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Abstract    Dynamic neural  network (NN) techniques  are  increasingly important  because  they facilitate  deep learning

techniques with more complex network architectures. However, existing studies, which predominantly optimize the static

computational graphs by static scheduling methods, usually focus on optimizing static neural networks in deep neural net-

work (DNN) accelerators. We analyze the execution process of dynamic neural networks and observe that dynamic fea-

tures introduce challenges for efficient scheduling and pipelining in existing DNN accelerators. We propose DyPipe, a holis-

tic approach to optimizing dynamic neural network inferences in enhanced DNN accelerators. DyPipe achieves significant

performance improvements for dynamic neural networks while it introduces negligible overhead for static neural networks.

Our evaluation demonstrates that DyPipe achieves 1.7x speedup on dynamic neural networks and maintains more than

96% performance for static neural networks.
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1    Introduction

Deep  neural  networks  show  their  strength  in  a

broad  range  of  applications,  such  as  image  process-

ing[1],  natural  language  processing[2],  and  gaming[3].

Meanwhile,  the  continuously  developing  deep  neural

network (DNN) techniques raise new opportunities for

domain-specific architectures[4–6] innovation. Many ar-

chitectures  and  system  studies[7–9] of  machine  learn-

ing  accelerators  contribute  to  accelerating  the  train-

ing and inference of DNNs for better computing capa-

bility with power efficiency.

Dynamic neural network (NN) techniques increas-

ingly  attract  attention  from  researchers  recently  due

to  their  powerful  representation  capability  of  com-

plex network architectures with dynamic control flow

and variable data sizes[10].  In observing their  increas-

ing importance in natural  language processing[11] and

semantic  segmentation[12],  the  broadly-used  frame-

works start to support dynamic NN techniques. How-

ever,  for  DNN  accelerators,  a  holistic  system  opti-

mization for the execution efficiency of dynamic NNs

is still missing.

Existing  studies[13, 14] mainly  contribute  to  opti-

mizing static NNs with fixed input/output shapes and

static  computational  graphs.  For  example,  Auto

TVM[15] builds a statistical cost model and designs an

exploration  module  to  search  for  the  best  configura-

tion to run networks on the hardware. DNNVM[14] de-

signs a cycle-accurate simulator to find the best exe-

cution  strategy  to  fuse  operations.  Such  optimiza-
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tions  require  the  knowledge  of  pre-defined  fixed  net-

work  architectures,  which  are  hardly  applied  to  dy-

namic NNs.

We analyze the inference process of dynamic NNs

and observe that the dynamic tensor shapes and con-

trol  flow  hinder  the  scheduling  optimization  for  bet-

ter  computing  parallelism  and  hardware  utilization.

For static NNs, the shapes of inputs and outputs are

known in advance and the structures of the networks

are  fixed.  Therefore,  compilers  for  DNN  accelerators

can  optimize  hardware  utilization  and  computing

throughput  with  software  pipelining  techniques  ac-

cording to the dependency analysis of static computa-

tional graphs[16]. For dynamic NNs, however, the con-

trol flow and the computation workload of tensors are

determined during runtime. It is challenging to make

the best scheduling beforehand during static analysis.

Additionally,  more  contexts  need  to  be  recorded  for

dynamic NNs, which raises the burden of the register

resources.

To  address  these  issues,  we  propose  DyPipe,  a

holistic  approach  to  supporting  dynamic  NNs  in  en-

hanced  DNN  accelerators.  DyPipe  enables  efficient

dynamic  pipelining  and  we  also  provide  a  program-

ming  interface  so  that  programmers  can  specify  the

specialized  stages  for  better  computing  parallelism.

Concretely, our main contributions are as follows.

● We  analyze  differences  between  static  and  dy-

namic  NNs  and  discover  challenges  of  dynamic

scheduling for dynamic NNs.

● We propose an architectural model with a con-

text buffer (CB), which helps efficient pipelining.

● We  propose  a  programming  interface,  which  is

feasible  for  programmers  for  stage  optimization  and

provides high-level semantics for scheduling optimiza-

tion.

● We design a scheduler to efficiently perform dy-

namic  pipelining  with  the  enhanced  DNN  accelera-

tors.

The  rest  of  this  paper  is  organized  as  follows.  In

Section 2, we review the background of dynamic NNs

and  analyze  the  challenges  of  them. Section 3 intro-

duces the details of the DyPipe system. We will then

present the experimental methodology and experimen-

tal results in Section 4. Section 5 describes the inade-

quacy of existing work in DNN accelerators. Section 6

concludes this paper. 

2    Background and Motivation

This section introduces the background of dynam-

ic NNs and analyzes the challenges of running dynam-

ic NNs in existing DNN accelerators, which motivate

our design. 

2.1    Static and Dynamic Neural Networks

DNN  models  generally  use  symbolic  representa-

tion to represent the structure of the network compu-

tational graph. For example, TensorFlow[7] uses nodes

and edges to describe the computational graph. Stat-

ic  NNs[17, 18] have  fixed  network  structures  and  fixed

tensor  shapes.  The  definition  phase  of  the  computa-

tional  graph  is  called  static  declaration.  Static  NNs

make DNN models easy and efficient to deploy. Com-

pilers  can  optimize  network  through  complex  opti-

mization  methods  at  compile  time.  Batching  tech-

niques can be used to improve the efficiency of multi-

core  processors,  such  as  GPU.  Due  to  such  advan-

tages,  static  declaration  is  the  domain  programming

paradigm for DNN compilers.

However,  along  with  the  continued  advance  for

natural  language  processing  and  semantic  segmenta-

tion,  dynamic  NNs  are  applied  in  more  and  more

modern  DNNs.  In  contrast  to  static  NNs,  dynamic

NNs are with unfixed compute graphs which contain

variable  size[19],  variable  structure[20] and  control

flow[21].  Dynamic  NN  techniques,  enabling  variable

network  structures  by  dynamic  declaration  during

runtime,  emerge  to  empower  applications  that  de-

mand complex neural network structures. Specifically,

dynamic  NNs are  commonly  applied  in  the  following

scenarios.

1) Sequence  Language  Models[19].  The  inputs  of

models  are  sentences  which  usually  have  variable

length.

2) Tree-Structured RNNs[22]. For language models

with  sentiment  analysis,  the  inputs  are  tree-struc-

tured and they are variable for different sentences.

3) Neural  Architecture  Search (NAS)[23].  NAS

aims  to  find  the  optimal  model  for  specific  tasks  by

repeatedly  testing  the  performance  of  different  net-

work architectures.  The network structures constant-

ly evolve during the execution of tasks.

In some cases, a dynamic NN can be simplified as

a static NN[24]. For example, for a sequence language

model with variable sentence length, all sentences can

be  aligned  to  the  longest  sentence  by  adding  redun-

dant paddings. But this leads to a large amount of re-

dundant and unnecessary computations. 
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2.2    Existing Systems

Dynamic  NNs  are  commonly  adopted  because

they support complex tasks that exhibit diverse com-

putational  graphs  during  runtime.  Envisioning  their

importance and ever-increasing demands, many toolk-

its  and  frameworks[10, 24–28] were  proposed  for  better

programmability and efficiency of dynamic NNs.

TensorFlow Fold[25] provides a high-level combina-

tory library in TensorFlow to perform dynamic batch-

ing.  TensorFlow  Fold  rewrites  the  computational

graphs  of  the  given  input  into  multiple  depths  and

batches  the  same  operation  occurring  at  the  same

depth  together  by  inserting  additional  concat  and

gather operation. MXNet[26] designs operators such as

foreach, cond and while_loop to support dynamic con-

trol flow. However, these extension features introduce

a large graph preprocessing overhead and are not con-

sistent with the original programming models in these

frameworks.

There  are  some  imperative  frameworks,  such  as

DyNet[10],  PyTorch[27].  Unlike  the  symbolic  program

which  defines  computation  before  the  program  runs,

the  imperative  program  performs  computation  when

the program runs. Imperative frameworks are flexible

to construct dynamic NNs since they can execute us-

er expressions instantly. The computation graph con-

struction and execution stages are coupled together in

imperative  frameworks,  which  raises  the  difficulty  in

adopting compiler optimization such as batching and

operator fusion. Therefore, such a programming mod-

el is less popular due to this limitation. 

2.3    Deep Neural Network Accelerators

DNN  accelerators[4–6, 29] are  domain-specific  pro-

cessors  which  are  designed  to  improve  computation

and energy efficiency of DNN applications. The archi-

tectural characteristics of DNN accelerators are quite

different from traditional CPU or GPU, which great-

ly  affect  the  programming  models  and  optimizations

of compilers.

DNN accelerators  generally  have  complex  memo-

ry hierarchies which need to be explicitly managed by

software. In addition, accelerators adopt very long in-

struction word (VLIW) to design their instruction set

architectures  (ISAs)  for  vector  or  matrix  computa-

tion. Such ISAs need scheduling by software at com-

pile  time  for  better  module  parallelism.  Based  on

these characteristics, software pipelining[14, 16] is one of

the most effective optimization methods on DNN ac-

celerators.

So far, existing toolkits and systems are based on

CPU  or  GPU,  without  considering  the  architectural

characteristics  of  DNN  accelerators.  They  are  not

suitable for DNN accelerators because of the quite dif-

ferent programming models. Therefore, exploring effi-

cient  architecture  and  system  optimizations  for  dy-

namic NNs in DNN accelerators is a timely topic. 

2.4    Motivation

In  this  subsection,  we  analyze  the  architectural

behaviors  of  dynamic  NNs  and  summarize  the  chal-

lenges introduced by their dynamic features.

Dynamic  NN toolkits  enable  dynamic  declaration

and  varied  neural  networks  according  to  the  inputs.

Due to these dynamic features, it is challenging for ef-

ficient task scheduling and computation pipelining in

dynamic NNs. We illustrate the challenges with an in-

ter-operation  pipelining  example  in Fig.1.  Here,  we

omit the intra-operation pipelining.

The  static  NNs  often  adopt  software  pipelining

which  simultaneously  performs  computation  and  da-

ta communication for better hardware utilization to im-

prove the computing parallelism, as shown in Fig.1(a).

Such  software  pipelining,  implemented  by  statically

scheduling the execution order during compile time, is

simple and effective when the neural network model is

fixed-structured.

B

C

B C

While  for  dynamic  NNs  with  dynamic  control

flow,  the  scheduling  order  cannot  be  determined  be-

forehand,  and  thus  the  optimal  statically  scheduling

can hardly be achieved. Fig.1(b) shows an example to

illustrate  the  challenge  with  a  dynamic  control  flow.

In  this  computation graph,  the  computation of  or

 depends on the value of  condition check.  It  is  un-

clear about whether  or  will be executed until the

runtime.  In  this  case,  the  simple  software  pipelining

needs  to  insert  a  bubble  which  hinders  the  improve-

ment of the computing parallelism.

Additionally,  register  management  for  dynamic

NNs is much more complex. Contexts, such as tensor

shapes,  tensor  addresses,  and  loop  numbers,  can  be

precomputed as immediate values when networks are

static. But for dynamic NNs, they are variable values

and all contexts should be saved in the registers. Such

requirements  make  register  allocation  more  challeng-

ing,  especially  for  those  processors  with  fewer  regis-
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ters or without hardware memory management units.

Motivated by these two observations,  we propose

DyPipe, a holistic approach to addressing the ineffica-

cy in dynamic NNs with enhanced hardware accelera-

tor, programming interface, and dynamic scheduling.
 

3    DyPipe System
 

3.1    Overview

The  DyPipe  system  proposes  a  holistic  design  to
eliminate  the  inefficacy  brought  by  the  dynamic  fea-

tures,  including  an  accelerator  design  with  context
buffer, a programming interface, and a runtime sched-

uler. The context buffer (Subsection 3.2) is an on-chip
storage. Similar to other on-chip memory in accelera-

tors, it is managed by software. The programming in-
terface  (Subsection 3.3)  is  provided  for  programmers

to  define  different  processes  of  pipelining.  With  the
assistance of  the CB and programming interface,  the

scheduler  (Subsection 3.4)  can  achieve  dynamic
pipelining  to  improve  computing  parallelism  at  run-

time  even  when  the  input  graphs  are  variable  with
unfixed structures.

A B

D

The  key  idea  of  DyPipe  is  to  decouple  dynamic
structures  and  scheduling.  By  efficiently  maintaining

the structure of the computational graph on the CB,

DyPipe  transforms  the  dynamic  graph  into  a  deter-
ministic graph and then the scheduler can achieve ef-

ficient pipelining. The overview of the DyPipe system
is  shown  in Fig.2.  At  compile  time  when  the  com-

pletely graph is not determined, the operation behav-
ior of each operation is split into several phases. The

compiler  then  defines  each  phase  into  separate  func-
tions,  which  we  call  module  functions.  At  runtime,

when  the  dynamic  information  such  as  the  structure
of  graph  and  tensor  shape  is  determined,  module

functions of those operations that need to be execut-
ed will be saved into the context buffer. For example,

we will save module functions of operations ,  and
 into  the  CB if  the  condition  is  true.  In  this  way,

DyPipe  transforms  the  dynamic  graph  into  a  deter-
ministic graph which is saved in the CB. By schedul-

ing the module functions in the CB, the scheduler can
achieve high efficient pipelining without being affect-

ed  by  dynamic  information.  The  scheduling  process
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Fig.1.   Software  pipelining  in  two  kinds  of  networks.  (a)  Net-
work  with  a  fixed  structure.  (b)  Network  with  control  flow.
Comp means compute.
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will be described in detail in Subsection 3.4. 

3.2    DyPipe Context Buffer

DyPipe is established based on the DianNao[29] ar-

chitecture  and  the  simplified  block  diagram  of  DyP-

ipe  is  shown  in Fig.3.  The  block  diagram includes  a

parallel  function  unit  (PFU),  a  global  buffer  and  a

controller.  The  PFU  is  used  to  perform  vector  and

matrix operations and the global buffer contains neu-

ron buffer and synapse buffer. In addition, DyPipe is

tailored specially for dynamic NNs with an additional

context  buffer,  which  can  transform  the  original  dy-

namic computational graph at compile time into a de-

terministic graph during runtime.

  

DRAM

Global Buffer

PFU

CB

Accelerator

Controller

Fig.3.  Block diagram of the accelerator with an additional con-
text buffer.
 

Specifically,  the  context  buffer  has  two-fold  func-

tionalities.  1)  The  context  buffer  stores  the  context

information for the execution of operations. The con-

text refers to all the execution information of an oper-

ation,  including  program  counters  (PCs)  of  module

functions  in  this  operation,  tensor  shapes,  data  ad-

dresses,  computation configurations,  etc.  2)  The con-

text  buffer  transforms  the  dynamic  computational

graph  to  a  deterministic  graph  during  runtime.  To

achieve  this  goal,  the  context  buffer  maintains  mod-

ule  functions  based  on  their  PCs.  The  module  func-

tions  describe  the  execution  flow  of  a  computational

graph.  During  runtime,  the  module  functions  of  the

operation  to  be  executed  are  stored  in  the  context

buffer,  which  construct  a  deterministic  graph.  Then,

the  scheduler  manages  the  scheduling  order  of  mod-

ule functions according to the PCs in the CB. The de-

tails of scheduling are introduced in Subsection 3.4.

For efficient implementation, the context buffer is

allocated  in  the  global  buffer  that  provides  larger

space  and  lower  access  latency,  compared  with  allo-

cating it in registers. Thus, the context buffer can re-

duce  the  complexity  of  maintaining  contexts.  During

the  optimization  and execution  of  dynamic  NNs,  the

compiler needs to maintain dozens of contexts at run-

time.  It  requires  spilling  and  refilling  registers  fre-

quently to maintain such a large amount of contexts

because of the limited register resources. Register allo-

cation  is  an  NP-complete  problem and  inappropriate

register  allocation  may  block  the  pipelining.  Com-

pared  with  limited  register  resources,  the  context

buffer  provides  a  large  enough  storage  for  storing

these contexts.

The context buffer is also flexible. The compiler is

able  to  customize  the  recorded  parameters  and  their

storage  format  with  the  programming  interface.  The

only thing that  needs  to  ensure  is  the  consistency of

the processes of loading and storing contexts. 

3.3    Programming Interface

Scheduling  of  pipelining  should  distinguish  which

codes  can  be  executed  in  parallel  on  different  hard-

ware  modules,  which is  extremely time-consuming at

runtime  for  dynamic  NNs.  To  eliminate  this  effort,

DyPipe explicitly specifies the mapping between hard-

ware modules and the code segments by splitting op-

erations  into  several  module  functions  at  compile

time. We illustrate it with an example shown in Fig.4.

Adjacent codes executed in the same hardware mod-

ule are combined into a composite function, i.e., mod-

ule  function.  For  example,  the  vector  load  instruc-

tions  of  bias,  weight  and  input  make  up  LoadFunc-

tion,  ComputeFunction  contains  instructions  of  con-

volution,  vector  addition  and  activation,  and  Store-

Function contains the vector store instruction.  Bene-

fiting  from  the  splitting  of  operations,  the  scheduler

only  needs  to  schedule  different  module  functions,
 

Fig.4.  Splitting an operation into several module functions.
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which  largely  simplifies  scheduling  and  reduces  the

runtime scheduling overhead.

To maintain contexts, we need to rewrite the orig-

inal program to save contexts. Fig.5 shows how Load-

Function saves contexts. When LoadFuncton is ready,

all  the  variables  involved  are  stored  into  the  CB

which include source addresses,  destination addresses

and sizes of each data. Besides, the PC of LoadFunc-

tion is also stored in the CB.
 
 

Fig.5.  Saving contexts and PCs into the CB.
 

As for the definition of module functions, DyPipe

provides a special programming interface as shown in

Fig.6.  Compared with  normal  function  definition,  we

add an additional keyword, i.e., Module Name, in the

function definition. Module Name indicates the hard-

ware  module  corresponding  to  the  current  function.

The  parameters  of  module  functions  come  from  the

context  buffer  and  they  are  prepared  in  advance.

Module  functions  will  first  load  parameters  from the

CB to  registers  and  then  perform the  specific  opera-

tions.

 
 

Fig.6.  Example of the programming interface.

The  proposed  programming  interface  decomposes

the program of an operation into two parts. The first

part is to maintain contexts and PCs, which results in

a  flexible  function  call.  The  second  part  is  to  define

different  module  functions  with  the  indications  of

module  name.  Thus,  the  scheduler  can  take  module

functions  as  basic  units  to  achieve  dynamic  pipelin-

ing with less runtime overhead. 

3.4    Runtime Scheduler

We also propose the scheduler to support dynam-

ic  pipelining  with  the  assistance  of  CB.  The  context

buffer saves the module functions of those operations

that  need  to  be  executed  at  runtime.  The  scheduler

then  schedules  these  module  functions  according  to

the module and data dependency, while retaining the

hardware utilization.  Such a process  is  referred to as

dynamic pipelining in this study.

A B C D

A B D

C

The  specific  process  of  dynamic  pipelining  is

shown in Fig.7. For a given dynamic graph, the mod-

ule functions of all relevant operations are defined at

compile time according to the programming interface.

As shown in Fig.7(a), the module functions of opera-

tions , ,  and  are defined in advance. At run-

time,  only  the  module  functions  of  those  operations

that  need to  be  executed  will  be  saved into  the  CB.

For  instance,  if  the  condition  of  graph  is  true,  the

module functions of operations ,  and  are stored

into the CB while that of operation  is discarded, as

shown  in Figs.7(b)–7(d).  Therefore,  a  deterministic

graph is constructed in the CB.

Then the runtime scheduler schedules these mod-

ule functions in the CB according to dependency. The

scheduler calls different module functions according to

PCs saved in the CB and module functions load rele-

vant contexts from the CB when implemented. Specif-

ically,  we  explain  the  intra-operation  scheduling  and

inter-operation scheduling as follows.

A

Lai

A i

Cai

A i La2 Ca1

La1

La2 Ca1

Intra-Pperation  Scheduling.  Take  operation  as

an  example,  as  shown  in Fig.7(b),  where  means

the  LoadFunction  of  operation  for  the -th  data

block, and  means the ComputeFunction of opera-

tion  for the -th data block.  and  should be

implemented after  due to module dependency and

data dependency respectively, but  and  can be

executed in parallel.

B

Inter-Operation  Scheduling.  We  further  explain

the scheduling between operations, as shown in Fig.7(c).

When operation  is ready, its module functions are

also  stored  in  the  CB.  Meanwhile,  there  are  remain-
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A Sa(n−1) Can

San Lb1

Sa(n−1) Can

ing module functions of operation , i.e., , 

and .  In  this  situation,  the  scheduler  will  call 

as well as  and  to execute them in parallel.

In  this  process,  we  have  no  need  to  add  redundant

bubbles for efficient pipelining.
 

4    Experimental Results

In  this  section,  we  introduce  the  experimental

methodology and experimental results.
 

4.1    Experimental Methodology

Benchmarks.  Three  categories  of  models  are  used

for  the  performance  evaluation:  1)  basic  operation

evaluation, including convolution, pool and fully con-

nected layers; 2) complete static neural network mod-

els,  including  Alexnet[30],  ResNet-18[17],  GooGleNet[18]
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and  SqueezeNet[31];  3)  complete  dynamic  neural  net-

work  models,  generated  based  on  RNN[32],  LSTM[33]

and GRU[34].

Setup.  We  implement  a  cycle-accurate  perfor-

mance  simulator  based  on  the  DianNao  architecture

to  evaluate  the  total  execution  time  (cycles),  due  to

the  unbearable  long  duration  of  silicon  implementa-

tion. The basic hardware configurations are as shown

in Table 1.

 
 

Table  1.    Configurations of Simulator

Type Parameter

PE 32 × 64 (2 TOPS @ float16)

Frequency 1 GHz

Memory bandwidth 32 GB/s

Global memory size 1 008 KB

Context buffer 16 KB

 

Baselines.  The  experiment  compares  the  execu-

tion time of DyPipe and the static pipelining. We al-

so  provide  the  performance  without  pipelining

(NonePipe)  to  illustrate  the  performance  improve-

ment brought by software pipelining. Further, we an-

alyze the overhead introduced by DyPipe for support-

ing dynamic pipelining at runtime. 

4.2    Operation-Level Performance Evaluation

Initially,  we  analyze  the  performance  of  typical

operations  that  are  commonly  used  in  neural  net-

works. Such an experimental evaluation shows the ba-

sic  overhead  of  DyPipe  compared  with  static  frame-

work when dealing with simple and fixed operations.

The operations with different tensor shapes are select-

ed from the state-of-the-art networks[17, 18, 30]. The de-

tailed configurations of them are shown in Table 2.
 
 

Table  2.    Configurations of Experimental Operations

Layer C (Output) Height Weight C (Input) Kernel Stride

Conv1 256 27 27 96 5 1

Conv2 192 56 56 64 3 1

Conv3 64 56 56 128 1 1

FC1 1 000 - - 512 - -

FC2 4 096 - - 4 096 - -

FC3 1 000 - - 1 024 - -

Pool1 64 112 112 - 3 2

Pool2 512 27 27 - 3 2

Pool3 528 14 14 - 3 1

Note: -: there is no parameter; C: channel.
 

In Fig.8, we report the execution time of these op-

erations.  Compared  with  NonePipe,  both  static

pipelining  and  DyPipe  have  a  significant  improve-

ment in the accelerator. The results also indicate that

DyPipe  achieves  good performance,  which is  close  to

static  pipelining  by  a  factor  of  0.96x  on  geometric

mean  (GeoMean).  The  performance  reduction  comes

from  two  major  reasons.  The  first  is  the  additional

control flow to support dynamic software pipelining in

runtime.  The  second  is  the  extra  memory  access  to

save and reload contexts from the CB.

We further take an in-depth analysis of the opera-

tion  of  Conv3,  which  has  nearly  7% performance  re-

duction  in  DyPipe.  We  observe  that  it  has  a  very

small channel size and a kernel size. Thus, the execu-

tion time for  each loop iteration is  short  and the  ef-

fect  of  control  flow  is  more  significant.  Fortunately,

operations  with  both  the  small  channel  size  and  the

kernel  size  occupy  a  very  small  proportion  in  the

whole networks in general. 

4.3    Performance Evaluation on Static

Neural Networks

In  the  further  step,  we  make  the  performance

comparison between DyPipe and static  pipelining for

the  state-of-the-art  static  neural  networks,  covering

ResNet-18[17],  AlexNet[30],  GoogLeNet[18] and Squeeze-

Net[31]. The detailed results are shown in Fig.9 across
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Fig.8.  Execution time comparison on operations.
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these four neural networks with different scales. Over-

all,  DyPipe  achieves  96%  performance  on  GeoMean

compared  with  static  pipelining.  However,  DyPipe  is

more flexible since it does not need to recompile and

optimize  when  the  network  is  dynamic  and  it  comes

at  less  than  5%  performance  penalty.  These  results

show that DyPipe supports normal networks while in-

troducing very low dynamic pipelining overhead. 

4.4    Performance  Evaluation  on  Dynamic

Neural Networks

We  further  evaluate  the  performance  advantages

of  DyPipe  for  dynamic  structures.  We  produce  the

dynamic  scenarios  under  the  natural  language  pro-

cessing  domains.  Specifically,  we  generate  random-

ized inputs with variable length, ranging from 1 to 20,

for these sequence-to-sequence models. The results are

shown  in Fig.10.  DyPipe  outperforms  static  pipelin-

ing  by  a  factor  of  1.75x  on  GeoMean.  For  static

pipelining,  short  sentences  need  to  be  completed  by

adding  paddings  so  that  they  can  be  aligned  to  the

longest sentence, which leads to a large amount of re-

dundant and unnecessary computations. DyPipe elim-

inates  such  unnecessary  computations  by  supporting

inputs  with  variable  sizes  and  thus  achieves  better

performance.
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Fig.10.  Execution time of dynamic networks for DyPipe com-
pared with static pipelining.
 

For  other  dynamic  structures  such as  Tree-struc-

tured  RNN,  the  inputs  have  different  structures  but

the operations involved are similar. Thus, DyPipe can

also  support  such  dynamic  NNs  by  defining  module

functions  in  advance.  However,  static  pipelining can-

not handle dynamic data structures; hence no result is

available for comparison. 

4.5    Execution Time Breakdown

We break down the execution time into two parts.

The  first  is  computation  and  memory  access  with

DRAM (COM & IO). The second is control flow and

overhead of maintaining contexts (CF & CTX) intro-

duced by DyPipe. We choose two static networks and

two dynamic networks as the representatives and the

results are shown in Fig.11. The results show that the

extra effort introduced by DyPipe is small (less than

8%).  The  main  reason  is  because  DNN  accelerators

can  perform  hundreds  of  data  in  one  instruction.

Therefore,  the extra control  flow and memory access

from  the  CB  is  negligible.  Besides,  by  software

pipelining,  a  part  of  extra  consumption  can  be  cov-

ered by computation or memory access through paral-

lelism computing.
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5    Discussion

Dynamic  NNs  are  applied  in  many  modern  deep

neural  networks  and  many  existing  approaches  are

proposed to support dynamic NNs[10, 24, 25, 28]. Howev-

er,  these  approaches  are  GPU-based  optimization,

which are not well adapted to DNN accelerators. We

take TensorFlow Fold and DyNet as examples to ex-

plain  the  reasons.  TensorFlow  Fold  implements  dy-

namic NNs by rewriting a computational graph into a

static  control  flow  graph[25].  However,  TensorFlow

Fold only applies to the tree-structured networks and

cannot  support  others.  Therefore,  TensorFlow  Fold

has limited application scenarios without general sup-

port for dynamic NNs. DyNet is an imperative frame-

work  to  support  dynamic  NNs[10].  However,  the  im-

perative framework cannot support  the compile  opti-

mizations  and  is  less  popular  than  the  declarative

framework.  To the  best  of  our  knowledge,  DyPipe  is

the  first  study  to  generally  support  dynamic  neural

network  models  in  DNN  accelerators.  We  propose  a

holistic  approach  to  efficiently  supporting  dynamic

NNs based on a context buffer, a programming inter-

face, and a scheduler. Specifically, DyPipe brings the

following  benefits.  1)  It  transforms  a  dynamic  graph

Yi-Min Zhuang et al.: Approach to Accelerating Dynamic Neural Networks with Dynamic Pipelining 907



into a deterministic graph, which implements dynam-

ic pipelining. 2) It reduces the overhead of maintain-

ing  contexts.  3)  It  supports  flexible  and  efficient

scheduling by calling different module functions based

on PCs. 

6    Conclusions

This paper presented DyPipe, a holistic approach

to  optimizing  dynamic  neural  network  inferences  in

enhanced  deep  neural  network  accelerators.  DyPipe

supports  dynamic  pipelining with a  context  buffer,  a

programming interface and a well-designed scheduler.

It  avoids  the  substantial  overhead  of  resource  man-

agement  and  runtime  scheduling.  Experimental  re-

sults  showed  that  DyPipe  maintains  high  perfor-

mance in static neural networks while efficiently exe-

cuting  dynamic  models.  It  achieves  1.7x  speedup  on

dynamic models. 
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