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Abstract In quantitative brain image analysis, accurate brain tissue segmentation from brain magnetic resonance image

(MRI) is a critical step. It is considered to be the most important and difficult issue in the field of medical image processing.

The quality of MR images is influenced by partial volume effect, noise, and intensity inhomogeneity, which render the

segmentation task extremely challenging. We present a novel fuzzy c-means algorithm (RCLFCM) for segmentation and

bias field correction of brain MR images. We employ a new gray-difference coefficient and design a new impact factor

to measure the effect of neighbor pixels, so that the robustness of anti-noise can be enhanced. Moreover, we redefine the

objective function of FCM (fuzzy c-means) by adding the bias field estimation model to overcome the intensity inhomogeneity

in the image and segment the brain MR images simultaneously. We also construct a new spatial function by combining

pixel gray value dissimilarity with its membership, and make full use of the space information between pixels to update the

membership. Compared with other state-of-the-art approaches by using similarity accuracy on synthetic MR images with

different levels of noise and intensity inhomogeneity, the proposed algorithm generates the results with high accuracy and

robustness to noise.

Keywords image segmentation, fuzzy c-means, bias field correction, anti-noise

1 Introduction

With the rapid development of medical imaging

technology, medical image has become one of the major

auxiliary means in clinical care, and greatly improved

the accuracy of medical diagnosis. Current medical im-

age segmentation technology focuses on magnetic reso-

nance images (MRI), which has great soft tissue resolu-

tion and multi-spectral characteristics, and it is capa-

ble of multi-directional and multi-parameter imaging.

Moreover, the non-radioactive imaging modalities are

harmless to human beings. The advantages above make

MRI quite suitable for inspecting brain lesions.

Segmentation of major brain tissues from MRI, in-

cluding gray matter (GM), white matter (WM) and

cerebro-spinal fluid (CSF), is a key step for both clinical

diagnosis and neuroscience. Medical images are fuzzy

inherently, because they are inevitably affected by ran-

dom noise, magnetic field inhomogeneity and the par-

tial volume effect caused by the limit of the imaging

device resolution. These factors directly result in the

fuzziness of medical images and make the segmentation

process more difficult and challenging for these images.

The bias field correction for MRI has been studied

extensively in the past two decades. The smoothly

varying bias field, which causes the intensity of the

same tissue varies with its positions, is identified

as one of technical barriers in the MRI segmenta-
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tion. Although this change is difficult to be observed

directly, the intensity-based segmentation algorithms

may produce error classification of tissues. Gene-

rally, the methods handling bias field are divided into

two categories: prospective methods and retrospec-

tive methods[1]. Prospective methods[2-4] manage to

avoid intensity inhomogeneity in the collection proce-

dure by using the specific nuclear magnetic resonance

(NMR) equipment. These methods can correct the

bias field produced by the imaging devices and envi-

ronment, but they fail to handle the inhomogeneity

caused by patients. In addition, each scan needs to

create a new model, which reduces the practicabi-

lity of these methods in clinic. Instead, retrospective

methods[5-8] are based on the image post-processing.

Ignoring the source of the bias field, these methods can

be applied to any MRI. Generally, these methods esti-

mate a non-uniform multiplicative field by homomor-

phic filtering[9], and restore the real image by removing

this field from original image.

Segmentation based method[10] is one of the most

popular methods to handle the intensity inhomoge-

neity in retrospective methods. The bias field correc-

tion is an essential preprocessing step for medical im-

age segmentation. In turn, the accurate segmentation

makes intensity inhomogeneity correction much sim-

pler. Thus, a method including tissues segmentation

and bias field correction could handle the intensity inho-

mogeneity better. These bias field correction methods

can be further classified according to the applied image

segmentation method. The most popular one is based

on the fuzzy c-means clustering algorithm (FCM)[11].

Fuzzy c-means is a soft clustering algorithm which as-

sumes the image pixels can be classified into various

categories. Due to the uncertainty of initial categories,

FCM algorithm retains much more information than

other segmentation methods[12], and depicts the fuzzy

characteristic of medical image dramatically. Since the

conventional FCM algorithm does not take any spatial

information into account, it becomes very sensitive to

noise and intensity inhomogeneity. Many researchers

have compensated this drawback of FCM by modify-

ing the objective function, transforming the distance

measure method or incorporating the local spatial in-

formation.

Ahmed et al.[13] modified the objective function and

proposed FCM S algorithm. They considered that the

labelling of a pixel is affected by the labels in its neigh-

borhood. This method removes noisy spots effectively

in MRI segmentation, but it is time-consuming because

of taking more time to compute the labels of the neigh-

bor pixels for each iteration[14]. Chen and Zhang[15]

proposed two variants (FCM S1 and FCM S2) where

the neighborhood terms are replaced by the mean-filter

and the median-filter image respectively. Both of the

methods reduce the time complexity. Chuang et al.[16]

proposed an algorithm (SFCMpq) where the member-

ship function is incorporated with spatial information,

and makes the image region more homogeneous and

less sensitive to noise. Szilagyi et al.[17] proposed an

enhanced FCM method (EnFCM) based on gray level

histogram. It calculates the linearly-weighted sum from

the original image and average gray level of local neigh-

borhood, which speeds up the computation successfully.

Cai et al.[18] proposed a fast framework for image seg-

mentation (FGFCM) which combines the gray and the

local spatial information. Krinidis and Chatzis[19] in-

troduced a new fuzzy factor to incorporate the local

spatial factor and the gray information, and proposed

FLICM algorithm which can overcome the drawbacks

of conventional algorithm. Furthermore, it is able to

control the trade-off between smoothing and cluster-

ing by adjusting adaptive parameters. More recently,

Gong et al.[20] proposed an improved FLICM algorithm

(KWFLICM). The algorithm is used to design a new

fuzzy factor which measures the effect of neighborhood

more accurately. Moreover, it uses the Gaussian ker-

nel distance instead of the Euclidean distance, and the

quality of the segmentation results is well enhanced par-

ticularly on the images with the salt and pepper noise.

Although these improved approaches have been applied

to different types of images successfully, there are still

some defects on segmenting brain MRI. On one hand,

a few algorithms fail to correct the intensity inhomo-

geneity and result in inaccurate segmentation. On the

other hand, the estimation of influence between neigh-

bor pixels and the central pixel is not precise enough,

which leads to the inferior anti-noise performance.

In this paper, we propose a novel algorithm

RCLFCM for bias field correction and image segmenta-

tion, which incorporates with neighborhood and spatial

information of image. The new method redefines the

impact factor between the central pixel and its neigh-

bor pixels, modifies the objective function of FCM, and

combines it with the bias field estimation model. In

this way, we can conduct bias field correction and seg-

mentation to MRI simultaneously. Moreover, we use

a new spatial function incorporating the terms of the

gray-level dissimilarity and membership, and update

the membership matrix based on the new spatial func-
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tion for each iteration. Compared with state-of-the-

art segmentation techniques, the proposed method im-

proves the robustness to the bias field correction and

accuracy of tissues segmentation as shown by our ex-

perimental results.

The remaining part of this paper is organized as fol-

lows. Section 2 briefly describes the fuzzy c-means algo-

rithm and the bias field formulation in images. The de-

tailed RCLFCM model is introduced in Section 3. Ex-

perimental results and comparisons with existing meth-

ods are discussed in Section 4. Conclusions are given

in Section 5.

2 Preliminary Theory

Fuzzy c-means clustering algorithm and bias field

formulation are effective methods for medical image

processing, and they are the main foundation of the

proposed algorithm.

2.1 Fuzzy C-Means Clustering

Let I = {xi, i = (1, 2, ..., N)}, where xi is the i-th

pixel of image I with dimension D. The standard FCM

algorithm divides these pixels into K clusters by mini-

mizing the objective function, and every cluster cen-

troid is weighted by its corresponding membership. The

membership function is U = {uik} ∈ R
K×N , where

uik ∈ [0, 1] is pixel i belonging to cluster k and follows

the constraint
∑K

k=1 uik = 1. The conventional objec-

tive function is defined as[14]:

JFCM =

N
∑

i=1

K
∑

k=1

um
ik||xi − vk||

2, (1)

where m ∈ (1,∞) is the fuzzy weighting exponent upon

the membership and m = 2 generally. ||xi − vk||
2 is a

Euclidean distance between point xi and cluster center

vk. The requirements for minimizing (1) by calculating

the membership value uik and the cluster centers vk are

as follows:

uik =
1

∑K
j=1(

||xi−vk||
||xi−vj ||

)2/(m−1)
,

vk =

∑N
i=1 u

m
ikxi

∑N
i=1 u

m
ik

.

The defuzzification process assigns pixel xi to the clus-

ter center vk according to the highest membership prin-

ciples, vk = arg{max{uik}}, k = 1, 2, ...,K.

In order to overcome the sensitivity to noise,

FLICM[19] introduces a fuzzy factor Gki to control the

weight between noise reduction and details reservation.

The objective function is defined as follows:

JFLICM =

N
∑

i=1

K
∑

k=1

(um
ik||xi − vk||

2 +Gki),

and the fuzzy factor is defined as:

Gki =
∑

j∈Ni

1

dij + 1
(1− ukj)

m||xj − vk||
2, (2)

where pixel xi is the central pixel of local window (for

example, 3× 3), and pixel xj is in the set of neighbors

(Ni) falling into a window around the xi pixel. dij is

the spatial Euclidean distance between xi and xj , and

vk is the prototype of the center of cluster k. With

the impact of the fuzzy factor Gki, the noise-corrupted

pixels falling into a window retain similar values to the

central pixel, and thus FLICM is able to present high

robustness to denoise.

2.2 Bias Field and Energy Minimization

Formulation

The bias field in a brain MR image can be modeled

as a multiplicative component of an observed image[21].

Thus, the observed image can be formulated as:

I(x) = b(x)J(x) + n(x), (3)

where I(x) is the intensity of original image, J(x) is the

true image to be restored, b(x) is an unknown bias field,

and n(x) is addictive noise with zero-mean. The aim

of the bias field correction is to estimate and eliminate

the bias field b. In general, it is assumed that the bias

field b(x) varies smoothly in the image region and J(x)

is a constant for all pixel x in the k-th tissue[5,7-8].

By seeking the optimal decomposition of image I

from (3), the estimation of bias field and tissues seg-

mentation can be formulated as an energy minimiza-

tion problem. In [1], a novel method which estimates

the bias field b and the true image J is proposed. The

method considers b and J as the multiplicative intrinsic

components of an observed image. Meanwhile, under

the prior knowledge about smoothly varying property

of the bias field and piecewise constant property of the

true image, the energy is minimized in the image do-

main Ω:

F (b, J) =

∫

Ω

|I(x) − b(x)J(x)|2dx.

In theory, an arbitrary function can be approxi-

mated by a linear combination of a number of basis

functions, while a sufficiently large number M of the
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basis functions is given[22]. The bias field can be ex-

pressed by a linear combination of a group of smooth

basis functions g1(x), ..., gM (x)[1]. The key problem of

having a better expression of bias field is to seek the op-

timal coefficients w1, ..., wM in the linear combination

b(x) =
∑M

k=1 wkgk(x). The bias field can be defined as:

b(x) = w
T
G(x), (4)

where the coefficient vector is represented by w =

(w1, ..., wM )T, and the basis functions are represented

by G(x) = (g1(x), ..., gM (x))T.

Assumed that the brain MR image has N types of

tissues, the gray level of true image J(x) in the i-th

cluster is constant ci approximately. In soft cluster-

ing, every pixel has fuzzy membership functions ui(x)

for each cluster center. The fuzzy membership func-

tions can be interpreted as the probability that pixel

x belongs to the i-th cluster, and they take values be-

tween 0 and 1 following the constraint
∑N

i=1 ui(x) = 1.

Therefore, when the membership functions ui(x) and

cluster center constant ci are given, the true image can

be defined as :

J(x) =

N
∑

i=1

ciui(x). (5)

Using these definitions of the bias field b and the

true image J in (4) and (5) respectively, the objective

function F (b, J) can be formulated as[1]:

F (b, J) = F (u, c,w)

=

∫

Ω

|I(x)−w
T
G(x)

N
∑

i=1

ciui(x)|
2dx, (6)

whereG(x) is the basis function, and u = (u1, ..., uN)T,

c = (c1, ..., cN )T and w = (w1, ..., wN )T are three varia-

bles to be determined.

3 Proposed Methods

In this paper, we design a new fuzzy factor, which

has a better performance on measuring the influence of

the neighborhood pixels. It also takes a full account of

the spatial information to reduce the noise sensitivity.

Furthermore, we combine the gray-level dissimilarity

with membership, and present a new spatial function

to improve the efficiency of clustering by updating fuzzy

membership. We redefine the objective function by in-

corporating bias field estimation model to implement

bias field estimation and MRI tissues segmentation.

3.1 Improved Fuzzy Factor

The fuzzy factor is aimed at controlling the weight

between noise reduction and details reservation. From

(2), the fuzzy factor of FLICM algorithm uses only spa-

tial distance factor, which is defined as:

δsd =
1

dij + 1
. (7)

However, it cannot measure the influence between

the central pixel and neighbor pixels accurately. For

example, as Fig.1 shows below, Fig.1(b) is the gray-

level value of a 5× 5 local window from original image

in Fig.1(a). A, B and C are the neighbor pixels falling

into the 3 × 3 local window of the central pixel, and

the local windows of these three pixels are corrupted

by noise.
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Fig.1. Illustration of (a) original image, (b) gray values of a 5×5
local window, (c) the spatial distance factor of central pixel, (d)
the local window of A, and (e) the local window of B.

In (7), A, B and C have the same impact on central

pixel (Fig.1(c)). We focus on the local window of A

and B. There is a noise pixel in the 3× 3 local window

of A (Fig.1(d)) while there are two noise pixels in that

of B (Fig.1(e)), which implies that the local window of

B includes more noise-corrupted pixels. Therefore, A

has more impact on central pixel, and thus it should

take more weight on the fuzzy factor specifically. For

another aspect, there are two noise pixels in the local

window of both B and C, but the gray-value difference

between B and the central pixel is bigger than that of

C. Thus C should take more weight on the fuzzy factor.

The variance coefficient of local window is defined

as[23]:

Cu =
V ar(x)

(x̄)2
,
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where V ar(x) denotes the gray-value variance of local

window, and x̄ denotes the mean of gray-value. We

define the gray-difference coefficient between neighbor

pixel xj and central pixel xi, as follows:

Sij = ||xj − xi||, j ∈ Ni.

We normalize the variance coefficient of local win-

dow and the gray-difference coefficient to (0, 1] respec-

tively as:

εi =
(Cu − Cmin) + ξ

(Cmax − Cmin) + ξ
, (8)

σij =
(Sij − Sij(min)) + ξ

(Sij(max) − Sij(min)) + ξ
, j ∈ Ni, (9)

where Cmin and Cmax are the minimum and the maxi-

mum of variance coefficients in the local window respec-

tively, and Sij(min) and Sij(max) represent the minimum

and the maximum of the gray-difference coefficients re-

spectively. The range of values for parameter ξ is (0,1],

and this is to ensure εi and σij unequal to 0. Therefore,

the new fuzzy factor δsc is:

δsc = 1− log2 (
√

εj × σij + 1), j ∈ Ni,

where the range of values for the fuzzy factor δsc is

[0, 1). When εj and σij approach to 1, the local win-

dow is corrupted by severe noise or located at the edge

of the image, and thus the fuzzy factor is close to 0. On

the contrary, when εj and σij approach to 0, the local

window is relatively smooth and the gray-difference is

small. The local window is more likely to be partitioned

into a same cluster, and thus the fuzzy factor is close to

1. Fig.2 shows the values of εj , σij and δsc in the central

local window of Fig.1(b), and it clearly illustrates that

the new fuzzy factor evaluates the impact of neighbor

pixels more completely.

0.837 9 0.733 4

0.878 9

0.887 0 0.897 2

0.985 8

0.339 6

0.155 8

1.000 0 0.309 3

1.000 0

0.290 4 0.903 70.049 2

0.049 2

0.016 4 0.016 4

0.377 0 0.016 4

0.016 4

0.404 6 0.332 7 0.337 1

0.006 0

B

C

A

B

C

A

B

C

A

εi σij δsc

(a) (b) (c)

Fig.2. Illustration of the values of (a) variance coefficient εi,
(b) gray-difference coefficient σij , and (c) new fuzzy factor δsc
of the central local window.

From above, we redefine the impact factor which

incorporates spatial distance factor δsd and new fuzzy

factor δsc as follows:

δij = δsd × δsc. (10)

The new fuzzy factor considers spatial distance,

variance coefficient and gray-difference coefficient si-

multaneously. Therefore, it is able to achieve better

performance on denoising and detail-preserving.

3.2 Spatial Function with Gray-Level

Dissimilarity

Considering that these neighbor pixels of an image

have similar feature values, the probability that they

belong to the same cluster is high[19]. The spatial func-

tion represents the probability that pixel i belongs to

the k-th cluster, as follows:

hik =
∑

j∈Ni

µjk, (11)

where Ni denotes the neighbor pixels around the i-th

pixel, and µjk denotes the membership value of pixel j

belonging to the k-th cluster. But (11) only takes the

membership values of neighbor pixels into account. As

a result, the membership values are almost invariant

and the algorithm converges after a lot of iterations.

We propose the gray-level dissimilarity ||xj − xi||
2 to

overcome the issue mentioned above. Using the new

spatial function, our algorithm is able to reduce noise

and outliers in the image, and update membership val-

ues significantly after each iteration. The new spatial

function is defined as follows:

fik =
∑

j∈Ni

µjk × ||xj − xi||
2. (12)

We use the following equation to update member-

ship values µik for each iteration, where parameters p

and q are used to control the relative importance of two

functions:

µ′
ik =

(µik)
p × (fik)

q

∑K
j=1(µij)p × (fij)q

. (13)

There are two cases when the local window is cor-

rupted by noise or outliers. As the 3× 3 window shown

in Fig.3 and Fig.4, the updated membership values

of the non-noisy pixels and the noise-corrupted pixels

within a local window are similar to the central pixel,

and preserve the insensitiveness to noise.

Case 1. The central pixel is not a noise pixel and

some neighbor pixels are corrupted by noise (as shown

in Fig.3). It clearly illustrates that the correspond-

ing membership values of the non-noisy pixels and the
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noise-corrupted pixels converge to a similar value af-

ter three iterations. Generally, the gray-level values

of noise-corrupted pixels are far different from those

of the other pixels within the window, and thus the

new spatial function balances the membership values,
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Fig.3. Illustration of the 3× 3 window with noise (marked with
a square in original image), the cluster center (V1, V2) and the
corresponding membership values updated by the new spatial
function in case 1. (a) Original image. (b) Gray-level values
of pixels within the local window. (c) Initial membership val-
ues. (d) Membership values after one iteration. (e) Membership
values after two iterations. (f) Membership values after three
iterations.
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Fig.4. Illustration of the 3× 3 window with noise (marked with
a square in original image), the cluster center (V1, V2) and the
corresponding membership values updated by the new spatial
function in case 2. (a) Original image. (b) Gray-level values
of pixels within the local window. (c) Initial membership val-
ues. (d) Membership values after one iteration. (e) Membership
values after two iterations. (f) Membership values after three
iterations.

and changes their membership values considerably (the

updated membership values are equal or close to 1).

Therefore, the new spatial function is able to reduce

the number of iterations and suppress the influence of

noise and outliers.

Case 2. The central pixel is a noise pixel and other

pixels are not corrupted by noise (as shown in Fig.4). It

clearly shows that the corresponding membership val-

ues of neighbor pixels and the central pixel converge to a

similar value after three iterations. Similarly, the mem-

bership values of these pixels are balanced by the new

spatial function, which changes their membership val-

ues considerably (the updated membership values are

equal or close to 0). Thus, the membership value of the

central pixel is not influenced by noise and outliers.

3.3 Objective Function of RCLFCM

In this paper, we propose a new objective function

based on the energy minimization formulation (6) and

the new fuzzy factor definition (10) as follows:

JRCLFCM =
N
∑

i=1

c
∑

k=1

um
ki||xi − bivk||

2 +G′
ki,

G′
ki =

∑

j∈Ni

δij(1− ukj)
m||xj − bivk||

2,

where G′
ki denotes the new impact factor incorporated

with new fuzzy factor δij , and xj denotes the neighbor

pixels falling into a window (Ni) around the central

pixel xi. vk is the prototype of the center of cluster k,

and bi is the intensity of the bias field on pixel xi.

The energy minimization is performed by minimiz-

ing the objective function JRCLFCM alternately with

respect to each variable given and the other two fixed.

During the whole process, our objective function is con-

strained by 0 6 uki 6 1,
∑K

k=1 uki = 1. The minimiz-

ing of the cluster center vk and the membership value

uki is obtained as follows:

v̂k =

∑N
i=1 bi

(

um
kixi +

∑

j∈Ni
δij(1 − ukj)

mxj

)

∑N
i=1 b

2
i

(

um
ki +

∑

j∈Ni
δij(1− ukj)m

) , (14)

ûki =
1

∑c
j=1

(

||xi−vk||2 + G′

ki

||xi−vj ||2 + G′

ji

)1/(m−1)
. (15)

We define the intensity of the bias field as the linear

combination bi = b(i) = w
T
G(i), where the coefficient

is represented by a column vector w = (w1, ..., wM )T,

and G(i) is the basis function represented by a column
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vector G(i) = (g1(i), ..., gM (i))T. Minimizing the ob-

jective function with respect to coefficient w for fixed

vk and uki as follows:

ŵ =

∑N
i=1

∑c
k=1 G(i)um

kivkxi
∑N

i=1

∑c
k=1 G(i)G(i)Tum

kiv
2
k

. (16)

With the optimal vector ŵ defined in (16), we esti-

mate the bias field computed by:

b̂i = ŵ
T
G(i). (17)

3.4 Implementation

From above, we summarize the RCLFCM algorithm

as the iteration processes (as shown in Algorithm 1).

The three variables are updated in an iteration pro-

cess, and each of them is computed with the other

two variables. Here, we initialize the cluster center vk

and the membership values uki in step 1. The conver-

gence criterion used in step 7 is (U (n) −U
(n+1)) > ε,

where U (n) is the fuzzy partition matrix U updated in

step 6 at the n-th iteration. When the algorithm con-

verges, the maximum membership procedure is used

to defuzzify the partition matrix U and assigns pixel

i to cluster vk with the highest membership: vk =

arg{max{uki}}, k = 1, 2, ..., c.

Algorithm 1 1. RCLFCM(c,m, p, q, ε)

Input: the number c of the cluster centers, the weight fuzzy
coefficient m, parameters p and q, and the threshold ε

Output: the membership value ûki, the cluster centers v̂k
and the estimation of the bias field b̂i when the algo-
rithm converges

1: Initialize the cluster centers vk and the membership val-
ues uki;

2: Set the loop counter n = 0;
3: Update bi as b̂i in (17);
4: Update vk as v̂k in (14);
5: Update uki as ûki in (15);
6: Update ûki as û

′

ki in (12) and (13);
7: if (U (n)

−U
(n+1)) > ε then

8: n = n+ 1; go to step 3;
9: else

10: stop;
11: end if

The complexity cost of the bias field update process

for each iteration is O(HW ), where H and W are the

dimensions of the image. The computational comple-

xity of updating both membership matrix and cluster

centers is O(HWc) for each iteration, where c is the

number of clusters. Therefore, for n iterations, the to-

tal computational complexity of the proposed algorithm

is O(nHWc).

4 Experimental Results

In this section, we evaluate the performance of

proposed RCLFCM algorithm on simulated brain

MR images from the BrainWeb 1○ database. This

database contains the full simulated brain database

and the anatomical model, and provides full three-

dimensional data volumes which simulate with three

sequences (T1-, T2-, and PD-weighted) and a variety

of slice thicknesses, noise levels, and levels of intensity

inhomogeneity[24]. We segment the images into GM,

WM, CSF and background. Unless otherwise specified,

the parameters used in our experiments are set as fol-

lows. The number of basis functions is 20. The size

of the neighborhood window is 3 × 3. The weighting

exponent m takes its default value 2, and parameters

p and q are 2 and 1.5 respectively. Fig.5 shows the

average iteration times for different values of parame-

ter ξ in (8) and (9). As we can see from the polyline,

when ξ = 0.1, the iteration time reaches the minimum.

Therefore, we set parameter ξ as 0.1 in the following

experiments. All experiments were performed on a PC

with an Intel Core-i5 3.20 GHz CPU and 4 GB RAM.
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Fig.5. Illustration of the average iteration times for different
values of parameter ξ.

Fig.6 illustrates the experimental results of three

real brain MR images applying RCLFCM algorithm, in-

cluding the estimated bias field, images after bias field

correction and the tissues segmentation results. The re-

sults indicate that the intensity of each tissue becomes

1○http://brainweb.bic.mni.mcgill.ca/brainweb/, April 2016.



508 J. Comput. Sci. & Technol., May 2016, Vol.31, No.3

more uniform after the bias field correction, and we get

segmentation results as expected.

Fig.6. Illustration of the bias field correction and tissues seg-
mentation results by applying RCLFCM algorithm. (a) Three
real brain MR images. (b) Images after bias field correction. (c)
Estimated bias field. (d) Tissues segmentation results.

We apply the RCLFCM algorithm on synthetic MR

brain images, and compare it with five fuzzy algo-

rithms including FCM S[13], SFCMpq[16], EnFCM[17],

FLICM[19] and MICO[1]. Fig.7 shows the ground truth

and the clustering results of these methods on T1-

weighted, 1 mm synthetic brain MR images with 40%

intensity inhomogeneity, which indicates that FCM S,

SFCMCpq and FLICM algorithms are seriously af-

fected by the bias field, and cannot achieve satisfactory

results. In contrast, EnFCM, MICO and RCLFCM al-

gorithms get better tissue segmentation results under

the intensity inhomogeneity. Among them, RCLFCM

retains the original information of images to a large ex-

tent.

Furthermore, Fig.8 illustrates the ground truth and

the experimental results of the six algorithms on T1-

weighted, 1 mm synthetic brain MR images with 40%

intensity inhomogeneity and 9% Gaussian noise. Visua-

lly, FCM S, SFCMpq and FLICM algorithms remove

most of noise, but they are seriously affected by the

bias field. EnFCM and MICO algorithms correct inten-

sity inhomogeneity preferably, but they are sensitive to

noise and their results are not satisfactory enough. It

clearly shows that the RCLFCM algorithm gives bet-

ter performance, which segments the tissues of brain

accurately and removes almost all noise and outliers.

In order to evaluate the segmentation results quan-

titatively, this paper uses the segmentation accuracy

(SA) to calculate the accuracy of the algorithms. SA is

defined as the sum of correctly classified pixels divided

by the sum of total number of pixels. The formula is[13]:

SA =

K
∑

k=1

Ak ∩ Ck
∑K

i=1 Ci

,

where K is the number of clusters, Ak denotes the pix-

els belonging to the k-th cluster for segmentation result,

(a) (b) (c) (d) (e) (f) (g) (h)

Fig.7. Illustration of (a) three simulated T1-weighted 1 mm brain MR images with 40% intensity inhomogeneity, and segmentation
results obtained by applying (b) FCM S, (c) SFCMpq, (d) EnFCM, (e) FLICM, (f) MICO, and (g) the proposed algorithm
RCLFCM. (h) Ground truth.
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig.8. Illustration of (a) three simulated T1-weighted 1 mm brain MR images with 40% intensity inhomogeneity, and 9% Gaussian
noise, and segmentation results obtained by applying (b) FCM S, (c) SFCMpq, (d) EnFCM, (e) FLICM, (f) MICO, and (g) the
proposed algorithm RCLFCM. (h) Ground truth.

and Ck denotes the pixels in the k-th cluster for ground

truth.

We evaluate the SA of segmentation results on T1-

weighted 1mm synthetic brain MR images with 3%∼9%

Gaussian noise and 40% intensity inhomogeneity by

applying different algorithms. Table 1 gives the ave-

rage segmentation accuracy result of the six methods

on GM, WM and CSF. From the comparison, it is ob-

vious that the proposed RCLFCM method gives more

accurate segmentation result, and retains more details

of tissues than the other five methods (the values in

bold show higher average segmentation accuracy).

Besides, this paper uses two validity evaluation in-

dexes of clustering Vpc and Vpe to evaluate algorithms

as follows[25]:

Vpc =

K
∑

k=1

N
∑

i=1

u2
ik

N
,

Vpe = −

K
∑

k=1

N
∑

i=1

uik log(uik)

N
,

where uik is the membership value of pixel i belonging

to the k-th cluster, K is the number of clusters and

N is the total number of image pixels. When Vpc is

high and Vpe is low, it implies the membership values

are less fuzzy in segmentation results and the tissues

are classified correctly. We calculate and evaluate the

average validity index of the six algorithms. As shown

in Fig.9 and Fig.10, it clearly illustrates that RCLFCM

has higher Vpc and lower Vpe compared with other five

algorithms, and explains that RCLFCM algorithm is

able to achieve more accurate result and less fuzziness

in classification.

Table 1. SA Values (Means) of GM, WM and

CSF Segmentation

Algorithm Tissue Noise (%)

3 5 7 9

FCM S WM 0.973 4 0.972 6 0.971 0 0.968 2

GM 0.958 7 0.958 6 0.960 6 0.957 2

CSF 0.976 1 0.973 9 0.974 0 0.973 4

SFCMpq WM 0.973 7 0.972 6 0.971 1 0.968 2

GM 0.959 9 0.958 5 0.956 0 0.951 7

CSF 0.977 5 0.977 0 0.975 9 0.974 5

EnFCM WM 0.978 1 0.970 3 0.959 7 0.946 4

GM 0.969 0 0.959 2 0.945 0 0.924 3

CSF 0.993 4 0.990 7 0.985 5 0.975 2

FLICM WM 0.968 9 0.968 1 0.968 1 0.965 9

GM 0.954 0 0.953 0 0.952 4 0.949 9

CSF 0.984 2 0.983 9 0.983 6 0.983 2

MICO WM 0.987 8 0.979 3 0.966 0 0.948 9

GM 0.979 4 0.969 0 0.952 9 0.932 1

CSF 0.994 6 0.992 6 0.989 7 0.985 5

RCLFCM WM 0.988 3 0.984 5 0.977 8 0.970 0

GM 0.979 8 0.974 1 0.966 5 0.971 9

CSF 0.993 5 0.992 4 0.991 1 0.989 8

Finally, the average computational cost for each of

these six algorithms is illustrated in Fig.11. As shown

in the figure below, computational time increases with

the increasing of the sizes of images. The quickest
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method is EnFCM, while the slowest is FLICM. The

proposed method RCLFCM is quite time-consuming,

but this drawback is compensated for its better perfor-

mance as it is shown above. Moreover, our proposed

RCLFCM algorithm is easy to implement.
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Fig.9. Vpc values of segmentation results by applying the six
algorithms with increasing noise.
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Fig.10. Vpe values of segmentation results by applying six algo-
rithms with increasing noise.
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Fig.11. Computational cost (in second) of the six algorithms.

5 Conclusions

In this paper, we proposed a robust algorithm

RCLFCM for brain MR image segmentation and bias

field correction. In order to take full consideration

on neighborhood information and improve the perfor-

mance of denoising, we designed a gray-different coef-

ficient and defined a new impact factor to measure the

effect of the immediate neighborhood. We proposed

a new objective function which is based on the bias

field model and FCM algorithm. By minimizing the

new objective function, we segmented the MR image

and corrected the bias field simultaneously, which sup-

presses the influence of intensity inhomogeneity effec-

tively and achieves better tissues segmentation results.

Furthermore, we designed a novel spatial function in-

corporated with gray-level dissimilarity and member-

ship function, and made full use of the spatial infor-

mation between pixels to update the membership val-

ues in each iteration step, which improves the effective-

ness of the clustering algorithm. In the experiment,

we applied RCLFCM algorithm on synthetic MR brain

images from the BrainWeb database, and compared it

with five algorithms. The experimental results showed

that the new method can estimate the bias field and

suppress the noise effectively, and achieves more accu-

rate segmentation results on brain tissue than the other

methods.
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