
Qi RZ, Wang ZJ, Li SY. A parallel genetic algorithm based on Spark for pairwise test suite generation. JOURNAL OF

COMPUTER SCIENCE AND TECHNOLOGY 31(2): 417–427 Mar. 2016. DOI 10.1007/s11390-016-1635-5

A Parallel Genetic Algorithm Based on Spark for Pairwise Test Suite

Generation

Rong-Zhi Qi 1, Member, CCF, Zhi-Jian Wang 1, Member, IEEE, and Shui-Yan Li 2

1College of Computer and Information, Hohai University, Nanjing 211106, China
2College of Science, Hohai University, Nanjing 211106, China

E-mail: {rzqi, zhjwang, lsy}@hhu.edu.cn

Received March 18, 2015; revised September 25, 2015.

Abstract Pairwise testing is an effective test generation technique that requires all pairs of parameter values to be covered

by at least one test case. It has been proven that generating minimum test suite is an NP-complete problem. Genetic

algorithms have been used for pairwise test suite generation by researchers. However, it is always a time-consuming process,

which leads to significant limitations and obstacles for practical use of genetic algorithms towards large-scale test problems.

Parallelism will be an effective way to not only enhance the computation performance but also improve the quality of the

solutions. In this paper, we use Spark, a fast and general parallel computing platform, to parallelize the genetic algorithm to

tackle the problem. We propose a two-phase parallelization algorithm including fitness evaluation parallelization and genetic

operation parallelization. Experimental results show that our algorithm outperforms the sequential genetic algorithm and

competes with other approaches in both test suite size and computational performance. As a result, our algorithm is a

promising improvement of the genetic algorithm for pairwise test suite generation.

Keywords pairwise testing, parallel genetic algorithm, Spark, test generation

1 Introduction

Software testing is the activity of executing a sys-

tem to detect failures. In some testing scenarios, many

failures are triggered by interactions among parameters

of the software. Real software systems become more

complex and tend to have many parameters. This will

create a huge number of possible combinations of all

parameter values. Exhaustive testing tries all the possi-

ble parameter value combinations to detect interaction-

triggered failures. However, exhaustive testing is not

feasible for real situations. For example, if a system

has 10 parameters and each parameter can be assigned

one of 10 different values, we will generate 1010 possible

combinations. If each combination is executed in one

minute, it will take about 20 thousand years to com-

plete the whole test.

Pairwise testing can alleviate the combination ex-

plosion problem of exhaustive testing. Pairwise testing

has been proven to be an effective testing strategy for

various types of systems[1]. It is based on the obser-

vation that most faults are caused by interactions of

at most two factors[2]. How to generate minimum test

suite to cover combinations of all pairs is an active re-

search point of pairwise testing. As generating mini-

mum test suite for pairwise testing is an NP-complete

problem[1], researchers have tried various methods to

generate near-minimum test suite. Nie and Leung pre-

sented four main groups of approaches: greedy algo-

rithms, heuristic search algorithms, mathematic meth-

ods, and random methods[3]. Among these methods,

the greedy algorithms are the most widely used for com-

binatorial test generation. They are usually faster than

the metaheuristic algorithms but do not always produce

the smallest test suites[4]. The heuristic search algo-

rithms formulate combinatorial test generation problem

as a search problem and apply search techniques such

as Hill Climbing (HC), Simulated Annealing (SA), Ge-

netic Algorithm (GA), Ant Colony Algorithm (ACA)

Regular Paper

This work is supported by the Fundamental Research Funds for the Central Universities of China under Grant Nos. 2010B06914
and 2013B07514.

©2016 Springer Science +Business Media, LLC & Science Press, China

418 J. Comput. Sci. & Technol., Mar. 2016, Vol.31, No.2

and so on to solve the problem. These algorithms can

often produce a smaller test suite than the greedy algo-

rithms, but typically require a longer computation[3].

To deal with the heavy computation challenge, in

this paper, we propose a parallel genetic algorithm

based on Spark[5], called PGAS, to speed up the pro-

cess of generating pairwise test suite. Parallelism can

improve both performance and quality of the solutions.

GA is naturally parallelizable since its fitness evalua-

tion and evolution process including iterations of ge-

netic operation can be performed in parallel. GA is

also an iterative and CPU-intensive algorithm. Thus, it

can benefit from Spark’s in-memory computing ability.

Spark, a fast and general cluster computing platform,

is suitable for handling the parallelization of GA. How-

ever, to the best of our knowledge, there are no methods

that have been proposed in literatures for generating

pairwise test suite using Spark to parallelize GA. There-

fore, in this paper, we use Spark to implement two-

phase parallelization: fitness evaluation parallelization

and genetic operation parallelization. The first phase

evaluates each individual’s fitness value in parallel; the

second phase splits the population into different slices

that can be evolved separately.

The main contributions of this paper can be sum-

marized as follows.

1) We propose a two-phase parallelization algorithm

(fitness evaluation and genetic operation) based on

Spark for pairwise test suite generation.

2) We give a preliminary evaluation of the proposed

algorithm through experiments to verify the perfor-

mance and effectiveness.

The rest of the paper is organized as follows. In Sec-

tion 2, we introduce related work. Section 3 gives the

description of pairwise testing. Section 4 describes our

GA for pairwise test generation. Section 5 presents our

two-phase parallelization algorithm. Section 6 reports

the evaluation of our algorithm. Section 7 concludes

the paper.

2 Related Work

Metaheuristic search algorithms have been used

for combinatorial test generation by many researchers.

Ghazi and Ahmed[6] proposed a GA-based technique

to generate pairwise test configurations and conducted

some experiments. McCaffrey designed a GA for pair-

wise test case generation called GAPTS[7]. GAPTS

encodes chromosome to represent a test set with an ar-

ray of integer values. The fitness function is the total

number of distinct pairs captured by the chromosome.

GAPTS can produce pairwise test sets with smaller size

compared with other methods. But it requires signifi-

cantly longer processing time. Shiba et al.[8] used GA

and ACA to generate 3-way test set. Flores and Yoon-

sik also used GA to generate pairwise test set, and de-

signed an open source tool called PWiseGen[9]. Six

variants from GA, PSO, and ACA by reversing and

randomizing their mechanisms to generate 2-way cov-

ering array were designed by Nie et al.[10] They also

gave some experiments which revealed that these vari-

ants required a longer computation. Cohen et al.[11-12]

proposed approaches to generate variable covering ar-

ray and 3-way covering array using SA. Petke et al.[13]

used an SA-based tool called CASA to generate higher

strength covering array which is constrained and priori-

tized. Henard et al.[14] proposed a scalable and flexible

search-based technique based on (1+1) Evolutionary

Algorithm to generate configurations under budget and

time constraints for large feature models. Recently, har-

mony search (HS) has been used to generate combina-

torial test case. Alsewari and Zamli[15] exploited HS

to generate a complete test suite that covers the t-way

interactions at least once in a greedy manner. Experi-

ments showed that this method can get good test sizes

for most of the considered configurations. An approach

for test suite generation based on HS was presented

by Li et al.[16] This method addresses the key issues of

higher degree and variable strength combinatorial cove-

rage.

Parallel metaheuristic search algorithms are new

technologies for improving the performance of meta-

heuristic search algorithms. MRPGA is an ex-

tended MapReduce[17] model to automatically paral-

lelize GA[18]. Verma et al.[19] provided an approach

to scale GA using MapReduce model. Parallel ge-

netic algorithm (PGA) was designed and implemented

on Hadoop. Both Jin et al.[18] and Verma et al.[19]

used MapReduce model to parallelize GA, but their

approaches do not take into account the field of au-

tomatic test data generation. Few researchers have ap-

plied PGA for test case generation, including combi-

natorial test case generation. Geronimo et al.[20] pro-

posed a PGA based on Hadoop MapReduce for JUnit

test suite generation. The global parallelization model

was exploited, and a preliminary evaluation of the algo-

rithm was carried out to assess the speedup. Martino

et al.[21] used MapReduce model to support the paral-

lelization of GA for test data generation and the migra-

tion to the cloud. Three levels of parallelization mod-

Rong-Zhi Qi et al.: PGA Based on Spark for Pairwise Test Suite Generation 419

els were suggested and the global parallelization model

using Google App Engine framework was implemented.

All the above work parallelized GA with MapReduce. A

parallel test generation strategy called MC-MIPOG[22]

was used for t-way test data generation on multicore ar-

chitecture. Lopez-Herrejon et al.[23] used PGA to gene-

rate prioritized pairwise test suite for software product

lines. The algorithm follows the master-slave model to

parallelize the evaluation of the individuals using nor-

mal cluster. With respect to Lopez-Herrejon et al.[23],

our proposed algorithm uses Spark to implement two-

phase parallelization: fitness evaluation and genetic

operation.

3 Pairwise Testing

When generating test suite with pairwise testing,

the input space of the software under test (SUT) can

be modeled as a collection of parameters, each of which

assumes one or more values. Pairwise testing aims at

selecting a subset from the complete set of parameter

value combinations such that all pairs of parameter val-

ues are in the selected subset. Each selected parameter

value combination will generate at least one test case

for SUT. The set of test cases is often called test suite

which is represented by covering array (CA) defined as

below.

Definition 1 (Covering Array). Let SUT have k

parameters and each parameter pi have vi (1 6 i 6 k)

values. A covering array CA(N ; vp1

1 v
p2

2 · · · vpk

k , t) is an

N×k matrix. Each row of this matrix is a test case. N

is the number of test cases and t is the strength of the

covering array. Each N × t subarray contains at least

one occurrence of each t-tuple corresponding to the t

columns. If v1 = v2 = · · · = vk = v, the corresponding

covering array is said to be uniform. It is denoted as

CA(N ; vk, t).

When t = 2, it is called 2-way covering array. Test-

ing with 2-way covering array is called pairwise testing.

The intent of pairwise testing is to reduce the number

of test cases.

For example, we assume SUT has three parameters:

p0, p1, and p2. The possible values for each parame-

ter are {a0, a1}, {b0, b1}, and {c0, c1} respectively. The

total number of possible combinations of all parameter

values is 23:

(a0, b0, c0) , (a0, b0, c1) , (a0, b1, c0) , (a0, b1, c1) ,

(a1, b0, c0) , (a1, b0, c1) , (a1, b1, c0) , (a1, b1, c1) .

When testing this SUT with pairwise testing, the gene-

rated test cases will cover each pair of parameter values.

There are 12 such pairs:

{a0, b0} , {a0, b1} , {a0, c0} , {a0, c1} ,

{a1, b0} , {a1, b1} , {a1, c0} , {a1, c1} ,

{b0, c0} , {b0, c1} , {b1, c0} , {b1, c1} .

In this case, the following set of four combinations suf-

fices:

(a0, b0, c1) , (a0, b1, c0) , (a1, b0, c0) , (a1, b1, c1) .

Table 1 shows the covering array CA
(

4; 23, 2
)

for this

SUT.

Table 1. CA(4; 23, 2)

p0 p1 p2

t1 a0 b0 c1

t2 a0 b1 c0

t3 a1 b0 c0

t4 a1 b1 c1

In the above example, it can be seen that pairwise

testing can reduce the required number of test cases

from 8 to 4, a 50% reduction. With larger parame-

ter value combinations, the result will be better. In

this paper, we try to generate near-minimum covering

array (test suite) to reach 100% pairwise coverage for

SUT, especially in the scenario of large parameter value

combinations.

4 Design of GA

GA is a metaheuristic search technique that simu-

lates the evolution of natural systems. It is often ex-

ploited to solve search and optimization problems. It

is usually infeasible to exhaustively evaluate the entire

input space and thus GA is used to produce good so-

lutions in reasonable time by evaluating only a small

portion of the input space. The basic GA first con-

structs an initial population randomly and then iterates

through the following procedures until stopping criteria

hold. It assesses the fitness value of all the individuals

in the population. Individuals with high fitness val-

ues have a better chance to evolve into the next gene-

ration by applying genetic operators such as selection,

crossover, and mutation.

When using GA to solve pairwise test generation

problem, the following design decisions have to be

made: chromosome encoding, fitness function, and ge-

netic operators.

420 J. Comput. Sci. & Technol., Mar. 2016, Vol.31, No.2

4.1 Chromosome Encoding

Chromosome encoding is the representation of an

individual which is the candidate solution of the prob-

lem. In the scenario of pairwise test generation, the

solution is often a suitable test suite of SUT. In the

literature, there are several encoding methods such as

bit strings, floating point, and integer. We will use in-

teger encoding to represent the individual[7]. This en-

coding method encodes a set of test cases as an array of

integer values. Each integer corresponds to a possible

value of a parameter of SUT. Thus, an individual is an

array of lists of integers and each list represents a test

case. The length of each list is equal to the number of

the parameters. The size of an individual, denoted by

m, is the number of the test cases. Our goal is to find

the optimal m to cover 100% pairwise combinations of

parameter value. If m has been reported in literatures,

we set this value as the initial test suite size in our pro-

posed algorithm and search for a solution. Otherwise,

we use the binary search approach presented by Cohen

et al.[11] to determine m.

According to Definition 1, SUT has k parameters

and each parameter pi has vi (1 6 i 6 k) values. When

using the above encoding, p1 has values of 1, 2, 3, · · · ,

v1, p2 has values of v1 + 1, v1 + 2, v1 + 3, · · · , v2, and

pk has values of vk−1 + 1, vk−1 + 2, vk−1 + 3, · · · , vk.

These parameters and values are expressed by text file

as illustrated in Fig.1. This text file will be used as

input for our algorithm.

p1: 1, 2, 3, · · · , v1

p2: v1 + 1, v1 + 2, v1 + 3, · · · , v2
...

pk: vk−1 + 1, vk−1 + 2, vk−1 + 3, · · · , vk

Fig.1. Input text file of SUT.

The total number of pairs to be covered is denoted

by AP and is calculated as:

AP = v1

k
∑

i=2

vi + v2

k
∑

i=3

vi + · · ·+ vk−1vk.

4.2 Fitness Function

A fitness function for pairwise testing is often a

given coverage criterion which measures the goodness

of an individual. Grindal et al.[24] defined that 100%

pairwise coverage requires that every possible pair of

interesting values of any two parameters is included in

some test case. We will use this 100% pairwise cover-

age as our fitness function. Thus, the fitness function

is the total number of different pairs covered by all the

test cases in an individual. If an individual covers more

different pairs than others, it is better than others. An

individual becomes a solution when it covers all pairs.

4.3 Genetic Operators

Another important issue of GA is genetic operators

including selection, crossover, and mutation. As for the

selection operator, we employ fitness proportionate se-

lection to determine which individuals to be chosen as

parents for reproduction. In fitness proportionate se-

lection, individuals are selected in proportion to their

fitness values: if individuals have higher fitness values,

they are selected more often. Let s =
∑

i fi be the sum

of all individuals’ fitness values. A random number n

is picked from 0 to s. If n falls within the range of

some individual in the array of individual ranges, this

individual is selected.

After selection, the selected parents are copied and

then crossover mixes and matches parts of these two

copied parents to form better children. Our crossover

mechanism uses both single-point and multiple-point

random crossover. Single-point random crossover cho-

oses a number c randomly from 0 to the length of an

individual and exchanges all the indexes smaller than

c. In multiple-point crossover, individuals are regarded

as a ring. Several unique points are picked at random,

breaking the ring into several segments. A segment

from one ring is exchanged with one from another ring

to produce new offspring. In our testing scenarios, if the

size of an individual is small, we use single-point ran-

dom crossover to produce offspring; otherwise, we use

multiple-point random crossover to get better solution.

After crossover, we use integer randomization mu-

tation to change the genes of new generated offspring

with a given higher mutation rate as suggested by Tate

and Smith[25] to find a solution faster. As for the mu-

tation mechanism, mutation operator uses both single-

point and multiple-point integer random mutation. In

single-point integer random mutation, a gene to be mu-

tated is picked at random and then is replaced with

randomly selected valid value of the parameters; while

multiple-point integer random mutation picks several

genes randomly and replaces them with randomly se-

lected valid values of the parameters. After mutation

operation, new mutated offspring will become individu-

Rong-Zhi Qi et al.: PGA Based on Spark for Pairwise Test Suite Generation 421

als of the population by replacing two individuals with

the lowest fitness values.

In order to find the solution faster, our algorithm

mutates the best individual at the end of each gene-

ration to generate new mutant that replaces the indi-

vidual with the lowest fitness value. This best indivi-

dual is still kept in future population.

5 Parallel Genetic Algorithm

Luque and Alba[26] described four parallel mod-

els: global model, distributed model, cellular model,

and hybrid model. Spark is based on the master-

slave distributed computing model and it is suitable

for the global and distributed model of GA paralleliza-

tion. Therefore, we use Spark to parallelize GA and

implement two-phase parallelization algorithm: fitness

evaluation and genetic operation. Both of them aim

to improve the performance and effectiveness of GA in

searching near-minimum test suite.

5.1 Architecture

The proposed two-phase parallelization algorithm is

based on Spark resilient distributed dataset (RDD)[5].

The whole population is stored as RDD and is cached in

memory, which allows future actions to be much faster.

The architecture of our approach is shown in Fig.2.

Fitness evaluation is the first phase parallelization

which includes stages 1∼3. Stage 1 generates initial

population which is then parallelized into different par-

titions of RDD in stage 2. The fitness value of each

individual is evaluated on different workers from stage

2 to stage 3. The first phase parallelization fits the

global model. Genetic operation is the second phase

parallelization which includes stages 4∼6. Stage 4 di-

vides population with fitness value into numbers of sub-

populations that are cached into different partitions of

RDD. Genetic operations are then performed in paral-

lel from stage 4 to stage 5. Stage 6 collects the best

individuals from different partitions. The second phase

parallelization fits the distributed model.

5.2 Parallel Fitness Evaluation

Our basic idea of fitness evaluation parallelization

is to parallelize initial population into RDD and evalu-

ate each individual’s fitness value on different workers.

Then the driver collects the results and applies genetic

operators. The lineage graph of parallel fitness evalua-

tion is shown in Fig.3. First, initial population is par-

allelized into populationRDD by parallelize() method

of Spark. Then a map(.assessF itness()) transfor-

mation is applied to transform populationRDD into

fitnessRDD which contains (individual, fitness value)

pairs. The function assessF itness() that evaluates

individual’s fitness value is passed in the driver pro-

gram to run on the cluster. Finally, the collect() action

starts to collect these pairs to the driver.

5.3 Parallel Genetic Operation

After the result of parallel fitness evaluation returns

to the driver, if the result does not contain the solution,

the algorithm continues to apply parallel genetic ope-

ration. The lineage graph of parallel genetic operation

is shown in Fig.4.

Population

Individual 1

Individual 2

Individual 3

Individual 4

Individual n

RDD

Partition 0

Partition 1

Partition n

Individual 1

Individual 3

Individual 2

Individual 4

Individual n

Population
with Fitness
Value

Individual 1

Individual 2

Individual 3

Individual 4

Individual n

RDD

Partition 0

Partition 1

Partition n

Individual 1

Individual 4

Individual 2

Individual 3

Individual n

1 2

Phase 1 Phase 2

3 4 5 6

RDD

Partition 0

Partition 1

Partition n

Individual 1

Individual 4

Individual 2

Individual 3

Individual n

List of Best
Individual on
Different Partitions

Individual 1

Individual 2

Individual 9

Individual 12

Individual n

⊲⊲
⊲

⊲⊲
⊲ ⊲⊲
⊲

⊲⊲
⊲

⊲⊲
⊲ ⊲⊲
⊲

Fig.2. Architecture of two-phase parallelization.

422 J. Comput. Sci. & Technol., Mar. 2016, Vol.31, No.2

 Initial Population

PopulationRDD

parallelize↼↽

FitnessRDD

map↼_ .assessFitness↼↽↽

collect↼↽

Result

Fig.3. RDD lineage graph for phase 1.

 Population with Fitness

PopulationRDD

parallelize↼↽

EvolutionRDD

mapPartitions↼_ .evolution↼↽↽

map↼_ .getBest↼↽↽

BestIndividualRDD

collect↼↽

Result

Fig.4. RDD lineage graph for phase 2.

First, population with fitness value is parallelized

into populationRDD by parallelize() method of Spark.

Then a mapPartitions(.evolution()) transformation

divides population into numbers of subpopulations that

are cached into different partitions of populationRDD

and transforms populationRDD into evolutionRDD.

The number of partitions depends on the dimensions of

the cluster. The function evolution() that applies ge-

netic operators is passed in the driver program to run

on the cluster. Then another map(.getBest()) trans-

formation is applied to transform evolutionRDD into

bestIndividualRDD that contains (key, value) pairs,

where key is a pair (individual, fitness value) and value

is the number of generation needed to find a solution.

The function getBest() that gets the best individual of

each subpopulation is passed in the driver program to

run on the cluster. Finally, the collect() action collects

the best individuals on every worker to find the best

solution.

5.4 Algorithms

Algorithm 1 sketches the pseudo-code of two-phase

parallelization. It takes as inputs the parameter-values

text file, the number of parameters, the number of val-

ues for each parameter, the test suite size, and the de-

sired population size. The output is a near-minimum

test suite with 100% pairwise coverage. At the begin-

ning, the number of all pairs to be covered is generated

(line 1). The initial population consists of popsize indi-

viduals, each of which is made up of m test cases that

are created randomly by picking each slot uniformly

among all possible values (line 2). Then the algorithm

enters the first-phase parallelization (lines 3∼7) as il-

lustrated in Fig.3. Then the (individual, fitness value)

key-value pairs collected by the driver are sorted by the

fitness value (line 8). If the first pair’s value is AP, its

key is the best individual that will be returned (line 9).

Otherwise, the algorithm enters the second-phase par-

allelization (lines 10∼15) as illustrated in Fig.4. Then

the list of (key, value) pairs, where key is a pair (indi-

vidual, fitness value) and value is the number of gene-

ration needed to find a solution, is sorted by the fitness

value and the number of generation (line 16). If the

first pair’s value is AP , its key is the best individual

that will be returned (line 17).

Algorithm 1. Parallel Genetic Algorithm

Input: pv.txt: parameter-values text file

Input: k: number of parameters in SUT

Input: vi: number of values for each parameter

Input: m : test suite size

Input: popsize: desired population size

Output: a pairwise test suite that covers all pairs of values at

Output: least once

1: AP ← getNumOfAllPairs(k, vi)

2: Population← initializePop(m,popsize,“pv.txt′′)

3: populationRDD ← parallelize(Population)

4: For each individual Ij ∈ populationRDD do

5: fitnessRDD← Ij .map(.assessF itness())

6: End for

7: result← fitnessRDD.collect()

8: sortByV alue(result)

9: If result.top = AP then return top

10: populationRDD ← parallelize(PopWithF itness)

11: For each subPopulation Ij ∈ populationRDD do

12: evolutionRDD ← Ij .mapPartitions(.evolution())

13: bestIndividualRDD ←

evolutionRDD.map(.getBest())

14: End for

15: result← bestIndividualRDD.collect()

16: sortByV alue(result)

17: If result.top = AP then return top

Rong-Zhi Qi et al.: PGA Based on Spark for Pairwise Test Suite Generation 423

In Algorithm 1, three functions are passed in the

driver program to run on the cluster: assessF itness(),

evolution(), and getBest(). Among these three func-

tions, evolution() that involves iterations of genetic

operation including selection, crossover, and mutation

is the most time-consuming phase.

Algorithm 2 describes the pseudo-code of the evo-

lution process. It takes as inputs the population, the

maximum number of generation, and the desired popu-

lation size. Evolved populations on every worker are

outputted. The external loop (lines 2∼12) conducts

the whole evolution process. In each iteration of the

external loop, the algorithm enters an inner loop which

applies genetic operators including selection, crossover,

mutation, and replacement (lines 3∼9). After leaving

the inner loop, the algorithm mutates the best indivi-

dual (line 10). Then the algorithm enters the external

loop to start the evolution again. The evolution pro-

cess is continued until it reaches the maximum number

of generations or the solution has been found. Finally,

it returns the evolved populations to Algorithm 1 (line

13).

Algorithm 2. Evolution Process

Input: P : population

Input: max: maximum number of generation

Input: popsize: desired population size

Output: evolved populations on every worker

1: it← 1

2: While (it 6 max && the ideal solution not found)

3: For popsize/2 times do

4: Parent P1 ← Selection(P)

5: Parent P2 ← Selection(P)

6: Children C1, C2 ← Crossover(Copy(P1), Copy(P2))

7: Mutate(C1, C2)

8: ReplaceWorstIndividual(P)

9: End for

10: Mutate the best individual

11: it← it+ 1

12: End While

13: Return the evolved populations

6 Preliminary Evaluation

In this section, we study the behavior of PGAS

when solving pairwise test suite generation problem.

We perform two categories of experiments: comparison

with the Sequential Genetic Algorithm (SGA), compar-

ison with other test generation approaches reported in

literatures. Finally, we analyze the main threats to va-

lidity.

6.1 Experimental Design

To conduct experiments, we implement PGAS on

Spark using Java and run PGAS on a small cluster con-

sisting of five nodes, where each node has one Intel Core

i5 750 Quad-Core at 2.66 GHz CPU, 4 GB RAM. One

node is the namenode and the other four nodes are the

datanodes that have 16 cores altogether. Each node

is running at the Ubuntu 12.04, Java 1.7, Hadoop 2.4,

and Spark 1.1.0.

In our experiments, we select 14 pairwise synthetic

benchmarks and 5 real-world benchmarks presented by

Jia et al.[27] and Garvin et al.[28] Table 2 shows these

benchmarks. The tuples column represents the total

number of pairs of each benchmark.

Table 2. Synthetic and Real-World Benchmarks

Model Tuples

Synthetic benchmarks S 1 34 54

S 2 513822 492

S 3 313 702

S 4 514431125 1 944

S 5 6151463823 1 992

S 6 716151453823 2 175

S 7 616 4 320

S 8 716 5 880

S 9 816 7 680

S 10 817 8 704

S 11 415317 229 14 026

S 12 41339 235 17 987

S 13 1020 18 000

S 14 4100 79 200

Real-world benchmarks SPIN-S 21345 992

Bugzilla 2493142 5 822

SPIN-V 24232411 8 797

Apache 215838445161 66 930

GCC 2189310 82 809

There are five parameters that impact the perfor-

mance of PGAS: the population size, the number of

crossover points, the number of mutation points, the

maximum number of generations, and the number of

partitions. A large population can increase the popu-

lation diversity. When using large population, PGAS

can still find solutions in reasonable time because of

the parallelization. The number of crossover points and

that of mutation points are directly proportional to the

size of individual. The number of partitions equals the

number of subpopulations generated by Spark. It is

generally set to 16 based on our cluster. Table 3 shows

three different parameter settings. Parameter setting

424 J. Comput. Sci. & Technol., Mar. 2016, Vol.31, No.2

1 is the small setting that is used for the small size

benchmarks (i.e., S 1∼S 3). Parameter setting 2 is the

medium setting that is used for the medium size bench-

marks (i.e., S 4∼S 10, SPIN-S, Bugzilla, and SPIN-V).

Parameter setting 3 is the large setting which is used for

the large size benchmarks (i.e., S 11∼S 14, Apache, and

GCC). These parameter settings are obtained accord-

ing to the actual experiments. Because of the stochastic

nature of GA, we perform 30 independent runs of each

benchmark.

Table 3. Parameter Settings

Parameter Name Setting 1 Setting 2 Setting 3

Population size 4 800 8 000 12 800

Crossover 1-point 3-point 5-point

Mutation 2-point 5-point 5-point

Maximum
number of
generations

10 000 20 000 50 000

6.2 Comparison with SGA

We compare the performance between SGA and

PGAS. Compared SGA approaches include GAPTS[7],

GA[8], and PWiseGen[9]. In order to make a compre-

hensive comparison with SGA, we download PWiseGen

designed by Flores and Yoonsik[9] and run all the syn-

thetic benchmarks on one node of the cluster. We use

the parameter settings shown in Table 3 for PGAS and

PWiseGen.

Table 4 shows the smallest sizes of test suites gene-

rated by each algorithm. All the data for GAPTS and

GA are taken from McCaffrey[7] and Shiba et al.[8] En-

tries marked with “-” represent that the data are not

reported in these papers. The time column shows the

average running time in second over 30 runs. The best

known results are shown in bold in this table and sub-

sequent tables.

As it can be seen from Table 4, PGAS outperforms

SGA in 9 out of 14 benchmarks. In 4 out of 14 bench-

marks, PGAS can produce test suites with sizes that

equal SGA. S 13 is interesting as described by Jia et

al.[27] and we leave further study to future work.

In order to compare the performance of PGAS with

that of SGA comprehensively, we also evaluate them by

using measures of computational effort, solution quality

and speedup[26]. Computational effort is the execution

time in finding the solution. Solution quality can be

defined as the percentage of runs terminating with suc-

cess. It is denoted by hit. Speedup is the ratio between

SGA execution time and PGAS execution time.

Table 4. Comparison with SGA

Model SGA PGAS

GAPTS GA PWiseGen Size Time (s)

S 1 9 9 009 9 1 683

S 2 - 15 017 015 1 610

S 3 15 17 15 15 1 619

S 4 - 26 026 24 1 108

S 5 - 33 034 31 1 112

S 6 - 42 044 42 1 658

S 7 - - 072 68 1 129

S 8 - - 094 90 1 168

S 9 - - 120 115 1 276

S 10 - - 122 118 1 305

S 11 35 37 034 32 1 468

S 12 27 27 026 23 1 315

S 13 196 227 220 219 1 596

S 14 - - 057 48 1 689

It is shown in Table 4 that SGA can get the same

sizes of test suites as PGAS only in S 1 and S 3. We

cannot get the execution time and hit of SGA when

using the sizes of test suites generated by PGAS and

cannot compare the performance between them. Thus

we run PGAS again using the sizes of test suites gene-

rated by SGA in Table 4. Table 5 shows the average

results of this comparison. This table reports the sizes

of test suites (size), the average execution time in sec-

onds (time), and the percentage of runs terminating

with success (hit).

As it can be seen from Table 5, the time column

reveals that when the benchmark size is smaller (S 1),

PGAS is slower than SGA because of the communica-

tion overhead between the driver and workers in Spark.

But with the increase of the benchmark sizes, PGAS

can find solutions faster than SGA because of the two-

phase parallelization. The last two columns reveal that

PGAS can obtain a higher number of hits and better

speedup than SGA. In 13 out of 14 benchmarks, the

speedup varies from 2 to 18 times.

From Table 4 and Table 5, we can conclude that

PGAS outperforms SGA in both the sizes of generated

test suites and computational performance.

6.3 Comparison with Other Approaches

We compare the best reported sizes of test suites

generated by other approaches with our results. Com-

pared approaches include the greedy algorithm (IPO[1],

mTCG[11,29], and mAETG[11,29]) and the heuristic

search algorithm (ACA[8], PSO[30], and SA[27-28]). The

benchmarks are synthetic benchmarks in Table 2.

Rong-Zhi Qi et al.: PGA Based on Spark for Pairwise Test Suite Generation 425

Table 5. Average Results for PGAS and SGA

Model Size Algorithm Time (s) Hit(%) Speedup

S 1 009 PGSA 3 100 -

SGA < 1 100

S 2 017 PGSA 11 100 14.36

SGA 158 070

S 3 015 PGSA 19 050 07.68

SGA 146 020

S 4 026 PGSA 17 100 17.65

SGA 300 020

S 5 034 PGSA 20 100 05.70

SGA 114 050

S 6 044 PGSA 25 100 02.76

SGA 69 040

S 7 072 PGSA 108 060 03.58

SGA 387 040

S 8 094 PGSA 153 040 02.82

SGA 432 020

S 9 120 PGSA 223 040 02.18

SGA 487 020

S 10 122 PGSA 278 030 02.04

SGA 566 010

S 11 034 PGSA 418 080 01.56

SGA 653 040

S 12 026 PGSA 245 100 02.51

SGA 614 060

S 13 220 PGSA 546 040 01.52

SGA 832 020

S 14 057 PGSA 1 320 050 01.69

SGA 2 234 020

Table 6 reports the smallest sizes of test suites gene-

rated by each algorithm. The best column reports the

best results produced by the compared approaches. In

all of the 14 benchmarks except S 13, PGAS is supe-

rior to the greedy algorithm, ACA, and PSO. When

compared with SA, PGAS can produce test suites with

sizes that are equal to SA in 4 out of 14 benchmarks.

In other 10 benchmarks, SA always generates smaller

test suites than PGAS. We think that SA is better than

PGAS because of its search strategy[11,27-28]. How to

improve the search ability of GA needs to be further

studied.

We also run the five real-world benchmarks in Ta-

ble 2. Compared approaches include ACTS 1○, PICT 1○,

and CASA[28]. Table 7 reports the smallest sizes of

test suites generated by each algorithm. The results

obtained by CASA are average sizes over 5 runs. The

time column shows the average running time in second

over 30 runs. From Table 7, we find that PGAS out-

performs ACTS and PICT for every benchmark and

can generate test suites with almost the same sizes as

CASA.

6.4 Threats to Validity

In this subsection, we will discuss threats to vali-

dity of this paper. For the external validity, we use a

relative small cluster when conducting our experiments

and thus do not make full use of Spark’s ability. We will

use large-scale cluster for our future research. There are

Table 6. Results of Synthetic Benchmarks

Model Best Greedy SA ACA PSO PGAS

IPO mTCG mAETG SA CASA HHSA Size Time (s)

S 1 9 9 9 9 9 9 9 9 9 9 3

S 2 15 - 18 20 15 15 15 16 17 15 10

S 3 15 19 17 17 16 15 15 17 18 15 19

S 4 21 36 28 28 21 23 21 25 27 24 108

S 5 30 - 35 35 30 30 30 32 35 31 112

S 6 42 - 42 44 42 42 42 42 43 42 58

S 7 62 - - 70 62 64 63 - - 68 129

S 8 86 - - 94 87 86 86 - - 90 168

S 9 111 - - 120 112 112 111 - - 115 276

S 10 113 - - 123 114 114 113 - - 118 305

S 11 29 - 34 37 30 30 29 37 38 32 468

S 12 21 - 26 27 21 22 21 27 27 23 315

S 13 183 218 213 198 183 185 189 225 213 219 596

S 14 45 - 56 56 45 46 45 - - 48 1 689

1○http://csrc.nist.gov/groups/SNS/acts/documents/ACTS.PICT.Comparison.xls, June 2015.

426 J. Comput. Sci. & Technol., Mar. 2016, Vol.31, No.2

two threats to internal validity. First, the intrinsic ran-

domness of GA may affect the performance of PGAS

and we only consider the basic GA. Therefore, we will

use hybrid GA to perfect our research. Second, there

may be better parameter settings to get better results

in some benchmarks, but how to choose these parame-

ter settings is difficult. As for the construct validity, our

approaches have two current limitations. First, we do

not consider constraints in this paper. Second, we do

not consider high strength test suite generation (t > 2).

They are two potential challenges to be solved in our

future work.

Table 7. Results of Real-World Benchmarks

Model ACTS PICT CASA PGAS

Size Time (s)

SPIN-S 20 26 16.4 17 1 108

Bugzilla 18 20 16.0 16 1 043

SPIN-V 30 63 26.4 27 1 098

Apache 34 39 32.0 32 1 225

GCC 19 30 17.0 17 1 896

7 Conclusions

In this paper, we proposed a parallel genetic al-

gorithm using Spark, called PGAS, for pairwise test

suite generation. Based on the global and distributed

model of GA parallelization, PGAS offers two-phase

parallelization. The first phase is the fitness evaluation

parallelization that evaluates each individual’s fitness

value on the workers. The second phase is the genetic

operation parallelization that splits the population into

different slices which can be evolved separately on dif-

ferent workers. To the best of our knowledge, PGAS

is the first attempt to parallelize GA using Spark for

generating pairwise test suite. We evaluated perfor-

mance of PGAS against SGA in terms of computational

effort, solution quality, and speedup. Results showed

that PGAS outperforms SGA in both the sizes of gene-

rated test suites and execution time in 13 out of 14

benchmarks. We also compared PGAS with other test

generation approaches reported in literatures in terms

of sizes of generated test suites. Results showed that

PGAS can produce test suites with sizes that are equal

to other approaches in 9 out of 19 benchmarks. In

summary, PGAS is a promising improvement of GA for

pairwise test suite generation.

As for future work, first, we will run PGAS on large-

scale cluster to find a smaller test suite size. Second,

we plan to improve PGAS by addressing constrained

and high strength test suite generation (t > 2). Third,

we will improve PGAS by hybridizing with local search

techniques and greedy techniques.

References

[1] Lei Y, Tai K C. In-parameter-order: A test generation

strategy for pairwise testing. In Proc. the 3rd IEEE Inter-

national High-Assurance Systems Engineering Symposium,

Nov. 1998, pp.254-261.

[2] Kuhn D R, Wallace D R, Jr. Gallo A M. Software fault inter-

actions and implications for software testing. IEEE Trans-

actions on Software Engineering, 2004, 30(6): 418-421.

[3] Nie C H, Leung H. A survey of combinatorial testing. ACM

Comput. Surv., 2011, 43(2): Article No. 11.

[4] Khalsa S K, Labiche Y. An orchestrated survey of available

algorithms and tools for combinatorial testing. In Proc. the

25th International Symposium on Software Reliability En-

gineering (ISSRE), Nov. 2014, pp.323-334.

[5] Zaharia M, Chowdhury M, Das T, Dave A, Ma J, McCauly

M, Franklin M J, Shenker S, Stoica I. Resilient distributed

datasets: A fault-tolerant abstraction for in-memory cluster

computing. In Proc. the 9th USENIX Conference on Net-

worked Systems Design and Implementation, April 2012,

pp.15-28.

[6] Ghazi S A, Ahmed M A. Pair-wise test coverage using ge-

netic algorithms. In Proc. the 2003 Congress on Evolution-

ary Computation, Dec. 2003, pp.1420-1424.

[7] McCaffrey J D. An empirical study of pairwise test set gene-

ration using a genetic algorithm. In Proc. the 7th Interna-

tional Conference on Information Technology: New Gen-

erations (ITNG), April 2010, pp.992-997.

[8] Shiba T, Tsuchiya T, Kikuno T. Using artificial life tech-

niques to generate test cases for combinatorial testing. In

Proc. the 28th Annual International Computer Software

and Applications Conference, Sept. 2004, pp.72-77.

[9] Flores P, Yoonsik C. PWiseGen: Generating test cases for

pairwise testing using genetic algorithms. In Proc. IEEE In-

ternational Conference on Computer Science and Automa-

tion Engineering (CSAE), June 2011, pp.747-752.

[10] Nie C H, Wu H Y, Liang Y L, Leung H, Kuo F C, Li Z.

Search based combinatorial testing. In Proc. the 19th Asia-

Pacific Software Engineering Conference (APSEC), Dec.

2012, pp.778-783.

[11] Cohen M B, Gibbons P B, Mugridge W B, Colbourn C

J. Constructing test suites for interaction testing. In Proc.

the 25th International Conference on Software Engineer-

ing, May 2003, pp.38-48.

[12] Cohen M B, Colbourn C J, Ling A C H. Augmenting sim-

ulated annealing to build interaction test suites. In Proc.

the 14th International Symposium on Software Reliability

Engineering, Nov. 2003, pp.394-405.

[13] Petke J, Yoo S, Cohen M B, Harman M. Efficiency and early

fault detection with lower and higher strength combinato-

rial interaction testing. In Proc. the 9th Joint Meeting on

European Software Engineering Conference and the ACM

SIGSOFT Symposium on the Foundations of Software En-

gineering (ESEC/FSE 2013), August 2013, pp.26-36.

Rong-Zhi Qi et al.: PGA Based on Spark for Pairwise Test Suite Generation 427

[14] Henard C, Papadakis M, Perrouin G, Klein J, Heymans P,

Le Traon Y. Bypassing the combinatorial explosion: Us-

ing similarity to generate and prioritize t-wise test config-

urations for software product lines. IEEE Transactions on

Software Engineering, 2014, 40(7): 650-670.

[15] Alsewari A A, Zamli K Z. Interaction test data generation

using Harmony Search algorithm. In Proc. IEEE Sympo-

sium on Industrial Electronics and Applications (ISIEA),

Sept. 2011, pp.559-564.

[16] Li J H, Xing D D, Zhao Y Q. Combinatorial test suite

generation of variable strength based on harmony search.

Journal of Network & Information Security, 2013, 4(2):

177-188.

[17] Dean J, Ghemawat S. MapReduce: Simplified data process-

ing on large clusters. In Proc. the 6th Symposium on Op-

erating System Design and Implementation (OSDI), Dec.

2004, Article No. 10.

[18] Jin C, Vecchiola C, Buyya R. MRPGA: An extension of

MapReduce for parallelizing genetic algorithms. In Proc.

the 4th IEEE International Conference on eScience, Dec.

2008, pp.214-221.

[19] Verma A, Llora X, Goldberg D E, Campbell R H. Scaling

genetic algorithms using MapReduce. In Proc. the 9th In-

ternational Conference on Intelligent Systems Design and

Applications, Nov. 30-Dec. 2, 2009, pp.13-18.

[20] Geronimo D L, Ferrucci F, Murolo A, Sarro F. A paral-

lel genetic algorithm based on Hadoop MapReduce for the

automatic generation of JUnit test suites. In Proc. the 5th

IEEE International Conference on Software Testing, Veri-

fication and Validation, April 2012, pp.785-793.

[21] Martino D S, Ferrucci F, Maggio V, Sarro F. Towards mi-

grating genetic algorithms for test data generation to the

cloud. In Software Testing in the Cloud: Perspectives on

an Emerging Discipline, Tilley S, Parveen T (eds.), IGI

Global, 2013, pp.113-135.

[22] Younis M, Zamli K. MC-MIPOG: A parallel t-way test

generation strategy for multicore systems. ETRI Journal,

2010, 32(1): 73-83.

[23] Lopez-Herrejon R E, Ferrer J, Chicano F, Haslinger E N,

Egyed A, Alba E. A parallel evolutionary algorithm for pri-

oritized pairwise testing of software product lines. In Proc.

the 16th Genetic and Evolutionary Computation Confer-

ence, July 2014, pp.1255-1262.

[24] Grindal M, Offutt J, Andler S F. Combination testing

strategies: A survey. Software Testing, Verification, and

Reliability, 2005, 15(3): 167-199.

[25] Tate D M, Smith A E. Expected allele coverage and the

role of mutation in genetic algorithms. In Proc. the 5th In-

ternational Conference on Genetic Algorithms, June 1993,

pp.31-37.

[26] Luque G, Alba E. Parallel Genetic Algorithms: Theory

and Real World Applications. Springer-Verlag Berlin Hei-

delberg, 2011.

[27] Jia Y, Cohen M B, Harman M, Petke J. Learning combi-

natorial interaction test generation strategies using hyper-

heuristic search. In Proc. the 37th International Conference

on Software Engineering (ICSE), May 2015, pp.540-550.

[28] Garvin B J, Cohen M B, Dwyer M B. Evaluating improve-

ments to a meta-heuristic search for constrained interaction

testing. Empirical Software Engineering, 2011, 16(1): 61-

102.

[29] Cohen M B. Designing test suites for software interaction

testing [Ph.D. Thesis]. The University of Auckland, 2004.

[30] Chen X, Gu Q, Qi J X, Chen D X. Applying particle

swarm optimization to pairwise testing. In Proc. the 34th

Annual IEEE Computer Software and Applications Con-

ference, July 2010, pp.107-116.

Rong-Zhi Qi is currently a Ph.D.

candidate in the College of Computer

and Information, Hohai University,

Nanjing. He received his B.S. and

M.S. degrees in computer science from

the same university in 2002 and 2006

respectively. He is a member of CCF.

His current research interest is search-

based software engineering, especially on search-based

combinatorial testing.

Zhi-Jian Wang received his B.S.,

M.S. and Ph.D. degrees in computer

software from Nanjing University,

Nanjing, in 1982, 1986, and 1990

respectively. He is currently a profes-

sor in the College of Computer and

Information, Hohai University, Nanjing.

He is a member of IEEE. His current

research interests include domain software engineering and

network security.

Shui-Yan Li is currently a Ph.D.

candidate in the College of Computer

and Information, Hohai University,

Nanjing. She received her B.S. and

M.S. degrees in applied mathematics

from the same university in 2002 and

2006 respectively. Her current research

interests include evolution computing

and data mining.

