
Qi XF, Wang ZY, Mao JQ et al. Automated testing of web applications using combinatorial strategies. JOURNAL OF

COMPUTER SCIENCE AND TECHNOLOGY 32(1): 199–210 Jan. 2017. DOI 10.1007/s11390-017-1699-x

Automated Testing of Web Applications Using Combinatorial

Strategies

Xiao-Fang Qi 1,2, Member, CCF, ACM, Zi-Yuan Wang 3, Member, CCF, IEEE, Jun-Qiang Mao 1

and Peng Wang 1, Member, CCF, ACM, IEEE

1School of Computer Science and Engineering, Southeast University, Nanjing 211189, China
2Key Laboratory of Computer Network and Information Integration, Ministry of Education, Nanjing 211189, China
3School of Computer Science and Technology, Nanjing University of Posts and Telecommunications

Nanjing 210023, China

E-mail: xfqi@seu.edu.cn; wangziyuan@njupt.edu.cn; mjqseu@163.com; pwang@seu.edu.cn

Received March 21, 2016; revised November 11, 2016.

Abstract Recently, testing techniques based on dynamic exploration, which try to automatically exercise every possible

user interface element, have been extensively used to facilitate fully testing web applications. Most of such testing tools are

however not effective in reaching dynamic pages induced by form interactions due to their emphasis on handling client-side

scripting. In this paper, we present a combinatorial strategy to achieve a full form test and build an automated test model.

We propose an algorithm called pairwise testing with constraints (PTC) to implement the strategy. Our PTC algorithm

uses pairwise coverage and handles the issues of semantic constraints and illegal values. We have implemented a prototype

tool ComjaxTest and conducted an empirical study on five web applications. Experimental results indicate that our PTC

algorithm generates less form test cases while achieving a higher coverage of dynamic pages than the general pairwise testing

algorithm. Additionally, our ComjaxTest generates a relatively complete test model and then detects more faults in a

reasonable amount of time, as compared with other existing tools based on dynamic exploration.

Keywords automated testing, combinatorial testing, web application

1 Introduction

With the widespread use of the Internet and in-

tranets, web applications have been becoming increas-

ingly important and popular in recent years[1]. One

of key technologies employed in developing modern

Web applications is AJAX, an acronym for Asyn-

chronous JavaScript and XML[2]. AJAX, which com-

bines JavaScript and Document Object Model (DOM)

manipulation, as well as asynchronous communication,

offers users high interactivity and responsiveness. De-

spite these advantages, AJAX web applications often

exhibit dynamic and stateful behaviors, making them

notoriously difficult to test. Besides handling static

components (such as static hypertext links), testing

modern AJAX web applications has to deal with dy-

namic components including client-side scripting and

form interactions[1-2].

Existing commonly used web application testing

tools, such as Selenium IDE, WebKing, and Sahi,

run in a capture-and-replay style 1○∼ 3○. They first

record specific user-defined scenarios, then generate test

scripts mainly containing sequences of events fired by

user interactions, and finally automatically replay the

recorded scenarios in another test process. While such

tools are capable of executing test cases, they are diffi-

cult to conduct thorough and automated testing since

a large amount of manual effort is required for record-

Regular Paper

This work is supported by the National Natural Science Foundation of China under Grant Nos. 61472076, 61472077, and 61300054.
1○http://selenium.openqa.org, September 2016.
2○http://www.parasoft.com/jsp/products/home.jsp?product=WebKing, September 2016.
3○http://sahi.co.in/w/, September 2016.

©2017 Springer Science + Business Media, LLC & Science Press, China

200 J. Comput. Sci. & Technol., Jan. 2017, Vol.32, No.1

ing scenarios. Typically, only the functionalities of a

few critical execution paths are tested in many appli-

cations. A large number of execution paths that are

likely to be exercised by users are missed. In addition,

if web applications are modified, previous scripts will

become invalid and cannot be reused. A long time may

be taken to generate new scripts from scratch.

Crawljax is a tool that supports the dynamic and

automatic exploration of the state spaces for modern

web applications[2]. Using Crawljax, testers can derive

an automated test model, which captures the states of

user interface and the possible event-based transitions

between states. Since this model systematically pro-

vides possible execution paths, it could be directly used

to generate test cases. Recently, Crawljax has been suc-

cessfully incorporated into the automated framework

for web application testing or regression testing[3-4].

Crawljax excels in handling client-side scripting, but

it does not make a particular effort for forms. It fills

self-generated random values in forms. As we know, dy-

namic pages are induced by not only client-side script-

ing but also form interactions. Many dynamic web

pages may not be reachable unless appropriate inputs

are submitted through forms. Therefore, it is difficult

for Crawljax to achieve a full coverage of dynamic web

pages. To derive a complete automated test model,

testers should generate valid form test cases for further

exploration.

Assume that a form submission request consists of

k parameters. Each parameter has appropriate values

supplied by using techniques such as equivalent class

analysis or generated by users. One approach to gene-

rating form test cases is to derive all the possible k-

way combinations of parameter values and then reach

almost all possible web pages. However, such combina-

tions are exponential and may lead to a potential state

explosion problem during exploration. Pairwise testing,

which covers all the combinations of values of any two

parameters, has shown to be a cost-effective combina-

torial strategy. It can make a more than 80% branch

coverage in software testing while significantly reducing

the number of test cases that need to be executed (the

web pages commonly are determined by the branches in

the sever-side code that process the form)[5]. Therefore,

using the pairwise combinatorial strategy for generating

form test cases may achieve a high coverage of dynamic

web pages while substantially decreasing the number

of test cases. Empirical studies also indicate that a

form test using pairwise combination detects 75%∼90%

faults in web applications[6-7].

However, a simple pairwise combinatorial strategy

may not be practical in form test case generation due

to the ubiquity of domain semantics constraints in

forms[8-9]. A test case will become invalid if it violates

the semantics constraints. For example, consider a lo-

gin form, which consists of the user name, password,

and confirm password. In this case, the value of the

password must be exactly the same as that of the con-

firm password; otherwise the test case is invalid and the

request is not passed. During form test generation, we

should consider these semantics constraints and exclude

invalid test cases. In addition, since a large number of

users without training often fill illegal data into forms,

developers have to design multiple corresponding dy-

namic web pages in server-side code to respond to vari-

ous illegal data requests. If every illegal value is treated

as a common value that will combine with other para-

meter values, some dynamic web pages may never be

reached. The reason is that some illegal values may ter-

minate the execution in advance and then mask other

illegal or legal values. Therefore, illegal values should

be handled specially.

In this paper, we present a combinatorial strategy

for making a full form test, hence exploring more states

and building a complete automated test model of a web

application. In this combinatorial strategy, we propose

an algorithm called pairwise testing with constraints

(PTC), which uses pairwise coverage and handles the

issues of semantic constraints and illegal values. We

have implemented a prototype tool ComjaxTest, which

is capable of discovering various dynamic web pages in-

duced by form interactions and systematically exploring

the state space of a web application. Unlike Crawljax

which fills random values in forms, ComjaxTest uses

the PTC algorithm to generate an adequate form test

to reach more dynamic web pages. Moreover, dur-

ing exploration, ComjaxTest can automatically detect

various types of faults including hyperlinks, database

accesses, and JavaScript running exceptions. Other

error-checking components, e.g., invariants and asser-

tion checking, are also easily plugged into ComjaxTest

to make a further test. We have applied ComjaxTest,

Crawljax and other automatic testing tools based on

dynamic exploration to five representative web applica-

tions and conducted an empirical study. We evaluated

these testing tools in terms of dynamic web page cove-

rage, generated states, fault detection capability, and

performance. Experimental results show that our PTC

algorithm generates less form test cases while achieving

a higher coverage of dynamic pages than the general

Xiao-Fang Qi et al.: Automated Testing of Web Applications Using Combinatorial Strategies 201

pairwise testing algorithm. As compared with other

existing tools based on dynamic exploration, our Com-

jaxTest generates a relatively complete test model and

detects more faults in a reasonable amount of time.

The remainder of this paper is organized as follows.

Section 2 describes our exploration algorithm and PTC

algorithm for form test generation. Section 3 discusses

the implementation of our automated testing tool Com-

jaxTest. Section 4 reports experimental results. Section

5 reviews related work. Section 6 concludes this paper

and provides the guidelines of the future work.

2 Automatically Exploring Web Applications

In this section, we first present the definition of state

flow graph (an automated test model) and related ba-

sic concepts, then describe our exploration algorithm

for automatically building a state flow graph, and fi-

nally provide our PTC algorithm for generating form

test cases.

2.1 Basic Concepts

Unlike a traditional web application in which a user

interface state is represented by a URL and the corre-

sponding page, a user interface state in an AJAX web

application is represented by a browser’s dynamically

built DOM tree. An AJAX state change is defined as

a change on the DOM tree, caused either by client-side

events handled by the AJAX engine or by server-side

state changes propagated to the client[2]. In this paper,

a state in a web application exactly refers to a user in-

terface state. For description purposes, state and user

interface state are used interchangeably.

Typically, a user interacts with an AJAX web ap-

plication by clicking on an element or by bringing the

mouse over an element, etc. Such actions may generate

events and change the state of the application. A DOM

element that has an event listener attached to it and can

cause a user interface state change is called a clickable

element. To model the user interface state changes in

an AJAX web application, a state flow graph, which

provides the user interface states and the possible tran-

sitions between them, is defined as follows.

Definition 1. A state flow graph (SFG) for a web

application A, is a triple G = (N,E, n0) where N is

a set of nodes representing runtime DOM states in A,

n0 is the initial state after A has been fully loaded into

the browser, and E is a set of edges representing the

possible transitions between nodes. Each edge (n1, n2)

represents a clickable element c iff n2 is reached by exe-

cuting c in state n1.

A state flow graph is constructed from the initial

state. New states are added incrementally during ex-

ploration. Fig.1 shows the state flow graph (SFG) of an

example. The state denoted as index page is the initial

state, from which three states, namely n1, n2 and n3,

are reached by firing three different events. Each edge

between states is labeled with the type of an event and

the identification of a clickable element, e.g., an XPath

expression or an ID attribute. As shown in Fig.1, click-

ing on the //A[3] element and the //DIV[1]/IMG[2]

element in the initial state results in state n1 and state

n3 respectively while bringing mouse over the id:c 2

element generates state n2. In state n2, clicking on the

//SPAN[1]/A[1] element leads to a transition, which

returns to the initial state.

(click, xpath://A[3]) Index

(mouseover, id:c_6)

(mouseover, id:c_2)

(click, xpath://DIV[1]/IMG[2])

(click, xpath://SPAN[1]/A[1])

n

n

n

Fig.1. State flow graph of an example.

2.2 State Exploration

Algorithm 1 shows our exploration algorithm Build-

StateFlowGraph, which automatically explores the

state space of a web application. Given the URL of

the homepage in an application, the algorithm builds a

state flow graph of the application in a depth-first man-

ner. The procedure Main (lines 1∼6) first initializes

an embedded browser, generates the initial state of the

state flow graph, namely rs, and then starts a recursive

call procedure ExploreState (line 5). In the proce-

dure ExploreState, when a newly discovered state is

generated, it invokes ExploreState recursively (line

29). Once a recursive call comes to its end and begins

to backtrack, the execution path and the related infor-

mation are recorded. And then we restore the database,

reload the application, and re-execute the events from

the initial state to the desired state (line 31) such that

the browser could be put back into the state which it

was in before the call.

In the procedure ExploreState, Algorithm 1 first

deals with the forms in the current state cs. For each

form, it retrieves the possible values of each parameter

202 J. Comput. Sci. & Technol., Jan. 2017, Vol.32, No.1

ps and the constraints ct that are supplied in a test

database, and generates the set of submission requests

T (lines 9∼10) using PairTestWithConstraints algo-

rithm, which will be discussed in Subsection 2.3. Af-

ter that, it identifies the elements in the current DOM

tree that commonly attach event listeners as candidate

clickable elements. In our implementation, the default

tag types include <A>, <BUTTON>, and <INPUT

type=submit>. Users can extend or exclude the selec-

tion of candidate clickable elements by defining element

properties, attributes and their values, and text values.

Then each candidate clickable element or form submis-

sion request is fired (line 14). The resulting DOM dom

in the browser is compared with each corresponding

DOM of visited states in sf (line 17). If there is a state

s in sf and its DOM is similar to dom, then the two

corresponding states are merged into one state, namely

s, and add an edge from cs to s (lines 17∼19). Other-

wise, a new state ns is created and added to sf. The

corresponding edge from cs to ns is also added to sf

(lines 23∼27). Finally, if the state ns is viable in ex-

ploring more states, the procedure ExploreState is

recursively called to detect more possible states reach-

able from ns (lines 28∼29).

Algorithm 1 . BuildStateFlowGraph

Input: URL
Output: the state flow graph
1: proc Main()
2: rs← InitEmbededBrowser(URL)
3: sf ← InitStateFlowGraph()
4: sf.AddState(rs)
5: ExploreState(rs)
6: end proc

7: proc ExploreState(State cs)
8: for each form f in cs do
9: retrieve the parameter values ps and the constraints

ct
10: T ← GenPairTest(ps, ct)
11: end for
12: Set C ← GetCandClick(cs)
13: for each e in T ∪ C do
14: FireEvent(e)
15: dom← browser.GetDom()
16: for each s in sf do
17: flag ← IsSimilar(s.getDom(), dom)
18: if flag == true then
19: sf.AddEdge(cs, s)
20: break
21: end if
22: end for
23: if flag == false then
24: ns← NewState(dom)
25: sf.AddState(ns)
26: sf.AddEdge(cs, ns)
27: end if
28: if Enabled(ns) then

29: ExploreState(ns)
30: end if
31: ResetToState(cs)
32: end for
33: end proc

With regard to state comparison (line 17), our algo-

rithm computes the similarity between two DOM trees

in terms of structure and content. For any two DOMs,

d1 and d2, we first find all leaf nodes in the two DOMs,

and compute the structure similarity by comparing the

XPaths of the leaf nodes in the two DOMs. A structure

similarity threshold is used to determine whether d1 is

similar to d2 or not in structure. If d1 is not similar

to d2 in structure, we say d1 is not similar to d2. If

d1 is similar to d2 in structure, the content similarity

is further computed by comparing the content between

the two leaf nodes with the same XPath. A content

similarity is also used to finally determine whether d1

is similar to d2. If d1 is similar to d2 in both structure

and content, we say d1 is similar to d2.

Fig.2 shows how our exploration algorithm builds

the SFG of the example application in Fig.1. First,

the initial index state is generated, and then

ExploreState(index) is invoked. Afterwards, our al-

gorithm fires the first event on the clickable element e1
and generates the state n1. Since n1 is a new state,

ExploreState(n1) is invoked. Yet n1 contains no

candidate clickable. Then our algorithm backtracks to

its previous index state. In Fig.2, each solid line shows

an exploring path while each dotted line shows a back-

tracking path and the annotated number denotes the

corresponding backtracking order. To go from n1 to

index, ResetToState(index) is invoked, i.e., our al-

gorithm restores the database and reloads the browser

so that it lands on the index state. The index state

does contain two unexplored events on the clickable

elements, namely e2 and e3. Then, it explores the

(e2, e4) path, reaches n1 (not a new state), and back-

tracks to n2. Similarly, to go from n1 to n2, our algo-

rithm restores the database, reloads the browser, and

re-executes events on the clickable elements from the

initial index state to n2. After landing on n2, it fires e5
and reaches the index state again. Then it reloads the

browser and lands on the initial index state. Finally it

fires e3, and then backtracks to the index state.

2.3 Form Test Generation

In this subsection, we propose a PairTestWithCon-

straints (PTC) algorithm to generate form submission

requests. Our PTC algorithm, which handles con-

straints and illegal values, is capable of being practi-

cally applied to web applications. To effectively handle

constraint issues, we have defined a simple language

called FormDataSpec to specify semantics constraints

Xiao-Fang Qi et al.: Automated Testing of Web Applications Using Combinatorial Strategies 203

for parameters in forms and have accordingly deve-

loped a constraint checking component. For descrip-

tion purposes, we first provide the definition of Form-

DataSpec, discuss the issues of constraint checking, and

then present our PTC algorithm.







Index

Index



e

e

e

e

e

n

n

n

n

Fig.2. Exploration process of the example in Fig.1.

2.3.1 Constraint Checking

FormDataSpec presents constraints as propositional

formulas. FormDataSpec supports two kinds of con-

straints, namely unconditional and conditional con-

straints. An unconditional constraint, which declares

an always-valid limitation, is described using a logical

expression. A conditional constraint, which declares a

limitation in some condition, is described in the form of

IF-THEN or IF-THEN-ELSE. FormDataSpec mainly

contains the following syntax:

1) cstrts → cstrt | cstrt cstrts

2) cstrt → comp;

|IF comp THEN comp;

|IF comp THEN comp ELSE comp;

3) comp → term | comp logOp term

4) term → relExp | (comp) | NOT comp

5) relExp → param relOp param

|param relOp val | param IN valSet.

In 2), unconditional and conditional constraints are

described. In 3) and 4), a logical expression comp is

defined as that in a common programming language.

Logical operator logOp can be AND and OR while re-

lation operator relOp can be =, <>, <, <=, >, >=,

etc. For each parameter, a limited number of values are

generated to represent many possible values determined

typically by equivalent class partition or its nature. In

5), a parameter is allowed to be compared with another

parameter or a parameter value. FormDataSpec offers

two commonly used data types, i.e., numeric and string.

A numeric parameter can be compared with a number,

and a string parameter to another string.

Since a logical expression may contain multiple rela-

tion expressions, FormDataSpec is capable of describing

complicated semantics constraints for multiple parame-

ters or parameter values naturally. Generally, con-

straints are gathered by studying domain knowledge,

requirement documents, etc.

We have implemented a constraint checking com-

ponent called ConstraintChecker. Given a set of con-

straints written in FormDataSpec, ConstraintChecker

is capable of parsing the constraints and determining

whether a combination or a test case violates the con-

straints or not. Our PTC algorithm performs con-

straint checking by invoking ConstraintChecker.

Bryce and Colbourn demonstrated that determining

whether there exists a test case that satisfies a given set

of constraints is an NP-hard problem[10]. If not, such

constraints are not consistent in the context of a given

model. To ensure the consistency of constraints, we

first check them manually. If the consistency cannot

be ensured, we then use Z3, an efficient off-the-shelf

satisfiability solver, to evaluate the consistency 4○.

2.3.2 PTC Algorithm

Given the values of parameters and constraints in a

form, PTC algorithm, as shown in Algorithm 2, adopts

the greedy strategy to generate a test suite in a one-

test-at-a-time manner[8]. A test case is derived to cover

more uncovered combinations.

In our PTC algorithm, the procedure Gen-

PairTest first initializes IllegList to be the set of il-

legal parameter values, and initializes UncovSet to be

the set of all 2-way parameter value combinations that

does not contain invalid pairs using constraint checking

(lines 2∼4). There are two loops in the PTC algorithm.

The outer loop is expected to be finished until all 2-

way combinations have been covered (lines 6∼19). To

make the outer loop terminate in a reasonable amount

of time, users can set the maximum number of itera-

tion MaxTimes for the loop (line 5). At each iteration

step, one test case is generated. Moreover, to avoid

invalid iterations due to specific parameter values, the

order for parameters is randomly shuffled (line 7). The

first parameter value is selected by finding the value

appearing more often than the others in UncovSet (line

8). The values for remaining parameters are derived in

the inner loop (lines 10∼16). For each parameter, it

first identifies possible values ValSet that do not vio-

late the constraints (line 12), then finds the value pv

that maximizes the number of uncovered combinations

4○http://research.microsoft.com/Hen-us/um/redmond/projects/z3/, September 2016.

204 J. Comput. Sci. & Technol., Jan. 2017, Vol.32, No.1

in UncovSet (line 13), and removes all 2-way combina-

tions covered by tc from UncovSet (line 14). When the

inner loop is terminated, a test case tc is complete.

Algorithm 2 . PairTestWithConstraints

Input: the values of parameters, constraints
Output: a set of test cases
1: proc GenPairTest(ParaVal ps,Constraint ct)
2: UncovSet← ∅, IllegList← ∅, T estCaseSet← ∅
3: add each illegal parameter value in ps into IllegList
4: add each 2-way parameter value combination into

UncovSet if it does not violate the constraints
5: times←MaxTimes, tc← ∅
6: while UncovSet 6= ∅ and times > 0 do
7: PermuteParameterList()
8: v ← UncovSet.findMostValue()
9: tc.Add(v)

10: while tc is not complete do
11: select next parameter p
12: V alSet← GetValue(p, ct)
13: pv ← UncovSet.findMostCover(V alSet)
14: UncovSet.Remove(pv, tc)
15: tc.Add(pv)
16: end while
17: add tc into TestCaseSet
18: tc← ∅, times−−
19: end while
20: for each σ in UncovSet do
21: generate a test case tc that covers σ and does not vi-

olate the constraints
22: add tc into TestCaseSet
23: end for
24: for each v in IllegList do
25: generate a test case tc that covers v and does not vi-

olate the constraints
26: add tc into TestCaseSet
27: end for
28: end proc

When the outer loop is exited, there may be still un-

covered pairs in UncovSet. One test case is constructed

for each uncovered pair (lines 20∼23). Typically, since

the code using an illegal value makes the control flow

immediately jump into an error handling call or another

program point, the subsequent code is not possible to

be executed, and then the illegal value masks other er-

rors induced by other illegal or legal values. Therefore,

in our algorithm, illegal values are not combined with

other parameters. For each illegal parameter value, one

test case is generated (lines 24∼27).

Fig.3 shows a payment form, in which there are

three parameters, namely Total, Vip, and Pref. To-

tal represents the shopping expense. There are two

legal values, namely 10 and 100, and one illegal value

−100. If a customer is a VIP, the value of Vip is YES;

otherwise, it is NO. Pref, which represents the type of

preference, has the value of DISCOUNT or CREDIT.

The last row in Table 1 shows the constraint between

parameters. If Vip is NO, Pref must be CREDIT.

To ensure the generation of valid combinations or

test cases, our PTC algorithm performs constraint

checking by invoking ConstraintChecker. When gene-

rating the set UnCovSet (line 4), our PTC algo-

rithm uses ConstraintChecker to eliminate invalid pairs,

therefore ensuring that UnCovSet contains no invalid

pairs. In lines 12, 21, and 25, new parameter values are

added to generate a test case. Since some values may

violate the constraints, our PTC algorithm performs

constraint checking at such steps.

Fig.3. Payment form.

Table 1. Parameters, Values and Constraints in a Form

Parameter Value

Total −100, 10, 100

V ip YES, NO

Pref DISCOUNT, CREDIT

Constraint IF V ip = NO THEN Pref = CREDIT

Table 2 shows the generated test cases for the exam-

ple using our PTC algorithm. Initially, IllegalList con-

tains (Total, −100), and UncovSet contains all 2-way

combinations except the pair (NO, DISCOUNT). In

the first outer iteration, the two values of Total, namely

10 and 100, appear four times in the uncovered pairs.

We select an arbitrary value for Total, e.g., 100. Then

we select an arbitrary value YES as the value of Vip

since (100, YES) and (100, NO) appear once in the

uncovered pairs. Finally, DISCOUNT is selected for

Pref. After the first test case is generated, three com-

binations, namely (100, YES), (100, DISCOUNT), and

(YES, DISCOUNT), are removed from UncovSet. In a

similar way, we can generate the other four test cases.

The five test cases cover all the pairs in the initial un-

covered pairs. At the end, a test case is constructed for

the illegal value, namely −100 for Total.

Table 2. Test Cases Using PairwiseTestWithConstaints

Algorithm

No. Total V ip Pref

1 100 NO CREDIT

2 100 YES DISCOUNT

3 10 YES CREDIT

4 10 YES DISCOUNT

5 10 NO CREDIT

6 −100 NO CREDIT

Table 3 shows the test cases using the general pair-

wise testing algorithm, which also uses the same greedy

strategy as our PTC algorithm but not handles con-

straints and illegal values. The third and the fifth test

Xiao-Fang Qi et al.: Automated Testing of Web Applications Using Combinatorial Strategies 205

cases are invalid since they contain (NO, DISCOUNT),

which violates the constraints in Table 1. These in-

valid test cases cause a loss of combination coverage,

i.e., (100, NO), (100, DISCOUNT), (10, NO), and (10,

DISCOUNT). The first and the second test cases con-

tain the illegal value, −100, leading to a further loss of

combination coverage.

Table 3. Test Cases Using the General

Pairwise Testing Algorithm

No. Total V ip Pref

1 −100 NO CREDIT
2 −100 YES DISCOUNT
3 100 NO DISCOUNT
4 10 YES CREDIT
5 10 NO DISCOUNT
6 100 YES CREDIT

3 Implementation

We have developed a prototype tool called Comjax-

Test in Java. ComjaxTest implements our BuildState-

FlowGraph algorithm and PairTestWithConstraints al-

gorithm in Section 2 on the top of HtmlUnit APIs.

As shown in Fig.4, ComjaxTest consists of four major

components, namely Embedded Browser, DOM Ana-

lyzer, Event Generator and Explorer. The interface of

Embedded Browser currently supports three popular

browsers, i.e., Internet Explorer, Firefox, and Chrome.

Error File

Web
Application

DOM

Analyzer
State

Flow Graph
Embedded
Browser

DOM

Event
Generator

Filtered DOM

Explorer

Test Data

Http
Request

Fire
Event

Event

Response Error

Test
Data

Fig.4. Architecture of ComjaxTest.

Embedded Browser is responsible for providing a

common interface for accessing JavaScript engine and

runtime DOMs. Through the embedded browser, Com-

jaxTest is capable of sending an http request to a web

application and receiving the corresponding response.

DOM Analyzer checks whether a DOM tree con-

tains general error messages, heuristic code error mes-

sages stored in error files, or other exceptions or not.

If it contains any error message, the current path is

recorded for debugging purposes. Otherwise, it is com-

pared with already generated states. If it is a new state,

it will be added to the state flow graph.

Event Generator extracts all DOM elements that

often attach event listeners as candidate clickable

elements. The default tag types include <A>,

<BUTTON>, and <INPUT>. Users can customize

their interest in clickable elements. For example, all

elements with a tag DIV having an attribute class =

“book” can be defined as candidate elements. If a form

submission button is encountered, Event Generator will

first fetch the parameter values from the Test Data

database, and then generate submission requests using

our PairTestWithCons algorithm.

Explorer is responsible for exploring the state space

of a web application. Moreover, it simulates user ac-

tions, e.g., click, mouseover, text input, on the embed-

ded browser, which then sends http requests to web

servers.

4 Experiment

To assess the efficacy of our approach in support-

ing web application testing, we conducted an empirical

study on five real-world web applications. The goal

of this experiment is to evaluate the coverage of dy-

namic pages for form submissions, the completeness of

the generated state flow graph, the fault detection ca-

pabilities, and the performance of our ComjaxTest, as

compared with existing tools based on dynamic explo-

ration, namely Crawljax and VeriWeb. Our research

questions are summarized as follows.

RQ1. What is the coverage of dynamic web pages

for responding to form submission using our PTC algo-

rithm?

RQ2. How complete is a state flow graph built by

ComjaxTest?

RQ3. What is the fault detection capability of Com-

jaxTest?

RQ4. What is the performance of ComjaxTest?

4.1 Subject Applications

In our experiment, we selected five open source web

applications of different application domains 5○. The

5○http://sourceforge.net, September 2016.

206 J. Comput. Sci. & Technol., Jan. 2017, Vol.32, No.1

subject applications are implemented in JSP or PHP.

Table 4 shows their properties including the number of

lines of codes (LOC), forms, parameters, and parameter

values.

Table 4. Experimental Web Applications

Application LOC Form Parameter Value

EShop 6 353 5 25 70
Addressbook 5 046 4 24 57
Forum 7 650 5 24 68
Schoolmate 8 181 15 67 206
Nucleus 36 697 11 83 216

EShop is an online bookstore, which allows users to

create accounts, search and purchase books, and man-

age shopping carts and orders. Addressbook is a web

application of address management. Forum is an online

forum. Schoolmate is a solution for elementary, middle

and high school administration. Nucleus is a personal

blog application for creating blogs and replying.

4.2 Experimental Setup

Our experiment was performed on Windows 7, run-

ning on a 3.2 GHz, Intel Core i5-3470 CPU with 32 GB

memory. We configured ComjaxTest, and other exist-

ing tools, namely Crawljax and VeriWeb[2,11]. Neither

time nor depth was limited during exploration with

these tools. Other configurations are summarized as

follows.

ComjaxTest. Parameter values are generated us-

ing techniques such as equivalence class partition and

boundary value analysis. Constraints for parameters

are obtained by manually analyzing the source code of

applications. Form submission requests are derived us-

ing our PairTestWithConstraints algorithm (PTC) and

the general pairwise testing algorithm (PT) separately.

The similarity threshold in structure and content is 0.8.

Crawljax. In general, Crawljax fills self-generated

random values in forms[2]. Yet, in this experiment, to

ensure further exploration, login forms are filled in man-

ually generated parameter values. Other parameter val-

ues are randomly generated.

VeriWeb. VeriWeb is not available now[11]. We

implemented the main algorithms. It does not merge

states. Each form is filled in a valid test case.

4.3 Experimental Results

4.3.1 Form Test (RQ1)

In a real web application, if the number of para-

meter values that can be filled in a form is infinite, a

potentially infinite number of dynamic pages may be

generated to respond to the form submission requests.

Yet, these dynamic web pages can be classified into a

few categories according to different functionalities or

program logics. For description purposes, we call each

category a form submission result. In this paper, we use

the number of form submission results to measure the

coverage of dynamic web pages responding to form sub-

mission requests. Subsequently, we manually construct

a reference model to perform this evaluation.

Table 5 reports the number of form submission re-

sults in manual reference model (column “Manual”),

ComjaxTest configured with PairTestWithConstraints

algorithm (column “PTC”), ComjaxTest configured

with general pairwise testing algorithm (column “PT”),

Crawljax and VeriWeb. The average coverage of form

submission results ranges from 55.0% to 96.4%. Com-

jaxTest with PTC achieves the highest coverage, then

ComjaxTest with PT, VeriWeb, and finally Crawljax.

The results of Crawljax and VeriWeb indicate that ap-

proximately half of submission results are missed if not

handling forms. In contrast, the combinatorial strategy

facilitates form test generation, hence reaching more

dynamic pages.

Table 5. Form Submission Results

Application Manual PTC PT Crawljax VeriWeb

EShop 8 8 5 6 6

Addressbook 7 7 7 5 5

Forum 28 27 15 8 8

Schoolmate 79 75 55 47 50

Nucleus 47 46 39 27 27

Total 169 163 121 93 96

Coverage (%) 100 96.4 71.5 55.0 56.8

However, when using the general pairwise combina-

torial strategy, roughly 30% of form submission results

are missed. The main reason is that it ignores con-

straints for parameters. In this experiment, constraints

occur naturally between different parameter values in

23% of forms. When the general pairwise testing is

used, some test cases may be invalid since they vio-

late constraints. These invalid test cases would not be

exercised, which leads to a less coverage of combina-

tions between parameter values, hence decreasing the

coverage of form submission results. Another reason is

that the general pairwise testing does not address the

issue of illegal values. Typically, many web pages are

designed to respond to submission requests with vari-

ous illegal values. In the five subject applications, there

exist 90% of forms for which some dynamic pages are

Xiao-Fang Qi et al.: Automated Testing of Web Applications Using Combinatorial Strategies 207

not reachable unless illegal values are supplied. Yet, if a

test case contains more than one illegal value, some ille-

gal values may mask other illegal or legal values, hence

further decreasing the coverage.

When using ComjaxTest with our PTC algorithm,

almost all form submission results are covered. Six form

submission results are not detected because several ille-

gal values for exceptional cases are not provided. Table

6 shows the number of form test cases in ComjaxTest

configured with PTC and PT algorithms. Our PTC al-

gorithm generates 21.7% fewer form test cases than PT

because constraint checks and the special treatment for

illegal values significantly reduce the number of com-

binations that should be covered. As compared with

PT algorithm, our PTC algorithm generates less form

test cases while achieving a higher coverage of dynamic

pages.

Table 6. Form Test Cases

Application PTC PT

EShop 53 62
Addressbook 43 45
Forum 53 64
Schoolmate 178 229
Nucleus 115 138

Total 442 538

4.3.2 State Flow Graph (RQ2)

Table 7 reports the number of nodes (column

“NPTC”) and edges (column “EPTC”) in the SFGs

generated by ComjaxTest configured with our PTC al-

gorithm, the number of nodes (column “NPT”) and

edges (column “EPT”) in the SFGs generated by Com-

jaxTest configured with PT algorithm, the number of

nodes (column “NCR”) and edges (column “ECR”) in

the SFGs generated by Crawljax, and the number of

nodes (column “NVW”) and edges (column “EVW”) in

the state flow graphs generated by VeriWeb. To mea-

sure the completeness of the state flow graphs, we man-

ually generated complete state flow graphs for Eshop,

Forum, and Nucleus by analyzing source codes and run-

ning applications. State flow graphs for Addressbook

and Schoolmate are too large and complex to manually

generate.

Table 7. State Flow Graph

Application NPTC EPTC NPT EPT NCR ECR NVW EVW

EShop 37 196 25 129 29 168 17 176
Addressbook 314 430 226 391 236 387 14 88
Forum 34 104 30 92 28 96 15 27
Schoolmate 138 352 102 243 93 206 25 60
Nucleus 78 204 71 195 67 196 34 72

Table 8 reports the completeness of the state flow

graphs for Eshop, Forum, and Nucleus. “NMAN” and

“EMAN” in Table 8 represent the number of nodes and

edges in the manually generated state flow graphs re-

spectively while other variables are the same as those in

Table 7. The average node ratio ranges from 35.5% to

80.1%, and the average edge ratio from 38.4% to 70.3%.

From Table 7 and Table 8, we can see that ComjaxTest

with PTC generates the most complete graphs, then

ComjaxTest with PT and Crawljax, finally VeriWeb,

which roughly coincides with the coverage of form sub-

mission results. State exploration strongly depends on

form handling.

Table 8. Completeness Results for Three Applications

EShop Forum Nucleus Total Avg. Node Ratio (%)

NMAN 44 45 97 186 100.0

EMAN 285 186 246 717 100.0

NPTC 37 34 78 149 80.1

EPTC 196 104 204 504 70.3

NPT 25 30 71 128 68.8

EPT 129 92 195 416 58.0

NCR 29 28 67 124 66.7

ECR 168 96 196 460 64.1

NVW 17 15 34 66 35.5

EVW 176 27 72 275 38.4

The state flow graph generated by ComjaxTest with

PTC missed 19.9% of nodes and 29.7% of edges. One

reason is that form submission results are not com-

pletely covered. Another reason may be that some

different states are merged into one state during merg-

ing states. Note that even though VeriWeb achieves a

similar coverage of form submission results with Crawl-

jax, the graphs generated by VeriWeb are much smaller

than those generated by Crawljax. The reason is that

VeriWeb focuses on handling traditional web applica-

tions while not coping with many dynamic features of

AJAX techniques.

4.3.3 Fault Detection (RQ3)

Table 9 reports the number of faults automati-

cally detected by ComjaxTest configured with PTC al-

gorithm, ComjaxTest configured with PT algorithm,

Crawljax and VeriWeb. The subject applications have

been tested and released in the SourceForge net. The

detected faults in Table 9 are missed by their testing

tools. After carefully checking, these missing and natu-

rally happened faults involve hyperlink, data base ac-

cess, JavaScript code, etc.

208 J. Comput. Sci. & Technol., Jan. 2017, Vol.32, No.1

Table 9. Number of Detected Faults

Application PTC PT Crawljax VeriWeb

EShop 0 0 0 0

Addressbook 7 5 5 1

Forum 1 1 1 1

Schoolmate 4 3 2 0

Nucleus 6 3 3 1

Total 18 12 11 5

The results in Table 9 show that ComjaxTest with

PTC detects the most faults, then ComjaxTest with

PT and Crawljax, and finally VeriWeb. Such results

are consistent with the results of form submission re-

sults and state flow graphs because more form results

and more states contain more faults.

4.3.4 Execution Time (RQ4)

Table 10 reports the execution time taken to gen-

erate state flow graphs by ComjaxTest configured with

PTC algorithm, ComjaxTest configured with PT algo-

rithm, Crawljax and VeriWeb. Since VeriWeb does not

effectively handle the loop issue, the testing is stuck in

the infinite loop, denoted by “–” in Table 10. To ter-

minate its execution, the time limit in this experiment

is 24 hours.

As shown in Table 10, in most cases, ComjaxTest

configured with PTC takes the most time, then Com-

jaxTest with PT, and finally Crawljax. Obviously, the

size of state flow graphs is an important factor influ-

encing the execution time. Yet, as mentioned in the

BuildStateFlowGraph algorithm, before firing an event,

we need to restore the application, i.e., resetting the

database and re-executing the events from the initial

state to the desired state. This restoration is the most

time-consuming activity during state exploration. It

may dominate the total execution time. ComjaxTest

configured with PTC and PT takes much more time

than Crawljax since a large number of form submission

tests dramatically increase the state restoration time.

Similarly, in most cases, even though a state flow graph

generated with PT is smaller than that generated with

PTC, ComjaxTest configured with PT performs more

form test cases, naturally taking more execution time

than ComjaxTest with PTC.

Table 10. Execution Time (min)

Application PTC PT Crawljax VeriWeb

EShop 130.0 113.3 103.2 –

Addressbook 130.3 247.5 68.7 –

Forum 963.3 972.8 480.0 –

Schoolmate 152.4 189.7 119.3 –

Nucleus 296.8 320.7 181.9 –

5 Related Work

Dynamic exploration techniques play an important

role in our web application testing. The framework of

such techniques is also widely used in the field of web

crawling[12-13]. However, web crawling and our Com-

jaxTest have their different goals. Web crawling intends

to discover as much information as possible from vari-

ous pages while our web application testing aims to

derive a complete model for fully testing web applica-

tions. Consequently, web crawling uses techniques that

pick information-rich pages and discard the others. In

contrast, our web application testing tries to discover

more user interface states and the relationship between

them. With regard to form submission generation, web

crawling is concerned with how to choose appropriate

values for individual parameters while we generate a

form test suite that covers combinations between pa-

rameters.

Like our ComjaxTest, most existing web applica-

tion testing tools based on dynamic exploration use a

depth-first strategy to explore the state space of a web

application and restore the states by re-executing the

event sequences from the initial state to the desired

state[2,5,11]. The major differences between these tools

and our ComjaxTest lie in how to generate form sub-

mission requests, how to control the potential state ex-

plosion, whether to support the new dynamic features

of modern web applications, and other specific explo-

ration techniques.

Benedikt et al. presented a tool VeriWeb for auto-

matically exploring possible execution paths for tradi-

tional web applications[11]. As mentioned in Subsection

4.3, VeriWeb is easily stuck in infinite loop because of

not coping with the loop issue. Moreover, it controls the

state explosion merely by setting a limit on the length

of execution paths or the execution time. Different from

VeriWeb, our ComjaxTest not only handles the loop is-

sue, but also leverages similar state merging to control

the number of states. VeriWeb allows users to fill pre-

defined parameter values in forms. Any combinatorial

strategy is not mentioned in form test generation. Since

it was developed earlier in 2002, it may be not able to

cope with many dynamic features in AJAX, such as

JavaScript and dynamic DOM manipulation.

Mesbah and Deursen proposed Crawljax for auto-

matically exploring the user interface state spaces of

modern web applications[2]. Based on the dynamic

analysis of the client-side user interface states in em-

bedded browsers, Crawljax incrementally detects DOM

Xiao-Fang Qi et al.: Automated Testing of Web Applications Using Combinatorial Strategies 209

states and generates state flow graphs. Recently, Crawl-

jax has been successfully used in invariant-based test-

ing and regression testing[3-4]. Our ComjaxTest adopts

a similar exploration framework for coping with mod-

ern web applications. However, they significantly differ

in form test generation. Crawljax, which fills merely

self-generated random values in forms, often makes an

incomplete form test and achieves the inadequate cove-

rage of dynamic pages. Furthermore, if some parameter

values are special, e.g., the password in a login form,

such random values are typically not passed. In this

case, the subsequent exploration is prevented. In con-

trast, our ComjaxTest uses PTC algorithm to generate

adequate form test cases to detect more user interface

states, hence deriving a relatively complete test model.

Wang et al. presented a tool Tansuo which allows

combinatorial strategies to cope with forms and dis-

cover more dynamic web pages[5]. Different from our

PTC algorithm, Tansuo adopts a general pairwise test-

ing algorithm to generate form test cases, in which do-

main semantics constraints are not taken into account

and illegal values are not handled specially. As for form

handling, Tansuo is similar to our ComjaxTest config-

ured with the PT algorithm, which achieves a lower

coverage of dynamic pages than our PTC algorithm

while using more form test cases. In addition, Tan-

suo represents states using abstract URL, a URL that

retains parameter names but removes parameter values

in the query component. However, when the attribute

of a form is post, such abstract URL would fail to rep-

resent states since a post form submission request does

not contain parameter information. There is no suffi-

cient detail to demonstrate that Tansuo would be able

to cope with modern web applications.

Currently, the most commonly used web applica-

tion testing tools, such as Selenium IDE, WebKing, and

Sahi, run in a capture-and-replay style. As mentioned

in Section 1, they are not capable of making a full test.

Ricca and Tonella developed a tool ReWeb for gene-

rating a UML model of a web application to sup-

port traditional data-flow analysis and reaching frame

analysis[14].

Recently, a feedback-directed web application explo-

ration technique has been proposed to reduce the size

of a test model[15]. In addition, some novel types of

DOM-based test adequacy criteria have been provided

for web application testing[16-17]. Mutation testing has

also been extended to web applications[16]. Both static

and dynamic program analyses are leveraged to guide

the mutation generation.

6 Conclusions

In this paper, we presented an algorithm called pair-

wise testing with constraints (PTC) to fully test forms.

Our PTC algorithm uses pairwise coverage and han-

dles the issues of semantic constraints and illegal val-

ues. We implemented a prototype tool ComjaxTest,

which is capable of systematically exploring the state

space of a web application. The experimental results

indicated that ComjaxTest configured with PTC algo-

rithm achieves a high coverage of dynamic web pages in-

duced by form interactions, generates a relatively com-

plete test model, and detects more faults in a reasonable

amount of time.

In the future work, to avoid irrelevant or insignifi-

cant exploration, we plan to study heuristic strategies

for guiding ComjaxTest to explore only relevant or sig-

nificant states. The generated test model is incomplete,

but it has adequate functionality, code or DOM state

coverage, hence easing the state explosion and improv-

ing its testing efficacy. Additionally, we will leverage

some state or edge coverage criteria to automatically

derive test suites for web application testing or regres-

sion testing by traversing the corresponding state flow

graphs.

Acknowledgment We thank the anonymous

JCST reviewers for their valuable comments on this

paper.

References

[1] Mesbah A. Advances in testing JavaScript-based web ap-

plications. Advances in Computers, 2015, 97: 201-235.

[2] Mesbah A, Deursen A V, Lenselink S. Crawling AJAX-

based web applications through dynamic analysis of user

interface state changes. ACM Trans. the Web, 2012, 6(1):

3:1-3:29.

[3] Mesbah A, Deursen A V, Roest D. Invariant-based auto-

matic testing of modern web applications. IEEE Trans.

Softw. Engin., 2012, 38(1): 35-53.

[4] Roest D, Mesbah A, Deursen A V. Regression testing AJAX

applications: Coping with dynamism. In Proc. the 3rd Int.

Conf. Software Testing, Verification, and Validation, April

2010, pp.127-136.

[5] Wang W, Lei Y, Sampath S et al. A combinatorial approach

to building navigation graphs for dynamic Web applica-

tions. In Proc. the 25th Int. Conf. Software Maintenance,

September 2009, pp.211-220.

[6] Kuhn D R, Reilly M J. An investigation of the applicability

of design of experiments to software testing. In Proc. the

27th Annual NASA Goddard Software Engineering Work-

shop, December 2002, pp.91-95.

[7] Kuhn D R, Wallce D R, Gallo A M. Software fault inter-

actions and implications for software testing. IEEE Trans.

Softw. Eng., 2004, 30(6): 418-421.

210 J. Comput. Sci. & Technol., Jan. 2017, Vol.32, No.1

[8] Nie C, Leung H. A survey of combinatorial testing. ACM

Computing Surveys, 2011, 43(2): 11:1-11:29.

[9] Ostrand T J, Balcer M J. The category-partition method

for specifying and generating fuctional tests. Communica-

tions of the ACM, 1988, 31(6): 676-686.

[10] Bryce R C, Colbourn C J. Prioritized interaction testing for

pair-wise coverage with seeding and constraints. Informa-

tion and Software Technology, 2006, 48(10): 960-970.

[11] Benedikt M, Freire J, Godefroid P. VeriWeb: Automatically

testing dynamic Web sites. In Proc. the 11th Int. Conf.

World Wide Web, May 2002, pp.654-668.

[12] Madhavan J, Ko D, Kot L et al. Google’s deep-web crawl.

Proceedings of the VLDB Endowment, 2008, 1(2): 1241-

1252.

[13] Cai R, Yang J M, Lai W et al. iRobot: An intelligent crawler

for web forums. In Proc. the 17th Int. Conf. World Wide

Web, April 2008, pp.447-456.

[14] Ricca F, Tonella P. Analysis and testing of web applica-

tions. In Proc. the 23rd Int. Conf. Software Engineering,

May 2001, pp.25-34.

[15] Fard A M, Mesbah A. Feedback-directed exploration of web

applications to derive test models. In Proc. the 24th Int.

Symp. Software Reliability Engineering, November 2013,

pp.278-287.

[16] MirzaAghaei M, Mesbah A. DOM-based test adequacy cri-

teria for web applications. In Proc. Int. Symp. Software

Testing and Analysis, July 2014, pp.71-81.

[17] Zou Y, Chen Z, Zheng Y et al. Virtual DOM coverage for

effective testing of dynamic web application. In Proc. Int.

Symp. Software Testing and Analysis, July 2014, pp.60-70.

Xiao-Fang Qi received her Ph.D.

degree in computer science from South-

east University, Nanjing, in 2008. She

is currently an associate professor in

the School of Computer Science and

Engineering, Southeast University,

Nanjing. Her research interests include

software analysis and testing, and software engineering.

Zi-Yuan Wang received his Ph.D.

degree in computer science from South-

east University, Nanjing, in 2009. He

is currently an associate professor in

the School of Computer Science and

Technology, Nanjing University of Posts

and Telecommunications, Nanjing.

His research interests include software

testing and programming language.

Jun-Qiang Mao received his B.S.

degree in computer science from Nan-

jing University of Information Science

and Technology, Nanjing, in 2014. He

is currently pursuing his M.S. degree

in the School of Computer Science

and Engineering, Southeast University,

Nanjing. His research mainly focuses

on software testing.

Peng Wang received his Ph.D.

degree in computer science from South-

east University, Nanjing, in 2008. He

is currently an associate professor in

the School of Computer Science and

Engineering, Southeast University,

Nanjing. His research interests include

software engineering, knowledge graph,

and social network. He has published many papers at

premium conferences and journals such as IJCAI, and

Science China: Information Science.

