

DyPipe: A Holistic Approach to Accelerating Dynamic Neural
Networks with Dynamic Pipelining

Yi-Min Zhuang1, 2 (庄毅敏), Xing Hu1 (胡　杏), Member, CCF, Xiao-Bing Chen1, 2 (陈小兵), and
Tian Zhi1, * (支　天), Member, CCF

1 State Key Laboratory of Processors, Institute of Computing Technology, Chinese Academy of Sciences
Beijing 100190, China

2 University of Chinese Academy of Sciences, Beijing 100049, China

E-mail: zhuangyimin@ict.ac.cn; huxing@ict.ac.cn; chenxiaobing@ict.ac.cn; zhitian@ict.ac.cn

Received November 24, 2020; accepted May 30, 2021.

Abstract Dynamic neural network (NN) techniques are increasingly important because they facilitate deep learning

techniques with more complex network architectures. However, existing studies, which predominantly optimize the static

computational graphs by static scheduling methods, usually focus on optimizing static neural networks in deep neural net-

work (DNN) accelerators. We analyze the execution process of dynamic neural networks and observe that dynamic fea-

tures introduce challenges for efficient scheduling and pipelining in existing DNN accelerators. We propose DyPipe, a holis-

tic approach to optimizing dynamic neural network inferences in enhanced DNN accelerators. DyPipe achieves significant

performance improvements for dynamic neural networks while it introduces negligible overhead for static neural networks.

Our evaluation demonstrates that DyPipe achieves 1.7x speedup on dynamic neural networks and maintains more than

96% performance for static neural networks.

Keywords dynamic neural network (NN), deep neural network (DNN) accelerator, dynamic pipelining

1 Introduction

Deep neural networks show their strength in a

broad range of applications, such as image process-

ing[1], natural language processing[2], and gaming[3].

Meanwhile, the continuously developing deep neural

network (DNN) techniques raise new opportunities for

domain-specific architectures[4–6] innovation. Many ar-

chitectures and system studies[7–9] of machine learn-

ing accelerators contribute to accelerating the train-

ing and inference of DNNs for better computing capa-

bility with power efficiency.

Dynamic neural network (NN) techniques increas-

ingly attract attention from researchers recently due

to their powerful representation capability of com-

plex network architectures with dynamic control flow

and variable data sizes[10]. In observing their increas-

ing importance in natural language processing[11] and

semantic segmentation[12], the broadly-used frame-

works start to support dynamic NN techniques. How-

ever, for DNN accelerators, a holistic system opti-

mization for the execution efficiency of dynamic NNs

is still missing.

Existing studies[13, 14] mainly contribute to opti-

mizing static NNs with fixed input/output shapes and

static computational graphs. For example, Auto

TVM[15] builds a statistical cost model and designs an

exploration module to search for the best configura-

tion to run networks on the hardware. DNNVM[14] de-

signs a cycle-accurate simulator to find the best exe-

cution strategy to fuse operations. Such optimiza-

Regular Paper

This work is partially supported by the Beijing Natural Science Foundation under Grant No. JQ18013, the National Natural
Science Foundation of China under Grant Nos. 61925208, 61732007, 61732002 and 61906179, the Strategic Priority Research Pro-
gram of Chinese Academy of Sciences (CAS) under Grant No. XDB32050200, the Youth Innovation Promotion Association CAS,
Beijing Academy of Artificial Intelligence (BAAI) and Xplore Prize.

*Corresponding Author

Zhuang YM, Hu X, Chen XB et al. DyPipe: A holistic approach to accelerating dynamic neural networks with dynamic

pipelining. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 38(4): 899−910 July 2023. DOI:

10.1007/s11390-021-1161-y

©Institute of Computing Technology, Chinese Academy of Sciences 2023

https://doi.org/10.1007/s11390-021-1161-y
https://doi.org/10.1007/s11390-021-1161-y
https://doi.org/10.1007/s11390-021-1161-y
https://doi.org/10.1007/s11390-021-1161-y
https://doi.org/10.1007/s11390-021-1161-y
https://doi.org/10.1007/s11390-021-1161-y
https://doi.org/10.1007/s11390-021-1161-y

tions require the knowledge of pre-defined fixed net-

work architectures, which are hardly applied to dy-

namic NNs.

We analyze the inference process of dynamic NNs

and observe that the dynamic tensor shapes and con-

trol flow hinder the scheduling optimization for bet-

ter computing parallelism and hardware utilization.

For static NNs, the shapes of inputs and outputs are

known in advance and the structures of the networks

are fixed. Therefore, compilers for DNN accelerators

can optimize hardware utilization and computing

throughput with software pipelining techniques ac-

cording to the dependency analysis of static computa-

tional graphs[16]. For dynamic NNs, however, the con-

trol flow and the computation workload of tensors are

determined during runtime. It is challenging to make

the best scheduling beforehand during static analysis.

Additionally, more contexts need to be recorded for

dynamic NNs, which raises the burden of the register

resources.

To address these issues, we propose DyPipe, a

holistic approach to supporting dynamic NNs in en-

hanced DNN accelerators. DyPipe enables efficient

dynamic pipelining and we also provide a program-

ming interface so that programmers can specify the

specialized stages for better computing parallelism.

Concretely, our main contributions are as follows.

● We analyze differences between static and dy-

namic NNs and discover challenges of dynamic

scheduling for dynamic NNs.

● We propose an architectural model with a con-

text buffer (CB), which helps efficient pipelining.

● We propose a programming interface, which is

feasible for programmers for stage optimization and

provides high-level semantics for scheduling optimiza-

tion.

● We design a scheduler to efficiently perform dy-

namic pipelining with the enhanced DNN accelera-

tors.

The rest of this paper is organized as follows. In

Section 2, we review the background of dynamic NNs

and analyze the challenges of them. Section 3 intro-

duces the details of the DyPipe system. We will then

present the experimental methodology and experimen-

tal results in Section 4. Section 5 describes the inade-

quacy of existing work in DNN accelerators. Section 6

concludes this paper.

2 Background and Motivation

This section introduces the background of dynam-

ic NNs and analyzes the challenges of running dynam-

ic NNs in existing DNN accelerators, which motivate

our design.

2.1 Static and Dynamic Neural Networks

DNN models generally use symbolic representa-

tion to represent the structure of the network compu-

tational graph. For example, TensorFlow[7] uses nodes

and edges to describe the computational graph. Stat-

ic NNs[17, 18] have fixed network structures and fixed

tensor shapes. The definition phase of the computa-

tional graph is called static declaration. Static NNs

make DNN models easy and efficient to deploy. Com-

pilers can optimize network through complex opti-

mization methods at compile time. Batching tech-

niques can be used to improve the efficiency of multi-

core processors, such as GPU. Due to such advan-

tages, static declaration is the domain programming

paradigm for DNN compilers.

However, along with the continued advance for

natural language processing and semantic segmenta-

tion, dynamic NNs are applied in more and more

modern DNNs. In contrast to static NNs, dynamic

NNs are with unfixed compute graphs which contain

variable size[19], variable structure[20] and control

flow[21]. Dynamic NN techniques, enabling variable

network structures by dynamic declaration during

runtime, emerge to empower applications that de-

mand complex neural network structures. Specifically,

dynamic NNs are commonly applied in the following

scenarios.

1) Sequence Language Models[19]. The inputs of

models are sentences which usually have variable

length.

2) Tree-Structured RNNs[22]. For language models

with sentiment analysis, the inputs are tree-struc-

tured and they are variable for different sentences.

3) Neural Architecture Search (NAS)[23]. NAS

aims to find the optimal model for specific tasks by

repeatedly testing the performance of different net-

work architectures. The network structures constant-

ly evolve during the execution of tasks.

In some cases, a dynamic NN can be simplified as

a static NN[24]. For example, for a sequence language

model with variable sentence length, all sentences can

be aligned to the longest sentence by adding redun-

dant paddings. But this leads to a large amount of re-

dundant and unnecessary computations.

900 J. Comput. Sci. & Technol., July 2023, Vol.38, No.4

2.2 Existing Systems

Dynamic NNs are commonly adopted because

they support complex tasks that exhibit diverse com-

putational graphs during runtime. Envisioning their

importance and ever-increasing demands, many toolk-

its and frameworks[10, 24–28] were proposed for better

programmability and efficiency of dynamic NNs.

TensorFlow Fold[25] provides a high-level combina-

tory library in TensorFlow to perform dynamic batch-

ing. TensorFlow Fold rewrites the computational

graphs of the given input into multiple depths and

batches the same operation occurring at the same

depth together by inserting additional concat and

gather operation. MXNet[26] designs operators such as

foreach, cond and while_loop to support dynamic con-

trol flow. However, these extension features introduce

a large graph preprocessing overhead and are not con-

sistent with the original programming models in these

frameworks.

There are some imperative frameworks, such as

DyNet[10], PyTorch[27]. Unlike the symbolic program

which defines computation before the program runs,

the imperative program performs computation when

the program runs. Imperative frameworks are flexible

to construct dynamic NNs since they can execute us-

er expressions instantly. The computation graph con-

struction and execution stages are coupled together in

imperative frameworks, which raises the difficulty in

adopting compiler optimization such as batching and

operator fusion. Therefore, such a programming mod-

el is less popular due to this limitation.

2.3 Deep Neural Network Accelerators

DNN accelerators[4–6, 29] are domain-specific pro-

cessors which are designed to improve computation

and energy efficiency of DNN applications. The archi-

tectural characteristics of DNN accelerators are quite

different from traditional CPU or GPU, which great-

ly affect the programming models and optimizations

of compilers.

DNN accelerators generally have complex memo-

ry hierarchies which need to be explicitly managed by

software. In addition, accelerators adopt very long in-

struction word (VLIW) to design their instruction set

architectures (ISAs) for vector or matrix computa-

tion. Such ISAs need scheduling by software at com-

pile time for better module parallelism. Based on

these characteristics, software pipelining[14, 16] is one of

the most effective optimization methods on DNN ac-

celerators.

So far, existing toolkits and systems are based on

CPU or GPU, without considering the architectural

characteristics of DNN accelerators. They are not

suitable for DNN accelerators because of the quite dif-

ferent programming models. Therefore, exploring effi-

cient architecture and system optimizations for dy-

namic NNs in DNN accelerators is a timely topic.

2.4 Motivation

In this subsection, we analyze the architectural

behaviors of dynamic NNs and summarize the chal-

lenges introduced by their dynamic features.

Dynamic NN toolkits enable dynamic declaration

and varied neural networks according to the inputs.

Due to these dynamic features, it is challenging for ef-

ficient task scheduling and computation pipelining in

dynamic NNs. We illustrate the challenges with an in-

ter-operation pipelining example in Fig.1. Here, we

omit the intra-operation pipelining.

The static NNs often adopt software pipelining

which simultaneously performs computation and da-

ta communication for better hardware utilization to im-

prove the computing parallelism, as shown in Fig.1(a).

Such software pipelining, implemented by statically

scheduling the execution order during compile time, is

simple and effective when the neural network model is

fixed-structured.

B

C

B C

While for dynamic NNs with dynamic control

flow, the scheduling order cannot be determined be-

forehand, and thus the optimal statically scheduling

can hardly be achieved. Fig.1(b) shows an example to

illustrate the challenge with a dynamic control flow.

In this computation graph, the computation of or

 depends on the value of condition check. It is un-

clear about whether or will be executed until the

runtime. In this case, the simple software pipelining

needs to insert a bubble which hinders the improve-

ment of the computing parallelism.

Additionally, register management for dynamic

NNs is much more complex. Contexts, such as tensor

shapes, tensor addresses, and loop numbers, can be

precomputed as immediate values when networks are

static. But for dynamic NNs, they are variable values

and all contexts should be saved in the registers. Such

requirements make register allocation more challeng-

ing, especially for those processors with fewer regis-

Yi-Min Zhuang et al.: Approach to Accelerating Dynamic Neural Networks with Dynamic Pipelining 901

ters or without hardware memory management units.

Motivated by these two observations, we propose

DyPipe, a holistic approach to addressing the ineffica-

cy in dynamic NNs with enhanced hardware accelera-

tor, programming interface, and dynamic scheduling.

3 DyPipe System

3.1 Overview

The DyPipe system proposes a holistic design to
eliminate the inefficacy brought by the dynamic fea-

tures, including an accelerator design with context
buffer, a programming interface, and a runtime sched-

uler. The context buffer (Subsection 3.2) is an on-chip
storage. Similar to other on-chip memory in accelera-

tors, it is managed by software. The programming in-
terface (Subsection 3.3) is provided for programmers

to define different processes of pipelining. With the
assistance of the CB and programming interface, the

scheduler (Subsection 3.4) can achieve dynamic
pipelining to improve computing parallelism at run-

time even when the input graphs are variable with
unfixed structures.

A B

D

The key idea of DyPipe is to decouple dynamic
structures and scheduling. By efficiently maintaining

the structure of the computational graph on the CB,

DyPipe transforms the dynamic graph into a deter-
ministic graph and then the scheduler can achieve ef-

ficient pipelining. The overview of the DyPipe system
is shown in Fig.2. At compile time when the com-

pletely graph is not determined, the operation behav-
ior of each operation is split into several phases. The

compiler then defines each phase into separate func-
tions, which we call module functions. At runtime,

when the dynamic information such as the structure
of graph and tensor shape is determined, module

functions of those operations that need to be execut-
ed will be saved into the context buffer. For example,

we will save module functions of operations , and
 into the CB if the condition is true. In this way,

DyPipe transforms the dynamic graph into a deter-
ministic graph which is saved in the CB. By schedul-

ing the module functions in the CB, the scheduler can
achieve high efficient pipelining without being affect-

ed by dynamic information. The scheduling process

Load 

Comp 

Store 

Load 

Comp 

Store 

Time

Load 

Comp 

Store 

…



 

Concat



Switch

 

Load 

Comp 

Store 

Load 

Time

Condition

Y N

(a)

(b)



Load 

Comp 

Store 

Stall

Stall ...

Fig.1. Software pipelining in two kinds of networks. (a) Net-
work with a fixed structure. (b) Network with control flow.
Comp means compute.

 

Scheduler

Context Buffer

Load 

Comp 

Store 

Load 

Comp 

Store  



Switch

Compute

Graph
Compile Runtime

 Schedule

Save

Context

Load
Context

Time
Condition

Y N



 …

   …

   …







…

Program in

Serial Order

Load 

Comp 

Store 

   …

  

Fig.2. Overview of the DyPipe system. Comp: compute.

902 J. Comput. Sci. & Technol., July 2023, Vol.38, No.4

will be described in detail in Subsection 3.4.

3.2 DyPipe Context Buffer

DyPipe is established based on the DianNao[29] ar-

chitecture and the simplified block diagram of DyP-

ipe is shown in Fig.3. The block diagram includes a

parallel function unit (PFU), a global buffer and a

controller. The PFU is used to perform vector and

matrix operations and the global buffer contains neu-

ron buffer and synapse buffer. In addition, DyPipe is

tailored specially for dynamic NNs with an additional

context buffer, which can transform the original dy-

namic computational graph at compile time into a de-

terministic graph during runtime.

DRAM

Global Buffer

PFU

CB

Accelerator

Controller

Fig.3. Block diagram of the accelerator with an additional con-
text buffer.

Specifically, the context buffer has two-fold func-

tionalities. 1) The context buffer stores the context

information for the execution of operations. The con-

text refers to all the execution information of an oper-

ation, including program counters (PCs) of module

functions in this operation, tensor shapes, data ad-

dresses, computation configurations, etc. 2) The con-

text buffer transforms the dynamic computational

graph to a deterministic graph during runtime. To

achieve this goal, the context buffer maintains mod-

ule functions based on their PCs. The module func-

tions describe the execution flow of a computational

graph. During runtime, the module functions of the

operation to be executed are stored in the context

buffer, which construct a deterministic graph. Then,

the scheduler manages the scheduling order of mod-

ule functions according to the PCs in the CB. The de-

tails of scheduling are introduced in Subsection 3.4.

For efficient implementation, the context buffer is

allocated in the global buffer that provides larger

space and lower access latency, compared with allo-

cating it in registers. Thus, the context buffer can re-

duce the complexity of maintaining contexts. During

the optimization and execution of dynamic NNs, the

compiler needs to maintain dozens of contexts at run-

time. It requires spilling and refilling registers fre-

quently to maintain such a large amount of contexts

because of the limited register resources. Register allo-

cation is an NP-complete problem and inappropriate

register allocation may block the pipelining. Com-

pared with limited register resources, the context

buffer provides a large enough storage for storing

these contexts.

The context buffer is also flexible. The compiler is

able to customize the recorded parameters and their

storage format with the programming interface. The

only thing that needs to ensure is the consistency of

the processes of loading and storing contexts.

3.3 Programming Interface

Scheduling of pipelining should distinguish which

codes can be executed in parallel on different hard-

ware modules, which is extremely time-consuming at

runtime for dynamic NNs. To eliminate this effort,

DyPipe explicitly specifies the mapping between hard-

ware modules and the code segments by splitting op-

erations into several module functions at compile

time. We illustrate it with an example shown in Fig.4.

Adjacent codes executed in the same hardware mod-

ule are combined into a composite function, i.e., mod-

ule function. For example, the vector load instruc-

tions of bias, weight and input make up LoadFunc-

tion, ComputeFunction contains instructions of con-

volution, vector addition and activation, and Store-

Function contains the vector store instruction. Bene-

fiting from the splitting of operations, the scheduler

only needs to schedule different module functions,

Fig.4. Splitting an operation into several module functions.

Yi-Min Zhuang et al.: Approach to Accelerating Dynamic Neural Networks with Dynamic Pipelining 903

which largely simplifies scheduling and reduces the

runtime scheduling overhead.

To maintain contexts, we need to rewrite the orig-

inal program to save contexts. Fig.5 shows how Load-

Function saves contexts. When LoadFuncton is ready,

all the variables involved are stored into the CB

which include source addresses, destination addresses

and sizes of each data. Besides, the PC of LoadFunc-

tion is also stored in the CB.

Fig.5. Saving contexts and PCs into the CB.

As for the definition of module functions, DyPipe

provides a special programming interface as shown in

Fig.6. Compared with normal function definition, we

add an additional keyword, i.e., Module Name, in the

function definition. Module Name indicates the hard-

ware module corresponding to the current function.

The parameters of module functions come from the

context buffer and they are prepared in advance.

Module functions will first load parameters from the

CB to registers and then perform the specific opera-

tions.

Fig.6. Example of the programming interface.

The proposed programming interface decomposes

the program of an operation into two parts. The first

part is to maintain contexts and PCs, which results in

a flexible function call. The second part is to define

different module functions with the indications of

module name. Thus, the scheduler can take module

functions as basic units to achieve dynamic pipelin-

ing with less runtime overhead.

3.4 Runtime Scheduler

We also propose the scheduler to support dynam-

ic pipelining with the assistance of CB. The context

buffer saves the module functions of those operations

that need to be executed at runtime. The scheduler

then schedules these module functions according to

the module and data dependency, while retaining the

hardware utilization. Such a process is referred to as

dynamic pipelining in this study.

A B C D

A B D

C

The specific process of dynamic pipelining is

shown in Fig.7. For a given dynamic graph, the mod-

ule functions of all relevant operations are defined at

compile time according to the programming interface.

As shown in Fig.7(a), the module functions of opera-

tions , , and are defined in advance. At run-

time, only the module functions of those operations

that need to be executed will be saved into the CB.

For instance, if the condition of graph is true, the

module functions of operations , and are stored

into the CB while that of operation is discarded, as

shown in Figs.7(b)–7(d). Therefore, a deterministic

graph is constructed in the CB.

Then the runtime scheduler schedules these mod-

ule functions in the CB according to dependency. The

scheduler calls different module functions according to

PCs saved in the CB and module functions load rele-

vant contexts from the CB when implemented. Specif-

ically, we explain the intra-operation scheduling and

inter-operation scheduling as follows.

A

Lai

A i

Cai

A i La2 Ca1

La1

La2 Ca1

Intra-Pperation Scheduling. Take operation as

an example, as shown in Fig.7(b), where means

the LoadFunction of operation for the -th data

block, and means the ComputeFunction of opera-

tion for the -th data block. and should be

implemented after due to module dependency and

data dependency respectively, but and can be

executed in parallel.

B

Inter-Operation Scheduling. We further explain

the scheduling between operations, as shown in Fig.7(c).

When operation is ready, its module functions are

also stored in the CB. Meanwhile, there are remain-

904 J. Comput. Sci. & Technol., July 2023, Vol.38, No.4

A Sa(n−1) Can

San Lb1

Sa(n−1) Can

ing module functions of operation , i.e., ,

and . In this situation, the scheduler will call

as well as and to execute them in parallel.

In this process, we have no need to add redundant

bubbles for efficient pipelining.

4 Experimental Results

In this section, we introduce the experimental

methodology and experimental results.

4.1 Experimental Methodology

Benchmarks. Three categories of models are used

for the performance evaluation: 1) basic operation

evaluation, including convolution, pool and fully con-

nected layers; 2) complete static neural network mod-

els, including Alexnet[30], ResNet-18[17], GooGleNet[18]

Compile Time

 



SwitchCondition

Y N



…

…

…







…

…

 …



Time

…







 …

Time

…









 …

Time

…

Computational

Graph

Module

Functions

Runtime

Scheduling & Load

Store

Store
Store

Deterministic

Graph

Context

Buffer

Pipelining by

Scheduler

Program

Scheduling & LoadScheduling & Load

Deterministic

Graph

Context

Buffer

Pipelining by

Scheduler

Deterministic

Graph

Context

Buffer

Pipelining by

Scheduler

(b)
(a)

(c)(d)








    

 






  





  

  



 











 



 







Fig.7. Specific process of the scheduler.

Yi-Min Zhuang et al.: Approach to Accelerating Dynamic Neural Networks with Dynamic Pipelining 905

and SqueezeNet[31]; 3) complete dynamic neural net-

work models, generated based on RNN[32], LSTM[33]

and GRU[34].

Setup. We implement a cycle-accurate perfor-

mance simulator based on the DianNao architecture

to evaluate the total execution time (cycles), due to

the unbearable long duration of silicon implementa-

tion. The basic hardware configurations are as shown

in Table 1.

Table 1. Configurations of Simulator

Type Parameter

PE 32 × 64 (2 TOPS @ float16)

Frequency 1 GHz

Memory bandwidth 32 GB/s

Global memory size 1 008 KB

Context buffer 16 KB

Baselines. The experiment compares the execu-

tion time of DyPipe and the static pipelining. We al-

so provide the performance without pipelining

(NonePipe) to illustrate the performance improve-

ment brought by software pipelining. Further, we an-

alyze the overhead introduced by DyPipe for support-

ing dynamic pipelining at runtime.

4.2 Operation-Level Performance Evaluation

Initially, we analyze the performance of typical

operations that are commonly used in neural net-

works. Such an experimental evaluation shows the ba-

sic overhead of DyPipe compared with static frame-

work when dealing with simple and fixed operations.

The operations with different tensor shapes are select-

ed from the state-of-the-art networks[17, 18, 30]. The de-

tailed configurations of them are shown in Table 2.

Table 2. Configurations of Experimental Operations

Layer C (Output) Height Weight C (Input) Kernel Stride

Conv1 256 27 27 96 5 1

Conv2 192 56 56 64 3 1

Conv3 64 56 56 128 1 1

FC1 1 000 - - 512 - -

FC2 4 096 - - 4 096 - -

FC3 1 000 - - 1 024 - -

Pool1 64 112 112 - 3 2

Pool2 512 27 27 - 3 2

Pool3 528 14 14 - 3 1

Note: -: there is no parameter; C: channel.

In Fig.8, we report the execution time of these op-

erations. Compared with NonePipe, both static

pipelining and DyPipe have a significant improve-

ment in the accelerator. The results also indicate that

DyPipe achieves good performance, which is close to

static pipelining by a factor of 0.96x on geometric

mean (GeoMean). The performance reduction comes

from two major reasons. The first is the additional

control flow to support dynamic software pipelining in

runtime. The second is the extra memory access to

save and reload contexts from the CB.

We further take an in-depth analysis of the opera-

tion of Conv3, which has nearly 7% performance re-

duction in DyPipe. We observe that it has a very

small channel size and a kernel size. Thus, the execu-

tion time for each loop iteration is short and the ef-

fect of control flow is more significant. Fortunately,

operations with both the small channel size and the

kernel size occupy a very small proportion in the

whole networks in general.

4.3 Performance Evaluation on Static

Neural Networks

In the further step, we make the performance

comparison between DyPipe and static pipelining for

the state-of-the-art static neural networks, covering

ResNet-18[17], AlexNet[30], GoogLeNet[18] and Squeeze-

Net[31]. The detailed results are shown in Fig.9 across

0
.6

6

0
.6

8

0
.7

6
 0
.9

2

0
.9

6

0
.9

3

0
.7

6

0
.7

3

0
.6

8

0
.7

8

0
.9

8

0
.9

8

0
.9

3

0
.9

6

0
.9

8

0
.9

6

0
.9

7

0
.9

4

0
.9

8

0
.9

6

0.00

0.25

0.50

0.75

1.00

Con
v1

Con
v2

Con
v3

FC1
FC2

FC3
Poo

l1
Poo

l2
Poo

l3

Geo
M

ea
nE

x
e
c
u
ti
o
n
 T

im
e
 S

p
e
e
d
u
p

NonePipe Static Pipelining DyPipe

Fig.8. Execution time comparison on operations.

0
.6

9

0
.9

2

0
.7

1

0
.6

8

0
.7

4

0
.9

6

0
.9

8

0
.9

5

0
.9

6

0
.9

6

Res
Net
-1
8

Alex
Net

G
oo

gL
eN

et

Sq
ue

ez
eN

et

G
eo

M
ea

n

NonePipe Static Pipelining DyPipe

0.00

0.25

0.50

0.75

1.00

E
x
e
c
u
ti
o
n
 T

im
e
 S

p
e
e
d
u
p

Fig.9. Execution time comparison on the static network.

906 J. Comput. Sci. & Technol., July 2023, Vol.38, No.4

these four neural networks with different scales. Over-

all, DyPipe achieves 96% performance on GeoMean

compared with static pipelining. However, DyPipe is

more flexible since it does not need to recompile and

optimize when the network is dynamic and it comes

at less than 5% performance penalty. These results

show that DyPipe supports normal networks while in-

troducing very low dynamic pipelining overhead.

4.4 Performance Evaluation on Dynamic

Neural Networks

We further evaluate the performance advantages

of DyPipe for dynamic structures. We produce the

dynamic scenarios under the natural language pro-

cessing domains. Specifically, we generate random-

ized inputs with variable length, ranging from 1 to 20,

for these sequence-to-sequence models. The results are

shown in Fig.10. DyPipe outperforms static pipelin-

ing by a factor of 1.75x on GeoMean. For static

pipelining, short sentences need to be completed by

adding paddings so that they can be aligned to the

longest sentence, which leads to a large amount of re-

dundant and unnecessary computations. DyPipe elim-

inates such unnecessary computations by supporting

inputs with variable sizes and thus achieves better

performance.

1.72 1.76 1.78 1.75

0.0

0.5

1.0

1.5

2.0

LSTM GRU RNN GeoMean

Static Pipelining DyPipe

E
x
e
c
u
ti
o
n
 T

im
e
 S

p
e
e
d
u
p

Fig.10. Execution time of dynamic networks for DyPipe com-
pared with static pipelining.

For other dynamic structures such as Tree-struc-

tured RNN, the inputs have different structures but

the operations involved are similar. Thus, DyPipe can

also support such dynamic NNs by defining module

functions in advance. However, static pipelining can-

not handle dynamic data structures; hence no result is

available for comparison.

4.5 Execution Time Breakdown

We break down the execution time into two parts.

The first is computation and memory access with

DRAM (COM & IO). The second is control flow and

overhead of maintaining contexts (CF & CTX) intro-

duced by DyPipe. We choose two static networks and

two dynamic networks as the representatives and the

results are shown in Fig.11. The results show that the

extra effort introduced by DyPipe is small (less than

8%). The main reason is because DNN accelerators

can perform hundreds of data in one instruction.

Therefore, the extra control flow and memory access

from the CB is negligible. Besides, by software

pipelining, a part of extra consumption can be cov-

ered by computation or memory access through paral-

lelism computing.

80

84

88

92

96

100

ResNet-18 AlexNet LSTM GRU

COM & IO CF & CTX

E
x
e
c
u
ti
o
n
 T

im
e

B
re

a
k
d
o
w

n
 (

%
)

Fig.11. Execution time breakdown.

5 Discussion

Dynamic NNs are applied in many modern deep

neural networks and many existing approaches are

proposed to support dynamic NNs[10, 24, 25, 28]. Howev-

er, these approaches are GPU-based optimization,

which are not well adapted to DNN accelerators. We

take TensorFlow Fold and DyNet as examples to ex-

plain the reasons. TensorFlow Fold implements dy-

namic NNs by rewriting a computational graph into a

static control flow graph[25]. However, TensorFlow

Fold only applies to the tree-structured networks and

cannot support others. Therefore, TensorFlow Fold

has limited application scenarios without general sup-

port for dynamic NNs. DyNet is an imperative frame-

work to support dynamic NNs[10]. However, the im-

perative framework cannot support the compile opti-

mizations and is less popular than the declarative

framework. To the best of our knowledge, DyPipe is

the first study to generally support dynamic neural

network models in DNN accelerators. We propose a

holistic approach to efficiently supporting dynamic

NNs based on a context buffer, a programming inter-

face, and a scheduler. Specifically, DyPipe brings the

following benefits. 1) It transforms a dynamic graph

Yi-Min Zhuang et al.: Approach to Accelerating Dynamic Neural Networks with Dynamic Pipelining 907

into a deterministic graph, which implements dynam-

ic pipelining. 2) It reduces the overhead of maintain-

ing contexts. 3) It supports flexible and efficient

scheduling by calling different module functions based

on PCs.

6 Conclusions

This paper presented DyPipe, a holistic approach

to optimizing dynamic neural network inferences in

enhanced deep neural network accelerators. DyPipe

supports dynamic pipelining with a context buffer, a

programming interface and a well-designed scheduler.

It avoids the substantial overhead of resource man-

agement and runtime scheduling. Experimental re-

sults showed that DyPipe maintains high perfor-

mance in static neural networks while efficiently exe-

cuting dynamic models. It achieves 1.7x speedup on

dynamic models.

Conflict of Interest The authors declare that

they have no conflict of interest.

References

 Xie S N, Girshick R, Dollár P, Tu Z W, He K M. Aggre-

gated residual transformations for deep neural networks.

In Proc. the 2017 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), Jul. 2017, pp.5987–

5995. DOI: 10.1109/cvpr.2017.634.

[1]

 Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L,

Gomez A N, Kaiser Ł, Polosukhin I. Attention is all you

need. In Proc. the 31st International Conference on Neu-

ral Information Processing Systems, Dec. 2017, pp.6000–

6010.

[2]

 Silver D, Schrittwieser J, Simonyan K, Antonoglou I,

Huang A, Guez A, Hubert T, Baker L, Lai M, Bolton A,

Chen Y T, Lillicrap T, Hui F, Sifre L, van den Driessche

G, Graepel T, Hassabis D. Mastering the game of go

without human knowledge. Nature, 2017, 550(7676):

354–359. DOI: 10.1038/nature24270.

[3]

 Jouppi N P, Young C, Patil N, Patterson D, Agrawal G,

Bajwa R, Bates S, Bhatia S, Boden N, Borchers A, Boyle

R, Cantin P L, Chao C, Clark C, Coriell J, Daley M, Dau

M, Dean J, Gelb B, Ghaemmaghami T V, Gottipati R,

Gulland W, Hagmann R, Ho C R, Hogberg D, Hu J,

Hundt R, Hurt D, Ibarz J, Jaffey A, Jaworski A, Kaplan

A, Khaitan H, Killebrew D, Koch A, Kumar N, Lacy S,

Laudon J, Law J, Le D, Leary C, Liu Z Y, Lucke K,

Lundin A, MacKean G, Maggiore A, Mahony M, Miller

K, Nagarajan R, Narayanaswami R, Ni R, Nix K, Norrie

T, Omernick M, Penukonda N, Phelps A, Ross J, Ross M,

Salek A, Samadiani E, Severn C, Sizikov G, Snelham M,

[4]

Souter J, Steinberg D, Swing A, Tan M, Thorson G, Tian

B, Toma H, Tuttle E, Vasudevan V, Walter R, Wang W,

Wilcox E, Yoon D H. In-datacenter performance analysis

of a tensor processing unit. In Proc. the 44th Annual In-

ternational Symposium on Computer Architecture, Jun.

2017. DOI: 10.1145/3079856.3080246.

 Chen Y H, Krishna T, Emer J S, Sze V. Eyeriss: An ener-

gy-efficient reconfigurable accelerator for deep convolu-

tional neural networks. IEEE Journal of Solid-State Cir-

cuits, 2017, 52(1): 127-138. DOI: 10.1109/JSSC.2016.

261657.

[5]

 Alwani M, Chen H, Ferdman M, Milder P. Fused-layer

CNN accelerators. In Proc. the 49th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO),

Oct. 2016. DOI: 10.1109/micro.2016.7783725.

[6]

 Abadi M, Barham P, Chen J M, Chen Z F, Davis A,

Dean J, Devin M, Ghemawat S, Irving G, Isard M, Kud-

lur M, Levenberg J, Monga R, Moore S, Murray D G,

Steiner B, Tucker P, Vasudevan V, Warden P, Wicke M,

Yu Y, Zheng X Q. Tensorflow: A system for large-scale

machine learning. In Proc. the 12th USENIX Conference

on Operating Systems Design and Implementation, Nov. 2016,

pp.265–283.

[7]

 Rotem N, Fix J, Abdulrasool S, Catron G, Deng S,

Dzhabarov R, Gibson N, Hegeman J, Lele M, Levenstein

R, Montgomery J, Maher B, Nadathur S, Olesen J, Park

J, Rakhov A, Smelyanskiy M, Wang M. Glow: Graph

lowering compiler techniques for neural networks. arXiv:

1805.00907, 2018. https://arxiv.org/abs/1805.00907, Au-

gust 2023.

[8]

 Vasilache N, Zinenko O, Theodoridis T, Goyal P, DeVito

Z, Moses W S, Verdoolaege S, Adams A, Cohen A. Ten-

sor comprehensions: Framework-agnostic high-performance

machine learning abstractions. arXiv: 1802.04730, 2018.

https://arxiv.org/abs/1802.04730, August 2023.

[9]

 Neubig G, Dyer C, Goldberg Y, Matthews A, Ammar W,

Anastasopoulos A, Ballesteros M, Chiang D, Clothiaux D,

Cohn T, Duh K, Faruqui M, Gan C, Garrette D, Ji Y F,

Kong L P, Kuncoro A, Kumar G, Malaviya C, Michel P,

Oda Y, Richardson M, Saphra N, Swayamdipta S, Yin P

C. DyNet: The dynamic neural network toolkit. arXiv:

1701.03980, 2017. https://arxiv.org/abs/1701.03980, Au-

gust 2023.

[10]

 Devlin J, Chang M W, Lee K, Toutanova K. BERT: Pre-

training of deep bidirectional transformers for language

understanding. In Proc. the 2019 Conference of the North

American Chapter of the Association for Computational

Linguistics: Human Language Technologies, Volume 1

(Long and Short Papers), Jun. 2019, pp.4171–4186. DOI: 10.

18653/v1/n19-1423.

[11]

 Kirillov A, Wu Y X, He K M, Girshick R. PointRend:

Image segmentation as rendering. In Proc. the 2020

IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), Jun. 2020, pp.9796–9805. DOI: 10.

1109/cvpr42600.2020.00982.

[12]

908 J. Comput. Sci. & Technol., July 2023, Vol.38, No.4

https://doi.org/10.1109/cvpr.2017.634
https://doi.org/10.1038/nature24270
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1109/JSSC.2016.261657
https://doi.org/10.1109/JSSC.2016.261657
https://doi.org/10.1109/micro.2016.7783725
https://arxiv.org/abs/1805.00907
https://arxiv.org/abs/1802.04730
https://arxiv.org/abs/1701.03980
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.1109/cvpr42600.2020.00982
https://doi.org/10.1109/cvpr42600.2020.00982

 Chen T Q, Moreau T, Jiang Z H, Zheng L M, Yan E,

Cowan M, Shen H C, Wang L Y, Hu Y W, Ceze L,

Guestrin C, Krishnamurthy A. TVM: An automated end-

to-end optimizing compiler for deep learning. In Proc. the

13th USENIX Conference on Operating Systems Design

and Implementation, Oct. 2018, pp.579–594.

[13]

 Xing Y, Liang S, Sui L Z, Jia X J, Qiu J T, Liu X, Wang

Y S, Shan Y, Wang Y. DNNVM: End-to-end compiler

leveraging heterogeneous optimizations on FPGA-based

CNN accelerators. IEEE Trans. Computer-Aided Design

of Integrated Circuits and Systems, 2020, 39(10): 2668-

2681. DOI: 10.1109/tcad.2019.2930577.

[14]

 Chen T Q, Zheng L M, Yan E, Jiang Z H, Moreau T,

Ceze L, Guestrin C, Krishnamurthy A. Learning to opti-

mize tensor programs. In Proc. the 32nd International

Conference on Neural Information Processing Systems, Dec.

2018, pp.3393–3404.

[15]

 Xiao Q C, Liang Y, Lu L Q, Yan S E, Tai Y W. Explor-

ing heterogeneous algorithms for accelerating deep convo-

lutional neural networks on FPGAs. In Proc. the 54th

Annual Design Automation Conference, Jun. 2017, Article

No. 62. DOI: 10.1145/3061639.3062244.

[16]

 He K M, Zhang X Y, Ren S Q, Sun J. Deep residual

learning for image recognition. In Proc. the 2016 IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), Jun. 2016, pp.770–778. DOI: 10.1109/cvpr.2016.90.

[17]

 Szegedy C, Liu W, Jia Y Q, Sermanet P, Reed S,

Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Go-

ing deeper with convolutions. In Proc. the 2015 IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), Jun. 2015. DOI: 10.1109/cvpr.2015.7298594.

[18]

 Lan Z Z, Chen M D, Goodman S, Gimpel K, Sharma P,

Soricut R. ALBERT: A lite BERT for self-supervised

learning of language representations. arXiv: 1909.11942,

2019. https://arxiv.org/abs/1909.11942, August 2023.

[19]

 Zoph B, Le Q V. Neural architecture search with rein-

forcement learning. arXiv: 1611.01578, 2016. https://arxiv.

org/abs/1611.01578, August 2023.

[20]

 Sutskever I, Vinyals O, Le Q V. Sequence to sequence

learning with neural networks. In Proc. the 27th Interna-

tional Conference on Neural Information Processing Sys-

tems, Dec. 2014, pp.3104–3112.

[21]

 Tai K S, Socher R, Manning C D. Improved semantic

representations from tree-structured long short-term

memory networks. In Proc. the 53rd Annual Meeting of

the Association for Computational Linguistics and the 7th

International Joint Conference on Natural Language Pro-

cessing, Jul. 2015, pp.1556–1566. DOI: 10.3115/v1/p15-11

50.

[22]

 Zoph B, Vasudevan V, Shlens J, Le Q V. Learning trans-

ferable architectures for scalable image recognition. In

Proc. the 2018 IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, Jun. 2018, pp.8697–8710.

DOI: 10.1109/cvpr.2018.00907.

[23]

 Shen H C, Roesch J, Chen Z, Chen W, Wu Y, Li M,[24]

Sharma V, Tatlock Z, Wang Y D. Nimble: Efficiently

compiling dynamic neural networks for model inference.

arXiv: 2006.03031, 2020. https://arxiv.org/abs/2006.03031,

August 2023.

 Looks M, Herreshoff M, Hutchins D, Norvig P. Deep

learning with dynamic computation graphs. arXiv:

1702.02181, 2017. https://arxiv.org/abs/1702.02181, Au-

gust 2023.

[25]

 Chen T Q, Li M, Li Y T, Lin M, Wang N Y, Wang M J,

Xiao T J, Xu B, Zhang C Y, Zhang Z. MXNet: A flexible

and efficient machine learning library for heterogeneous

distributed systems. arXiv: 1512.01274, 2015. https://arxiv.

org/abs/1512.01274, August 2023.

[26]

 Paszke A, Gross S, Massa F, Lerer A, Bradbury J,

Chanan G, Killeen T, Lin Z M, Gimelshein N, Antiga L,

Desmaison A, Köpf A, Yang E, DeVito Z, Raison M, Te-

jani A, Chilamkurthy S, Steiner B, Fang L, Bai J J, Chin-

tala S. PyTorch: An imperative style, high-performance

deep learning library. In Proc. the 33rd International

Conference on Neural Information Processing Systems,

Dec. 2019, Article No. 721.

[27]

 Xu S Z, Zhang H, Neubig G, Dai W, Kim J K, Deng Z J,

Ho Q, Yang G W, Xing E P. Cavs: An efficient runtime

system for dynamic neural networks. In Proc. the 2018

USENIX Conference on Usenix Annual Technical Confer-

ence, Jul. 2018, pp.937–950.

[28]

 Chen T S, Du Z D, Sun N H, Wang J, Wu C Y, Chen Y

J, Temam O. DianNao: A small-footprint high-through-

put accelerator for ubiquitous machine-learning. In Proc.

the 19th International Conference on Architectural Sup-

port for Programming Languages and Operating Systems,

Feb. 2014, pp.269–284. DOI: 10.1145/2541940.2541967.

[29]

 Krizhevsky A, Sutskever I, Hinton G E. ImageNet classifi-

cation with deep convolutional neural networks. In Proc.

the 25th International Conference on Neural Information

Processing Systems, Dec. 2012, pp.1097–1105. DOI: 10.

1145/3065386.

[30]

 Iandola F N, Han S, Moskewicz M W, Ashraf K, Dally W

J, Keutzer K. SqueezeNet: AlexNet-level accuracy with

50x fewer parameters and < 0.5 MB model size. arXiv:

1602.07360, 2016. https://arxiv.org/abs/1602.07360, Au-

gust 2023.

[31]

 Werbos P J. Backpropagation through time: What it does

and how to do it. Proceedings of the IEEE, 1990, 78(10):

1550-1560. DOI: 10.1109/5.58337.

[32]

 Hochreiter S, Schmidhuber J. Long short-term memory.

Neural Computation, 1997, 9(8): 1735-1780. DOI: 10.1162/

neco.1997.9.8.1735.

[33]

 Chung J, Gulcehre C, Cho K H, Bengio Y. Empirical

evaluation of gated recurrent neural networks on se-

quence modeling. arXiv: 1412.3555, 2014. https://arxiv.org/

abs/1412.3555, August 2023.

[34]

Yi-Min Zhuang et al.: Approach to Accelerating Dynamic Neural Networks with Dynamic Pipelining 909

https://doi.org/10.1109/tcad.2019.2930577
https://doi.org/10.1145/3061639.3062244
https://doi.org/10.1109/cvpr.2016.90
https://doi.org/10.1109/cvpr.2015.7298594
https://doi.org/10.1109/cvpr.2015.7298594
https://doi.org/10.1109/cvpr.2015.7298594
https://arxiv.org/abs/1909.11942
https://arxiv.org/abs/1611.01578
https://arxiv.org/abs/1611.01578
https://doi.org/10.3115/v1/p15-1150
https://doi.org/10.3115/v1/p15-1150
https://doi.org/10.3115/v1/p15-1150
https://doi.org/10.3115/v1/p15-1150
https://doi.org/10.1109/cvpr.2018.00907
https://arxiv.org/abs/2006.03031
https://arxiv.org/abs/1702.02181
https://arxiv.org/abs/1512.01274
https://arxiv.org/abs/1512.01274
https://doi.org/10.1145/2541940.2541967
https://dl.acm.org/doi/10.1145/3065386
https://dl.acm.org/doi/10.1145/3065386
https://arxiv.org/abs/1602.07360
https://doi.org/10.1109/5.58337
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1412.3555

Yi-Min Zhuang received his B.S.

degree in electronic engineering from

University of Science and Technology

of China, Hefei, in 2016. He is current-

ly a Ph.D. candidate in University of

Chinese Academy of Sciences, Beijing.

His research interests include deep

learning and compiler of neural network accelerator.

Xing Hu received her B.S. degree in

computer science and technology from

Huazhong University of Science and

Technology, Wuhan, and her Ph.D.

degree in computer architecture from

University of Chinese Academy of Sci-

ences, Beijing, in 2009 and 2014, re-

spectively. She is currently an associate professor of

State Key Laboratory of Processors, Institute of Com-

puting Technology (ICT), Chinese Academy of Sciences

(CAS), Beijing. Her current research interests include

domain-specific hardware architectures.

Xiao-Bing Chen received his B.S.

degree in information security from

Wuhan University (WHU), Wuhan, in

2016. He is currently a Ph.D. candi-

date in University of Chinese Acade-

my of Sciences, Beijing. His research

interests include deep learning and

compilation optimization.

Tian Zhi received her B.E. degree

in biomedical engineering from Zhe-

jiang University, Hangzhou, in 2009,

and her Ph.D. degree in information

engineering from Institute of Electron-

ics, Chinese Academy of Sciences, Bei-

jing, in 2014. She is currently an asso-

ciate professor at the Institute of Computing Technolo-

gy (ICT), Chinese Academy of Sciences (CAS), Beijing.

Her research interests include computer architecture and

computational intelligence.

910 J. Comput. Sci. & Technol., July 2023, Vol.38, No.4

	1 Introduction
	2 Background and Motivation
	2.1 Static and Dynamic Neural Networks
	2.2 Existing Systems
	2.3 Deep Neural Network Accelerators
	2.4 Motivation

	3 DyPipe System
	3.1 Overview
	3.2 DyPipe Context Buffer
	3.3 Programming Interface
	3.4 Runtime Scheduler

	4 Experimental Results
	4.1 Experimental Methodology
	4.2 Operation-Level Performance Evaluation
	4.3 Performance Evaluation on Static Neural Networks
	4.4 Performance Evaluation on Dynamic Neural Networks
	4.5 Execution Time Breakdown

	5 Discussion
	6 Conclusions
	Conflict of Interest
	参考文献

