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Abstract We present a new manifold learning algorithm called Local Orthogonality Preserving Alignment (LOPA). Our

algorithm is inspired by the Local Tangent Space Alignment (LTSA) method that aims to align multiple local neighborhoods

into a global coordinate system using affine transformations. However, LTSA often fails to preserve original geometric

quantities such as distances and angles. Although an iterative alignment procedure for preserving orthogonality was suggested

by the authors of LTSA, neither the corresponding initialization nor the experiments were given. Procrustes Subspaces

Alignment (PSA) implements the orthogonality preserving idea by estimating each rotation transformation separately with

simulated annealing. However, the optimization in PSA is complicated and multiple separated local rotations may produce

globally contradictive results. To address these difficulties, we first use the pseudo-inverse trick of LTSA to represent each

local orthogonal transformation with the unified global coordinates. Second the orthogonality constraints are relaxed to be

an instance of semi-definite programming (SDP). Finally a two-step iterative procedure is employed to further reduce the

errors in orthogonal constraints. Extensive experiments show that LOPA can faithfully preserve distances, angles, inner

products, and neighborhoods of the original datasets. In comparison, the embedding performance of LOPA is better than

that of PSA and comparable to that of state-of-the-art algorithms like MVU and MVE, while the runtime of LOPA is

significantly faster than that of PSA, MVU and MVE.

Keywords manifold learning, dimensionality reduction, semi-definite programming, Procrustes measure

1 Introduction

Manifold learning is a large class of nonlinear di-

mensionality reduction methods operated in an unsu-

pervised manner, with each method attempting to pre-

serve a particular geometric quantity such as distances,

angles, proximity, or local patches. Since the two pio-

neering work published on Science in 2000, Isomap[1]

and LLE[2-3], manifold learning[4] has been a significant

topic in data visualization and pattern classification.

Today the huge amount of data coming from imaging

devices, bioinformatics, and financial applications are

usually high-dimensional; thus there is an imperative

need to overcome the “curse of dimensionality”[5]. A

direct solution is the dimensionality reduction approach

that transforms the high-dimensional data into a low-

dimensional embedding space. However, traditional

methods like PCA and MDS fail to discover nonlin-

ear or curved structures of the input data. In contrast,

manifold learning methods are suitable for unfolding

the nonlinear structures into a flat low-dimensional em-

bedding space. Therefore, these methods have found a

wide variety of applications, for instance, microarray

gene expression, 3D body pose recovery, face recogni-

tion and facial expression transferring (see [6] for some

recent applications based on manifold alignment).

According to the methodology in [7], existing mani-
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fold learning methods can be roughly divided into three

categories: 1) distance-preserving methods, including

Isomap[1], MVU[8-9], MVE[10], and RML[11]; 2) angle-

preserving methods, e.g., conformal eigenmaps[12]; and

3) proximity-preserving methods, such as LLE[2-3],

HLLE[13], Laplacian Eigenmaps (LE)[14], LTSA[15], and

NPPE[16], which align local weights or neighborhood for

each data point into a global coordinates space. Due to

recent advancement, here we point out that there ex-

ists the fourth category: 4) patch-preserving methods,

such as LMDS[17], and MLE[18], which align each linear

patch of moderate size with other patches in order to

construct the global representation. In addition, several

special methods occurred to be seemingly excluded by

the four main categories, such as manifold sculpting[19]

and NeRV[20].

Most previous manifold learning methods focus on

one particular perspective in order to preserve a sin-

gle geometric quantity. In this way, for instance,

a proximity-preserving method often performs poorly

when viewed from other perspectives such as maintain-

ing distances and angles. A basic question was ad-

dressed by [21]: how do we define a faithful embedding

that preserves the local structure of neighborhoods on

the manifold? In other words, can we find some funda-

mental clues to handle distances, angles, and neighbor-

hoods in a comprehensive way? The proposed answer

was the Procrustes measure, which computes the dis-

tance between two configurations of points after one

of the configuration is rotated and translated to best

match the other. As the translation vector can be omit-

ted by centering each point set, the computation of fit-

ting errors in Procrustes measure boils down to finding

the best rotation (orthogonal) matrix. Then two al-

gorithms, greedy Procrustes (GP) and Procrustes sub-

spaces alignment (PSA), were developed to minimize

the suggested measure. GP is a progressive method

that relies on the selection of a basis point and the

embeddings produced by GP may not maintain the

global structure of the input data (e.g., the cylinder

data of Fig.3 in [21]). On the other hand, PSA performs

the global embedding by finding each local orthogo-

nal transformation separately with complicated simu-

lated annealing (SA) and then aligning multiple local

PCA subspaces together. However, there is a risk that

these local orthogonal transformations may produce an

incompatible global embedding since each orthogonal

transformation is estimated separately.

We agree that the Procrustes measure[21] is one rea-

sonable clue to be preserved in manifold learning. To

circumvent the difficulties in PSA, in this paper we pro-

pose a new algorithm called Local Orthogonality Pre-

serving Alignment (LOPA). The main contributions are

highlighted as follows.

• With the pesudo-inverse trick proposed in [15], we

render the Procrustes measure minimization problem

into an orthogonality constraint problem with respect

to an unknown global embedding. This sidesteps the

problem of handling multiple local orthogonal transfor-

mations occurred in the PSA method[21].

• The orthogonality constraint problem is further

relaxed into an easier trace constraint problem, which

can be efficiently solved by any semidefinite program-

ming (SDP) tool. The relaxation model is a loose ap-

proximation to the original Procrustes problem, but is

acceptable in practice. The original problem imposes

the exact orthogonal constraints on each local transfor-

mation, which is too hard to satisfy. Thus our optimiza-

tion is easier than the complicated simulated annealing

used in PSA[21].

• We report experimental results on synthetic and

real-world datasets, supporting our claims of better pre-

serving geometrical properties like distances and angles,

and demonstrating the faster speed of LOPA than the

state-of-the-art methods such as PSA, MVU, and MVE.

The rest of the paper is organized as follows. We

first discuss some criteria in manifold learning and de-

scribe our models in Section 2. Section 3 is devoted

to numerically solving the proposed optimization prob-

lem, and experimental results are presented in Section

4. Section 5 concludes this paper.

2 Criteria and Models

Generally there are two ways to handle multiple geo-

metric quantities in a comprehensive manner for mani-

fold learning. The first one is to preserve the Rie-

mannian metrics, a fundamental notion in Riemannian

geometry[22], which determine inner products on tan-

gent spaces at every point. The work in [23] was the

first attempt to use Riemannian metrics as a criterion

in manifold learning. An algorithm was developed to

augment the output of any embedding method with

Riemannian metrics estimated by the Laplace-Beltrami

operator, which can be regarded as a post-processing

to the results obtained by any existing manifold learn-

ing method. However, this work did not provide any

new manifold learning algorithm to preserve Rieman-

nian metrics. Here we present a simple model to di-

rectly preserve inner products in each neighborhood,

and show the inherent difficulties in its optimization.
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Given a dataset X = (x1, . . . ,xn) ∈ R
m×n with

each data point xi is an m-dimensional column vec-

tor, the goal of dimensionality reduction is to trans-

form X to Y = [y1, . . . ,yn] ∈ R
d×n (d ≪ m), where

each yi is the low-dimensional representation of xi.

For each data point xi, we denote Xi = [xi1 , . . . ,xik ]

as its k nearest neighbors (including itself by setting

xi1 = xi), and the neighborhood indices are repre-

sented as Ωi = [i1, . . . , ik]. Here k is a predefined pa-

rameter. A direct model to preserve inner products in

each neighborhood can be formulated as the following

minimization problem of finding the optimal Y :

min
Y

n
∑

i=1

∑

j, l

(

〈yj − yi,yl − yi〉 − 〈xj − xi,xl − xi〉
)2

s.t. j, l ∈ Ωi, j, l 6= i. (1)

Here 〈·, ·〉 denotes the inner product of two vectors. A

similar formula occurred in MVU[8-9], but an equivalent

formulation of local isometry, i.e., preserving pairwise

distances, is used in the final MVU implementation. We

show that the minimization of (1) leads to a standard

least squares (LS) problem:

n
∑

i=1

‖HT
k S

T
i Y

TY SiHk −HT
k S

T
i X

TXSiHk‖
2
F

=

n
∑

i=1

‖QT
i ZQi −Wi‖

2
F

=

n
∑

i=1

‖Aiz −wi‖
2

= ‖Az −w‖2,

where Hk
.
= I − eeT/k is a centering matrix of size

k-by-k, I (or Ik) is an identity matrix (of size k-by-

k), e is a column vector of all 1s (in a proper di-

mension), and Si is a 0-1 selection matrix for choos-

ing the neighborhood Xi. Note that Qi
.
= SiHk,

Z
.
= Y TY , Wi

.
= HT

k S
T
i X

TXSiHk can be com-

puted beforehand. We define the operator vec(A) that

stacks all the columns of A and outputs a long column

vector. Thereby in the above equations, z
.
= vec(Z),

wi
.
= vec(Wi), and A and w are formed by stacking all

Ai and wi together respectively. The notation ‖·‖F de-

notes the matrix Frobenius norm. Note that we use the

well-known equality vec(AXB) = (BT ⊗ A)vec(X)

in the step of obtaining z from Z, where ⊗ denotes the

Kronecker product of two matrices.

However, this LS problem is rank-deficient in solv-

ing an n2-dimensional vector z with only nk2 equa-

tions, thus having an infinite number of solutions in

most cases such that k2 ≪ n. As rank(Y ) = d for com-

mon cases when d < n, the result Y obtained by eigen-

decomposition of Z = Y TY is usually a poor embed-

ding. One remedy is to explicitly incorporate the rank

constraint of Y into the LS problem. But the fixed

rank or low rank LS problem poses great challenges

for finding reasonable embedding for high-dimensional

datasets. Furthermore, the huge sizes of A ∈ R
nk2×n2

and w ∈ R
nk2×1 can be problematic in storage even

for a small dataset. For instance, the number of matrix

entries in A is 64 billion if n = 1 024 and k = 8.

Notice that the complexity of above inner product

model (1) essentially comes from the quadratic term

Y TY ∈ R
n×n in the inner product representation. In

order to reduce the complexity, we resort to an alterna-

tive way based on local alignments preserving orthogo-

nality (or isometry). The Local Tangent Space Align-

ment (LTSA) method[15] provides an elegant framework

for neighborhood alignments:

min
Y ,{Li}

n
∑

i=1

‖Y SiHk −LiΘi‖
2
F , (2)

where Θi ∈ R
d×k is the d-dimensional PCA coordi-

nate representation for Xi, and Li ∈ R
d×d is a lo-

cal affine transformation. The cost function of (2)

is then the first order about Y (rather than the sec-

ond order of Y TY in the above inner product model).

Then using a pseudo-inverse trick, for each fixed Y ,

the optimal affine transformation can be represented as

Li = Y SiHkΘ
†
i where Θ

†
i is the Moore-Penrose gene-

ralized inverse of Θi. Hence the cost function of (2)

can be formulated as a trace tr(Y BY T), where B
.
=

∑N

i=1 SiHk(I−Θ
†
iΘi)(I−Θ

†
i
Θi)

THT
k S

T
i ∈ R

n×n (see

the detailed derivations in [15]). Finally, by imposing

the “bogus” unit covariance constraint Y Y T = Id, the

LTSA algorithm obtains the optimal Y given by the

eigenvectors corresponding to the d smallest positive

eigenvalues of B. However, general linear transforma-

tions can not preserve local geometric quantities such

as distances and angles.

A straightforward extension is to restrict the linear

transformations Li in the set of orthogonal matrices,

leading to our LOPA model:

min
Y ,{Li}

n
∑

i=1

‖Y SiHk −LiΘi‖
2
F

s.t. LiL
T
i = Id, i = 1, . . . , n. (3)

The LOPA model (3) is similar to PSA, except that

PSA directly aligns the high-dimensional input dataXi
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without the use of PCA projection. Again using the

pseudo-inverse trick to represent Li, the LOPA model

can be rewritten as

min
Y

tr(Y BY T)

s.t. Y CiY
T = Id, i = 1, . . . , n, (4)

where Ci
.
= GiG

T
i ∈ R

n×n with Gi
.
= SiHkΘ

†
i ∈

R
n×d. An earlier work of the ONPP[24] method shares

a similar idea:

min
Y

tr(Y MY T)

s.t. Y = V TX,V TV = Id,

where M ∈ R
n×n is a known matrix, and the embed-

ding Y is obtained by an orthogonal transformation of

X. However, ONPP has only one orthogonality con-

straint and essentially is a linear projection.

3 Optimizations

3.1 Orthogonality Constraint Problems

The LOPA model (4) is a minimization problem

with multiple matrix orthogonality constraints. Mini-

mization with orthogonality constraints[25] plays an im-

portant role in many applications of science and engi-

neering, such as polynomial optimization, combinato-

rial optimization, eigenvalue problems, sparse PCA, p-

harmonic flows, 1-bit compressive sensing, and matrix

rank minimization (see [25] for descriptions of some re-

cent applications). Three types of problems are consi-

dered in [25]:

min
X

F(X) s.t. XTX = I,

min
X

F(X) s.t. XTMX = K,

min
X1,...,Xq

F(X1, . . . ,Xq)

s.t. XT
i MiXi = Ki, i = 1, . . . , q,

where F is a known differentiable function, and M ,

Mi, and Ki are given positive definite and nonsingu-

lar symmetric matrices. It is generally difficult to solve

these problems because the orthogonality constraints

can lead to many local minimizers and several types

of these problems are NP-hard. No guarantee can be

made for obtaining the global minimizer, except for a

few simple cases such as finding the extreme eigenva-

lues.

Generally, the approaches to solve orthogonality

constraint problems can be roughly classified into two

categories[25]: 1) feasible methods that strictly satisfy

the orthogonality constraints during iterations, includ-

ing matrix re-orthogonalization and generating trial

points along geodesics, and 2) infeasible methods that

relax the constraints by penalizing their violations and

thus generate infeasible intermediate points, such as

various penalty, augmented Lagrangian, and SDP re-

laxation methods.

In this paper, the LOPA model (4) is solved by

an infeasible method, since all the orthogonality con-

straints are rarely strictly satisfied except for a few in-

trinsically flat datasets with zero Gaussian curvature

everywhere, such as the Swiss role data. Specifically,

the SDP relaxation method is used to solve the LOPA

problem, with details given in the following subsection.

3.2 Relaxation Models for LOPA

A most straightforward way to simplify (4) is to

replace the multiple constraints with just a single com-

bined constraint Y CY T = Id, where C =
∑n

i=1 Ci/n.

This simplification can be verified by the Lagrangian

function:

L(Y , {Wi}) = tr(Y BY T)−

1

n

n
∑

i=1

tr
(

Wi(Y CiY
T − Id)

)

,

where each Wi is a Lagrangian multiplier matrix. If

assuming all the multiplier matrices are identical and

thus can be rewritten as W , then the penalization term

can be written as

tr
(

W
(

Y

(

1

n

n
∑

i=1

Ci

)

Y T − Id

))

.

Thus we can obtain an overly simplified model:

min
Y

tr(Y BY T) s.t. Y CY T = Id.

If considering each dimension of Y , then the optimal

Y is simply given by the eigenvectors corresponding

to the d smallest positive generalized eigenvalues of

(B,C + δIn). Here δIn is a small regularization term

to avoid singularity. This overly simplified model is not

amenable to embedding curved manifold data, though

yielding satisfactory results for intrinsically flat data

like Swiss roll.

A more practical way is to replace the difficult or-

thogonal constraints by easier trace constraints, leading

to the following relaxation model:

min
Y

tr(Y BY T)
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s.t. tr(Y CiY
T) = d, i = 1, . . . , n. (5)

Compared with the rigid orthogonality constraint

Y CiY
T = Id, the trace constraint tr(Y CiY

T) = d

at each data point only loosely specifies the sum of the

diagonals of Y CiY
T. By setting K

.
= Y TY ∈ R

n×n

and using the trace property tr(ABC) = tr(BCA) =

tr(CAB), the model (5) can be rewritten as

min
K

tr(BK)

s.t. K � 0, tr(CiK) = d, i = 1, . . . , n, (6)

where K � 0 means that it is a positive semi-definite

matrix. Note that K is of rank d by its definition.

3.3 Connection to MVU

It is interesting to connect the LOPA model (6) with

the MVU model[8-9], which is given by:

max
K

tr(K)

s.t. K � 0, tr(eeTK) = 0,

Kii − 2Kij +Kjj = Dij , j ∈ Ωi, (7)

whereDij
.
= ‖xi−xj‖2 is the squared distance between

two neighbors xi and xj. The last constraint in (7) is

just ‖yi−yj‖2 = Dij represented by K, implying that

the main purpose of MVU is to preserve distances be-

tween any two neighbor points. The second constraint

enforces that the embeddings of all data points should

be centered on the origin:

∑

i

yi = 0 ⇒
∑

i,j

yT
i yj = 0

⇒ Y e = 0

⇒ tr(eTY TY e) = 0

⇒ tr(eeTK) = 0.

The objective function of MVU is derived as follows:

tr(K) = tr(Y TY )

=
∑

i

‖yi‖
2

=
1

2n

∑

i,j

(‖yi‖
2 + ‖yj‖

2 − 2yT
i yj)

=
1

2n

∑

i,j

‖yi − yj‖
2,

where the zero mean constraint is used in the third

equality. Therefore, it is clear that MVU attempts to

unfold the curved manifold by maximizing the averaged

squared distance between any two embedding points

(need not to be k-nearest neighbors) under the dis-

tance preserving constraint, thus getting its algorithmic

name.

We can see that the objective function max tr(K) =

min tr(−IK) of MVU (7) is similar to min tr(BK) of

LOPA (6). However, there are approximately nk/2

constraints of pairwise distances in the MVU model.

In contrast, LOPA (6) has only n constraints, having

lower complexity than MVU since solving SDP prob-

lems is the most expensive step in both LOPA and

MVU. Most algorithms for solving SDPs are based on

interior-point methods, including CSDP[26], SDPT3[27],

and SeDuMi[28]. As a rough rule-of-thumb, interior-

point methods solve semidefinite problems in about

5∼50 iterations[29], and the number of iterations seems

to grow slowly with the size of the problem. Thereby

the computational complexity of a single iteration is

often studied for SDP problems. However there is

no unified complexity for each iteration of different

computation methods. For example, CSDP requires

O(m(n2m + n3) + m3 + n3) time in each iteration,

where m is the number of equity constraints and n

is the size of the symmetric semidefinite matrix to be

solved. SDPT3 takes approximately O(4mn3 +m2n2)

complexity in each iteration using the Hadamard prod-

uct formula with the AHO search direction. Clearly the

running time is much faster for an SDP problem with

a smaller size of constraints.

3.4 Solution to LOPA

It is well known that the LOPA model (6) is a stan-

dard formulation of semi-definite programming (SDP)

and the optimal K can be solved by any off-the-shelf

convex optimization toolbox like SDPT3[27], CSDP[26],

and SeDuMi[28]. In general, the obtained K may not

satisfy the rank d constraint coming from the definition

K = Y TY . Then by eigenvalue-decomposition of K,

we get an initial solution of the embedding, Y0 = V D
1

2 ,

where D and V are the top d eigenvalue diagonal ma-

trix and the corresponding eigenvectors of K, respec-

tively. Here D
1

2 denotes the diagonal matrix formed by

the square roots of the top d eigenvalues.

Recall that we only solved the relaxation version (6)

to approximate the original LOPA problem (4). Start-

ing from the initial SDP solution Y0, it is usually pos-

sible to find better Y such that both the cost function

tr(Y BY T) and the penalty terms ‖Y CiY
T−Id‖2F can

be further decreased. Here we directly use the two-step

iterative procedure suggested by the Appendix of [15]:
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1) For a fixed Y , solve minLi
‖Y SiHk − LiΘi‖

2
F

to obtain an optimal orthogonal transformation Li for

each xi. This is the standard orthogonal Procrustes

problem (see Algorithm 12.4.1 of [30]), with solution

given by Li = UiV
T
i where Y SiHkΘ

T
i = UiΣiV

T
i is

the singular value decomposition (SVD).

2) For the fixed {Li}, i = 1, . . . , n, solve the least

squares (LS) problem minY

∑

i ‖Y SiHk − LiΘi‖2F to

update Y .

3) Repeat the above two steps until the up-

dates in Y are rather small, formally ‖Y (t+1) −

Y (t)‖F /‖Y (t)‖F 6 ǫ, or t > tmax.

The entire LOPA procedure is given in Algorithm 1.

4 Experiments

We compare our algorithm with other dimensiona-

lity reduction methods, including PCA, LLE, LTSA,

Isomap, PSA, MVU, and MVE. Aside from the results

on synthetic data, we also show visualization results on

pose varying data and motion sequence. Moreover clas-

sification performance is evaluated on low-dimensional

embeddings of five diverse datasets.

To produce a quantitative evaluation, we introduce

four averaged measures reflecting geometric changes be-

fore and after the embedding in each neighborhood.

These measures are relative errors in distances (Rkdist),

relative errors in angles (Rkangl), relative errors in in-

ner products (Rkinner) among any three neighbors, and

change rates in k-nearest neighborhood (Rknn):

Rkdist =

∑n

i=1

∑k

j=2 |(xij − xi)
2 − (yij − yi)

2|
∑n

i=1

∑k

j=2(xij − xi)2
,

Rkangl =

∑n

i=1

∑k

j=3 |∠xijxixi2 − ∠yijyiyi2 |
∑n

i=1

∑k

j=3 |∠xijxixi2 |
,

Rkinner =

∑n

i=1

∑k

j=2 |〈xij ,xi〉 − 〈yij ,yi〉|
∑n

i=1

∑k

j=2 |〈xij ,xi〉|
,

Rknn =
1

kn

n
∑

i=1

(k − |Ω(xi) ∩Ω(yi)|).

4.1 Synthetic Data

Although viewed as “toy data” and shown over and

over again in the manifold learning literature, synthetic

datasets are often self-explanatory to grasp basic pro-

perties of each method. If one algorithm performs

poorly on synthetic data, nobody would believe its good

embedding on real-world datasets. Here five synthetic

datasets are used to perform dimensionality reduction

from 3D to 2D: Swiss roll, Swiss hole, punctured sphere,

twin peaks, and toroidal helix. Every dataset has 800

data points, and the number of neighbors k is set to

8. Two situations are considered, without noise or with

Gaussian noise. In the latter case, we add Gaussian

noise N (0, c2σ2) on each dimension of the coordinates,

where σ = 0.03 in our experiments and c is an average

distance within one neighborhood for each dataset.

Fig.1 shows the visualization results. We can see

that LLE and LTSA cannot maintain distances and an-

gles due to their proximity-preserving nature. Other

five methods including LOPA attempt to preserve dis-

tances or isometry, performing poorly on the punctured

sphere because unfolding this curved data into flat will

greatly violate the distance preserving criterion. In

comparison, Isomap yields unsatisfactory or poor re-

sults on Swiss roll, Swiss hole, and punctured sphere;

PSA fails to unfold Swiss roll, punctured sphere, and

toroidal helix. The results offered by LOPA, MVU and

MVE are very similar except that on twin peaks, LOPA

performs better.

Algorithm 1. LOPA Algorithm for Nonlinear Dimensionality Reduction

Input: a high-dimensional data X = [x1, . . . ,xn] ∈ R
m×n with each data point xi ∈ R

m and the number of data points is n
Parameters: k is the number of neighbors for each xi, and d is the target low dimension satisfying d ≪ m
Output: a low-dimensional data Y = [y1, . . . ,yn] ∈ R

d×n with each yi being the low-dimensional representation of xi

• Denote Xi = [xi1
, . . . ,xik

] as the k nearest neighbors of xi, and Si is a 0-1 selection matrix such that Xi = XSi. Hk = I−eeT/k

is a centering matrix of size k-by-k with e = [1, . . . , 1]T. Θi ∈ R
d×k is the d-dimensional PCA representation of each Xi, with its

Moore-Penrose generalized inverse denoted by Θ
†
i
.

• Ci = GiG
T
i

∈ R
n×n where Gi = SiHkΘ

†
i
∈ R

n×d. B =
∑

N

i=1 SiHk(I −Θ
†
i
Θi)(I −Θ

†
i
Θi)

THT
k
ST
i

∈ R
n×n.

• Use any SDP tool to solve the problem (6) with respect to a positive semidefinite matrix K ∈ R
n×n: minK tr(BK) s.t.K �

0, tr(CiK) = d, i = 1, . . . , n.

• Obtain an initial solution Y0 = V D
1

2 , where D and V are the top d eigenvalue diagonal matrix and the corresponding eigenvectors
of K, respectively.
• Run the two-step iterations to further refine the solution: 1) obtain a local orthogonal transformation Li for each xi by solving
minLi

‖Y SiHk −LiΘi‖
2
F

with a fixed Y ; 2) solve the least squares (LS) problem minY
∑

i
‖Y SiHk −LiΘi‖

2
F

to update Y when
the set of {Li}

n

i=1 is fixed; 3) stop the iterations at the maximum iteration number or the updates in Y are relatively small.
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Fig.1. 3D to 2D results on synthetic data. (a) Input. (b) LLE. (c) LTSA. (d) Isomap. (e) PSA. (f) MVU. (g) MVE. (h) LOPA. From
left to right: Swiss roll, Swiss hole, punctured sphere, twin peaks, and toroidal helix.
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The results of the four geometric measures on syn-

thetic datasets are listed in Table 1∼Table 4, show-

ing that LOPA outperforms the other methods signifi-

cantly in Rkdist, Rkangl, and Rkinner. Table 5 shows

the running time on a PC with 2.5 GHz CPU and 4 G

RAM with all algorithms implemented in Matlab. Note

that the implementations of LOPA, MVU and MVE

use SDPT3[27] to solve SDP problems for fairness. It

is clear that LOPA runs much faster than PSA, MVU,

and MVE.

Table 1. Rkdist

Dataset σ LLE (%) LTSA (%) Isomap (%) PSA (%) MVU (%) MVE (%) LOPA (%)

Swiss roll 0.00 099.53 100.00 48.14 18.13 04.22 01.67 00.42

0.03 099.00 100.00 44.98 16.54 08.98 06.14 01.09

Swiss hole 0.00 099.45 100.00 41.81 18.42 03.84 01.64 00.42

0.03 099.08 100.00 38.95 19.49 08.77 10.09 00.94

Punctured sphere 0.00 080.91 099.83 79.93 53.59 44.70 32.15 24.06

0.03 080.80 099.83 79.87 57.70 44.64 32.26 23.72

Twin peaks 0.00 185.82 099.83 32.76 25.62 27.53 34.38 09.94

0.03 053.81 099.85 36.33 21.67 26.86 28.19 10.29

Toroidal helix 0.00 097.07 099.77 99.62 14.92 01.13 00.18 00.65

0.03 097.07 099.77 99.49 08.74 01.16 00.22 00.67

Table 2. Rkangl

Dataset σ LLE (%) LTSA (%) Isomap (%) PSA (%) MVU (%) MVE (%) LOPA (%)

Swiss roll 0.00 51.27 34.98 20.60 11.23 00.64 00.45 0.41

0.03 48.04 37.86 21.35 10.08 04.28 04.35 4.14

Swiss hole 0.00 38.83 35.16 27.20 10.18 00.67 00.50 0.44

0.03 34.45 36.70 31.32 13.06 04.75 04.95 4.17

Punctured sphere 0.00 09.74 43.75 25.87 32.27 23.60 20.52 7.94

0.03 09.76 43.75 25.99 45.45 23.38 20.67 8.94

Twin peaks 0.00 29.53 11.88 21.17 16.98 18.39 08.77 6.50

0.03 14.41 14.94 22.84 11.98 15.70 09.99 5.92

Toroidal helix 0.00 04.36 00.06 04.36 02.55 03.49 04.36 3.08

0.03 04.33 00.24 04.33 01.74 02.94 03.74 3.23

Table 3. Rkinner

Dataset σ LLE (%) LTSA (%) Isomap (%) PSA (%) MVU (%) MVE (%) LOPA (%)

Swiss roll 0.00 099.53 100.00 064.00 29.26 04.24 01.61 00.57

0.03 098.92 100.00 055.58 26.08 08.79 07.06 02.30

Swiss hole 0.00 099.46 100.00 066.48 30.01 03.76 01.55 00.55

0.03 099.07 100.00 062.94 30.66 08.36 09.47 02.05

Punctured sphere 0.00 082.83 099.88 095.71 69.04 89.09 65.82 34.76

0.03 082.85 099.88 096.05 54.11 88.77 65.72 34.73

Twin peaks 0.00 251.56 099.83 050.12 42.73 34.67 34.05 16.24

0.03 070.63 099.84 053.56 34.83 32.21 28.64 16.04

Toroidal helix 0.00 097.06 099.77 100.05 15.31 01.01 00.24 00.68

0.03 097.06 099.77 100.10 08.78 00.97 00.32 00.85

Table 4. Rknn

Dataset σ LLE (%) LTSA (%) Isomap (%) PSA (%) MVU (%) MVE (%) LOPA (%)

Swiss roll 0.00 53.58 38.19 14.56 12.31 00.56 00.22 00.23

0.03 48.45 39.39 13.89 07.48 01.17 01.66 00.55

Swiss hole 0.00 36.02 36.13 17.98 09.77 00.52 00.20 00.13

0.03 33.53 37.20 21.13 10.16 01.06 01.44 00.50

Punctured sphere 0.00 12.55 60.08 34.78 38.77 27.92 34.80 24.83

0.03 12.30 60.11 34.73 63.80 28.29 34.73 26.27

Twin peaks 0.00 31.94 12.41 15.91 32.16 40.85 16.67 32.19

0.03 15.16 15.48 16.16 27.02 39.17 36.45 33.30

Toroidal helix 0.00 00.16 87.50 05.09 31.33 00.19 00.16 84.77

0.03 00.63 84.06 00.16 32.94 00.29 00.17 82.86
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Table 5. Running Time (s)

Dataset σ LLE LTSA Isomap PSA MVU MVE LOPA

Swiss roll 0.00 0.257 0.444 7.439 1 866.953 652.166 2 414.328 144.110

0.03 0.261 0.449 6.665 1 491.382 598.826 2 506.421 143.023

Swiss hole 0.00 0.257 0.441 6.861 1 780.307 566.924 2 848.470 152.897

0.03 0.253 0.447 6.834 2 780.833 610.673 3 499.761 142.318

Punctured sphere 0.00 0.241 0.457 6.830 0 533.858 160.716 0 437.917 099.776

0.03 0.242 0.465 9.443 2 419.072 175.084 0639.375 138.883

Twin peaks 0.00 0.258 0.448 6.922 3 631.019 112.332 1 588.542 110.066

0.03 0.282 0.455 9.341 4 482.946 188.189 1 887.481 110.929

Toroidal helix 0.00 0.206 0.412 6.874 2 710.461 436.081 1 255.400 085.829

0.03 0.209 0.397 7.185 4 608.337 226.327 1 741.251 141.108

4.2 Real Data: Pose Varying

In this test, we compare the ability of recovering the

pose transition of facial images and Coil data. Fig.2

compares LOPA with MVU and MVE on 2D embed-

ding of the UMist facial images for one person. Since

the inherent structure should be a circular arc, we can

see that MVU thoroughly fails to uncover this structure

and MVE method yields a sin-like curve. In contrast,

LOPA reveals the underlying structure as a circular

arc. Fig.3 displays 2D embedding results of the im-

ages “duck” and “cat” in Coil data. Each group of Coil

images, such as the “duck” and the “cat”, was cap-

tured at every 5◦ by rotating the objects. Hence the

Coil images should have an inherent circle structure.

In comparison, LOPA, MVU, and Isomap perform the

best on the two groups of Coil images, while PSA fails

to detect the circular structure.

4.3 Real Data: Motion Sequence

We use the UCF-sport dataset to explore the low-

dimensional representation of a motion image sequence.

The 2D embedding of a basketball video clip with 140

frames is shown in Fig.4. It can be seen that LTSA,

Isomap, LOPA, and MVE can unfold the data into a

roughly smooth curve, maintaining the sequential pro-

perty of the motion. Since the ground-truth underly-

ing structure of this dataset is unknown, we also report

the quantitative measurements shown in Table 6. From

these errors, we can see that LOPA and MVE perform

much better than the other algorithms. However LOPA

runs much faster than MVE.

Table 6. Runtime (s) and Geometric Measurements on a

Basketball Video

Method Time (s) Rkdist (%) Rkangl (%) Rkinner (%) Rknn (%)

PCA 000.359 0 081.10 46.74 082.63 22.94

LLE 000.175 3 100.00 56.90 100.00 36.06

LTSA 000.150 0 100.00 44.10 100.00 22.09

Isomap 000.313 0 041.39 45.14 060.70 09.04

PSA 211.751 0 010.61 37.10 050.49 51.21

MVU 009.736 0 049.61 39.26 043.94 09.75

MVE 135.842 9 043.33 35.07 056.08 07.04

LOPA 002.153 0 009.71 36.26 042.11 07.99

(a) (b) (c)

Fig.2. 2D embedding of the UMist face images by using (a) LOPA, (b) MVU and (c) MVE. The low-dimensional shape of this dataset
should be an arc in the embedding space.
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Fig.3. Duck images and cat images in Coil. Note that only part of images are shown in (a). The low-dimensional shapes of the two
data sets should be a smooth circle in the embedding space. (a) Input. (b) LLE. (c) LTSA. (d) Isomap. (e) PSA. (f) MVU. (g) MVE.
(h) LOPA.
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4.4 Real Data: Classification

We test the classification performance using k-

nearest neighbor classifier after dimensionality reduc-

tion. Five datasets are used for this purpose. Both

the MNIST dataset and the USPS dataset are hand-

written digits. The ORL dataset consists of 400 facial

images of 40 persons under different conditions. The

HIVA dataset is a drug discovery dataset with two-

class labels. The UCI satellite dataset is an infra-red

astronomy database with six classes. Some datasets are

too large for algorithms like PSA and MVE, and thus

we randomly sample 600∼800 data points from each

dataset. Each dataset is preprocessed by using PCA

to transform the data into a 100-dimensional space be-

forehand, and then we run different dimensionality re-

duction algorithms further to embed the datasets into

a very-low dimension.

Table 7 shows the errors of a k-nearest neighbor clas-

sifier on embeddings produced by different dimensiona-

lity reduction methods. Some parameters are listed

in the table. Within the eight unsupervised methods,

we can see that PCA performs well on most datasets

and takes the first place on two digits data. In com-

parison with the other unsupervised methods, LOPA

achieves the best on the HIVA dataset and the UCI

satellite dataset. We argue that the main purpose of

manifold learning is to faithfully preserve the original

geometric properties of the input data when reducing

the dimensionality. Since the class label information

is not used, manifold learning may not compete with

other discriminant dimensionality reduction methods

like Fisher’s discriminant analysis (FDA). By contrast,

results of FDA are listed in the last column of Ta-

ble 7 showing the lowest errors when compared with

the other unsupervised methods. The survey of [31]

has claimed that most of manifold learning methods

are even inferior to PCA when using 1-NN classifiers

on real datasets.

Fig.5 displays comparison of the 2D embedding re-

sults of digits 5∼7 from the MNIST data and from the

USPS data. The results indicate that proximity pre-

serving methods like LLE and LTSA often fail to cor-

rectly separate the three classes of digits, while PSA

yields totally mix-up embeddings on digits. LOPA, to-

gether with MVU and MVE, can yield embedding re-

sults that are highly separable for different digits. It

implies that LOPA can serve as a feature extraction

method for digit classification.

5 Conclusions

We proposed a new manifold learning algo-

rithm called Local Orthogonality Preserving Alignment

(LOPA). Our algorithm is built upon the neighbor-

hood alignment framework suggested by LTSA, and

extends the general linear transformations in LTSA

into orthogonal alignments. LOPA overcomes the

difficulties in PSA by using the pseudo-inverse trick

to avoid multiple incompatible local transformations.

Compared with the complicated simulated annealing

method used in PSA, we used more efficient SDP re-

laxation to find the numerical solutions. Experimental

results demonstrated that LOPA could produce embed-

ding results comparable to state-of-the-art algorithms

like MVU and MVE. Particularly, our method can

faithfully preserve distances, angels, inner products,

and the neighborhood of the input data. On the other

hand, the complexity of LOPA is much lower than that

of MVU and MVE because the number of constraints

used in LOPA is smaller. Our future work is to inves-

tigate efficient numerical methods, to incorporate dis-

criminant information in labels, and to explore some

real applications in visualization and classification.

Table 7. Test Errors (%) of k-Nearest-Neighbor (kNN) Classification (Leave-One-Out) on Low-Dimensional Data Representation

Produced by Multiple Dimensionality Reduction Methods

Data Parameters Test Errors (%)

n D Kdr Kn PCA LLE LTSA Isomap PSA MVU MVE LOPA FDA

USPS 600 10 15 15 1.67 02.83 02.16 06.33 12.33 05.67 05.50 08.83 00.67

MNIST 600 20 20 20 1.34 02.67 45.50 02.00 18.33 02.00 02.00 07.00 00.50

ORL 400 08 10 03 04.75 21.00 40.75 19.25 31.75 06.00 04.50 05.50 03.00

HIVA 800 15 15 03 03.50 03.75 03.25 03.63 03.25 03.38 03.37 03.25 03.25

Satellite 800 12 15 15 13.63 17.00 16.50 15.00 23.25 15.25 14.75 13.62 13.00

Note: n: number of data points; D: intrinsic dimension estimated by Dr Toolbox (also as embedding dimension); Kdr: number of
neighbors used in dimensional reduction; Kn: number of neighbors used in kNN classifier.
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Fig.5. 2D embeddings of selected digits (5∼7). (a) Input. (b) PCA. (c) LLE. (d) LTSA. (e) Isomap. (f) PSA. (g) MVU. (h) MVE.
(i) LOPA. Top row of each subfigure: the MNIST data; bottom row of each subfigure: the USPS data. Note only example images are
shown in (a) input.
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