discuss

related work in Section 5 and conclude the paper in

Section 6.

2 Shared Memory Oriented Pragmas

An important feature of our work is its capability

to convey data management hints of programmers to

a compiler. We achieve this feature by shared mem-

ory oriented pragmas. In this section, we first present

the design of the pragma, and then illustrate its usage

by an example before comparing it with mainstream

accelerator APIs. We choose to base our approach on

OpenACC, which provides good support in extracting

parallelism.

2.1 Pragma Design

Our shared memory oriented pragma is designed to

describe data partition and optimization hints to assist

automatic compiler optimization. Fig.1 shows its syn-

tax written in Backus-Naur Form (BNF). On the whole,

a share pragma contains a list of array partitions with

optimization hints on shared memory.

• sharePragma ::= “#pragma acc share(” arraySpecs“)”

• arraySpecs ::= arraySpec {“, ”arraySpecs}
• arraySpec ::= subArray {“:coalesce”}
• subArray ::= arrayName {“[”[expr|“∗”]“]”}*
• expr ::= constant { [“+”| “−”| “×”| “/”] expr }
• constant ::= TBX | TBY | TBZ | integer

Fig.1. Syntax of shared memory oriented pragma.

Array partitions in share pragma represent the

working set of a TB. From a data centric point of view,

developers describe the desired workload of each TB

with array partitions in share pragma. In this way,

developers can observe and adjust the working set of

each TB directly, instead of just a few array elements of

each thread. This is reasonable for accelerator-oriented

APIs, such as openHMPP, as arrays in shared mem-

ory are allocated and accessed in chunks. More impor-

tantly, expressing desired memory patterns on a chunk

of array is more intuitive than on a few elements.

As optimal array partitions depend on several fac-

tors (e.g., TB size, problem size, shared memory size),

it is challenging for a programmer to provide accurate

array partitions. Therefore, we remove this complica-

tion for programmers by supporting parametric array

partitions in share. An array partition is declared by

specifying the length on each dimension, which can be

a constant number, a TB primitive, an expression or a

vague one (represented by “∗”). Constants are positive

numbers obtained from previous experience or reuse

distance analysis, and they can describe array reuse pre-

cisely. Introducing TB primitives (such as TBX , TBY

and TBZ) allows a natural array partitioning since the

working set of a TB is usually related to TB size. Ex-

pressions are composed of constant numbers and TB

primitives, designed to cope with more complex parti-

tion plans. The symbol “∗” represents a vague number

between zero and the length of the corresponding array

dimension, which allows flexible subarray partitioning.

Both TB primitives and vague symbol “∗” provide para-

metric array partitions, which will be determined by our

compiler later. It is worth noting that for multiple sec-

tions that utilize our pragma, we keep separate copies of

all parameters, such as TB primitives, BLOCK SIZE.

Therefore, our compiler framework is able to solve each

set of parameters independently, so as to expose maxi-

mal potential in all sections.

Programmers can provide share pragma without go-

ing through much trouble. Having an overall under-

standing of the target section, programmers can easily

identify arrays that are critical to performance. More-

over, based on analysis and experience, programmers

can describe the working set of a TB with parametric

array partitions, which further simplifies their work.

As for the optimization hints, share pragma focuses

on two common shared memory utilization scenarios:

data reuse and memory coalescing. By default, each

array partition in share utilizes shared memory to reuse

data. They will be read into shared memory and our

compiler will ensure maximum reuse on it. Besides, we

provide a keyword coalesce to deliver global memory co-

alescing hints to our compiler. When discovering non-

coalescing global access, programmers can explicitly re-

quire the array partition be loaded into shared memory

by adding the keyword coalesce to it. Hence, some un-

necessary compiler analysis can be avoided with the

programmer knowledge on non-coalescing array parti-

tions. It is then left for the compiler to adjust these

non-coalescing global references.

2.2 Discussion

To better explain how share pragma offers a more

convenient way to describe array optimization deci-

sions, we use general matrix multiplication (gemm) in

Fig.2 as an example.

238 J. Comput. Sci. & Technol., Mar. 2016, Vol.31, No.2

(a) (b) (c)

Fig.2. Code samples of general matrix multiplication using different APIs. (a) OpenACC extended with share pragma. (b) Optimized
kernel of share pragma. (c) OpenHMPP.

To describe our data centric shared memory opti-

mization plan in gemm, we add one share pragma (line

1 in Fig.2(a)). Being repeatedly read in this loop nest,

input arrays A and B are regarded as seed arrays (ar-

rays that are suitable for shared memory optimization).

Based on our analysis, both seed arrays contain high

order data reuse. Therefore, we partition the working

set of TBs with A[TBY][∗] and B[∗][TBX] to ensure

maximal reuse within each TB. In addition, detecting

non-coalescing access in array A, we add a keyword

coalesce to inform the compiler. Our compiler then

loads array partitions ofA into shared memory to avoid

non-coalescing references. Fig.2(b) shows the optimized

kernel code that our compiler produces. The compiler

analysis workflow on gemm will be discussed in the next

section.

After detailed introduction to our design, we believe

it is necessary to compare it with mainstream accelera-

tor APIs. On one hand, cache pragma of OpenACC is

inferior in expressiveness. First, it does not take global

coalescing into consideration. Second, shared memory

will not be utilized when reused data exceeds shared

memory capacity. Therefore, OpenACC cannot utilize

shared memory in matrix multiplication, since cache

cannot fix non-coalescing reference of A and on chip

shared memory is not able to hold the reused data

in A and B. On the other hand, OpenHMPP pro-

grammers are burdened with low level programming

details. Thus, programming with OpenHMPP is no

less complex than that with CUDA/OpenCL. As shown

in Fig.2(c), programmers are responsible of inducing

shared array sizes (lines 3 and 4) and copying data

into shared memory (lines 20∼22). Besides, program-

mers need to perform blocking manually to fit all reused

data into shared memory (lines 16∼26). Note that the

OpenHMPP version is very similar to our optimized

kernel, but we do not need complex hand-coding.

3 Shared Memory Centric Optimizing

Compiler

3.1 Overview

With data management hints from programmers,

our compiler now utilizes this information to generate

high performance GPU kernel code. As shown in Fig.3,

overall framework of our proposed compiler can be di-

vided to two parts: SM opt. phase in the figure (gray

box at the top) is designed to perform polyhedral-based

shared memory optimization; advanced opts. phase

(gray box at the bottom) carries out advanced opti-

mizations on memory and instruction level parallelism.

We elaborate these two processes in Subsection 3.2 and

Subsection 3.3 respectively.

We focus on affine loops whose loop bounds and ar-

ray access functions are affine combinations of outer

loop indices and global parameters[12-13]. With this

restriction, our compiler is able to analyze access pat-

terns and perform shared memory centric optimizations

at compile-time. Though restricted to affine loops,

our compiler is still widely applicable as affine loops

play a critical role in many computation-intensive pro-

Jing Li et al.: Pragma Directed Shared Memory Centric Optimizations on GPUs 239

grams, which makes them popular targets to accelerate

on GPUs[14].

SM Opt. Phase

B. Extract FeaturesC. Find Opt. Part.

A. Induce Candidate Partitions

Program

Opt. GPU

Program

Reused
Reference

1

Non-Coalescing
Transaction

2

Seed Array

Partition

Seed ArraSeed ArraSeed Arra
2

Iter. Domain
Split

Iter
3

Candidate

Selection

1
Candidate

Partitions

Candidate
4

Solution Space
Construction

1

Optimal

Partition

2

SM Code

Generation

Conflict

Elimination

2

ILP Code

Generation

4
Optimal ILP

Factor Search

Optimal ILP Optimal ILP Optimal ILP
3

Advanced

Opts. Phase Conflict
Detection1

SM

Pragmas

Y

N

Fig.3. Framework of the proposed compiler.

3.2 Shared Memory Optimization Based on

Polyhedral Model

To relieve programmers from exploring all ar-

ray partition schemes and parameters, we design our

polyhedral-based compiler analysis to develop array

correlations and select array partitions automatically.

For each combination of an input program and a pa-

rameterized share pragma, our compiler needs to induce

all array partition plans, extracts kernel features (data

reuse and coalescing that can be achieved by utilizing

shared memory), and finally decides an optimal parti-

tion. We use the polyhedral model to assist candidate

partition and feature extraction, thanks to its ability to

capture array references and iteration domains.

Terminologies. Before discussing our parameter se-

lection, we first introduce some terminologies. Arrays

specified by share pragma are called seed arrays. In

affine loop nests, iteration domain I of a statement can

be described as a polytope bounded by loop indexes and

global parameters. For each affine array access, we use

an access function F (I) to map from iteration space I

to array data space. In order to parallelize a loop for

GPU, we use schedule φ(I) and placement Q(I) to as-

sign a new time stamp and an owner processor to each

iteration instance. Detailed definitions can be found in

[12-13, 15-16].

3.2.1 Inducing Candidate Partitions

As shared memory optimizations are performed on

each array partition, obtaining parametric candidate

partitions is necessary. To this end, our compiler first

selects candidate arrays that might benefit from shared

memory in input program. Then, we partition seed ar-

rays according to programmer specification, which is in

turn used to split iteration domain. Given the iteration

domain splits and candidate arrays, our compiler can

induce a set of candidate partitions. The dotted box A

in Fig.3 illustrates above workflow.

Candidate Selection. Seed arrays are believed to be

the primary focus of programmers, but chances are that

there exist other candidate arrays that call for shared

memory optimization. Due to two practical considera-

tions, we find it is necessary to induce a final candidate

set based on seed arrays. First, programmers might fail

to identify all arrays that benefit from shared memory

since they do not care about arrays beyond their inter-

ests. Second, complex array correlations make it even

more difficult to specify array partitions.

Based on the consensus that developers have insight

into target programs, a candidate set will be populated

with the given seed arrays. The problem of candidate

selection can be solved by mapping it to an equivalent

problem of finding the transitive closure of seed arrays

in an undirected graph, which is created with vertices

representing each array reference in the target loop nest

and an edge exists between two vertices in presence of

a dependence. It is worth noting that only arrays that

share dependence with seed arrays in share pragma are

brought into the candidate set. As far as the program-

mer is concerned, this candidate set is still the key to

the target section. Besides, without share pragma, all

arrays in the target section would be considered as can-

didates. Hence, our compiler would take a lot more time

to analyze.

Consider gemm in Fig.2(a). After applying data de-

pendence analysis, we add array C to the candidate set

as it depends on both A and B.

Seed Array Partition. Candidate partition is not

that straightforward as it can only be induced indi-

rectly through iteration domains. Candidate partitions

should conform with seed partitions (they should be ac-

cessed in the same iterations), and iteration subspace

is the one thing that links them.

We can infer a partition matrix of a seed array from

user pragmas such that each row represents a partition

hyperplane and the size of each row vector represents

the partition length. For example, partition matrices

240 J. Comput. Sci. & Technol., Mar. 2016, Vol.31, No.2

of array A and B in Fig.2(a) demonstrate parametric

partitions of size TBY ×k1 and k2×TBX , where k1, k2
represent the vague numbers “∗” that fall between 0

and n:

PA =

(

TBY 0

0 k1

)

, PB =

(

k2 0

0 TBX

)

.

Iteration Domain Split. By reversing affine access

functions, we can induce an iteration subspace IS for

each combination of seed partition and array reference,

which constitutes a set of iteration subspaces ISSet.

ISAkl is the iteration domain partition induced from

the l-th affine reference to array A in the k-th state-

ment.

ISAkl = F−1
Akl(DSA), 1 6 l 6 p, 1 6 k 6 q,

where q is the amount of statements that access A, p

is the total references to A in the k-th statement, FAkl

represents the affine access function, and DSA is the

data space of A induced from PA.

Though provided by programmers, seed arrays are

not guaranteed to induce identical iteration subspaces.

In order to maximize the difference between iteration

subspaces of different seeds, we “intersect” all “com-

patible” iteration subspaces in ISSet: two iteration sub-

spaces are considered compatible if 1) they are identical

in all dimensions or 2) they differ in a dimension that

either subspace utilizes the vague symbol “∗”. Com-

patible subspaces can be intersected as a new iteration

subspace that combines all compatible dimensions.

For example in Fig.2(a), the affine access functions

of the references to all arrays are represented as:

FA11 =

(

1 0 0 0 0

0 0 1 0 0

)

·

I1

n

1

,

FB11 =

(

0 0 1 0 0

0 1 0 0 0

)

·

I1

n

1

,

FC11 =

(

1 0 0 0 0

0 0 1 0 0

)

·

I2

n

1

,

where I1 =

i

j

k

and I2 =

(

i

j

)

are the iteration

vectors. Therefore, we can easily induce the iteration

subspaces ISA = i : [0 : n : TBY], k : [0 : n : ∗] and

ISB = j : [0 : n : TBX], k : [0 : n : ∗] by apply-

ing the inverse access functions to seed partitions DSA

and DSB. We can further combine ISA and ISB as

they are identical on the dimension k and do not in-

terfere with each other on dimension i and dimension

j. Intersecting ISA and ISB produces a new iteration

subspace ISAB = i : [0 : n : TBY], j : [0 : n : TBX], k :

[0 : n : ∗].

Candidate Partition. Given the iteration domain

splits and candidate arrays, we can induce candidate

partitions for each ISm in ISSet. Take array B for

example, we transform the iteration domain split to a

candidate partition for each affine reference of B, be-

fore combining these candidate partitions to a rectangle

hull ((1)).

DSBm = {RectHull(FBkl(ISm))

| 1 6 l 6 p, 1 6 k 6 q}. (1)

Depending on the number of affine references to the

same array, we obtain candidate partition of different

shapes. With a single affine reference, as ISm splits

the iteration domain into non-overlapping polytopes,

applying an affine transformation on it results in non-

overlapping candidate partition; but for multiple affine

accesses, we take the rectangle hull of all candidate par-

titions to obtain a maximal coverage on all partitions.

This leads to the redundant copy of array elements in

different partitions. For instance, with an iteration do-

main split IS = i : [0 : N : 8], the candidate par-

titions for array references B[i + 1] and B[i − 1] are

B[−1 : N − 1 : 8] and B[1 : N : 8], respectively. Neigh-

boring rectangle hulls of the candidate partitions (e.g.,

B[−1 : 9] and B[8 : 17]) overlap on two elements. It

is worth noting that sharing array elements between

partitions does not violate program correctness, as the

target section is free of loop carried dependences. Oth-

erwise, it is not suitable for parallel execution on GPU.

Therefore, dependences on these duplicated elements

can be preserved.

Considering the loop in Fig.2(a), it is now straight-

forward to partition candidate arrays according to the

iteration split ISAB . Specifically, we obtain DS′

A
=

[0 : n : TBY][0 : n : ∗], DS′

B
= [0 : n : ∗][0 : n : TBX]

and DS′

C
= [0 : n : TBY][0 : n : TBX] as candidate

partitions. Note that variables or TB primitives in par-

tition matrices of seed arrays are regarded as parame-

ters, which will propagate to all candidate partitions.

3.2.2 Extracting Features

Since off-chip accesses are costly, we intend to

choose an array partition plan that minimizes the off-

chip traffic. With this goal in mind, our compiler

Jing Li et al.: Pragma Directed Shared Memory Centric Optimizations on GPUs 241

extracts the number of reused references and non-

coalescing transactions, as shown in the dotted box la-

beled B in Fig.3, to compose the maximum number of

global references that could be omitted if shared mem-

ory were used.

Reused Reference. Reusing data in shared memory

contributes to less off-chip traffic. To quantize poten-

tial benefit of bringing an array partition into shared

memory, we evaluate the volumes of reused references

in shared memory, which can be obtained by intersect-

ing data spaces of all references to the same array ((2))

(Duplicate returns the number of duplicate points in a

polytope). In addition, we utilize (3) to collect candi-

date arrays with significant data reuse into a ReuseSet.

A threshold θr is introduced to filter candidate arrays

with insignificant data reuse (i.e., the amount of reused

data is negligible compared with the size of the data

subspace), as they not only provide limited benefit for

memory reduction, but also complicate our optimal par-

tition search and code generation processes. Based on

our experiments and experience, θr usually falls be-

tween 1.4 and 2, depending on shared memory size

on a platform. Currently, we fix θr that contributes

to optimal performance on each platform, but a more

automatic parameter selection will be available in the

future.

ReuseSizeA = Duplicate(FAkl(ISk)),

ReuseSizeA =1 6 l 6 p ∧ 1 6 k 6 q, (2)

ReuseSet = {A | ReuseSizeA > θr×|DSA|,

ReuseSet = A ∈ Candidates}. (3)

Both array A and array B in Fig.2(a) have high

order data reuse. As A[i][k] is repeatedly referenced in

loop j, the reuse size of A sums up to TBY × n × n,

which is n times of its data space size |DS′

A
|. Similarly,

every element in array DS′

B
is accessed n times. On

the contrary, no reuse exists for C[i][j] as the reuse set

is exactly the same size as DS′

C
.

Non-Coalescing Transaction. Coalescing global

transactions through shared memory greatly acceler-

ates off-chip accesses. Therefore, we need to first iden-

tify inefficient global references in candidate arrays and

then estimate global transactions that can be acceler-

ated by our compiler.

Locating non-coalescing transactions demands a

close understanding of the memory access pattern of

each statement instance. We thereby borrow the defi-

nition of adjacency constraints on schedule and place-

ment from [14].

Time schedule adjacency constraint ((4)) requires

two statement instances that access adjacent elements

of an array to be executed at the same time instance.

Space placement adjacency constraint ((5)) requires

two statement instances that access adjacent elements

of an array to be mapped to adjacent processors.

F (xm) + (0 . . . 1)T = F (ym),xm,ym ∈ ISm,

φ(xm) = φ(ym), (4)

Q(xm) = Q(ym). (5)

Those array references that violate either constraint

fall into CoalesceSet ((6)). For each non-coalescing refe-

rence in CoalesceSet, we obtain the global transactions

required by recording unique transaction IDs ((7)). No-

tice that for arrays inferred by coalesce in our pragma,

our compiler skips the check for non-coalescing refer-

ences and directly evaluates this global transaction size.

CoalesceSet

= {A | φ(xm) 6= φ(ym)|Q(xm) 6= Q(ym)}, (6)

CoalesceT ranA

=
∑

x∈ISm

| Unique(
Offset(FA(x))

TranSize
) |, (7)

where TranSize is the global transaction size on cur-

rent platform, Offset represents the offset of a reference

in global memory, and Unique returns a unique base

address for each array reference.

As indicated by OpenACC pragmas in Fig.2(a), our

compiler induces the following time schedule and space

placement of S1 and S2 on GPU:

φ(IS1) = k and Q(IS1) = i× TBX + j,

φ(IS2) = n and Q(IS2) = i× TBX + j.

Hence, we conclude that A in Fig.2(a) suffers from

non-coalescing global reference as it violates the time

schedule constraint. For the iteration instances that

access adjacent elements in A[i][k] (i.e., x = (i, j, k)T

and y = (i, j, k+1)T), they do not execute at the same

time as φ(x) = k but φ(y) = k + 1. According to (7),

for each concurrent access to A[i][k], a global transac-

tion that starts at A+ (i × n+ k)× 4 is returned. As

a result, a total of TBY × n global transactions are re-

quired to read the data space of A. However, accesses

to B andC comply with both constraints and therefore

do not belong to CoalesceSet.

3.2.3 Finding Optimal Partition

As presented in the dotted box named C of Fig.3,

our compiler takes features of all candidate partition

242 J. Comput. Sci. & Technol., Mar. 2016, Vol.31, No.2

plans as input, and builds a solution space for each

partition plan based on restrictions of GPU resources.

By evaluating all solution spaces, we solve an optimal

candidate partition plan and corresponding parameters

which maximize the benefit of shared memory.

Solution Space Construction. Evaluating a candi-

date partition plan can be reduced to a confined opti-

mization problem, which targets maximal Profit under

the resource constraints on GPUs. For each candidate

partition plan (ISm), the solution space of this con-

strained profit maximization problem can be modeled

as:

max. P rofit =
∑

A∈ReuseSet

ReuseSizeA + TranSize×

max.Profit =
∑

B∈CoalesceSet

CoalesceT ranB, (8)

s.t.
∑

A∈ReuseSet|CoalesceSet

DSA 6 θs × SMSize, (9)

TBSize 6 TBSizeMax, (10)

TBSize×
SMSize

∑

A∈ReuseSet|CoalesceSet DSA

6 TSizeMax. (11)

We assess the potential profit of each partition plan

with (8), i.e., the global references that can be reduced

with shared memory optimization.

GPUs enforce several hardware restrictions on re-

sources to guarantee high parallelism. The number of

processors puts limit on attainable parallelism, such as

the maximum number of threads and TBs that can be

hosted. Similarly, shared memory size also confines

the number of concurrent TBs. Our compiler ties to

seek a partition plan that satisfies all hardware restric-

tions, including shared memory size, maximal amount

of TB and threads on each SM ((9)∼(11)). (9) utilizes

a threshold θs to restrict the shared memory consump-

tion in each TB. It not only prevents excessive shared

memory usage to boost TB level parallelism, but also

attends to architectural restrictions on shared memory

(e.g., though each SM on AMD GCN GPUs is equipped

with 64 KB shared memory, only 32 KB is useable for

each TB). Therefore, the absence of θs tends to result in

inefficient (even invalid) code that falls short on para-

llelism. From our experiments and experience, we pick

a value between 0.125 and 0.25 for θs to allow for four

to eight concurrent TBs on an SM. In the future, we

plan to automate the selection of θs.

Accordingly, the solution space for gemm in Fig.2(a)

can be presented by:

max. P rofit

= TBX × TBY × n× 8 + 256× TBY × n

= 8× n× TBY × (TBX + 32), (12)

s.t. (TBX × k1 + TBY × k2)× 4

6 0.25× 48× 1 024, (13)

TBX × TBY 6 1 024, (14)

32 6 TBX 6 1 024, TBX = 2m1 ,

m1 ∈ [5, 6, ...], (15)

1 6 TBY 6 1 024, TBY = 2m2 ,

m2 ∈ [0, 1, ...], (16)

TBX × TBY ×
48× 1 024

(TBX × k1 + TBY × k2)× 4

6 2 048, (17)

0 6 k1 6 n,

0 6 k2 6 n,

where (13) confines the shared memory consumption

of a TB, (14)∼(16) ensure the amount of threads in a

TB does not become illegal, and (17) requires the total

threads in an SM do not break hardware restriction.

As a common practice on GPU, we only search for TB

size that is a power of 2 in each dimension. Besides,

we expect a TBX larger than 32 ((15)), otherwise the

affine reference to B[k][j] would not coalesce.

Optimal Partition. Our compiler designs following

rules to choose the optimal iteration subspace and pa-

rameters.

If all candidate partitions are non-parametric, the

profit of each plan is a positive number. Thus, we can

choose the corresponding candidate partitions with the

highest profit.

In the case of parametric candidate partitions, we

are not able to compare profits directly. In practice, the

linear programming model we proposed cannot guaran-

tee an optimal partition since the existing restrictions

might not be tight enough. However, all partition pa-

rameters are bounded by array dimension sizes, which

leads to a solution set with limited integers. There-

fore, we propose three steps to find an optimal parti-

tion. First, for each candidate partition plan, we ob-

tain a legal parameter space by enforcing the restric-

tions on GPU resources and array bounds. Second, we

traverse the legal parameter space and arrive at the

optimal parameter combination of each candidate par-

tition. Third, we choose the candidate partition and

parameter combination with the highest profit. Hence,

Jing Li et al.: Pragma Directed Shared Memory Centric Optimizations on GPUs 243

the size of our search space depends on the number of

candidate partition plans and the amount of legal pa-

rameter combinations, which are both polynomial as

presented in (18) and (19). Therefore, theoretically,

our approach ends in polynomial time. Notice that by

providing seed arrays and parametric array partitions,

programmers have effectively cut down the search space

for our compiler. Otherwise, we would blindly consider

every single array as a seed array and every possible

parameter combination for seed arrays.

NumCanPar

=
∑

NumSeed

NumAffineReference, (18)

NumParaComb

=
∏

NumParameter

NumLegalV alues. (19)

To solve an optimal partition for gemm in Fig.2(a),

our compiler tries out all legal TB sizes for TBX and

TBY . As the profit of utilizing shared memory equals

TBY ×(TBX+32) ((12)), the larger TBY is, the higher

profit we can achieve. Due to TB size restrictions in

(14)∼(16), the maximal TBY we can use is 32 (as

TBX is at least 32). Therefore, the optimal TB size

is 32× 32. In this case, the constraint on shared array

size is reduced to k1+k2 6 96. As k1 and k2 only affect

shared memory usage of a TB, we set both variables to

32 for simplicity.

3.3 Advanced Optimizations on Parallelism

SM opt. phase can reduce off-chip traffic and ob-

tain performance boost through utilizing shared mem-

ory. However, memory bandwidth and compute cores

remain underutilized due to low memory and instruc-

tion level parallelism. Bank conflicts, usually caused

by imperfect shared memory access patterns, force

memory transactions to delay and thus decrease over-

all performance[17]. ILP, which reflects GPU core

utilization, is another important performance indica-

tor. Many studies tried to improve ILP from different

aspects[9-11,17], but none of them manages to choose a

proper amount of ILP automatically. Moreover, find-

ing the right timing to perform ILP is also nontrivial.

Therefore, our compiler detects and eliminates memory

bank conflicts of an input kernel, before choosing and

increasing an optimal amount of ILP (as shown in the

gray box at the bottom of Fig.3).

3.3.1 Bank Conflict Elimination

Similar to memory in multicore system[18], GPU di-

vides shared memory into equally-sized memory banks

that can be accessed simultaneously for high band-

width. When multiple addresses in the same bank are

accessed at the same time, memory requests are seria-

lized. This is known as bank conflict, which hurts mem-

ory level parallelism and undermines benefits of shared

memory optimization. To make the best of memory

bandwidth, it is therefore important to avoid bank con-

flicts.

Bank conflict is closely related to shared mem-

ory bank width and bank number (bank width and

bank num), and shared array data type and access

pattern (data type and array stride). Hence, avoid-

ing bank conflict is complex for programmers, but can

be automated as compilers have easy access to above

information.

Conflict Detection. We devise two methods to de-

tect bank conflicts for each shared array access. First,

for simple (e.g., constant stride) array accesses, conflict

degrees can be inferred by (20) and (21). We utilize

bank stride to normalize the difference in array strides

and data types. Second, when special conflict rules or

variable array strides make above equations inaccurate,

low overhead simulations can be used to estimate con-

flict degrees[19-20].

bank stride =
array stride× data type

bank width
, (20)

Degree =

|1/bank stride|,

if bank stride < 1,

GCD(bank stride, bank num),

otherwise.

(21)

Conflict Elimination. Targeting bank conflicts in

different cases, our compiler provides five transforma-

tions to avoid bank conflicts and employs a decision

tree to select a suitable one. In general, the transfor-

mations we provide minimize bank conflicts from the

perspective of data and code: data reorganization tar-

gets the most typical scenarios and features a data pre-

process stage; code restructure, which applies to more

general cases, trades some extra computations and com-

piler work for conflict free accesses. As shown in Fig.4,

our decision tree relies on four code features to select a

suitable transformation, i.e., array of structure (AOS),

2D array with strided reference, stride size of the 2D

array, and associative operations to combine the con-

flict references. For each conflict array, our compiler

244 J. Comput. Sci. & Technol., Mar. 2016, Vol.31, No.2

Table 1. Techniques to Avoid Bank Conflicts

Data Reorganization Code Restructure

AOS-SOA Padding Transpose Thread Remap Access Reorder

Application scope Code feature AOS 2D, strided
array access,
arraywidth mod
SMwidth 6= 0

2D, array
accessed by
column
repeatedly

— Associative
operation

Typical algorithms Complex number,
tree, graph,
neural network

Sort, scan, tree — — —

Properties Extra space × √ × × ×
Extra computation × × × √ √

Compiler search × √ × √ √

Introduce conflict × × √ × ×
Data preprocess

√ √ √ × ×
Note: — indicates that an application scope does not apply to a technique. × indicates that a technique does not present a property.√

indicates that a technique presents a property.

checks for above code features and decides the appro-

priate transformation accordingly. We summarize our

techniques to avoid bank conflicts in Table 1 and high-

light three of them.

AOS?

2D & Strided?

Stride == Width?

Associative?

AOS-SOA

Thread Remap

Padding

Access Reorder

Transpose

Yes

Yes

Yes

Yes

No

No

No

No

Fig.4. Bank conflict transformation decision tree.

Padding scatters accesses to different banks by

adding empty columns to an array. For 2D arrays,

strided access and an array width that is not evenly di-

visible by shared memory width are two common code

features that invite padding. Strided access is common

in sort, scan, and tree algorithms as the stride dou-

bles at each level of shared memory access. Apart from

space cost, padding requires some compiler analysis to

pin down an optimal padding size.

Thread remap designs different placement ma-

trices for each parallel loop to change access pat-

terns of consecutive threads. For example, diagonal

remapping[1] eliminates bank conflicts by mapping con-

secutive threads to diagonal work items, which makes

use of a placement matrix Q, with each value being

Q00 = 1, Q01 = 0, Q10 = 1, Q11 = 1.

Thread remap does not introduce extra space or

bank conflicts at the cost of some extra index compu-

tation. However, finding the perfect placement matrix

requires exhaustive compiler search.

Access reorder schedules shared array accesses and

associative operations of consecutive threads to mini-

mize bank conflicts. For example, by varying start

offsets of each thread that accesses an array by row,

consecutive threads can operate on different banks at

the same time[5]. Access reorder trades extra index

and offset computation for higher memory level para-

llelism, without sacrificing shared memory space. How-

ever, float point operations should be handled with care

to avoid precision errors.

Since the width of shared arrays is often correlated

with TB width, which is a power of 2, bank conflicts

are common after shared memory optimization. In the

same spirit, above detection and solutions can be easily

ported to avoid global memory channel conflicts, which

share the same features with bank conflicts.

3.3.2 ILP Enhancement

Supported by instruction pipelines and high mem-

ory bandwidth on GPU, ILP is achieved by schedul-

ing independent instructions for concurrent execution.

GPU performance benefits from high ILP in two ways:

better latency hiding and better resource utilization.

First, long latency instructions can interleave with inde-

pendent instructions to hide latency. Second, executing

Jing Li et al.: Pragma Directed Shared Memory Centric Optimizations on GPUs 245

more independent instructions at the same time makes

better use of available cores and bandwidth. Mean-

while, ILP is increasingly vital as modern GPUs are

offering more cores, schedulers, registers, and higher

bandwidth.

However, current accelerator oriented APIs choose

to ignore ILP and execute one work item per thread,

which results in poor performance. By contrast, we

propose to expose ILP by computing N elements per

thread, thus offering N times perfectly parallel instruc-

tions per thread. Moreover, we believe ILP enhance-

ment is more of an automatic optimization than a man-

ual one, since ILP factor is too complex for a program-

mer to decide.

ILP and Shared Memory. ILP and shared mem-

ory optimization should be applied together as they

are mutually beneficial. On one hand, for memory

bound kernels with non-coalescing or bank conflict

memory requests, additional memory instructions lead

to worse bandwidth utilization and delayed memory

operations[21]. Fig.5 demonstrates the performance loss

of ILP optimization in presence of non-coalescing mem-

ory operations. Consequently, ILP enhancement should

be carried out after our shared memory and bank opti-

mizations, which eliminate unsatisfactory memory pat-

terns. On the other hand, suffering from poor para-

llelism, programs with excessive shared memory de-

mand are more likely to benefit from ILP enhancement.

0

0.5

1.0

1.5

2.0

2.5

S
p
e
e
d
u
p

re
ad
_c

oa
l

re
ad
_n

on
co
al

w
ri
te
_c

oa
l

w
ri
te
_n

on
co
al

ILP2

ILP4

Fig.5. Average speedup of ILP optimization for different mem-
ory operations across all platforms.

Optimal ILP Factor Search. ILP factor affects the

workload of each thread and the available parallel in-

structions on a stream multiprocessor. The best ILP

factor depends on several parameters: available re-

sources, compute density, TB size, etc.

Though searching an optimal ILP factor seems to be

challenging, we can prune the search space to a great

extent based on two understandings. First, the ILP

factor is usually a power of 2. As it is conventional to

set TB size to 2n for many GPU kernels, an ILP factor

that is not a power of 2 cannot be divided by such TB

size and thereby results in illegal TB size. In this case,

restricted by the upper and the lower bound of a TB

size (e.g., 1 024 and 32), there are only five legal ILP

factors in each dimension. Second, to preserve memory

coalescing in X dimension of a TB, we choose to per-

form ILP optimizations on Y and Z dimensions, which

further reduces legal ILP factors.

Therefore, automatic ILP factor tuning can be

achieved by trying out all legal ILP factors of each ker-

nel. The highest speedup identifies the optimal ILP

factor on current platform.

ILP Code Generation. We present the code trans-

formation of ILP optimization in Algorithm 1 and high-

light two techniques designed to ensure correct transla-

tion. As an input kernel is free of dependence in global

memory, we focus on dependence induced by shared

memory and local variables.

Algorithm 1. Code Transformation of ILP Optimiza-
tion
Require:

CUDA/OpenCL code before ILP optimization, code
direction along which ILP will be enhanced, dir
TB size on dir direction, sizedir
ILP factor, factor

Ensure:

ILP optimized CUDA/OpenCL code, ilp code

1: Liveness analysis of variables in code

2: for all code region separated by barriers in code do

3: Surround code region with ILP loop: [ilp index,
0:sizedir: sizedir

factor
]

4: Add all local ID references on dir direction with ilp index

5: for each variable live that lives at code region exit do

6: Array expansion to live[factor]
7: Replace access to live with live[index]
8: end for

9: Loop invariant hoisting within code region

10: Add transformed code region and barrier into ilp code

11: end for

12: return ilp code

First, to preserve dependences on shared memory,

code replication is performed for each barrier-free code

block. As barriers are commonly used to separate read

and write phases on shared memory, unrolling an en-

tire kernel incurs premature usage of shared memory

values. In contrast, by unrolling read/write phases of

shared memory respectively, we are able to preserve

dependences and provide independent instructions as

well.

Second, array expansion is used to handle depen-

dence on local variables, which are often used to pass

246 J. Comput. Sci. & Technol., Mar. 2016, Vol.31, No.2

temporary results through barriers. Violating depen-

dences on these local variables will induce polluted tem-

porary values. Array expansion secures these depen-

dences by using disjoint space to hold temporary val-

ues.

4 Experiments

In this section, we verify effectiveness of our shared

memory centric optimizations on four different GPU

platforms. Specifically, we 1) analyze our performance

advantage over several mainstream GPU programming

models, 2) decompose the performance contribution of

each optimization and 3) verify the portability of our

optimizations.

4.1 Methodology

Compiler. We choose to implement our optimiza-

tions inside Cetus[22], a source-to-source compiler for C

programs that inhabits OpenMP to CUDA translation

support[23]. Our compiler, which is built on Cetus ver-

sion 1.3.1, takes in pragma annotated sequential C pro-

grams and returns the optimized OpenCL kernel. We

use gcc version 4.4.7 to compile the optimized OpenCL

source code of our compiler. In comparison, we use PGI

version 14.6 and CAPS version 3.4.4 to compile Ope-

nACC and OpenHMPP programs, respectively; and we

use nvcc 5.0 for CUDA code generation.

Benchmarks. We use five benchmarks: mt, gemm,

mv, gauss and hotspot. In Table 2, we briefly describe

the benchmark algorithms and datasets. We also report

programming complexity using LOC of the sequential

algorithm. Meanwhile, we present LOP of OpenHMPP

algorithm and our share pragma to reveal the produc-

tivity and optimizing efforts. We select these bench-

marks, which can be easily ported to GPU platforms, as

they require major optimization efforts to obtain high

performance. As a typical memory bound application,

mt features 8 bytes of I/O traffic and 4 arithmetic ope-

rations per thread. In addition to heavy I/O traffic,

gemm and mv exhibit high compute intensity and signifi-

cant data locality. gauss and hotspot instead embody

different degrees of data reuse within a TB. Moreover,

the computation intensity of both kernels is relatively

higher with dozens of multiply-add operations.

Platforms. We evaluate our compiler on four GPUs:

NVIDIA GTX 690, NVIDIA GTX TITAN, AMD HD

7850 and NVIDIA Tesla C2050. As shown in Table 3,

substantial differences exist within these four platforms

ranging from the number of cores to shared memory

size. These differences pose severe challenges to the

performance portability of our compiler. For example,

GTX TITAN provides as many as 3 072 compute cores,

while Tesla C2050 has only 448 cores. Each stream mul-

tiprocessor of HD 7850 is equipped with 64 KB shared

memory, which is one third more than others.

4.2 Experimental Results

4.2.1 Comparison Against Mainstream Programming

Models

To illustrate the effectiveness of our compiler, we

compare the performance of our auto-generated ker-

nels against that of several mainstream GPU program-

ming models, i.e., OpenACC, OpenHMPP and CUDA

on GTX 690. Fig.6 reveals the performance compar-

Table 2. Benchmarks

Name Description Input Data Type LOC (seq) LOP (share) LOP (hmpp)

mt Matrix transpose 1M∼64M Float 07 1 17

gemm General matrix multiplication 1M∼64M Float 14 1 22

mv Matrix vector multiplication 1M∼256M Float 09 1 17

gauss Blurring images with 5×5 filter 1M∼256M Unsigned char 29 1 43

hotspot 2D thermal simulation kernel 16K (1K∼16K steps) Float 42 1 84

Note: LOC represents lines of code and pragmas in the input loop, whereas LOP only counts lines of pragmas.

Table 3. Platforms

GPU Core Clock Rate Memory Bandwidth Shared Memory Driver SDK

Number (MHz) (GB) (GB/s) (KB)

NVIDIA GTX 690 3 072 0 915 4 384.0 48 304.33 CUDA 5.0

NVIDIA GTX TITAN 2688 0 837 6 288.4 48 319.37 CUDA 5.5

AMD HD 7850 1 024 0 860 2 153.6 64 AMD Catalyst 14.1 APP SDK v2.9

NVIDIA Tesla C2050 0488 1 150 6 144.0 48 285.05.33 CUDA 4.1

Jing Li et al.: Pragma Directed Shared Memory Centric Optimizations on GPUs 247

ison, with OpenACC being the baseline. While Ope-

nACC and OpenHMPP achieve 26% and 68% perfor-

mance against native CUDA code (which is consistent

with previous studies[24-26]), our compiler generates ef-

ficient kernels and yields over 90% of the performance

of hand-crafted CUDA code on average.

0

1

2

3

4

5

6

7

Average

S
p
e
e
d
u
p

PGI
OpenACC

CAPS Open-
HMPP

Share

CUDA

Fig.6. Performance comparison with PGI OpenACC, CAPS
OpenHMPP, and NVIDIA CUDA on GTX 690.

We choose PGI OpenACC compiler over CAPS

for its better implementation and higher performance.

Still, the experimental results show that our com-

piler achieves consistently better performance than PGI

OpenACC. All kernels annotated with OpenHMPP are

hand-coded to utilize shared memory, which takes great

effort judging from LOP (hmpp) in Table 2. Meanwhile,

we further improve memory and instruction parallelism

automatically, as illustrated in Subsection 3.3. It can

be inferred from Fig.6 that our compiler is superior

to OpenHMPP in most cases, offering an impressive

speedup of 1.3x on average.

We manually applied shared memory optimization

to CUDA versions of the benchmarks, in addition to

eliminating memory level conflicts and increasing ILP.

Fig.6 shows that the performance gap between our

auto-generated kernels and the hand-written CUDA

codes is less than 9% on average, which is acceptable as

CUDA performs at most 30% better than OpenCL for

most applications[27-28]. hotspot is an exception which

our auto-generated OpenCL code presents better per-

formance than CUDA. This results from the difference

between OpenCL and CUDA, as they store arrays in

different memory spaces for hotspot.

4.2.2 Shared Memory Centric Optimizations

In Fig.7, we present our speedups over naive

OpenCL implementations of each kernel, and we re-

port the performance decomposition of each optimiza-

tion on GTX 690 to illustrate their respective contribu-

tions. Speedups are averaged over all problem sizes. On

average, our compiler achieves 2.8x performance boost:

the speedups of benchmarks with serious memory bot-

tlenecks, i.e., mt, gemm, and mv, reach 3.6x; other com-

putation intensive benchmarks (gauss and hotspot)

also reach 1.5x. Besides, all three shared memory cen-

tric techniques are proved to be effective. We further

analyze their respective performance impact in this sub-

section.

0

1

2

3

4

5

Average

S
p
e
e
d
u
p ILP

Bank
Conflicts

SM

Fig.7. Decomposition of speedups over naive kernels on GTX
690.

Shared Memory Optimization. Overall, shared

memory optimization can achieve an average of 1.8x

speedup, which contributes to 67% of the total per-

formance gain. Recall that all programmer needs to

provide to achieve these results is properly annotated

share pragmas. Then our compiler solves an optimal

partition scheme for arrays and utilizes shared memory

to reuse or coalesce off-chip data automatically.

By examining the adjacency constraints, our com-

piler discovers non-coalescing global references in mt,

mv, and gemm. As discussed in Subsection 3.2, array

A in gemm falls into CoalesceSet as the adjacent ele-

ments in A are not accessed at the same timestamp.

In the same spirit, the input vector in mv violates the

time constraint, whereas the input matrices in both mt

and mv break the space constraint. Besides, we man-

age to identify a considerable amount of data reuse in

mv and gemm. Similar to A and B in gemm, the input

vector from mv is read repeatedly, which results in a

ReuseSet that is many times larger than its candidate

partition. By adapting these non-coalescing requests

and reused data to shared memory, we achieve an im-

pressive speedup of 2.3x. Though having a great vol-

ume of reused data, gauss and hotspot respond rather

modestly to shared memory optimization (1.2x) due to

their cache friendly access patterns. Furthermore, the

248 J. Comput. Sci. & Technol., Mar. 2016, Vol.31, No.2

benefits of reusing data are offset by 55% more ALU

instructions introduced by shared memory utilization.

Hence, solely relying on shared memory for high per-

formance is insufficient.

Bank Conflict Elimination. Our compiler manages

to utilize memory bandwidth by detecting and avoiding

bank/channel conflicts after analyzing array access pat-

terns. Among all benchmarks, high degree bank con-

flicts are detected in mt and mv, as all threads within

a warp request data elements in the same bank. Our

compiler chooses to avoid bank conflicts by padding

one column to each shared array, which is 2D and has

a stride smaller than array width. As a result, we are

able to reduce bank conflicts and accelerate memory

access by 0.4x and 2.0x, respectively, boosting average

performance by 17%.

ILP Enhancement. To exploit performance poten-

tial of compute resources, our compiler enhances ILP by

filling idle time slots of memory and arithmetic latencies

with independent instructions. As shown in Fig.7, en-

hancing ILP contributes to an average of 0.45x speedup.

While populating parallel instructions in compute in-

tensive applications achieves little runtime reduction

(0.2x), it is especially effective for I/O bound applica-

tions (an average of 0.8x speedup). With much longer

latency than arithmetic instructions, memory instruc-

tions enable better latency hiding and higher perfor-

mance speedup. However, mv is better off without ILP

optimization as utilizing shared memory and eliminat-

ing bank conflict already offer sufficient parallelism.

In our framework, we try to improve performance

of kernels by utilizing GPU resources. Shared memory,

a perfect place to hold off-chip data for reuse or coa-

lescing purposes, promises significant speedup for mem-

ory operations. We take in programmers’ optimiza-

tion advice, based on which we explore optimal array

partition scheme and produce shared memory optimal

code. While the bandwidth of shared/global memory

and hundreds of processing cores allow high memory

and instruction level parallelism, they might be un-

derutilized in GPU kernels. Consequently, we apply

automatic optimization to avoid memory conflicts and

increase independent instructions. We show not only

that our compiler can fix inefficient array references to

a large extent with shared memory but also that it can

refine memory and instruction level parallelism.

4.2.3 Performance Portability

In order to evaluate the performance portability of

our compiler, we port our benchmarks to four platforms

and present their performance results in Fig.8. The per-

formance improvement of each optimization is averaged

over all benchmarks. On the whole, our compiler is ef-

fective across all platforms, offering an average perfor-

mance gain of 3.7x. Among all optimizations, utilizing

shared memory remains a major performance booster

(offering 70% of total performance), with bank conflict

avoidance and ILP enhancement each constituting 15%

of total performance.

0

1

2

3

4

5

6

7

GTX 690 GTX
TITAN

Tesla
C2050

HD 7850 Average

S
p
e
e
d
u
p

ILP

Bank
Conflicts

SM

Fig.8. Decomposition of performance improvement across all
platforms.

Portable Optimizations. Though our compiler is

generally effective on all platforms, we actually handle

our optimizations slightly different as platforms exhibit

various features as described in Table 3. Our compiler

is able to choose similar parameters for GTX TITAN

and GTX 690, which are close in design and compute

capability. Therefore, we obtain similar performance

for each optimization on these platforms. In the mean

time, ILP optimization of our compiler prefers GPUs

with more registers, which can hold values for more

active instructions. Therefore, Tesla C2050 and HD

7850, with 2 times more registers for each processor,

enjoy finer latency hiding and higher performance im-

provement from ILP optimization. Our shared memory

utilization contributes to an evidently higher speedup

(5.0x) on HD 7850, which offers a larger shared mem-

ory space and thus allows more parallel TBs. Moreover,

avoiding channel conflicts on HD 7850 improves perfor-

mance by 2.0x for mt and mv. Adjacent TBs access

data that fall into the same memory channel, thus lim-

iting effective global memory bandwidth. Among all

solutions in Table 1, our compiler chooses to apply dia-

gonal remapping and arithmetic reordering to spread

concurrent requests, according to the decision tree.

Portable ILP Factor. The ILP factor directly re-

flects the number of parallel instructions, and should

Jing Li et al.: Pragma Directed Shared Memory Centric Optimizations on GPUs 249

be carefully chosen as a small one fails to hide latency

perfectly and a large one introduces superfluous regi-

ster pressure. Our compiler manages to find optimal

ILP factors in terms of different kernels, platforms, and

problem sizes. Table 4 displays the best ILP factors

chosen for each benchmark on all platforms. Notice

that as all TB sizes in our experiment are powers of

2, we choose ILP factors that are also 2n to avoid il-

legal TB size. As can be seen, we select larger ILP

factors for memory intensive applications, such as gemm

and mt, since off-chip memory latency needs more par-

allel instructions to hide. Furthermore, our compiler

is aware of higher ILP demand on GTX 690 and GTX

TITAN, both of which issue more independent instruc-

tions per cycle. We also recommend a higher ILP factor

for Tesla C2050 to hide longer latency of memory and

computation. In addition, our compiler adapts to para-

llelism requests for different input sizes. For mt on Tesla

C2050, our compiler chooses 2 as the optimal factor for

a 16M input and 4 for 64M; otherwise, there is a per-

formance difference as large as 0.3x if an identical ILP

factor is used.

Table 4. Optimal ILP Factor for All Benchmarks

Platform mt gemm mv gauss hotspot

GTX 690 4 8 1 2 2

GTX TITAN 2 8 1 4 1

Tesla C2050 4 8 1 4 2

HD 7850 4 4 2 4 1

In summary, our experimental results show that our

optimizing compiler generates high quality code on di-

verse platforms and often achieves comparable perfor-

mance, even compared with manually optimized code

in OpenHMPP and CUDA.

5 Related Work

5.1 Optimizing for Shared Memory

Manual Optimization. Utilizing shared memory

to achieve coalesced memory accesses[1-2] and to act

as a software managed cache[3-4] has been studied

thoroughly by researchers; however, most of them re-

main manual optimization. Optimizing for GPU calls

for considerable experience and a deep understand-

ing of hardware details[29]. Moreover, optimization

techniques need adjustment when ported to a new

platform[30]. In comparison, Our compiler simplifies

the work of programmers by generating optimized code

automatically.

Optimizing Compiler Based on Compiler Analy-

sis. For the sake of programmability, correctness

and productivity, optimizing compilers are regarded

as a relatively easy and reliable shortcut to high

performance[5,7,31]. CUDA-lite[7] is one of the first com-

pilers to coalesce global memory requests with some

programmer annotation. CUDA-lite translates a naive

kernel annotated with parallelism and array informa-

tion into a memory coalesced version, using shared

memory as a temporary depot. In comparison, our

compiler requires only data management hints from

programmers. More importantly, our compiler aims

at global access coalescing and data reuse alike. Yang

et al.[5] designed an auto-optimizing source-to-source

GPU compiler, which manages to increase memory

throughput by employing shared memory. Although

utilizing shared memory for similar purposes, we ap-

proach this optimization from a data centric perspec-

tive. Besides, we trust programmers to provide better

insight into the memory pattern and data partition, and

take their advice for shared memory utilization.

Optimizing Compiler Based on Polyhedral Model.

As the basis for major advances in automatic program

optimization and parallelization[12-13], the polyhedral

model has been introduced to build efficient GPU com-

pilers. Baskaran et al. conducted a series of stud-

ies on translating affine loop nests to GPUs[32] and

built an automatic C-to-CUDA compiler[15] under the

polyhedral framework. They adjusted Pluto to find

affine transforms that enable global memory coalescing.

While C-to-CUDA always maps all arrays into shared

memory, our compiler can solve an optimal combination

of arrays and filter out those that do not benefit from

shared memory optimization or cannot fit into shared

memory. Therefore, we avoid inefficient or invalid op-

timizations, which are possible in C-to-CUDA. Gpu-

loc is based on the algorithm proposed by Baghdadi

et al.[33] It uses a ranking-based technique[34], which

targets only data locality, to manage data movement

between shared memory and global memory. By con-

trast, we consider coalescing global memory accesses

with shared memory, which is even more significant in

improving performance. Moreover, GPUloc utilizes a

dual buffer system, which wastes memory and limits

parallelism. In comparison, our compiler has a smaller

memory request.

Pragma Directed Programming. Portability and

productivity motivated the design of accelerator ori-

ented APIs, which aim to ease GPU programming by

designing OpenMP like pragmas. In the OpenACC

250 J. Comput. Sci. & Technol., Mar. 2016, Vol.31, No.2

API, the programmer annotates the sequential code

with compiler directives, indicating those code regions

susceptible to be executed on GPU. Programmers can

have fine control over parallelism and data manage-

ment. However, shared memory optimization inside

OpenACC is not satisfactory. Targeting data reuse,

OpenACC requires the programmer to specify the ele-

ments that will be reused for each thread. In contrast,

we design share pragma to handle data reuse as well

as data coalescing scenarios. Moreover, from a data

centric point of view, we allow a more flexible way

to describe data management decisions compared with

OpenACC. OpenHMPP distinguishes from OpenACC

in its ability to perform low-level optimizations, includ-

ing shared memory optimization. However, in order to

utilize shared memory, programmers are responsible of

moving data in and out of shared memory as well as

reading data from shared memory, which is as complex

as programming in CUDA/OpenCL. On the contrary,

our compiler accepts a few hints from programmers and

does not bother programmers with code generation.

5.2 Optimizing for ILP

Volkov[11] studied the performance impact of paral-

lel instructions and inspired many studies[9-10] to op-

timize ILP of GPU applications. He revealed that en-

hancing ILP facilitates latency hiding and can be an

effective performance technique. However, [9-10] fail

to notice the performance defect with ILP optimiza-

tion in case of bad memory access patterns. In con-

trast, we choose to perform ILP optimization on top of

our shared memory utilization to eliminate interference

from bad memory patterns. Moreover, our compiler

enables automatic ILP code generation and ILP fac-

tor selection, and therefore relieves programmers from

troublesome coding and cross platform tuning.

A more recent work[9] managed to improve ILP for

GPU by scheduling PTX instructions across branches

on critical path. Our ILP optimization works on source

code level instead. Nevertheless, their work could com-

plement ours and further improve ILP on PTX code

level.

6 Conclusions

In this paper, we introduced several shared memory

related optimization techniques for better bandwidth

utilization and parallelism on GPUs. We leveraged

programmer knowledge for pragmas concerning data

partition. Then, our compiler tries to harness shared

memory for data reuse and coalescing opportunities.

Besides, we designed two automatic optimizations on

top of shared memory: bank conflict avoidance and

ILP enhancement, which target higher memory and in-

struction parallelism, respectively. A set of compiler

techniques was proposed to generate optimized kernel

code. Our experimental results showed that the opti-

mized code achieves high performance, often superior

to current accelerator oriented APIs.

Our future research will focus on enhancing the ap-

plicability of our compiler framework, including au-

tomatically selecting the thresholds, and coping with

larger applications with multiple affine sections. We

will also combine ILP optimization with register tiling

in our compiler so as to improve how to select ILP fac-

tors.

References

[1] Ruetsch G, Micikevicius P. Optimizing matrix trans-

pose in CUDA. http://www.cs.colostate.edu/∼cs675/Mat-

rixTranspose.pdf, Jan. 2009.

[2] Fujimoto N. Faster matrix-vector multiplication on GeForce

8800GTX. In Proc. IEEE International Symposium on

Parallel and Distributed Processing, Apr. 2008.

[3] Van Werkhoven B, Maassen J, Bal H E, Seinstra F J. Op-

timizing convolution operations on GPUs using adaptive

tiling. Future Gener. Comput. Syst., 2014, 30: 14-26.

[4] Nguyen A, Satish N, Chhugani J, Kim C, Dubey P. 3.5-D

blocking optimization for stencil computations on modern

CPUs and GPUs. In Proc. the 2010 ACM/IEEE Interna-

tional Conference for High Performance Computing, Net-

working, Storage and Analysis, Nov. 2010.

[5] Yang Y, Xiang P, Kong J, Zhou H. A GPGPU compiler

for memory optimization and parallelism management. In

Proc. the 31st ACM SIGPLAN Conference on Program-

ming Language Design and Implementation, Jun. 2010,

pp.86-97.

[6] Kandemir M, Kadayif I, Sezer U. Exploiting scratch-pad

memory using Presburger formulas. In Proc. the 14th In-

ternational Symposium on Systems Synthesis, Sept. 2001,

pp.7-12.

[7] Ueng S Z, Lathara M, Baghsorkhi S, Hwu W. CUDA-Lite:

Reducing GPU programming complexity. In Proc. the Lan-

guages and Compilers for Parallel Computing, July 3-Aug.

2, 2008, pp.1-15.

[8] Yang Y, Xiang P, Mantor M, Rubin N, Zhou H. Shared

memory multiplexing: A novel way to improve GPGPU

throughput. In Proc. the 21st International Conference on

Parallel Architectures and Compilation Techniques, Sept.

2012, pp.283-292.

[9] Jablin J A, Jablin T B, Mutlu O, Herlihy M. Warp-aware

trace scheduling for GPUs. In Proc. the 23rd Interna-

tional Conference on Parallel Architectures and Compila-

tion, Aug. 2014, pp.163-174.

Jing Li et al.: Pragma Directed Shared Memory Centric Optimizations on GPUs 251

[10] Schäfer A, Fey D. High performance stencil code algorithms

for GPGPUs. Procedia Computer Science, 2011, 4: 2027-

2036.

[11] Volkov V. Better performance at lower occupancy.

www.cs.berkeley.edu/∼volkov/volkov10-GTC.pdf, Dec.

2014.

[12] Bondhugula U, Hartono A, Ramanujam J, Sadayappan P. A

practical automatic polyhedral parallelizer and locality op-

timizer. In Proc. the 29th ACM SIGPLAN Conference on

Programming Language Design and Implementation, Jun.

2008, pp.101-113.

[13] Bastoul C. Code generation in the polyhedral model is eas-

ier than you think. In Proc. the 13th International Con-

ference on Parallel Architectures and Compilation Tech-

niques, Sept. 29-Oct. 3, 2004, pp.7-16.

[14] Baskaran M M, Bondhugula U, Krishnamoorthy S, Ra-

manujam J, Rountev A, Sadayappan P. A compiler frame-

work for optimization of affine loop nests for GPGPUs. In

Proc. the 22nd Annual International Conference on Super-

computing, Jun. 2008, pp.225-234.

[15] Baskaran M, Ramanujam J, Sadayappan P. Automatic C-

to-CUDA code generation for affine programs. In Proc. the

19th Joint European Conference on Theory and Practice of

Software, International Conference on Compiler Construc-

tion, Mar. 2010, pp.244-263.

[16] Pouchet L N. Polyhedral compilation foundations. ht-

tp://web.cs.ucla.edu/∼pouchet/lectures/doc/888.11.2.pdf,

Dec. 2014.

[17] Murthy G S, Ravishankar M, Baskaran M M, Sadayap-

pan P. Optimal loop unrolling for GPGPU programs. In

Proc. the 2010 IEEE International Symposium on Parallel

& Distributed Processing (IPDPS), Apr. 2010.

[18] Liu L, Li Y, Cui Z, Bao Y, Chen M, Wu C. Going vertical

in memory management: Handling multiplicity by multi-

policy. In Proc. the 41st ACM/IEEE International Sympo-

sium on Computer Architecture (ISCA), Jun. 2014, pp.169-

180

[19] Gao S. Improving GPU shared memory access efficiency

[Ph.D. Thesis]. University of Tennessee, 2014.

[20] Gou C, Gaydadjiev G. Addressing GPU on-chip shared

memory bank conflicts using elastic pipeline. International

Journal of Parallel Programming, 2013, 41(3): 400-429.

[21] Ryoo S, Rodrigues C I, Baghsorkhi S S, Stone S S, Kirk D B,

Hwu W W. Optimization principles and application perfor-

mance evaluation of a multithreaded GPU using CUDA. In

Proc. the 13th ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming, Feb. 2008, pp.73-82.

[22] Lee S I, Johnson T, Eigenmann R. Cetus — An extensible

compiler infrastructure for source-to-source transformation.

In Lecture Notes in Computer Science 2958, Rauchwerger

L (ed.), Springer Berlin Heidelberg, 2004, pp.539-553.

[23] Lee S, Min S, Eigenmann R. OpenMP to GPGPU: A com-

piler framework for automatic translation and optimization.

In Proc. the 14th ACM SIGPLAN Symposium on Prin-

ciples and Practice of Parallel Programming, Feb. 2009,

pp.101-110.

[24] Wienke S, Springer P, Terboven C, an Mey D. OpenACC

— First experiences with real-world applications. In Lec-

ture Notes in Computer Science 7484, Kaklamanis C, Pap-

atheodorou T, Spirakis P G (eds.), Springer Berlin Heidel-

berg, 2012, pp.859-870.

[25] Catanzaro B, Garland M, Keutzer K. Copperhead: Com-

piling an embedded data parallel language. Technical Re-

port, UCB/EECS-2010-124, EECS Department, University

of California, Berkeley, Sept. 2010.

[26] Reyes R, López I, Fumero J, de Sande F. A preliminary

evaluation of OpenACC implementations. The Journal of

Supercomputing, 2013, 65(3): 1063-1075.

[27] Fang J, Varbanescu A, Sips H. A comprehensive perfor-

mance comparison of CUDA and OpenCL. In Proc. the In-

ternational Conference on Parallel Processing, Sept. 2011,

pp.216-225.

[28] Karimi K, Dickson N G, Hamze F. A performance com-

parison of CUDA and OpenCL. arXiv: 1005.2581, 2010.

http://arvix.org/abs/1005.2581, Jan. 2016.

[29] Li C, Yang Y, Dai H, Yan S, Mueller F, Zhou H. Un-

derstanding the tradeoffs between software-managed vs.

hardware-managed caches in GPUs. In Proc. the 2014 IEEE

International Symposium on Performance Analysis of Sys-

tems and Software (ISPASS), Mar. 2014, pp.231-242.

[30] Chen G, Wu B, Li D, Shen X. PORPLE: An extensible

optimizer for portable data placement on GPU. In Proc.

the 47th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO), Dec. 2014, pp.88-100.

[31] van den Braak G, Mesman B, Corporaal H. Compile-time

GPU memory access optimizations. In Proc. the 2010 In-

ternational Conference on Embedded Computer Systems

(SAMOS), Jul. 2010, pp.200-207.

[32] Baskaran M M, Bondhugula U, Krishnamoorthy S, Ra-

manujam J, Rountev A, Sadayappan P. Automatic data

movement and computation mapping for multi-level paral-

lel architectures with explicitly managed memories. In Proc.

the 13th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, Feb. 2008, pp.1-10.

[33] Baghdadi S, Gröβlinger A, Cohen A. Putting automatic

polyhedral compilation for GPGPU to work. In Proc. the

15th Workshop Compilers for Parallel Computers, Jul.

2010.

[34] Gröβlinger A. Precise management of scratchpad memories

for localising array accesses in scientific codes. In Proc. the

18th International Conference on Compiler Construction,

Mar. 2009, pp.236-250.

Jing Li received her B.S. degree

in software engineering from Wuhan

University, Wuhan, in 2012. Currently

she is a Ph.D. candidate of Institute of

Computing Technology (ICT), Chinese

Academy of Sciences (CAS), Beijing.

Her research interests include program-

ming language and optimization on

GPUs.

252 J. Comput. Sci. & Technol., Mar. 2016, Vol.31, No.2

Lei Liu received his B.S. degree

in computer science from Changchun

University of Science and Technology,

Changchun, in 2001, M.S. degree in

computer science from Jilin University,

Changchun, in 2004, and Ph.D. degree

in computer architecture from ICT,

CAS, Beijing, in 2010. He participated

in the Advanced Compiler Technology Laboratory (ACT)

of ICT, CAS, in 2010, and is now an assistant professor

of ICT, CAS. His research interests include programming

language and compiler optimization.

Yuan Wu received his B.S. degree

in computer science and technology

from Zhengzhou University, Zhengzhou,

in 2012. He is now a senior engineer

of Samsung Electronics, Beijing. His

research interests include compiler

optimization and performance analy-

sis.

Xiang-Hua Liu received his B.S.

degree in electrical engineering from

Beijing Institute of Technology, Beijing,

in 1998, M.S. degree in electrical

engineering from Beijing Institute of

Technology, Beijing, in 2001, and Ph.D.

degree in electrical and information

engineering from Beihang University,

Beijing, in 2005. Currently he is a principle engineer

of Samsung Electronics, Beijing, working on compiler

development and software optimization.

Yi Gao received his B.S. degree in

computer software in 2002, and M.S.

degree in computer architecture in

2005, both from Peking University,

Beijing. He is now a senior engineer

of Samsung Electronics, Beijing. His

research interests include compiler

optimization and performance analy-

sis.

Xiao-Bing Feng received his B.E.

degree in computer software from

Tianjin University, Tianjin, in 1992,

M.S. degree in computer software from

Peking University, Beijing, in 1996, and

Ph.D. degree in computer architecture

from ICT, CAS, Beijing, in 1999. Now

he is a professor and Ph.D. supervisor

of ICT, CAS. His research interests include compiler

optimization and binary translation.

Cheng-Yong Wu received his B.S.

degree in mathematics from Fudan

University, Shanghai, in 1991, M.S. de-

gree in computer science from Beihang

University, Beijing, in 1996, and Ph.D.

degree in computer architecture from

ICT, CAS, Beijing, in 2000. Now he is a

professor and Ph.D. supervisor of ICT,

CAS. His research interests include compiler optimization

and binary translation.

