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Abstract Mobile applications usually can only access limited amount of memory. Improper use of the memory can cause

memory leaks, which may lead to performance slowdowns or even cause applications to be unexpectedly killed. Although

a large body of research has been devoted into the memory leak diagnosing techniques after leaks have been discovered, it

is still challenging to find out the memory leak phenomena at first. Testing is the most widely used technique for failure

discovery. However, traditional testing techniques are not directed for the discovery of memory leaks. They may spend

lots of time on testing unlikely leaking executions and therefore can be inefficient. To address the problem, we propose a

novel approach to prioritize test cases according to their likelihood to cause memory leaks in a given test suite. It firstly

builds a prediction model to determine whether each test can potentially lead to memory leaks based on machine learning

on selected code features. Then, for each input test case, we partly run it to get its code features and predict its likelihood

to cause leaks. The most suspicious test cases will be suggested to run at first in order to reveal memory leak faults as soon

as possible. Experimental evaluation on several Android applications shows that our approach is effective.
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1 Introduction

With the growing use of mobile devices, the An-

droid system and the mobile applications running on

it have become increasingly popular. The wide use of

mobile applications imposes great demands on mobile

software quality. Unfortunately, many Android appli-

cations still suffer from various bugs. Memory leak is

a typical performance-related bug. Even with garbage

collection supports, memory leak still remains a prob-

lem for Android programs. Since Android programs

running on mobile devices usually can only access lim-

ited amount of memory resources, the problem could be

serious. Those memory leaks can lead to performance

slowdowns or cause applications to be unexpectedly

killed by the OS due to resource pressure, which affects

user experience. By searching in Stack Overflow 1○, we

can find that there are over 2 300 questions about key-

word combination of “Android” and “memory leak”,

compared with about 4 100 questions found by the com-

bination of “Java” and “memory leak”. This indicates

that effective approaches to helping resolve memory

leaks in Android applications are needed.

To solve the memory leak problem in garbage-

collected languages, a variety of techniques and tools

have been proposed[1-15]. Some use static approa-

ches[2-3], while most of the work prefers dynamic

ones[5-15] since dynamic approaches tend to be more

precise. Of the dynamic techniques, a large body of

work focuses on memory leak diagnosing[4-11] after ob-

taining some suspicious test executions, while very little
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work focuses on discovering leak executions. Without

discovering memory leak phenomena at first, even the

best leak diagnosing techniques could not be applied.

Discovering potential memory leak phenomena in

Android applications is still challenging[12-15]. Recen-

tly, Yan et al.[13-14] presented an approach to generate

test cases to discover memory leaks and other resource

leaks in Android applications based on neutral cycles

in GUI model. Shahriar et al.[15] presented another

approach that uses fuzzing techniques to test memory

leaks in Android programs according to several leak

patterns specific to Android platform. Although effec-

tive, these approaches may generate a large number of

test cases for complex applications. Since each test case

may take minutes to hours of execution time to trigger

hundreds of repeated GUI events in order to clearly ob-

serve the memory behavior, the testing can be costly.

The experimental study in [13] shows that only a few

test cases may really lead to memory leaks. Therefore,

testing all the generated test cases can be unnecessary.

A tester may waste lots of time on testing unlikely leak-

ing executions before discovering a leaking execution

that can be used for diagnosing.

To address the problem, we propose a novel ap-

proach to prioritize test cases in a given test suite ac-

cording to their likelihood to cause memory leaks. Each

test case in the test suite is assumed to be composed

by a number of looped GUI interaction sequences (usu-

ally only the long repeating sequence can cause notice-

able memory leaks). The approach firstly uses a set of

training test cases to build a memory leak prediction

model, which is used to determine whether a test case

can potentially lead to memory leaks by using machine

learning on leak-relevant code features. The code fea-

tures are extracted according to the occurrences of Java

language memory management instructions, the use of

system resources, and the use of application framework

resources in a program. Then, for each test case in

the given test suite, we partially run one round of the

GUI interaction loop to collect its leak-relevant code

features, and predict its likelihood to cause leaks with

the leak prediction model. All the test cases will be pri-

oritized according to the likelihood score and reported

to the user. A user can run those most suspicious test

cases at first so that the memory leak faults can be

revealed as soon as possible. We apply the proposed

approach on a set of real-world open-source Android

applications. The initial results show that the test cases

containing memory leaks can be ranked in high order.

This suggests that our approach can be valuable.

The rest of the paper is organized as follows. Sec-

tion 2 introduces the technique background; Section 3

and Section 4 present an overview of the whole ap-

proach and the memory leak relevant code features re-

spectively. We propose a memory leak prediction model

and describe its usages in Section 5. Section 6 is the ex-

perimental study. Finally, we discuss the related work

and conclude the paper in Section 7 and Section 8 re-

spectively.

2 Background

2.1 Structure of Android Applications

An Android application is composed of several types

of Java components instantiated at run-time, includ-

ing the activities, services, broadcast receivers, content

providers, etc. The activities manage the hierarchies of

GUI widgets, e.g., View, ViewGroup, Widget, Menu,

and Dialog. They are the key part for the user interac-

tions in an application.

An application can have one or more activities. The

application’s lifecycle is mostly determined by the life-

cycle of the activities. As demonstrated in Fig.1, each

activity has a well-defined lifecycle passing through

three main states: running, paused and stopped. Devel-

opers can define callback methods to handle these three

states. Once an activity is launched, the onCreate()

method will be called, while when the activity is ready

to terminate, the onDestroy() method will be called.

The loop between onStart() and onStop() is a life-

time that the activity is visible to users. An activity

can call other activities dynamically, and this will cause

the calling activity to pass to the paused state.

2.2 Memory Leaks in Android Applications

Each Android application is independently running

in a separate OS process, inside an instance of a Dalvik

VM, with a memory limit. Like Java programs, An-

droid applications mainly create objects in heap space.

If an object becomes unreachable from the heap roots,

the object will be freed and its memory will be re-

claimed by a garbage collector. However, when an ap-

plication maintains a reference to an object, even if the

object is no longer used, the garbage collector could

not reclaim its memory. This can cause memory leaks

easily.

The improper allocation and deallocation of space in

native memory and the improper use of other resources

like threads, bitmaps, may also cause the unexpected
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increase of the used memory. In this paper, we con-

sider all problems that can lead to the unreclaimable

memory in a program as memory leak problems.

Activity 
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onCreate()

onStart() onRestart()

onResume()

Activity Is 
Running

New Activity Is 

Started

onPause()

Your Activity Is No 
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Other Applications 
Need Memory

Process Is Killed

User Navigates 
Back to the Activiy

Fig.1. Activity lifecycle[12].

Because Android programs run on a different virtual

machine and a different application framework (An-

droid SDK) and have a different lifecycle compared with

normal Java programs, the resolution of memory leaks

in Android programs will be different from that in tra-

ditional Java programs.

2.3 Discovering Memory Leaks in Android

Yan et al.[13] proposed an automated test cases

generation approach to discover memory leaks in An-

droid applications. The approach is based on neutral

cycles in an application’s GUI model. A neutral cycle is

a sequence of GUI events expected to have a “neutral”

effect, and does not lead to the increases in resource us-

age. For example, in a PDF reader, there can be zoom-

in/out operations which can enlarge or shrink the PDF

display screen. A sequence of GUI events composed by

these two zoom operations should be a neutral cycle.

Yan et al.[13] defined coverage criteria based on neutral

cycles, and proposed methods to generate GUI oper-

ation sequences with neutral cycles as test cases. By

discovering previously unknown memory leak bugs, the

approach has been proven effective on many applica-

tions.

However, a comprehensive testing approach based

on neutral cycles may produce a large test suite for a

complex application. Assume there are Ntestcase test

cases in the test suite, and each test case runs Nleading

GUI operations before entering a neutral cycle and

Nloop neutral cycles, each consisting of Ncycle op GUI

operations. Then, to execute the whole test suite, we

may need to execute

Noperation = Ntestcase × (Nleading +Nloop ×Ncycle op)

GUI operations. That can be very costly even if these

operations are triggered by a test automation frame-

work like Robotium 2○.

We are aware that often there are only a few test

cases which really lead to memory leaks. Without care-

fully scheduling the execution orders, large testing ef-

forts may be wasted on those test cases unlikely to cause

leaks. If the test cases potentially causing leaks are pri-

oritized and tested before those unlikely leaking ones,

then the leak discovering efficiency can be effectively

improved.

To address the above problem, we propose a test

case prioritization approach to discover memory leaks,

which will be elaborated in the following sections.

3 Test Case Prioritization Framework

An overview of our test case prioritization frame-

work is shown in Fig.2. The framework firstly accepts

a set of training inputs to build a memory prediction

model. Then we input an application under test as well

as a test suite for the application to the framework. A

prioritized sequence of test cases will be outputted to

the users for memory leak testing.

3.1 Training Inputs

The training inputs include a set of applications

used for training, a collection of test cases toward these

applications, and a leak level function that records the

leak level of the training test cases.

A training test case is composed by a sequence of

GUI events like that in [13], which can be expressed in

2○Robotium. http://www.robotium.org, July 2016.
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Fig.2. Test case prioritization framework.

a form like

(n0, . . . , ni, (nj , . . . , ni)
k),

where n0 is the start event, the prefix (n0, . . . , ni)

represents a cycle-free leading event sequence, and (nj ,

. . . , ni)
k is event cycles returning to ni each time. Fig.3

demonstrates the structure of a test case. In the figure,

n0 represents a GUI operation in the application’s start

screen. (n0, . . . , ni) represents a sequence of GUI ope-

rations before entering event cycles. (nj ,. . . , ni)
k is the

event cycles conducting k rounds of repeated GUI ac-

tions. The training test cases will be fully executed to

collect training code features that are relevant to mem-

ory leaks.

⊲⊲⊲ ⊲⊲⊲

k

nin nj

Fig.3. Demonstration of a test case.

Each training test case is labeled with a leak level

to indicate whether there are memory leaks in the test

case and if there is no memory leak then how close the

non-leaking test case is to the leaking ones. The la-

belling of leak levels can be expressed in the following

function:

LL : Ttrain → {1, ...,K}.

A test case with known memory leaks will be labeled

with the maximum value K in the function range. For

a non-leaking test case, we get the grown memory size

after repeating a number of event cycles in the test case.

The ones with almost no memory growth will be labeled

with 1. Others will be labelled with a value between 1

and K according to a series of bars set for the grown

memory size. A test case with larger grown memory

size is considered to be closer to the leaking test cases.

3.2 Test Suite for Prioritization

The test cases for prioritization are similar to those

in the training set. These cases will be scored by a

leak prediction model. According to scores, they will

be prioritized in an order from high score to low score.

In our approach, we need to partially run each test

case in the given test suite to collect memory leak rele-

vant code features for prioritization. However, different

from running test cases in the training set, we only need

to execute the event cycle (nj , . . . , ni) in a test case for

prioritization for only one cycle. Although this cannot

completely avoid running some test cases in the test

suite, it can still reduce significantly the cost of testing.

Similar to Subsection 2.3, assume there are Ntestcase

test cases in the test suite for prioritization, and each

test case runs Nleading GUI operations before entering

an event cycle and Nloop event cycles, each consisting

of Ncycle op GUI operations. Then, to do prioritization,

we need to run

Nprioritization = Ntestcase × (Nleading +Ncycle op)

additional GUI operations before fully executing each

test case. Let Ntestcase = 100, Nleading = 4, Nloop = 30,

Ncycle op = 3, and suppose before prioritization we can

find a leak execution and stop testing in 1/2 of total

test cases and after prioritization we can find a leak

execution and stop testing in 1/5 of total test cases.

Then, before prioritization we need to run 4 700 GUI

operations in testing, while after prioritization the num-

ber can be reduced to 2 580. About 45% of GUI ope-

rations can be reduced by doing prioritization. If the
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prioritization precision is improved, more improvement

can be achieved. This yet has not considered the time

that a user takes to check the results of each test case.

3.3 Prioritization Steps

Our prioritization includes two major steps: train-

ing and ranking. In the training step, we build a simple

memory leak prediction model based on memory leak

relevant code features extracted from an input test case.

The model can produce a score to indicate the likeli-

hood that a test case may cause memory leaks. It has

a weight vector to determine the importance of each

leak relevant feature. We use machine learning on the

features extracted from the training test cases and the

leak levels of those test cases to obtain the weight vec-

tor. With the code features and the weight vector, the

test cases in a test suite can be prioritized.

In this paper, we use the code-level features for

memory leak prediction. Other choices might be us-

ing the memory growth in one GUI operation cycle or

the leak reports produced by a leak detection tool like

MAT 3○ for one GUI operation cycle as leak-relevant

execution features. However, investigations on several

applications show that such choices are almost infea-

sible under our prioritization framework. The mem-

ory growths in one GUI operation cycle are usually

very small and easy to be affected by the environment.

Therefore, it is very difficult to build a precise predic-

tion model based on such information. Using the leak

reports from a tool like MAT has similar problems. The

prediction performance of such leak detection tools is

often unstable when the used memory dump is very

small. The work in [16] also finds that MAT suffers

from false alarms for many Android applications. Diffe-

rent from these choices, code-level features do not have

such limitations. They can predict whether there are

memory leaks even if the amount of leaked memory is

very small.

The ranking step uses the memory leak prediction

model to prioritize test cases. Each test case in the

given test suite is partially run to collect a leak-relevant

code feature vector, the leak prediction model gives

scores with the code feature vectors, and then the test

cases are sorted according to the scores.

4 Memory Leak Relevant Code Features

We identify three categories of features that are rel-

evant to memory leaks in a program: the use of Java

language memory management instructions, the use of

Java runtime system resources, and the use of applica-

tion framework resources. While there are many diffe-

rent features in each category, we simply choose a part

of frequently used features. The used code features are

listed in Table 1. We will introduce them in more details

in this section. Based on the memory leak relevant code

features, we build feature vectors and then use them to

prioritize test cases.

Table 1. Categories of the Memory Leak

Relevant Code Features

Category Code Feature

1 Java language memory new/newarray

management instructions nullify

2 Use of Java runtime openXXX()

system resources closeXXX()

3 Use of application getResources()

framework resources onDestory()

4.1 Use of Java Language Memory

Management Instructions

The Java language memory management instruc-

tions refer to the new/newarray instructions and the

reference target resetting instructions. When a new or

newarray instruction is executed, more memory is al-

located on the heap. However, some memory can pos-

sibly be freed if a reference resetting instruction, es-

pecially a nullifying instruction, is executed. These in-

structions can be indicators for potential memory leaks.

If a program executes too many new/newarray instruc-

tions, then the likelihood of containing memory leaks

can possibly be higher. If there are more reference nul-

lifying instructions executed in a program, we consider

that the programmer has handled memory management

more carefully, and hence the likelihood of containing

memory leaks can be lower.

For example, in Fig.4, there is a newarray instruc-

tion corresponding to the new statement. After being

assigned to instance field data, the created array might

be referenced by some long living reference and can-

not be garbage-collected. Such code snippet is consi-

dered more likely to contain a memory leak bug, com-

pared with a module without creating any object via

new/newarray instructions.

We can use the number of occurred new/newarray

instructions and the number of nullifying instructions

as a heuristic for predicting memory leaks. The Java

3○Memory Analyzer (MAT). http://www.eclipse.org/mat/, July 2016.
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language level code features are expressed in the follow-

ing vector:

Flanguage(t) = (Nnew, Nnewarray, Nnull),

whereNnew is the number of new instructions, Nnewarray

is the number of newarray instructions, andNnull is the

number of nullifying instructions.

Fig.4. Example module with newarray instruction.

4.2 Use of Java Runtime System Resources

There can also be memory leaks in an Android ap-

plication if the Java runtime system resources, e.g., files

or databases, are not released properly, even though the

leaked memory may occur in the native side of the sys-

tem. For example, in Fig.5, after opening a file, if there

are some errors, the file close action may not be exe-

cuted, which may cause the file to long termly occupy

memory and eventually lead to a memory leak.

The open and close actions can be a heuristic for

predicting potential memory leaks. If the execution

trace of an application contains many open actions but

few close actions, then the execution is considered more

likely to contain a memory leak.

Therefore, the use of Java runtime system resources

is also considered as part of the memory leak relevant

code features. We simply count the openXXX() like

method calls and the closeXXX() like method calls in

the execution trace. The counted numbers form a Java

runtime resource relevant code feature vector, which

can be expressed in the following formula:

Fsystem(t) = (Nopen, Nclose),

where Nopen is the number of open calls, while Nclose

is the number of close calls. All the counts of different

openXXX() like calls are combined as a single feature,

and the same for closeXXX() like calls. The feature

vector consisting of open/close call numbers may not

comprehensively represent all the use of Java runtime

system resources. It can be further extended when ap-

plied in more complex systems.

Fig.5. Example module opening and closing a file.

4.3 Use of Application Framework Resources

In addition to allocating memory via new/newarray

instructions and via Java runtime resource management

APIs, memory can also be indirectly allocated by the

application framework resource management APIs, e.g.,

when loading Bitmap or ImageView objects in the An-

droid framework.

For example, in Fig.6, a Bitmap image used

as the background of a GUI screen is loaded via

a BitmapFactory.decodeResource(getResources(),

R.drawable.bimap) call and saved into a Bitmap ob-

ject. The bitmap maintains a large amount of mem-

ory. It should be carefully released; otherwise, there

can possibly be memory leaks.

Similar to Subsection 4.1 and Subsection 4.2, we

can count the numbers of application framework re-

source allocation and release operations as code features

to help predict memory leaks. However, there are too

many kinds of resources in the Android framework, and

their allocation and release operations are quite diffe-

rent. Directly counting the numbers of such operations

could be very complex. We are aware that many of the

Android framework resource allocations directly or in-

directly call a getResources()method provided by the

Android API to load application resources. Therefore,
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we use the number of getResources()method calls in

an execution trace as the code feature indicating re-

source allocations. If the number of getResources()

calls is large, we choose to treat this as a suspicious

symptom that may be related to a memory leak. Be-

sides, we are also aware that many resources are often

released in the onDestroy()methods. To simplify code

feature collection, we use the number of onDestroy()

method calls as a code feature to approximate the oc-

currences of resource release operations.

Fig.6. Example module using application framework resources.

Let NgetResources and NonDestroy be the numbers of

getResources() and onDestroy() calls, respectively.

Then, the memory leak relevant code features from the

application framework resource perspective are shown

as follows.

Fframework(t) = (NgetResources, NonDestroy).

4.4 Extracting of Code Feature Vector

To extract memory leak relevant code features, we

firstly instrument the application under test to collect

the execution trace of each test case. Then, the code

features will be extracted from the execution trace. The

process is shown in Fig.7.

In the instrumentation step, we instrument the An-

droid applications at bytecode-level with Soot bytecode

analysis framework[17]. Hooks are inserted before the

instructions that are related to the code features to col-

lect the executed instructions. After running the given

test case on the instrumented application, an execution

trace with information relevant to the identified code

features will be obtained. The code features can be ex-

tracted by simply scanning the execution trace. During

the scanning, only the part of an execution trace that

corresponds to the event cycles in a test case will be

considered, since usually only these event cycles are re-

sponsible for the memory leaks in a test execution.

Application Instrument
Instrumented 

APK

Execute 
Test Case

Test Case 
Execution 

Trace
Code 

Features

Fig.7. Extracting code features.

We currently do not spend many efforts in optimiz-

ing the execution profiling. When testing in practice,

the code features extraction cost can be further re-

duced. The designed code features are not very compre-

hensive. However, they cover main categories of code-

level features that are relevant to memory leaks in an

Android application. One may further add features to

each category if necessary to extend its capability of

predicting memory leaks.

5 Leak Prediction Model

We use a linear combination of all code feature val-

ues to predict the likelihood of leaks. In the prediction

model, the weight values of the linear combination are

determined by a machine learning algorithm.

5.1 Building a Leak Prediction Model

Let Tprioritize = {t1, t2, . . . , tp} be a test suite of an

application P for prioritization. After executing an

event cycle in each test case ti ∈ T , we can obtain a

feature vector Fmemory for ti to describe its leak rel-

evant code-level execution characteristics. The vector

can be denoted as below, in which m is the length of a

test case’s full feature vector.

Fmemory(ti) = (Flanguage(ti),Fsystem(ti),Fframework(ti))

= (f1, f2, ..., fm).

Our leak prediction model is based on a ranking

function which can be represented as a linear combi-

nation of the feature values. The ranking function S

is presented in the following formula. It is a mapping
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from a test case to its leak likelihood score. We multi-

ply a feature vector with a weight vector W to get the

score value.

S(t) = Fmemory(t) ·W = (f1, f2, ..., fm)
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In prioritization, the leak likelihood scores are cal-

culated for each test case in test suite Tprioritize. Ac-

cording to the scores, the test cases will be sorted in

descending order as the prioritization result. Test cases

in the front of the result list are the ones likely to cause

memory leaks and are suggested to be run at first. The

scoring and prioritization process is depicted in Fig.8.
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5.2 Determining the Feature Weights

Now the remaining problem is to determine the fea-

ture weights W . We obtain reasonable feature weights

by machine learning. Among many machine learning

algorithms and models, the Ranking SVM algorithm[18]

is found suitable for our memory leak prediction model.

Ranking SVM is a variant of the support vector ma-

chine algorithm, which is used to solve certain learning

to rank problems. It outputs a weight vector which can

be multiplied with the feature vector as a linear ranking

function. The approach is originally used for informa-

tion retrieval, but can also be used in other areas.

To use the Ranking SVM algorithm, we firstly ex-

tract the code features for each test case in the training

set. Let there be n training test cases for all the train-

ing applications, and then the training test set can be

represented by:

Ttrain = (t1, t2, ..., tn).

After executing all the event cycles in a training test

case tk, we can obtain a code feature vector Fmemory(tk)

for tk. According to priori knowledge, each training test

case tk will be assigned with a leak level LL(tk). Based

on such information, a memory leak relevant feature-

level matrix Mmemory, which contains all the feature

vectors and the leak levels, can be built, as shown in

Fig.9. In Mmemory, each line records the feature vector

and the memory leak level of a training test case.

Mmemory(P ) =
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...
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Fig.9. Feature-level matrix.

Mmemory forms a basis for the Ranking SVM algo-

rithm. The algorithm then uses a pairwise approach

to transform the feature-level information into the bi-

nary classification information. Fig.10 demonstrates

the transformation. For every two training test cases ta
and tb, if the leak level of ta is higher than that of tb,

i.e., LL(ta) > LL(tb), then the test case pair (ta, tb) will

be classified into a group with label “+1”. Otherwise,

if LL(ta) < LL(tb), the test case pair will be classified

into a group with label “−1”. The feature vector of

test case pair (ta, tb) will be (Fmemory(ta), Fmemory(tb)).

Then, the feature-level information of each test case be-

comes the feature-classification information of each test

case pair.
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The Ranking SVM algorithm will use classical SVM

algorithms to learn a linear classification function that

fits the given binary classification model. A ranking

function consistent with the leak level information in

the training set can be derived from the classification

function. By transforming the ordered data (order by

leak levels) into binary classification data, the Rank-

ing SVM algorithm can turn the sorting problem into

the binary classification problem. After obtaining the

ranking function, we can get the weight vector suitable

for our memory leak prediction.

5.3 Using the Prediction Model

We will use an example to show how the predic-

tion model works for an Android application under test.

The tested application is Astrid 4○, which implements

a task management function. Fig.11 shows two acti-

vities in Astrid. Fig.11(a), TaskListActivity, displays a

list of tasks when the application is launched. Fig.11(b)

shows the task editing interface. Tapping the task icons

on the TaskListActivity can switch to TaskEditActiv-

ity, while pressing the Android system BACK button

can stop editing and return to the previous screen.

(a) (b)

Fig.11. Astrid application. (a) TaskListActivity: listing tasks.
(b) TaskEditActivity: editing a task.

A GUI operation sequence consisting of tapping a

task icon at first and then pressing the BACK button to

go back forms an event cycle. There can be a test case

containing this cycle. When executing the test case, we

can collect a memory feature vector for this event cycle.

The feature vector is:

(461, 65, 56, 1, 9, 31, 0).

In this vector, the numbers of new instruc-

tions, newarray instructions, nullifying instructions,

openXXX() calls, closeXXX() calls, getResources()

calls, and onDestroy() calls are 461, 65, 56, 1, 9, 31,

and 0, respectively. By inputting this feature vector to

the leak prediction model, we can get a leaking score

35.73 for the test case. The score is much higher than

the scores of non-leaking test cases, which indicates the

test case is more likely to cause memory leaks.

6 Experiments

We implemented our approach and evaluated it on

several publicly available Android applications to val-

idate whether the prioritization results can really be

beneficial for the users.

6.1 Experimental Setup

In our experiments, all the applications were run on

an Android virtual device. The test cases were exe-

cuted based on Robotium test automation framework.

Each application was instrumented with Soot 2.5.0 to

obtain the execution traces. The leak relevant code

feature vectors were then extracted from the recorded

execution traces.

In the training step, we defined three leak levels {1,

2, 3} for the executed test cases. Level 3 corresponds

to the test cases with known memory leaks, e.g., the

leaking executions identified by the work in [13]. Level

1 corresponds to test cases with almost no memory in-

crease after 10 cycles of operations (the size of the in-

creased memory is smaller than 10 Kb). The other test

cases were classified into level 2. We used DDMS tool 5○

to monitor the change of heap memory so that the leak

levels can be determined.

After obtaining the code feature vectors and the leak

level labels, we then built a model for memory leak pre-

diction with the help of SVM-rank 6○, an implementa-

tion of the Ranking SVM algorithm. Each test case for

prioritization was run for one GUI operation cycle to

collect its leak relevant code feature vector. The vector

would then be inputted to the memory leak prediction

model to determine its likelihood to lead to memory

leaks. The test cases in the test suite for prioritization

would be sorted according to their leak likelihood score.

Those test cases with high scores were suggested to be

4○Astrid. https://github.com/todoroo/astrid, July 2016.
5○DDMS. https://developer.android.com/studio/profile /ddms.html, July 2016.
6○SVM-rank. http://www.cs.cornell.edu/People/tj/svm light /svm rank.html, July 2016.
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tested before other ones so that memory leak phenom-

ena can be discovered as soon as possible. We checked

the ranked positions of the test cases known to have

memory leaks to validate the effectiveness of the pro-

posed approach.

The experiments were conducted on nine open-

source Android applications. Most of them were ob-

tained from the subjects in previous work[13] (down-

loaded from the authors’ website 7○). Because we had

failed to produce runnable instrumented APKs for ap-

plications ConnectBot, FBReader, and K9 used in

[13] under Soot framework, to complement the bench-

mark applications, other four applications (Omnidroid

0.2.2 8○, Open Manager 1.11 9○, Sipdroid 2.2 beta 10○, Su-

perGenPass 2.2.3 11○) were also picked for study. These

applications have been used in other software engineer-

ing researches[19-20]. For the subjects from [13], we used

the same test cases for study. For the other subjects,

we manually generated test cases following the neutral-

cycle based test case generation approach. During test-

ing, we found several generated test cases cause the sub-

ject applications’ memory consumption to significantly

increase after multiple neutral cycles. These test cases

exhibited memory leak behaviors if too many neutral

cycles were triggered. We considered them as leak re-

vealing test cases that should be prioritized to the front

for testing, compared with the test cases that only con-

sume ignorable memory after neutral cycles.

The experimental subjects are listed in Table 2. The

third column shows the number of activities in the ap-

plications. The fourth column shows the number of

classes. The fifth column shows the number of test

cases existing for each application. In most test cases,

the numbers of events involved in the event cycles are

less than 5. The sixth column shows the number of test

cases that can reveal memory leaks (as stated in Sub-

section 2.2, the resource leaks finally causing abnormal

memory growth are also considered as memory leaks in

this paper).

Table 2. Experimental Subjects

Application Description # Activity # Class # Test Case # Leak Test Case

APV PDF readers 04 056 22 1

Astrid To-do list management 11 481 40 3

KeePassDroid Password manager 07 126 33 5

Omnidroid Automated event/action manager 13 163 18 2

Open Manager File management 08 060 26 1

Sipdroid Network phone 12 331 38 1

SuperGenPass Bookmarklet password generator 03 065 16 1

VLC Multimedia player 08 176 32 4

VuDroid ebook 03 067 17 2

We used cross-validation to validate the effective-

ness of our approach. The experimental subjects were

divided into three groups: {Astrid, Omnidroid, VLC},

{APV, KeePassDroid, VuDroid}, and {Open Manager,

Sipdroid, SuperGenPass}. We did experiments three

times according to these three groups. Each time a

group of subjects were selected for training, while the

other subjects were used for test case prioritization.

The three experiments are listed as below.

Experiment 1. Training apps: Astrid, Omnidroid,

VLC.

Experiment 2. Training apps: APV, KeePassDroid,

VuDroid.

Experiment 3. Training apps: Open Manager, Sip-

Droid, SuperGenPass.

6.2 Experimental Results

The indicators of the effectiveness of the proposed

approach include: the best rank (the highest rank),

the worst rank (the lowest rank), the median rank of

the leaking test cases, the percentage of test cases with

ranks greater than or equal to the best rank, the per-

centage of test cases with ranks greater than or equal

to the worst rank, and the percentage of test cases with

ranks greater than or equal to the average rank. The

7○http://web.cse.ohio-state.edu/presto/software/leakdroid/, Aug. 2016.
8○Omnidroid. https://f-droid.org/repository/browse/?fdid= edu.nyu.cs.omnidroid.app, July 2016.
9○Open Manager. https://f-droid.org/repository/browse/?fdid= com.nexes.manager, July 2016.
10○Sipdroid. https://f-droid.org/repository/browse/?fdid= org.sipdroid.sipua, July 2016.
11○SuperGenPass. https://f-droid.org/repository/browse/?fdid=info.staticfree.SuperGenPass, July 2016.
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rank data for the three experiments are listed in Ta-

ble 3∼Table 5. Columns of Best, Worst, Med, Best

(%), Worst (%), and Avg (%) show the above indica-

tor values, respectively. The notes below these tables

also show the weight vector in the memory leak predic-

tion model of each experiment. The weight vectors are

instances of code feature vector:

(Nnew, Nnewarray, Nnull, Nopen, Nclose,

NgetResources, NonDestroy).

Table 3. Results of Experiment 1

Application Best Worst Med Best (%) Worst (%) Avg (%)

APV 6.0 6.0 6.0 27.3 27.3 27.3

KeePassDroid 1.0 8.0 4.0 03.0 24.2 12.7

Open Manager 2.0 2.0 2.0 07.7 07.7 07.7

Sipdroid 1.0 1.0 1.0 02.6 02.6 02.6

SuperGenPass 2.0 2.0 2.0 12.5 12.5 12.5

VuDroid 1.0 2.0 1.5 05.9 11.8 08.8

Average 2.2 3.5 2.8 09.8 14.4 11.9

Note: weight vector: (0.038, 0.051, −0.098, 0, −0.079, 0.194,
0.824).

Table 4. Results of Experiment 2

Application Best Worst Med Best (%) Worst (%) Avg (%)

Astrid 1.0 3.0 2.0 02.5 07.5 05.0

Omnidroid 1.0 3.0 2.0 05.6 16.7 11.1

Open Manager 2.0 2.0 2.0 07.7 07.7 07.7

Sipdroid 1.0 1.0 1.0 02.6 02.6 02.6

SuperGenPass 2.0 2.0 2.0 12.5 12.5 12.5

VLC 1.0 4.0 2.5 03.1 12.5 07.8

Average 1.1 2.1 1.6 04.9 08.5 06.7

Note: weight vector: (0.109, 0.067, −0.235, 0, −0.051, 0.275,
−0.619).

Table 5. Results of Experiment 3

Application Best Worst Med Best (%) Worst (%) Avg (%)

APV 3.0 3.0 3.0 13.6 13.6 13.6

Astrid 1.0 3.0 2.0 02.5 07.5 05.0

KeePassDroid 1.0 7.0 3.0 03.0 21.2 10.9

Omnidroid 2.0 7.0 4.5 11.1 38.9 25.0

VLC 1.0 8.0 4.5 03.1 25.0 14.1

VuDroid 1.0 2.0 1.5 05.9 11.8 08.8

Average 1.5 5.0 3.1 06.5 19.7 12.9

Note: weight vector: (0.039, 0.062, 0, 0, −0.005, −0.011, 0).

Figs.12∼14 also show the ranked position of each

leaking test case in the three experiments.

According to the results in Table 3∼Table 5, we can

find that most of the test cases with memory leaks are

ranked in the front of the prioritized list. On average,

for the test cases with memory leaks, their best rank

is 1∼2, their worst rank is 2∼5, and their median rank

is 1∼3. This means the test cases with memory leaks

can be tested at very first in our testing approach. The

column Med roughly shows the distribution of the test

cases with memory leaks in the prioritized results. We

can see that the leaking test cases centralize in front of

the ranked list. In most cases, the worst ranked leaking

test cases occur in the first 25% of the prioritized test

cases, and in more than half of the tested applications,

a test case with memory leak can be ranked at the first

position of the prioritized list. The column Avg (%)

also shows that on average, the test cases with leaks

can be ranked in the first 15% of the prioritized test

cases. The above results indicate that our approach is

effective in prioritizing memory leak test cases from a

given test suite.

Because each test case needs to repeat event cycles

for a lot of times to observe the memory usage, while the

prioritization only needs to execute one event cycle in a

test case, the prioritization cost is very small compared

with fully executing these test cases, and the number

of GUI events excluded from execution by prioritization

can be large. This indicates the prioritization can help

the users to speed up the memory leak testing process.
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Fig.14. Ranks of the leaking test cases in experiment 3.

In Table 6, the average code feature vectors of the

test cases with memory leaks and without memory leaks

are shown, as well as the likelihood scores of memory

leak produced by our leak prediction model. Accord-

ing to these experimental data, we can find the average

scores of the test cases with memory leaks are much

higher than those of the test cases without memory

leaks. This means the score can indeed be an indicator

of the likelihood of a test case to contain memory leaks.

6.3 Discussion

Although our leak relevant code features are not

comprehensive, the experimental results show that they

are sufficient for the studied subject programs. This

suggests that for memory leak directed test case pri-

oritization, we may not need to extract very compre-

hensive code features. Keeping the code feature vector

simple not only works under many situations, but also

can make the prioritization more lightweight.

By intuition, the weight for a code feature like the

number of onDestroy() method calls is expected to

be negative, and the weight for a code feature like the

number of getResources() calls is expected to be posi-

tive. However, in the experiment, such weights are

sometimes not as expected. This is mainly because the

number of those calls is often very small. Therefore,

during training, their weights are easily to be affected

by other factors. However, the experiments show that

such unexpected weights do not seriously affect the pri-

oritization results.

In the experiment, we assign three leak levels {1, 2,

3} to the training test cases. Actually, according to the

theory of the Ranking SVM algorithm, when more leak

levels are assigned, the gap between the scores of the

leaking test cases and the scores of the non-leaking test

cases can be larger, and the prediction can possibly be

more precise. However, determining what level to as-

sign to each training test case is difficult. Therefore,

this paper only uses three levels.

The threats to the validity of our experiment mostly

exist in the number and the diversity of the benchmark

applications we study. In the future, we plan to use

more experimental subjects to further validate the ef-

fectiveness of the proposed approach. The evaluation

will not only be conducted on normal user applications,

but also be conducted on those launcher applications

and games which tend to be resource-intensive. The

size of the test suite and the number of the leaking test

cases are another two threats. We currently mainly use

the test cases provided in [13] for study. In the future,

we plan to create more test cases and seek for more

leaking executions to further optimize our memory leak

prediction model.

7 Related Work

Memory Leaks in C/C++. Most of the existing re-

search on C/C++ memory leaks focuses on static leak

detection[21-24]. The detection methods can be based

on escape analysis[21], shape analysis[22], ownership

model[23], value-flow analysis[24], etc. With proper test

cases, the leaks can also be detected by dynamic anal-

ysis using techniques similar to garbage collection[25]

Table 6. Average Feature Vector and Score Data

Application Avg. Vector Data with Leak Avg. Vector Data Without Leak Avg. Score with Leak Avg. Score Without Leak

APV (223, 59, 99, 0, 15, 4, 0) (63, 15, 29, 0, 1, 1, 0) 06.63 −1.93

Astrid (454, 78, 56, 0, 11, 16, 0) (6, 6, 15, 0, 2, 8, 0) 34.06 −4.06

KeePassDroid (117, 66, 15, 0, 13, 1, 0) (19, 6, 2, 0, 2, 0, 1) 07.33 −1.15

Omnidroid (501, 3, 24, 0, 82, 45, 0) (284, 0, 62, 0, 127, 18, 0) 38.51 −9.15

Open Manager (116, 1, 0, 0, 0, 0) (59, 0, 3, 0, 0, 0, 0) 08.60 −3.39

Sipdroid (222, 6, 2, 0, 0, 288, 0) (8, 1, 0, 0, 0, 0, 0) 84.03 −0.62

SuperGenPass (32, 13, 2, 1, 0, 18, 0) (14, 2, 0, 0, 0, 1, 0) 03.13 −1.28

VLC (138, 30, 24, 0, 23, 0, 1) (57, 9, 60, 0, 2, 3, 1) 08.50 −2.23

VuDroid (1 413, 341, 222, 0, 0, 4, 0) (136, 20, 40, 0, 0, 0, 0) 63.32 −4.35
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or using object staleness profiling[26-27]. Besides detec-

tion, some other research also studies the validation[28]

and the fixing[29] of C/C++ memory leaks.

Memory Leaks in Java and Other Managed-

Languages. For managed-languages with garbage col-

lection supports, the causes of leaks are more complex

and hence the leaks are more difficult to detect[1]. Most

of the existing studies in this area focus on leak diagno-

sis. They detect the root causes of leaks on a test exe-

cution likely to contain memory leaks. The diagnosing

techniques can be roughly categorized into heap growth

trends based ones[4-6], heap structure based ones[7-9],

object staleness based ones[10-11], etc. In addition to

the diagnosis, Pienaar and Hundt[2] and Yan et al.[3]

also proposed static analysis based techniques to de-

tect memory leaks in managed languages. They used

special patterns in source code to reveal memory leak

faults without needing a leaking execution.

Memory Leaks in Android Applications. Guo et

al.[12] proposed an approach which uses static analy-

sis to detect resource leaks in Android programs. The

approach can find some memory leaks indirectly caused

by unreleased resources; however, it cannot be used to

detect general memory leak problem.

Because most of the existing work on memory leaks

can only diagnose memory leaks while cannot discover

leak phenomena in a systematic way, Yan et al.[13-14]

proposed a systematic approach for testing resource

leaks, including memory leak, for Android software.

The approach is based on Android applications’ GUI

model. It generates comprehensive test cases to trig-

ger repeated executions of neutral cycles to discover

the memory leaks in applications. Although effective,

the neutral cycle based approach may generate a large

number of test cases for complex applications. Only a

few of them can really lead to memory leaks. There-

fore, testing all the generated test cases can be costly

and unnecessary. Our prioritization technique can be

viewed as an extension to Yan et al.’s work[13-14] to help

further increase the test efficiency.

Shahriar et al.[15] also proposed a testing technique

for Android memory leak problem. They did fuzz test-

ing toward several identified memory leak patterns in

Android applications. The problems revealed by their

approach may not be real memory leak bugs and their

testing is not comprehensive because of the limited

number of patterns. Our leak relevant code features

share some insights with their leak patterns. But diffe-

rent from Shahriar et al.’s work[15] which only consid-

ers Android framework related leak patterns, we also

consider Java language level and Java runtime system

level code features that are relevant to memory leaks.

Therefore, our approach is not restricted in the Android

platform and can also be extended to other systems.

8 Conclusions

In this paper, we proposed a novel approach that

helps users prioritize test cases in a test suite for faster

memory leaks detection. The approach firstly collects

leak-relevant code features of a test case according to

the use of Java language memory management instruc-

tions, Java runtime system resources, and application

framework resources in a program. Then, we built a

memory leak prediction model based on the extracted

code features to determine the likelihood of a test case

to contain leaks, and prioritize test cases according to

their likelihood scores. The most suspicious test cases

will be ranked to the front and suggested to the users

in order to speed up the memory leak testing. Our

evaluation on several freely available Android applica-

tions shows the proposed approach can prioritize test

cases in high precision.

In the future, we plan to further extend our leak-

relevant code features and the leak prediction model to

make the proposed approach suitable for more appli-

cations. Besides prioritization, limiting the number of

repetitions for event cycles in a test case can be another

way to cut down test execution time. We also plan to

study such approach in future work.
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