
Hardware Acceleration for SLAM in Mobile Systems

Fan Zhe, Hao Yi-Fan, Zhi Tian, Guo Qi, Du Zi-Dong

View online: http://doi.org/10.1007/s11390-021-1523-5

Articles you may be interested in

A Survey on Graph Processing Accelerators: Challenges and Opportunities

Chuang-Yi Gui, Long Zheng, Bingsheng He, Cheng Liu, Xin-Yu Chen, Xiao-Fei Liao, Hai Jin

Journal of Computer Science and Technology. 2019, 34(2): 339-371 http://doi.org/10.1007/s11390-019-1914-z

FDGLib: A Communication Library for Efficient Large-Scale Graph Processing in FPGA-Accelerated Data Centers

Yu-Wei Wu, Qing-Gang Wang, Long Zheng, Xiao-Fei Liao, Hai Jin, Wen-Bin Jiang, Ran Zheng, Kan Hu

Journal of Computer Science and Technology. 2021, 36(5): 1051-1070 http://doi.org/10.1007/s11390-021-1242-y

A Geometry-Based Point Cloud Reduction Method for Mobile Augmented Reality System

Hao-Ren Wang, Juan Lei, Ao Li, Yi-Hong Wu

Journal of Computer Science and Technology. 2018, 33(6): 1164-1177 http://doi.org/10.1007/s11390-018-1879-3

A Novel Hardware/Software Partitioning Method Based on Position Disturbed Particle Swarm Optimization with Invasive Weed

Optimization

Xiao-Hu Yan, Fa-Zhi He, Yi-Lin Chen

Journal of Computer Science and Technology. 2017, 32(2): 340-355 http://doi.org/10.1007/s11390-017-1714-2

A GPU-Accelerated In-Memory Metadata Management Scheme for Large-Scale Parallel File Systems

Zhi-Guang Chen, Yu-Bo Liu, Yong-Feng Wang, Yu-Tong Lu

Journal of Computer Science and Technology. 2021, 36(1): 44-55 http://doi.org/10.1007/s11390-020-0783-9

IMPULP: A Hardware Approach for In-Process Memory Protection via User-Level Partitioning

Yang-Yang Zhao, Ming-Yu Chen, Yu-Hang Liu, Zong-Hao Yang, Xiao-Jing Zhu, Zong-Hui Hong, Yun-Ge Guo

Journal of Computer Science and Technology. 2020, 35(2): 418-432 http://doi.org/10.1007/s11390-020-9703-2

JCST Homepage: https://jcst.ict.ac.cn
SPRINGER Homepage: https://www.springer.com/journal/11390
E-mail: jcst@ict.ac.cn
Online Submission: https://mc03.manuscriptcentral.com/jcst

JCST Official
WeChat Account

JCST WeChat
Service Account

Twitter: JCST_Journal
LinkedIn: Journal of Computer Science and Technology

https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-021-1523-5
https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-019-1914-z
https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-021-1242-y
https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-018-1879-3
https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-017-1714-2
https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-017-1714-2
https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-020-0783-9
https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-020-9703-2
https://jcst.ict.ac.cn
https://www.springer.com/journal/11390
mailto:jcst@ict.ac.cn
https://mc03.manuscriptcentral.com/jcst

Hardware Acceleration for SLAM in Mobile Systems

Zhe Fan1, 2, 3 (樊　哲), Yi-Fan Hao1, 3 (郝一帆), Tian Zhi1, 3 (支　天), Member, CCF
Qi Guo1 (郭　崎), Member, CCF, ACM, IEEE, and Zi-Dong Du1, 3, * (杜子东), Member, CCF, ACM, IEEE

1 State Key Laboratory of Processors, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190
China

2 School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
3 Cambricon Technologies, Beijing 100191, China

E-mail: fanzhe@ict.ac.cn; haoyifan19b@ict.ac.cn; zhitian@ict.ac.cn; guoqi@ict.ac.cn; duzidong@ict.ac.cn

Received April 16, 2021; accepted March 11, 2022.

Abstract The emerging mobile robot industry has spurred a flurry of interest in solving the simultaneous localization

and mapping (SLAM) problem. However, existing SLAM platforms have difficulty in meeting the real-time and low-pow-

er requirements imposed by mobile systems. Though specialized hardware is promising with regard to achieving high per-

formance and lowering the power, designing an efficient accelerator for SLAM is severely hindered by a wide variety of

SLAM algorithms. Based on our detailed analysis of representative SLAM algorithms, we observe that SLAM algorithms

advance two challenges for designing efficient hardware accelerators: the large number of computational primitives and ir-

regular control flows. To address these two challenges, we propose a hardware accelerator that features composable com-

putation units classified as the matrix, vector, scalar, and control units. In addition, we design a hierarchical instruction

set for coping with a broad range of SLAM algorithms with irregular control flows. Experimental results show that, com-

pared against an Intel x86 processor, on average, our accelerator with the area of 7.41 mm2 achieves 10.52x and 112.62x

better performance and energy savings, respectively, across different datasets. Compared against a more energy-efficient

ARM Cortex processor, our accelerator still achieves 33.03x and 62.64x better performance and energy savings, respec-

tively.

Keywords hardware accelerator, instruction set, mobile system, simultaneous localization and mapping (SLAM) algo-

rithm

1 Introduction

Autonomous navigation in an unknown environ-

ment is a fundamental ability for mobile robots (e.g.,

unmanned ground vehicles, self-driving cars, and aeri-

al robots). In the absence of an initial map of the un-

known environment, the robot must simultaneously

construct a map of the environment and keep track of

its position on the map. This is the well-known simul-

taneous localization and mapping (SLAM[1]) problem.

Conventionally, the SLAM problem can be approxi-

mately solved in acceptable time using statistical

techniques such as particle filtering[2, 3], Kalman fil-

ters[4], and scan matching of range data[5] to process

the data provided by a proper set of sensors (e.g.,

laser, sonar, radar, and camera). However, accurately

solving SLAM in mobile robots with the limited com-

putational ability and stringent power budget re-

mains a challenging problem.

Currently, most of few accelerating solutions are

proposed for hardware platforms such as GPUs[6–9]

and FPGAs/FPGA+DSPs[10–12]. However, such plat-

forms cannot fulfill the real-time processing require-

ments of mobile systems with a limited power budget.

Regular Paper

This work is partially supported by the National Natural Science Foundation of China under Grant Nos. 61925208, 61906179,
U19B2019, and U20A20227, the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No.
XDB32050200, Beijing Academy of Artificial Intelligence (BAAI), Chinese Academy of Sciences (CAS) Project for Young Scientists
in Basic Research (YSBR-029), and Youth Innovation Promotion Association CAS.

*Corresponding Author

Fan Z, Hao YF, Zhi T et al. Hardware acceleration for SLAM in mobile systems. JOURNAL OF COMPUTER SCI-

ENCE AND TECHNOLOGY 38(6): 1300−1322 Nov. 2023. DOI: 10.1007/s11390-021-1523-5

©Institute of Computing Technology, Chinese Academy of Sciences 2023

https://doi.org/10.1007/s11390-021-1523-5
https://doi.org/10.1007/s11390-021-1523-5
https://doi.org/10.1007/s11390-021-1523-5
https://doi.org/10.1007/s11390-021-1523-5
https://doi.org/10.1007/s11390-021-1523-5
https://doi.org/10.1007/s11390-021-1523-5
https://doi.org/10.1007/s11390-021-1523-5

For desktop-level GPUs, efforts such as [6, 7]

achieved around 10x performance (compared against

CPUs), but the power consumption is nearly 100

watts. For embedded GPUs, Mardi et al.[8] achieved

only 9.31x speedup on average on high-performance

embedded GPUs, including NVIDIA Tegra and ARM

Maili. Peng et al.[9] achieved only 1.41x–1.68x speedup

on energy-efficient embedded GPUs which targets AI

computing, including Jetson Xavier, Jetson TX2, and

Jetson Nano. For FPGAs/FPGA+DSPs, despite the

efficiency in performance and power, implementa-

tions are usually fixed to a certain algorithm and thus

lack flexibility. Thus, efficient hardware for SLAM al-

gorithms is still urged.

While specialized hardware promises to offer a re-

al-time and low-power SLAM solution for mobile

robots, several challenges exist in designing a highly

efficient hardware accelerator for multiple SLAM al-

gorithm variants, e.g., monocular SLAM[13, 14], stereo

SLAM[15, 16], and RGB-D camera-based SLAM[17, 18].

First, unlike traditional accelerators that handle a

limited number of computation patterns for limited

algorithms, SLAM algorithms have significant diversi-

ty in their computations. For example, feature extrac-

tion in SLAM usually processes two-dimensional (2D)

input images with massive matrix operations, while

the optimization on the built map processes vertexes

and edges that are complex data structures. Even th-

ese two specific functions involve many matrix/vector/

scalar operations. Second, data access patterns vary

drastically among different SLAM algorithms and

even within a specific algorithm. Taking the data

reuse distance in SLAM for example, input frames

will be used only once but the extracted feature de-

scriptors will be visited all the time in execution, not

to mention the access patterns among different orga-

nized data. Third, very different from traditional ac-

celerated algorithms, SLAM algorithms are data-con-

trol tightly coupled and contain many logic opera-

tions, which raises a challenge for designing accelera-

tors with such complex control flows. In Section 4 of

the real system analysis, the branch mispredicted in-

structions ratio in MonoSLAM is 3.17%, which is

3.36x/2.01x more than that in the convolutional neu-

ral network (CNN) training/testing phase, a recent

common accelerated algorithm with ASIC (applica-

tion specific integrated circuit)[19, 20]. Handling such

control in an accelerator is critical. As a result, an

ideal accelerator for SLAM should exploit varying

computation and data access patterns with complex

control for both high performance and energy efficien-

cy.

In this paper, we propose a novel hardware accel-

erator to efficiently cope with a broad range of SLAM

algorithms. We conduct a thorough analysis of vari-

ous SLAM algorithms, and make several key observa-

tions, leading to our novel design solution. First, al-

though different computation patterns exist, almost

all operations can be classified into seven matrices, six

vectors, and 12 scalar computation primitives. For ex-

ample, Gaussian pyramid establishment in scale in-

variant feature transform algorithm (SIFT)[21] con-

sists only of matrix convolution, matrix down-sam-

pling, and matrix multiplication with scalar. Precon-

ditioned conjugate gradient (PCG)[22] in optimization

consists of vector multiplication and vector inner pro-

duction. Thus, we implement a matrix processing unit

(MPU), a vector processing unit (VPU), and a scalar

processing unit (SPU) for the very few remaining op-

erations to address the challenge of the variety of

computation patterns. Second, data access patterns

can be divided into two main categories: 2D data

mainly for matrix operations and one-dimensional

(1D) data for vector and scalar operations. Thus, we

implement two types of on-chip buffers, 2D SRAM

and 1D SRAM, to feed different processing units effi-

ciently. Gaussian pyramid establishment only needs

to access 2D SRAM for input and outputs, and PCG

only needs to access vectors which are stored in 1D

SRAM. Third, we propose a specially designed in-

struction set architecture (ISA) with the jump and

condition branch instructions to well support com-

plex control/data flows. Additionally, with the pro-

posed ISA, future SLAM algorithms that contain the

same patterns can be efficiently accelerated with the

same ISA-based accelerator as well.

The key contributions of this paper are as follows.

● We propose a benchmark suite BenchSLAM,

which is the basis for our later analysis, based on the

principles of completeness, representativeness, and

practicability.

● We conduct a thorough analysis of different

SLAM algorithms in BenchSLAM to extract their

computation and control flow behaviors, which pro-

vides a solid foundation for designing an efficient

SLAM accelerator.

● We propose a SLAM accelerator built on ma-

trix/vector/scalar processing units, a dedicated con-

trol unit, as well as an on-chip storage system, for ef-

ficiently coping with various SLAM tasks.

Zhe Fan et al.: Hardware Acceleration for SLAM in Mobile Systems 1301

● We propose a hierarchical instruction set which

not only copes with a broad range of SLAM algo-

rithms with irregular control flows but also provides

both flexibility and scalability in our accelerator for

future SLAM algorithms.

● We show how to map algorithms to our acceler-

ator and evaluate BenchSLAM in our accelerator.

The experimental results show that our accelerator

with the area of 7.41 mm2 achieves 10.52x and

112.62x better performance and energy savings over

Intel Core i7-3770 processor respectively, and achieves

22.03x and 62.64x better performance and energy sav-

ings over ARM Cortex A57 processor respectively.

The remainder of this paper is organized as fol-

lows. Section 2 makes a brief introduction to SLAM

algorithms, which can be divided into three cate-

gories: extended Kalman filtering (EKF) SLAM, par-

ticle filtering (PF) SLAM, and graph-based SLAM.

Section 3 builds BenchSLAM, a benchmark contain-

ing mainstream SLAM algorithms, and extracts key

operations of these SLAM algorithms. Section 4 con-

ducts a detailed analysis of deploying BenchSLAM on

a real system, including the performance and power

behaviors, architectural bottlenecks, and the control

flow behaviors. Section 5 illustrates the architecture

of the proposed accelerator and its submodules. Sec-

tion 6 introduces our proposed hierarchical instruc-

tion set which bridges the gap between the

software/algorithm and hardware/scheduling. Section

7 elaborates how to map various SLAM algorithms to

our accelerator. Section 8 evaluates the proposed ac-

celerator against the baseline hardware. Section 9 lists

some related work, including SLAM algorithms and

hardware acceleration methods. Section 10 draws sev-

eral conclusions.

2 SLAM Background

k

(xk,mk) xk

mk

o0:k

u0:k

x0

Solving the SLAM problem can be formulated as

the estimation of a joint state of the robot's pose and

the locations of map landmarks[1]. Mathematically, at

time step , the joint SLAM state vector is denoted

as , where is the vector of the robot's pose

and is the vector of landmarks. The basic idea of

solving the SLAM problem is to estimate the posteri-

or probability of the joint SLAM state vector based

on the observations of the environment , the histo-

ry of control inputs , and an arbitrarily selected

initial position :

P (xk,mk | o0:k,u0:k,x0) . (1)

A large variety of solutions have already been

used for solving the above equation, and they can be

roughly divided into three categories from the per-

spective of computational paradigms[23]: EKF SLAM,

PF SLAM, and graph-based SLAM.

The EKF SLAM employs the well-studied stan-

dard extended Kalman filtering techniques to approxi-

mate the joint posterior distribution of (1). Though

EKF approaches are relatively easy to implement,

they are computation- and memory-intensive as the

size of joint covariance matrix increases quadratically

with the number of landmarks. Also, since the

Kalman filter works under a linear Gaussian assump-

tion, the nonlinear motion and observation models in

SLAM may easily lead to inconsistent and divergent

solutions[24].

The PF SLAM relies on particle filters, which are

sequential Monte Carlo methods using particle repre-

sentation of probability densities[25], allowing for the

direct representation of nonlinear models and non-

Gaussian distribution. This is different from the EKF

approaches that assume Gaussian distribution at ev-

ery time step. Though the particle filtering approach

has led to several important and famous algorithms

such as FastSLAM[3], setting the proper number of

particles remains a challenging problem[26]. Besides,

the particle filtering approach may suffer from the in-

consistency problem as well[27].

The graph-based SLAM addresses the SLAM

problem via graph-based formulation[28]. A sparse

graph, where the node corresponds to a robot posi-

tion during mapping and the edge between two nodes

corresponds to the spatial constraints between them,

is constructed. Once the graph is constructed, it can

be addressed by solving a large error minimization

problem[29]. Due to the sparsity of the constructed

graph, this approach can be solved efficiently with ad-

vanced optimization methods (e.g., sparse linear alge-

bra libraries). However, the initial position can signifi-

cantly affect the final result.

3 BenchSLAM Design

In this section, we introduce our proposed Bench-

SLAM, a benchmark suite containing several repre-

sentative SLAM algorithms.

3.1 Design Objectives

We focus on three key objectives during the de-

1302 J. Comput. Sci. & Technol., Nov. 2023, Vol.38, No.6

sign of BenchSLAM.

● Completeness. The benchmark suite should cov-

er existing SLAM algorithms as many as possible.

● Representativeness. The benchmark suite should

include the most representative SLAM algorithms.

● Practicability. The studied algorithms should be

practical for mobile robots with real-time and low-

power requirements.

3.2 Benchmarks and Algorithmic

Components

Based on the discussion in Section 2, to guaran-

tee completeness, we choose SLAM solutions from

three main SLAM categories: EKF SLAM, PF SLAM,

and graph-based SLAM. To guarantee representative-

ness, we consider the most well-known approaches

from each category. Also, due to the practicability re-

quirement, we only consider algorithms that can be

easily deployed on mobile robots. Eventually, four al-

gorithms are considered in BenchSLAM: EKF

SLAM[4], PF SLAM[3], RGB-D SLAM[18], and ORB

(oriented FAST (features from accelerated segment

test)[30] and rotated BRIEF (binary robust indepen-

dent elementary features)[31]) SLAM[32], where both

RGB-D SLAM and ORB SLAM are the most repre-

sentative and practical graph-based SLAM algo-

rithms. Note that we also notice SLAMBench[8], but it

is a benchmark for only 3D scene understanding ap-

plications. Thus, we propose BenchSLAM instead in

this paper for benchmarking various SLAM algo-

rithms.

3.2.1 EKF/PF SLAM

The overall flow of EKF/PF SLAM is shown in

Fig.1 as they share the same stages. Generally, EKF

SLAM is composed of three steps: computing, predic-

tion, and update.

In the computing step, true coordinates are ob-

tained through motion modeling.

In the prediction step, the new robot state is pre-

dicted based on the last estimation and the control

inputs.

In the update step, which may only happen un-

der specific requirements, the observed range and

bearing measurements are obtained and used for find-

ing associated data, and then the state and covari-

ance are updated.

3.2.2 RGB-D SLAM

RGB-D SLAM is designed for the RGB-D camera,

and the most well-known RGB-D SLAM algorithm is

from the Kinect platform[18]. The overall flow of

RGB-D SLAM is shown in Fig.2[18], including the

frontend for processing camera data to the geometric

relationship (feature extraction, transformation vali-

dation, and transformation estimation), the backend

for finding the maximum likelihood graph of robot

trajectory and the landmarks geometric relationship

(graph optimization), and final map generation.

Feature extraction is the first step of processing

after a frame is received from an RGB-D camera.

During this step, various kinds of features extraction

algorithms, e.g., SIFT (Scale Invariant Feature

Transform)[21], and SURF (Speeded up Robust Fea-

tures)[33], can be applied to calculate features of se-

lected key points on the current input frame.

In transformation estimation, the transformation

information between two frames will be estimated

based on matched pairs of key points, which are ob-

tained by measuring the similarity (e.g., Euclidean

distance or Hamming distance in their feature spaces)

of two key points from each frame. The RANSAC

(Random Sample Consensus) algorithm[34] is applied

instead of ICP (Iterative Closest Point)[35–37] in [18]

for fastness and robustness.

Compute
True Data

State/
Measurement
Prediction

Data
Association

Perform
Update

Computing Prediction Update

Fig.1. Overall flow of EKF/PF SLAM.

Feature

Extraction

Transformation

Estimation

Transformation

Validation

Graph

Optimization

Map

Generation

Frontend

RGB-D Camera

RGB Depth

Backend

Fig.2. Overall flow of RGB-D SLAM[18].

Zhe Fan et al.: Hardware Acceleration for SLAM in Mobile Systems 1303

After that, in transformation validation, a beam-

based environment measurement model (EMM) is

used to verify the estimated transformation informa-

tion since both RANSAC and ICP cannot avoid un-

successful estimation especially when two frames have

low overlap or few features.

Then in graph optimization, based on the graph

obtained in the frontend, which contains the estimat-

ed transformation between different frames, i.e., sen-

sor poses, backend processing computes the global

consistent trajectory with maximum likelihood by op-

timizing the estimation errors. A widely-used frame-

work, called g2o (General Graph Optimization)[38], is

implemented to perform the minimization of a nonlin-

ear error function.

The final map generation is a projection of the

original points measurements with the optimized

graph to form a point cloud representation[39] of the

outside environment in the same coordinates.

3.2.3 ORB SLAM

ORB SLAM[32] is a binary invariant feature (e.g.,

256-bit descriptor) built upon the FAST key-point de-

tector and the BRIEF descriptor. It is widely used for

object recognition, image stitching, visual mapping,

etc.[40]. The essential ORB SLAM algorithm consists

of three parallel tasks: tracking, local mapping, and

loop closing, as shown in Fig.3[32].

The tracking task localizes the pose of the camera

with every received frame and determines when to in-

sert a keyframe. Initially, the ORB features are ex-

tracted from the input frame. Then, an initial feature

matching with the last frame is conducted. If success-

ful, the camera pose is estimated from the previous

frame; otherwise, global relocalization is performed for

predicting the camera pose. Once we have an initial

estimation of the camera pose and a set of feature

matches, a local map can be projected into the frame

and more map points are searched in the frame. With

found map points, the camera pose is optimized

again. Finally, the task determines whether the cur-

rent frame should be inserted as a keyframe.

The local mapping task is in charge of processing

new keyframes and optimizing their local neighbor-

hood. In more detail, the new keyframe is inserted as

a node into the so-called covisibility graph. The local

BA (bundle adjustment) optimizes the keyframe and

all its neighbors in the covisibility graph. The map

points seen by these keyframes are optimized as well.

The local mapping also removes redundant keyframes.

The loop closing task is designed to maintain the

global consistency of the constructed map. This task

can be further divided into two steps: loop detection

and loop correction. In loop detection, once a loop is

detected with the current keyframe, a similarity

transformation is computed to obtain the accumulat-

ed error in the loop. Then, in loop correction, the du-

plicate points in the loop are fused, and the optimiza-

tion over the essential graph (i.e., a sparse graph gen-

Frame

ORB

Extraction

Initial Pose

Estimation or

Relocalisation

Local Map

Tracking

New Keyframe

Detection

Local

Keyframe

Culling

Local Bundle

Adjustment

New

Points

Creation

Keyframe

Insertion

Recent

Mappoint

Culling

Candidate

Detection

Sim3

Computation

Loop

Fusion

Essential

Graph

Loop Detection

Local Mapping

Loop Closing

Optimization

Loop Correction

Fig.3. Overall flow of ORB SLAM[32].

1304 J. Comput. Sci. & Technol., Nov. 2023, Vol.38, No.6

erated from the original covisibility graph) is per-

formed to guarantee consistency.

3.2.4 Algorithmic Components

All the key operations in the above algorithms can

be grouped into three categories: matrix, vector, and

scalar operations.

● The most representative matrix operations in

BenchSLAM include the convolution operation in the

RGB-D SLAM and the singular value decomposition

(SVD) in the ORB SLAM.

● Typical vector operations are the key-points Eu-

clidean distance calculation and the coordinate projec-

tion in the RGB-D SLAM and the ORB SLAM, re-

spectively.

● The scalar operations are also very common for

all benchmarks, for example, range and bearing com-

puting in the EKF SLAM, particles sampling in the

PF SLAM, distance ranking in the RGB-D SLAM,

and similarity evaluation in the ORB SLAM.

Therefore, an ideal SLAM accelerator should be

able to efficiently process various matrix, vector, and

scalar operations to guarantee high energy efficiency.

4 Real System Analysis

In this section, we conduct a detailed analysis on

a real system. First, we introduce the evaluated plat-

form and tools. Then, we analyze the performance

and power behaviors of BenchSLAM. We also evalu-

ate the control flow behaviors.

4.1 Platform and Tools

All the experiments are conducted on a 4-core In-

tel Core i7-3770 processor. Multiple analysis tools are

used throughout to study BenchSLAM from various

aspects. First to investigate the performance and

power bottlenecks, the performance application pro-

gramming interface (PAPI)[41] is employed to collect

related performance counters. Second, to investigate

the control flow behavior, the Intel Pin[42] is used for

dynamic instrumentation.

4.2 Performance and Power Analysis

To identify both the computational and power

bottlenecks of BenchSLAM, we profile the execution

of BenchSLAM with PAPI.

On the one hand, for different SLAM algorithms,

the distribution of execution time in their algorithm

stages varies greatly. In Fig.4(a), for the EKF SLAM,

most of the time is spent in the prediction and com-

puting stages. However, for the PF SLAM, the up-

date stage consumes 66.5% of the total time. For the

RGB-D SLAM, the frontend (including feature ex-

traction, matching, and RANSAC) dominates the en-

tire execution time (i.e., 93.5% in RGB-D SIFT and

98.4% in RGB-D SURF). For the ORB SLAM, as the

loop closing is not frequently invoked, the other two

tasks (tracking and local mapping) cost 99.5% of the

execution time.

On the other hand, the power consumption does

not correlate with the execution time. In Fig.4(b), for

C
o
m

p
u
ti
n
g

P
re

d
ic

ti
o
n

U
p
d
a
te

F
e
a
tu

re
 E

x
tr

a
ti
o
n

M
a
tc

h
in

g
R

A
N

S
A

C
g

2
o

F
e
a
tu

re
 E

x
tr

a
ti
o
n

M
a
tc

h
in

g
R

A
N

S
A

C
g

2
o

C
o
m

p
u
ti
n
g

P
re

d
ic

ti
o
n

U
p
d
a
te

T
ra

ck
in

g
 1

T
ra

ck
in

g
 2

T
ra

ck
in

g
 3

T
ra

ck
in

g
 4

L
o
c
a
l
M

a
p
p
in

g
 1

L
o
c
a
l
M

a
p
p
in

g
 2

L
o
c
a
l
M

a
p
p
in

g
 3

L
o
c
a
l
M

a
p
p
in

g
 4

L
o
c
a
l
M

a
p
p
in

g
 5

L
o
o
p
 C

lo
si

n
g

C
o
m

p
u
ti
n
g

P
re

d
ic

ti
o
n

U
p
d
a
te

F
e
a
tu

re
 E

x
tr

a
ti
o
n

M
a
tc

h
in

g
R

A
N

S
A

C
g

2
o

F
e
a
tu

re
 E

x
tr

a
ti
o
n

M
a
tc

h
in

g
R

A
N

S
A

C
g

2
o

C
o
m

p
u
ti
n
g

P
re

d
ic

ti
o
n

U
p
d
a
te

T
ra

ck
in

g
 1

T
ra

ck
in

g
 2

T
ra

ck
in

g
 3

T
ra

ck
in

g
 4

L
o
c
a
l
M

a
p
p
in

g
 1

L
o
c
a
l
M

a
p
p
in

g
 2

L
o
c
a
l
M

a
p
p
in

g
 3

L
o
c
a
l
M

a
p
p
in

g
 4

L
o
c
a
l
M

a
p
p
in

g
 5

L
o
o
p
 C

lo
si

n
g

E
x
e
c
u
ti
o
n
 T

im
e
 (

%
)

(b)(a)

80

60

40

20

0

ORBEKF PF RGB-D
SIFT

RGB-D
SURF

ORBEKF PF RGB-D
SIFT

RGB-D
SURF

P
o
w

e
r

(N
o
rm

a
li
z
e
d
 t

o
th

e
 F

ir
st

 S
ta

g
e
)

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Fig.4. Analysis of performance and power bottlenecks. (a) Breakdown of execution time of different stages. (b) Breakdown of power
of different stages.

Zhe Fan et al.: Hardware Acceleration for SLAM in Mobile Systems 1305

EKF, the power consumption of the update stage is

higher than that of the other two stages, though the

update stage consumes only 8.1% of the total time.

The observation is also validated by the power con-

sumption of RGB-D SURF, where the power of the

g2o stage is higher than that of the other stages,

where the execution time is only 1.6% of the total

time. Thus, to improve both performance and power

efficiency, almost all stages of SLAM algorithms need

to be well addressed. Furthermore, considering the

significant diversity of the different stages in various

algorithms, it is unwise to have the intuitive solution

of combining the corresponding fixed-function hard-

ware, which not only is costly but also has strictly

limited functionality.

In general, according to above observations

(shown in Fig.4), we have proved the inhomogeneity

of performance and power consumption across vari-

ous SLAM algorithms. Therefore, in terms of build-

ing a SLAM accelerator, it is inefficient to combine

the corresponding fixed-function ASICs. For the com-

bination method, each ASIC of the SLAM accelera-

tor only processes the specific stages in SLAM algo-

rithms, causing the low utilization and poor general-

ization of the whole hardware.

Moreover, an interesting observation is that all

performance and power bottlenecks are dominated by

matrix/vector operations. For example, in the EKF

SLAM, most operations are basic matrix operations

(matrix/vector multiplication and matrix/vector addi-

tion). In the feature extraction phase of RGB-D

SLAM, the convolution and pooling operations are

the most time-critical. As a result, it is necessary to

accelerate a broad range of matrix and vector opera-

tions to improve the energy efficiency of SLAM algo-

rithms.

4.3 Architectural Bottlenecks

We also identify the architectural bottlenecks of

BenchSLAM to investigate the potential improve-

ments derived from using an optimized general-pur-

pose architecture, which is an intuitive option for

SLAM acceleration. Fig.5 shows the CPI (cycle per

instruction) stack[43] of different SLAM algorithms.

The base CPI is 0.25 for different algorithms as we

are evaluating on a CPU with an issue width of 4

and the resultant CPI varies significantly. In this

case, even adopting a general-purpose processor and

assuming unlimited cache sizes and perfect branch

5.8

2.6

predictors, the potential speedup is limited for these

algorithms. For example, the EKF can achieve x

speedup, while the RGB-D SIFT only achieves a x

speedup. Therefore, it can be concluded that a cus-

tomized architecture rather than an optimized gener-

al-purpose architecture is required for extremely high

efficiency.

4.4 Control Flow Analysis

The complicated control flow behaviors in SLAM

algorithms significantly hinder the exploitation of

hardware parallelism. To gain more insights into the

control flow behaviors, we compare the branch mis-

prediction of BenchSLAM, neural network algo-

rithms (which are built with relatively regular and

simple control flows, and have received increasing at-

tention recently[19, 20]), and several general-purpose

applications from SPEC CPU 2006, including gcc and

libquantum with a large number of hard-to-predict

branches[44]. In Fig.6, we report the ratios of branch

ORBEKF PF

1.5

1.0

0.5

0.0

C
P
I

S
t
a
c
k

RGB-D

SIFT

RGB-D

SURF

Base

Other

L3 Cache

Branch

Fig.5. CPI stack of BenchSLAM.

20

15

10

5

0

E
K
F

P
F

R
G
B
-D

 S
IF

T
R
G
B
-D

 S
U
R
F

O
R
B

C
N
N
 T

ra
in

C
N
N
 T

es
t

li
b
qu

an
tu

m

gc
c

B
ra

n
ch

 M
is

p
re

d
ic

ti
o
n
 R

a
ti
o
 (

%
)

Fig.6. CPI stack of BenchSLAM comparison among branch
misprediction of SPEC CPU 2006 benchmarks (gcc and
libquantum), neural network algorithms (CNN Train and CNN
Test), and BenchSLAM algorithms (EKF, PF, RGB-D SIFT,
RGB-D SURF, and ORB).

1306 J. Comput. Sci. & Technol., Nov. 2023, Vol.38, No.6

misprediction which indicate the frequency of irregu-

lar jumps in algorithms, i.e., the complexity of con-

trol flow, while the regular branch structure can still

be easily handled by the hardware design. We can ob-

serve that the misprediction ratios in SLAM algo-

rithms are higher than those in neural network algo-

rithms (e.g., 15.6% in EKF vs 1.6% in CNN test).

Even compared against general-purpose applications,

the misprediction ratios are higher, e.g., 3% in ORB

SLAM vs 1% in gcc.

The above observations demonstrate that SLAM

algorithms have relatively complicated control flow

behaviors. Thus, light control units in traditional

hardware accelerators (e.g., the control units in CNN

processors[19, 20] for neural network algorithms) are not

able to process the control flows in SLAM algorithms.

On the other hand, heavy control units (such as

branch predictors in general purpose processors) are

inappropriate for processing control flows in SLAM

algorithms because of stringent power and perfor-

mance constraints. In other words, a dedicated hard-

ware unit specifically targeting the control flows in

SLAM algorithms advances a great challenge during

the accelerator design.

5 Accelerator Design

Fig.7 illustrates the overall architecture of the

proposed accelerator. It mainly consists of a matrix

processing unit (MPU), a vector processing unit

(VPU), a scalar processing unit (SPU), multiple da-

ta/instruction SRAMs, and a control unit (CU). The

MPU, VPU, and SPU are used for the computation of

matrix, vector, and scalar operations, respectively.

The input data of these processing units are accessed

from the data SRAMs through DMA (direct memory

access). In particular, the MPU requires two SRAMs

to provide sufficient data from both the horizontal

and vertical directions. The CU controls the execu-

tion of the entire accelerator with compiler-generated

instructions stored in the instruction SRAM.

5.1 Matrix Processing Unit

Px × Py

The MPU is in charge of processing a large vari-

ety of dominant matrix operations (e.g., matrix trans-

position, matrix multiplication, singular value decom-

position, QR decomposition, and convolution opera-

tion). Fig.8(a) shows the detailed architecture of the

MPU, which can be further decomposed into a 2D

mesh of matrix processing elements (MPEs)

and a buffer controller. All the MPEs are organized as

a 2D mesh with the adjacent-interconnection struc-

ture and controlled by the central buffer controller.

The buffer controller supplies data to the rightmost

column and the bottom row of the MPE array, i.e.,

Input-H and Input-V in Fig.8(a), respectively. The

Controller

I
n
s
t
r
u
c
t
io

n

S
R

A
M

SPE

SPU

VPU

VPE

...

2D

SRAM

MPU

MPE

1D SRAM 2D SRAM
...

...

...

...

..
.

Fig.7. Overall architecture of the proposed accelerator. SPE:
scalar processing element.

B
u
ff
e
r

C
o
n
tr
o
ll
e
r

MPE

...

...

...

...

MPUInput

...

O
u
tp
u
t

In
p
u
t -
V

In
p
u
t-
H

MUX

FU

MUX

MUX

Registers

Input-H

Data-H

Data-VInput

Opcode

FIFO-V

FIFO-H

Output

MPE
Input-V

(b)(a)

Px × PyFig.8. Architecture of the matrix processing unit (MPU), which consists of an array of matrix processing elements (MPEs)
and a buffer controller. (a) MPU architecture. (b) MPE architecture.

Zhe Fan et al.: Hardware Acceleration for SLAM in Mobile Systems 1307

buffer controller can also directly provide input data

(i.e., input in Fig.8) to all the MPEs. In addition, the

output data (i.e., output in Fig.8) computed by all

the MPEs can be collected by the buffer controller for

storing in the SRAMs.

Fig.8(b) shows the architecture of each MPE. The

central component of the MPE is the functional unit

(FU) that is capable of completing basic operations

(e.g., floating-point addition/multiplication and float-

ing-point/fixed-point conversion). The FU can re-

ceive data from its right and bottom neighbors (In-

put-H and Input-V, respectively) as an input. In addi-

tion, the FU may also use previous data stored in its

internal register as one of the inputs. This is simply

because multiplication-accumulation is commonly

used in arithmetic operations such as vector inner

production and matrix multiplication. Thus each

MPE can be activated in a multiplication-accumula-

tion mode. Another source of inputs is the data di-

rectly accessed from the outside SRAM (i.e., input).

The input data from the outside SRAM also enter

two FIFOs (i.e., FIFO-V and FIFO-H) for providing

data to the top and left MPEs (Data-V and Data-H,

respectively). Once the FU finishes the computation,

the MPE outputs the result from the FU or directly

from the internal register. The opcode from the CU

selects the input data and decides which concrete op-

eration will be performed.

The key reasons for the adjacent-interconnection

structure in 2D MPE mesh (allowing each MPE to

access data from its neighboring MPEs and SRAMs)

are: 1) to support the accumulation of intermediate

results among MPEs for operations such as inner pro-

duction, 2) to elevate the data utility by leveraging

the data locality and reuse for operations such as con-

volution, and 3) to remain an efficient hardware im-

plementation by avoiding full connections among all

MPEs.

5.2 Vector Processing Unit

Pz

The VPU processes the vector operations, such as

vector addition/multiplication/accumulation, in Ben-

chSLAM. The organization of the VPU is shown in

Fig.9(a). It contains vector processing elements

(VPEs). For each VPE, there are three main input

sources: 1) data in the outside SRAM, 2) outputs of

the MPU, and 3) outputs of the right-side neighbor-

ing VPE (Data-H in Fig.9(b)). The concrete inputs

are determined by the opcode from the CU. The key

reason to have multiple input sources is that VPU

can efficiently support independent operations such as

dot production (independent inputs for each VPE)

and dependent operations such as inner production

(multiplication-accumulation mode and inputs from

the neighboring VPE and the internal register). Espe-

cially for the latter inter-PE data movements, the

VPU can fetch data from the neighbor PEs and thus

eliminate data accesses from SRAM in some opera-

tions, which is different from commonly used vector

units in parallel machines.

The detailed architecture of a VPE is shown in

Fig.9(b). Two input multiplexers (MUX) are used for

selecting inputs for the functional unit. The result of

the functional unit will be directly treated as the out-

put or stored into the internal register. Similar to the

MPE, the output multiplexer determines whether the

output of the VPE is from the functional unit or the

internal register.

VPE

VPU

VPE VPE

...

Opcode

Output

Inputs

MUX

FU

Registers

VPE

Opcode

Input Data-H Input

Output

MUX

MUX

(b)(a)

PzFig.9. Architecture of a vector processing unit (VPU), which consists of vector processing elements (VPEs). (a) VPU architec-
ture. (b) VPE architecture.

1308 J. Comput. Sci. & Technol., Nov. 2023, Vol.38, No.6

5.3 Scalar Processing Unit

The SPU is required for processing relatively gen-

eral scalar operations in BenchSLAM. The detailed

architecture of SPU is similar to that of one VPE.

The major difference is that the functional unit of the

SPU is more versatile than that of the VPE, as more

operations (such as sqrt, sin, cos, and random num-

ber generation) are supported by the SPU.

5.4 Control Unit

The control unit schedules and configures the en-

tire hardware accelerator with user-provided instruc-

tions. All those VLIW (very long instruction word)-

like instructions are first stored in the instruction

SRAM and then processed by the control unit as

shown in Fig.10. More specifically, the CU fetches an

instruction according to the program counter (PC),

and then different parts of the instruction are sent to

the corresponding decoders (including the macro, ma-

trix, vector, scalar, and data decoders). The decoders

will generate control signals for the corresponding

processing unit except for the macro decoder, which

will generate control signals for all processing units.

The CU supports direct jump and indirect jump in-

structions with the address stored in the operand

fields of the instructions and internal controller regis-

ters, respectively, allowing the handling of complicat-

ed control flows in SLAM algorithms.

5.5 Data SRAMs

In addition to the instruction SRAM, two data

SRAMs are provided for storing inputs and outputs of

all the processing units (MPU, VPU, and SPU) to

avoid data conflicts. In particular, the input data of

the MPU are first read into two buffers (the row

buffer and the column buffer) for supplying data to

the bottom and the right boundaries of the MPU, re-

spectively. The roles of the two SRAMs can be ex-

changed only after a computation stage is totally fin-

ished, and the previous output data become the in-

put for later processing, such as the Gaussian blur op-

eration after the frame is resized in SIFT. Additional-

ly, data are stored based on their different organiza-

tion, such as 2D matrix data (2D SRAM), 1D vector

data, and scalar data (1D SRAM), to simplify the ac-

cess patterns. Thus, the MPU requires massive 2D

SRAM and a few 1D SRAM accesses as most matrix

operations are mapped to the MPU, while the VPU

requires both 2D SRAM and 1D SRAM accesses, and

the SPU can only access 1D SRAM.

6 Instruction Set Design

In this section, we introduce our proposed hierar-

chical instruction set for bridging the gap between

software/algorithm and hardware/scheduling.

6.1 Design Objectives and Components

There are three design principles in our instruc-

tion set.

● Effectiveness and User-Friendliness. The in-

struction set should balance the trade-off between

programmability and efficiency.

● Completeness. The instruction set should be

complete for programming existing SLAM algorithms.

● Scalability. The instruction set should be com-

patible with future potential SLAM algorithms.

Following these three principles, we design six

groups of instructions—data, control, macro, matrix,

vector, and scalar instructions, which are organized as

Macro Inst. Decoder

Matrix Inst. Decoder

Vector Inst. Decoder

Scalar Inst. Decoder

Data Inst. Decoder

+

PC

Inst.

In
st

.
S
R

A
M

M
a
tr

ix
V
e
c
to

r
L
D

/
S
T

S
c
a
la

r

M
a
c
ro

M
a
c
ro

1

..
.

..
.

..
.

Fig.10. Architecture of the control unit (CU). Inst.: instruction.

Zhe Fan et al.: Hardware Acceleration for SLAM in Mobile Systems 1309

the VLIW style to have a flexible control flow.

● We use five data instructions for data transfer-

ring among DRAM, SRAM, and internal buffers.

● Based on the algorithmic components analyzed

in Subsection 3.2.4, we design 21 macro instructions

dedicated to performing those algorithmic compo-

nents with both high performance and energy efficien-

cy.

● We also provide two control instructions, seven

matrix instructions, six vector instructions, and 12

scalar instructions for the remaining computation, de-

livering flexibility and scalability for future SLAM al-

gorithms.

The reason behind our instruction set design is

threefold. First, with the higher-level functionality

provided by macro instructions, programmers are ex-

pected to easily build their SLAM algorithms using

mostly common algorithmic components. Second, oth-

er non-macro instructions provide the potential to

perform other computations in both existing and fu-

ture SLAM algorithms using our built compiler. Note

that low-level functional instructions, i.e., non-macro

instructions, can also perform the same functionality

as macro instructions. Third, macro instructions also

release the heavy burden on the compiler in tradition-

al VLIW processors for parallel-executing programs

with high efficiency. Therefore, our instruction set has

hierarchical instructions to guarantee effectiveness,

user-friendliness, completeness, and scalability.

Moreover, we have discussed irregular control

flows in Subsection 4.4, which could be solved by the

hierarchical instruction set, together with the control

flow unit (introduced in Subsection 5.4) which acts as

the specialized decoder matching the hierarchical in-

struction set. More specifically, high-level functional

instructions (macro instructions) deal with complex

(and common) computational patterns in SLAM algo-

rithms, which simplifies the instruction flow and sig-

nificantly reduces branches/jumps. For example, the

EKF SLAM algorithm is executed in an iterative

mode. In each iteration, robots receive motion con-

trol signals and observe various landmarks. However,

it is uncertain about how many landmarks are ob-

served in the current iteration and which of them

have been observed before (i.e., the observed land-

marks need to be updated). Therefore, there are com-

putational imbalances in processing related vectors

and submatrices among iterations. As a result, such

uncertainty and imbalance would cause irregular con-

trol flows. Moreover, there are many small-scale vec-

tor and matrix operations as the dimensions of the

pose state and the landmark state are generally small,

e.g., three dimensions for the pose state in a 2D scene.

These small operations, implemented by loops, would

bring intensive branches/jumps, which may exhaust

history entries of the branch predictor in CPUs and

cause a high-branch misprediction ratio. We propose

macro instructions to hide the uncertainty in control

flows by aggregating multiple small-scale operations

into monolithic matrix operations and making the un-

certain number of landmarks (to be updated) be a

configurable instruction field. Therefore, intensive

branches/jumps in small operations are eliminated at

source, and mispredictions could be reduced in algo-

rithm implementations. Regular operations (e.g.,

CONV) in SLAM algorithms also benefit from this

method, and thus branch mispredictions could be re-

duced further.

Table 1 lists a subset of the proposed instruction

set as illustrative examples. The data instructions can

be roughly grouped into three types: 1) LD/ST

(load/store) for data transferring between SRAM and

DRAM, 2) MOV (move) for data transferring be-

tween SRAMs, and 3) RD/WR (read/write) for data

transferring between SRAM and internal buffers. The

Table 1. Subset of Proposed Instruction Set

Instruction Type Opcode Note

Data LD/ST ↔SRAM DRAM

MOV ↔SRAM SRAM

RD/WR ↔SRAM buffers

Control CB Condition branch

JUMP Direct/indirect jump

Macro CONV Convolution operation

POOL Pooling operation

IMGACC Image accumulation operation

BOX Image box filtering operation

LOCAL
EXTREMA

Local extrema operation

COUNTCMPCompare with counter
operation

Matrix MMmM/
MMaM

on-MPU-matrix-mult/
add-matrix operation

MMmV on-MPU-matrix-mult-vector
operation

MMmS/
MMaS

on-MPU-matrix-mult/
add-scalar operation

MVmV/
MVoV

on-MPU-vector-mult/outer
product-vector operation

Vector VVmV/
VVaV

on-VPU-vector-mult/
add-vector operation

Scalar SQRT on-SPU-scalar-square-root
operation

RANDOM on-SPU-random-generate-scalar
operation

1310 J. Comput. Sci. & Technol., Nov. 2023, Vol.38, No.6

control instructions contain CB (condition branch)

and JUMP (direct/indirect jump). The computation-

al instructions include the macro, matrix, vector, and

scalar instructions. The macro instructions are de-

signed for relatively complicated operations such as

convolution (CONV), pooling (POOL), and image ac-

cumulation (IMGACC). The matrix instructions in-

clude matrix-matrix, matrix-vector, matrix-scalar,

and vector-vector operations, while the vector instruc-

tions only include vector-vector and vector-scalar op-

erations. The scalar instructions only contain scalar-

scalar operations. The choice of different instructions

is left for an assembler.

6.2 Driving Examples

We introduce several important computing in-

structions as driving examples, including CONV for

macro instructions, MMmV (on-MPU-matrix-multi-

ply-vector), MMmM (on-MPU-matrix-multiply-ma-

trix), MVmV (on-MPU-vector-multiply-vector) for

matrix instructions, and VVmV (on-VPU-vector-mul-

tiply-vector) for vector instructions.

6.2.1 CONV

In Fig.11(a), we show the scheduling of the

CONV instruction in the accelerator, which finishes a

3× 3 3× 3

3× 3

3× 3

2D convolution operation on an input matrix/image

to construct an output matrix/image (a common op-

eration in the feature extraction stage of SLAM algo-

rithms), using convolution on a MPU for a

clearer illustration. The input/output image will be

split into chunks (i.e., pixel submatrices of the

input/output image). The output image will be com-

puted according to chunks and related kernels (i.e.,

parameters shared among input chunks), and each

chunk will be loaded into on-chip 2D SRAM. In the

CONV computation, the process of kernels sliding

over an input image is split into the sliding over

chunks (green and blue data in the row/column buffer

shown in Fig.11) for parallelism. In each sliding step

for one kernel, there is an element-wise multiplication

between this kernel and an equal-size pixel submatrix

of the chunk, and the sum of these intermediates

yields an output pixel. Each MPE works on a single

output pixel on the output image and changes to an-

other output pixel in the same chunk until the cur-

rent pixel is finished. The MPU processes out-

put pixels concurrently (i.e., the green square on

the output image in Fig.11). While computing a row

in convolution, the input data from the column buffer

will be passed from right MPEs to left MPEs (also

buffered in MPEs); while computing the next row, the

input data from the row buffer will be passed from

bottom MPEs to upper MPEs.

Input Image Output Image Kernel: , , , , ...,

2D SRAM
MPU

Column Buffer

Row Buffer

MPE

MPE

MPE

MPE

MPE

MPE

MPE

MPE

MPE

P21

P22

Kernel

MPE

MPE

MPE

MPE

Cycle

(b)

(a)

3× 3Fig.11. CONV on MPU (using MPU in the example). (a) Scheduling of CONV instruction. (b) Data reuse between MPEs
(four MPEs in the example).

Zhe Fan et al.: Hardware Acceleration for SLAM in Mobile Systems 1311

K00 MPE00 MPE10

MPE01 P01 P02

MPE11 P11 P12

To be clear about such inter-MPE data move-

ments and reuses, we show the input data for four out

of nine MPEs in the above example cycle by cycle in

Fig.11(b). At the very first cycle, every MPE needs to

fetch their input data from the outside SRAM and

multiplies with the same convolutional kernel value

(). In the next two cycles, and can

reuse the input data from (i.e., ,) and

 (i.e., ,), respectively, as indicated in

blue in Fig.11(b). Then all MPEs will start new rows.

Thus bottom-up data movements are activated as

bottom MPEs just use and buffer such data (indicat-

ed in green). Repeating such inter-MPE data move-

ment patterns, the 2D convolution of nine output pix-

els can be finished in nine cycles, and then all the pix-

els in the chunk and the whole output image.

We provide massive macro instructions such as

CONV for high efficiency, even though the functional-

ity of macro instructions can also be achieved using

the provided matrix, vector, scalar, data, and control

instructions. In Fig.12, we present the computation

part of the assemble code for the convolution opera-

tion using non-macro instructions (the vector field is

not used in this fragment) as well, which is scheduled

in the same efficient flow as CONV. We can observe

that data cannot be fully reused between different

blocks, leading to costly data movements. In addition,

explicit control instructions (e.g., CB and JUMP)

used to implement loops may cause control flow is-

sues, such as branch misprediction. Together with the

synchronization between different fields of VLIW in-

structions, which are used for eliminating data con-

flicts, the non-macro code is not so efficient as the

macro one in terms of performance and energy. Fur-

thermore, even with the extra cost of the macro de-

coder, the CU only takes 3.10% of the area of the en-

tire implemented accelerator.

//R0: column counter //R4: block counter //R8: iblock address //R12: row size

//R1: column number //R5: block number //R9: kernel address //R13: block size

//R2: row counter //R6: chunk counter //R10: ichunk address //R14: input addr

//R3: row number //R7: chunk number //R11: obuffer address //R15: output addr

L1: //one block in the input frame //R16: old kernel addr

 MMmS R11, R9, R8, None, None, ... MV R0, 1 //reset column counter

 MV R2, 1 //reset row counter

 JUMP L3

L2: MMmS R11, R9, R8, Bottom, Acc, ... MV R0, 1 //reset col counter, bottom input

L3: //loop all the rows in 2D convolution

 SSaS R9, R9, 1 //update kernel addr

 MMmS R11, R9, R8, Right, Acc, ... //one row, acc, input from right

 SSaS R0, R0, 1 //count column

 CB L3, R0, R1 //continue if finish one row

 SSaS R2, R2,1 //count row

 SSaS R8, R8, R12 //update block addr

 CB L2, R2, R3 //continue if finsh a block

L4:

 MV R9, R16 WR Mode, R15, R11, ... //reset kernel addr

 SSaS R4, R4, 1 //count block

 CB L5, R4, R5 //continue if finish all blocks

 MV R4, 1 //reset block counter

 SSaS R6, R6, 1 //count chunk

 CB L6, R6, R7 //continue if finish all chunks

 JUMP L7 //finsh all chunks? yes go to L7

L5:

 SSaS R8, R8, R13 //reset block addr

 JUMP L1 RD Mode, R8, R10, ... //start a new block

L6:

 JUMP L1 LD Mode, R10, R14, ... //load a new chunk

L7:

Fig.12. Convolution code using non-macro instructions.

1312 J. Comput. Sci. & Technol., Nov. 2023, Vol.38, No.6

6.2.2 MMmV

3× 3

N N + 1

3× 3

In Fig.13, we show the scheduling of MMmV,

which finishes the matrix-vector multiplication on a

 MPU example. Each MPE calculates one out-

put data in the output vector by multiplying a row of

the matrix with the input vector, and it will not move

to another output until the current one is finished.

During the process of MMmV, the MPEs concurrent-

ly work in a pipelined multiplication-accumulation

mode and accumulate the multiplication results in

their inside registers; thus for an input vector of

length , it will take cycles to calculate nine

data of the output vector in this MPU example.

MPE

MPU Input Matrix Input
Vector

*

Cycle

C
y
c
le

∗
Fig.13. MMmV: the matrix-vector multiplication on MPU.

 means the multiplication operation.

6.2.3 MMmM

3× 3

A (m× n) B (n× k) A

B

A

B

In Fig.14, we show the scheduling of MMmM,

which operates the matrix-matrix multiplication on a

 MPU example. Similar to MMmV, each MPE

also calculates an output but here in the output ma-

trix, and will insist on computing the current output

until it is finished. For the case of multiplying matrix

 with matrix , three rows in and

three columns in are fed into the MPU sequential-

ly, while the MPEs in the same row share a row from

, and the MPEs in the same column share a col-

umn from , as shown in Fig.14. Thus, nine outputs

C (m× k)

n+ 1

in the output matrix can be computed in

 cycles as the MPEs concurrently work in a

pipelined multiplication-accumulation mode.

6.2.4 MVmV

Px × Py

Px × Py

Px × Py

Px × Py

Px × Py

In Fig.15, we show the scheduling of MVmV,

which computes the vector-vector multiplication on

MPU. An intuitive scheduling is mapping this compu-

tation to the VPU instead of the MPU. However,

there also exists the case where the vectors are ex-

tremely long; thus, mapping on the VPU can be time-

consuming. We provide the solution that maps such

operations on the MPU to leverage the parallelism of

MPEs (e.g., vector dot production operation and vec-

tor addition operation). With MPEs in the

MPU, it can finish the multiplication of pairs

of inputs and accumulate results into inside registers

in each cycle (Fig.15(a)). After all inputs are fed into

the MPU, accumulated partial productions

are maintained in the MPEs (Fig.15(b)). The

final result is obtained by adding all the in-

termediate results. Thus, the MPU is activated in a

propagating-accumulation-summation mode where the

MPEs are activated in row/column from the

right/bottom to left/top sequentially to add inputs

from the right/bottom and pass results to left/top

(Fig.15(c) and Fig.15(d), respectively). Then the fi-

nal result is collected from the top-left-most MPE.

MPE

MPU Input Matrix

A

Input Matrix

B

*
Cycle

C
y
c
le

Fig.14. MMmM: the matrix-matrix multiplication on MPU.

...

...

..
.

..
.

..
.

MPU

MAC
*+ *+ *+

*+

*+

*+

*+ *+

*+

...

...

..
.

..
.

..
.

MPU

Output:
Inner

Product +

+

+

+

+ +

+

++
Acc-Sum

...

...

..
.

..
.

..
.

*

MPU

Input Vectors

MUL

Partial Production

**

* * *

...

...

..
.

..
.

..
.

MPU

Acc-Sum

+

+

+

++ +

++

+

(b)(a) (c) (d)

Px × Py

Px × Py

Fig.15. MVmV: the vector-vector multiplication on MPU. (a) Multiplication of pairs of inputs. (b) Accumulated partial
productions in each MPE (MPEs in total). (c) Propagating accumulation-summation from right to left in each MPE row.
(d) Propagating accumulation-summation (Acc-Sum) from bottom to top in the left-most MPE column and outputting the final re-
sult from the top-left-most MPE.

Zhe Fan et al.: Hardware Acceleration for SLAM in Mobile Systems 1313

6.2.5 VVmV

Pz

Pz

In Fig.16, we show the scheduling of VVmV,

which computes the vector-vector multiplication on

the VPU. Commonly, vector operations (e.g., vector

multiplication and vector dot multiplication/addi-

tion/comparison) are mapped on the VPU. Similar to

MVmV, each VPE performs the multiplication of a

pair of inputs and accumulates the result into its in-

side register, and thus intermediate results in to-

tal for the VPU. After all data in the input vectors

are visited, the VPU works in a similar propagating-

accumulation-summation mode as the MPU for

MVmV except that only one direction propagation

exists to add all intermediate results. Then the fi-

nal result is collected from the left-most VPE.

7 Algorithm Mapping

In this section, we elaborate on how to map vari-

ous SLAM algorithms to our accelerator. Due to the

page limit, we only introduce the mapping process of

most representative algorithms (or phases) in Bench-

SLAM. Thus we select SIFT and g2o as driving exam-

ples as they are representatives of the frontend and

the backend in graph-based SLAMs, respectively.

Note that for all the processing algorithms, we build a

simple compiler that can be used to generate instruc-

tions to reduce the heavy burden of programming so-

phisticated SLAM algorithms.

7.1 Feature Extraction: SIFT

As stated in Subsection 3.2.2, the SIFT algorithm

is one of the key operations in RGB-D SLAM. How-

ever, it is nontrivial to map the entire SIFT algo-

rithm to our accelerator, because it requires all types

of computational instructions, including macro, ma-

trix, vector, and scalar instructions.

Fig.17 shows the mapping process of the SIFT al-

gorithm. The original image is first smoothed and re-

duced with the Gaussian pyramid, which can be de-

composed into multiple CONV and POOL macro in-

structions. Then, the DoG (difference of Gaussian),

which is employed to detect features, can be obtained

by conducting matrix subtraction operations on dif-

ferent octaves of the image in the Gaussian pyramid.

Once the DoG is found, the local extrema are

searched on the image using a specially designed

macro instruction, i.e., LOCAL EXTREMA. This is

achieved by comparing a pixel with its neighboring

pixels within one scale and across different scales as

well. The local extrema are further filtered for deter-

mining the final keypoints. This process consists of

numerous vector and scalar operations, e.g., vector in-

ner production and matrix determinant/trace. Final-

ly, the keypoint descriptor is created by computing

multiple histograms on the neighboring points of the

keypoint. This process also consists of multiple vec-

...

Input Vectors

Partial Production

MUL

VPU

...MAC

VPU

*+ *+ *+ ...

VPU

+++Acc-Sum

Output: Inner Product

(b)(a) (c)

Pz

Pz

Fig.16. VVmV: the vector-vector multiplication on VPU. (a) Multiplication of pairs of inputs. (b) Accumulated partial produc-
tions in each VPE (VPEs in total). (c) Propagating accumulation-summation from right to left and outputting the final result
from the left-most VPE.

-

... ...

Local

Extrema

Keypoint

Descriptor

Keypoints

DoGGaussian Pyramid

Macro: CONV, POOL Matrix:

Subtraction

Macro Vector

Scalar

Macro, Vector,

Scalar

...

...

Keypoint

Filter

Image

O
c
ta

v
e

S
c
a
le

Fig.17. Mapping process of the SIFT algorithm. : subtraction.

1314 J. Comput. Sci. & Technol., Nov. 2023, Vol.38, No.6

tor and scalar operations. In more detail, the compu-

tation of the histogram is achieved by using the

macro instruction HIST which consists of vector oper-

ations of comparison and counting. The rotation of

the neighbor pixel area is achieved by matrix-vector

multiplication operations. Several transcendental

functions such as exponential operation are comput-

ed by the SPU.

7.2 Graph Optimization: g2o

The g2o[38], a nonlinear graph optimization frame-

work with least squares, is one of the bases of the

graph-based SLAM (including RGB-D SLAM and

ORB SLAM). In contrast to the SIFT algorithm,

most operations in the g2o are matrix and vector op-

erations.

i j

Fig.18 shows the mapping process of the g2o algo-

rithm. Given two poses , (i.e., two nodes in the

pose graph) and their constraint (i.e., the edge be-

tween these two nodes), a user-defined error function

and the corresponding Jacobian are first computed

with matrix/vector operations such as matrix multi-

plication and vector MAC (multiply and accumulate

operation). Then, a linear system is constructed to

minimize the objective function. This is achieved by

using multiple matrix/vector multiplication. To solve

the linear system, an efficient linear solver, the pre-

conditioned conjugate gradient (PCG)[45], is em-

ployed and PCG is performed by the macro instruc-

tion PCG, which can also be decomposed into ma-

trix/vector multiplication operations. Finally, the pos-

es are optimized and updated with vector MAC.

8 Experiments

8.1 Experimental Methodology

8.1.1 Tools

We implement the hardware accelerator with Ver-

ilog RTL, synthesize it with Synopsys Design Compil-

er, and perform the layout with IC Compiler. The

power consumption of the logic is estimated by using

Synopsys PrimeTime PX. The timing and power in-

formation is obtained with the TSMC 45 nm technol-

ogy.

8.1.2 Baseline

As the baseline for comparison, we also evaluate

the performance and power of BenchSLAM on both

Intel x86 and ARM Cortex platforms. The x86 plat-

form has a 4-core i7-3770 processor running at 3.4 GHz,

and the ARM platform has a 4-core Cortex A57 pro-

cessor running at 1.9 GHz. The reason for evaluating

an ARM processor is that ARM-like embedded pro-

cessors are widely deployed in mobile robots due to

their relatively high energy efficiency. Also, to avoid

inefficient software implementations for a fair compar-

ison, we use a high-performance arithmetic library

such as OpenCV and Eigen3[46] and compile all the

programs with SIMD support, e.g., AVX, MMX, SSE,

SSE2, SSE4.1, and SSE4.2 on the x86 CPU (with the

option “-march = native”), and NEON (with the op-

tion “-mfpu = neo”) on the ARM CPU. The input

datasets are selected from FastSLAM[47], TUM[48], and

CoRBS[49].

All the above discussion does not involve GPUs,

and the reasons are threefold. First, for x86 CPUs

such as the one evaluated in this paper, accompanied

GPUs are usually powerful with thousands of cores

commonly with a power of tens of watts. Thus, desk-

top-level GPUs seldom become a potential solution

for current platforms, especially energy-sensitive em-

bedded systems. The energy issue will become more

critical with the growing markets for mobile robotics,

which are expected to have promoted cognition and

mobility with fully autonomous solutions to adapt to

the surrounding environment for complex tasks in In-

dustry 4.0 and IoT. Second, even using embedded

GPUs, the performance of embedded GPUs does not

fulfill the real-time processing requirements of mobile

Pose

Pose

Constraints for &

Jacobian

Error

Linear System

Preconditioned

Conjugate

Gradient

...

Poses

Iteration

Error and Jacobian UpdateSolver

Matrix: MUL

Vector: MAC
Matrix, Vector

Macro, Matrix,

Vector Vector

Hessian H
b

∆x b = H ·∆xFig.18. Mapping process of the g2o algorithm. b: coefficient vector. : increments of pose. .

Zhe Fan et al.: Hardware Acceleration for SLAM in Mobile Systems 1315

systems with a limited power budget. For instance,

Nardi et al.[8] achieved only 9.31x speedup on average

on high-performance embedded GPUs, including

NVIDIA Tegra and ARM Maili. Peng et al.[9]

achieved only 1.41x–1.68x speedup on energy-effi-

cient embedded GPUs which target AI computing, in-

cluding Jetson Xavier, Jetson TX2, and Jetson Nano.

Third, for GPU+CPUs, which means using GPUs to

process computation-intensive sub-tasks and CPUs to

process memory-intensive sub-tasks, such an alloca-

tion scheme seems to take advantage of both CPUs

and GPUs, but a large amount of host-device data ac-

cesses and synchronization primitives cause signifi-

cant inefficiency.

8.1.3 Benchmarks

We use BenchSLAM as our benchmark, which

contains four representative SLAM algorithms as in-

troduced in Section 3, i.e., EKF SLAM, PF SLAM,

RGB-D SLAM, and ORB SLAM. According to the

difference of feature descriptors and datasets, we de-

rive 12 benchmarks as shown in Table 2. If there are

several image sequences in one dataset, we evaluate

each sequence, and then average over them.

Table 2. Benchmarks Configuration

Benchmark Algorithm Feature
Descriptor

Dataset

EFK 1 EKF SLAM - Sparse map[47]

EKF 2 EKF SLAM - Dense map[47]

PF 1 PF SLAM - Sparse map[47]

PF 2 PF SLAM - Dense map[47]

RGB-D SIFT
TUM1

RGB-D SLAM SIFT TUM freiburg1
scene[48]

RGB-D SIFT
TUM2

RGB-D SLAM SIFT TUM freiburg2
scene[48]

RGB-D SURF
TUM1

RGB-D SLAM SURF TUM freiburg1
scene[48]

RGB-D SURF
TUM2

RGB-D SLAM SURF TUM freiburg2
scene[48]

ORB TUM1 ORB SLAM ORB TUM freiburg1
scene[48]

ORB TUM2 ORB SLAM ORB TUM freiburg2
scene[48]

ORB DESK1 ORB SLAM ORB CoRBS desk
scene[49]

ORB EleBox1 ORB SLAM ORB CoRBS electrical
cabinet scene[49]

8.2 Hardware Characteristics

In Table 3, we report the hardware parameters

used for implementing our accelerator. To avoid the

Px = Py = Pz

16× 16 Px = Py = 16

Pz = 16

inefficiency among different computing units and

buffers caused by unequal numbers of data for

read/write/computing at a time, we set

for computing units and the same length for on-chip

buffers. Furthermore, to support real-time processing

within the embedded system power budget, we select

our accelerator having MPEs ()

in the MPU, 16 VPE () in the VPU, and 768

KB on-chip SRAM in total.

Fig.19 shows the layout of the implemented accel-

erator, and we report the layout characteristics in

Table 4. The total area of the accelerator is moderate

at the cost of 7.41 mm2 at 45 nm, 1.94x and 21.6x

Table 3. Hardware Parameters for the Accelerator

Parameter Value Note

Px 16 MPEs in a row of MPU

Py 16 MPEs in a column of MPU

Pz 16 VPEs in VPU

Iw 256 Instruction bit-width

Dw 16 Data bit-width

Rn 64 Number of control registers

Inst. SRAM 32 KB Storage of instruction SRAM

2D SRAM 224 KB Storage of 2D SRAM

1D SRAM 512 KB Storage of 1D SRAM

Note: Inst. is the abbreviation of instruction.

IB 2D

SRAM

1D

SRAM

1D

SRAM

FU

Fig.19. Layout of the implemented accelerator (45 nm).

Table 4. Accelerator Hardware Characteristics (45 nm)

Hardware Module Area (mm2) Power (mW)

Whole accelerator 7.41 1 346.69

FU in total 4.20 1 072.02

FU in MPU 3.48 964.12

FU in VPU 0.10 16.69

FU in SPU 0.02 3.64

Controller 0.23 83.00

SRAM in total 2.98 191.67

2D SRAM 0.69 64.13

1D SRAM 1.58 114.91

Inst. SRAM 0.78 12.64

1316 J. Comput. Sci. & Technol., Nov. 2023, Vol.38, No.6

4× 3.6smaller than that of the quad ARM CPU (mm2 at

20 nm[50]) and the x86 CPU (160 mm2 at 22 nm[51]),

respectively. For fairness, we carefully scale our accel-

erator to corresponding technology nodes, i.e., 1.58 mm2

at 20 nm[52] and 1.63 mm2 at 22 nm[53], achieving

9.11x and 98.2x smaller area than that of quad ARM

CPU and x86 CPU, respectively. The storage system

(SRAM) has almost the same area cost as the compu-

tation logic (FU) (i.e., 2.98 mm2 vs 3.82 mm2), in or-

der to accommodate at least one chunk of 1 080 p

frame (e.g., ORB Desk1 and ORB EbleBox1) as well

as more globally used 1D data. Thus the computa-

tion units can always process inputs without stalling.

8.3 Experimental Results

8.3.1 Performance

In Fig.20, we report the performance comparison

of ARM, x86, and our accelerator on all 12 test cases

in BenchSLAM. On average, our accelerator is 33.03x

faster than the ARM CPU, while the x86 processor

only achieves a 3.14x speedup over the ARM CPU.

Notably, we observe that unlike the x86 CPU, which

achieves almost equal acceleration on all benchmarks

(1.86x–4.91x), the speedups of our accelerator over

the ARM processor vary significantly on different al-

gorithms. More specifically, our accelerator outper-

forms the ARM CPU 75.35x on average

(51.46x–108.83x) on RGB-D SLAM algorithms,

60.13x (34.92x–75.57x) on the filter-based SLAM (i.e.,

EKF and PF), and only 8.73x (7.77x–9.74x) on the

ORB SLAM. The main reason for the high speedup is

10.52

that the relatively large proportion of operations can

be mapped to the MPU (rather than the VPU) as it

contains 16x more PEs than the VPU. To further val-

idate this, we analyze the proportion of operations on

the processing units and observe that 99.93% of the

operations are processed on the MPU but only 0.04%

on the VPU for RGB-D SLAM on average. The case

is 97.53% on the MPU and 2.38% on the VPU for fil-

ter-based SLAM algorithms. For ORB SLAM, it is

92.08% on the MPU and 7.9% on the VPU. When

compared with the traditional x86 CPU, the imple-

mented accelerator achieves a x speedup on aver-

age over all 12 benchmarks. Similarly, our accelerator

also exhibits significantly different behaviors on differ-

ent algorithms over x86 CPU (i.e., 15.48x, 22.37x,

and 3.97x speedup on the filter-based SLAM, RGB-D

SLAM, and ORB SLAM, respectively).

8.3.2 Energy Consumption

In Fig.21, we report the energy costs of the CPUs

and our accelerator on all 12 test cases in Bench-

SLAM, where the energy costs of the DRAM accesses

are also included. On average, the implemented accel-

erator achieves 62.64x and 112.62x better energy sav-

ings than the ARM and x86 CPUs, respectively.

Moreover, when executing benchmarks with relative-

ly small data sizes, such as the EKF and PF SLAM,

our accelerator is much more energy-efficient, i.e.,

75.69x and 117.08x less energy costs than the ARM

and x86 CPUs, respectively, as most data can be

stored in on-chip SRAMs, which thus reduces the en-

ergy costs of the DRAM accesses. Regarding vision

SLAM tasks (i.e., RGB-D and ORB SLAM), our ac-

lo
g
1
0
(S

p
e
e
d
u
p
)

(v
s

A
R

M
) 2.5

2.0

1.5

1.0

0.5

0.0

x86
Acc

G
eo

M
ea

n

E
K
F
 1

E
K
F
 2

P
F
 1

P
F
 2

R
G
B
-D

 S
IF

T
 T

U
M

1

R
G
B
-D

 S
IF

T
 T

U
M

2

R
G
B
-D

 S
U
R
F
 T

U
M

1

R
G
B
-D

 S
U
R
F
 T

U
M

2
O
R
B
 T

U
M

1
O
R
B
 T

U
M

2
O
R
B
 D

es
k
1

O
R
B
 E

le
B
ox

1

Fig.20. Accelerator (Acc) and x86 CPU (x86) speedups over
ARM CPU on BenchSLAM.

lo
g
1
0
(E

n
e
rg

y
)

(J
)

6

4

2

0

-2

x86 AccARM

E
K
F
 1

E
K
F
 2

P
F
 1

P
F
 2

R
G
B
-D

 S
IF

T
 T

U
M

1

R
G
B
-D

 S
IF

T
 T

U
M

2

R
G
B
-D

 S
U
R
F
 T

U
M

1

R
G
B
-D

 S
U
R
F
 T

U
M

2
O
R
B
 T

U
M

1
O
R
B
 T

U
M

2
O
R
B
 D

es
k
1

O
R
B
 E

le
B
ox

1
A
ve

ra
ge

Fig.21. Energy costs of CPUs (x86 and ARM) and accelerator
(Acc) on BenchSLAM.

Zhe Fan et al.: Hardware Acceleration for SLAM in Mobile Systems 1317

celerator also performs well with regular computation

patterns (i.e., 101.25x and 197.42x less than the ARM

and x86 CPUs on the RGB-D SLAM, respectively,

10.99x and 23.37x less than the ARM and x86 CPUs

on the ORB SLAM, respectively). This performance

should be mainly attributed to the efficient macro in-

structions.

With the current configuration of parameters, our

accelerator is able to process BenchSLAM in real time

efficiently. Specifically, it performs all the graph-based

SLAM algorithms in BenchSLAM with average

frames per second (FPS) of 28.05 and the power of

467.75 mW.

9 Related Work

9.1 SLAM Algorithms

Unlike traditional SLAM algorithms that process

limited data from sensors such as laser, sonar, and

radar, the recent advanced vision SLAM problem

raises the processing challenge with a high input data

rate and a real-time requirement under a limited pow-

er budget for less powerful computation capability on

mobile platforms. Typical vision SLAM algorithms

such as RGB-D camera-based SLAM[17, 18] and ORB

SLAM[32] require complex processing flows in both da-

ta and control. Meanwhile, emerging SLAM algo-

rithms are evolving quickly towards wider scenarios

(e.g., underwater[54], semi-dense mapping[55]) with

more techniques integration (e.g., reinforcement learn-

ing[56] and spatial modeling[57]) and thus are growing

in variation and complexity. Hence, our design is sub-

stantially effective in fulfilling such requirements with

its high flexibility and efficiency.

9.2 Hardware Acceleration of SLAM

The SLAM problem has been evolving for many

years, especially in recent years together with the ad-

vance of robotic and sensor technology. However, few

researchers have worked on general hardware acceler-

ators for SLAM algorithms.

With regard to the general-purpose processor de-

sign, research on one of the most typical solutions is

conducted by Hashimoto et al.[58]. In this work, the

ROS (robot operating system)[59] based SLAM is de-

ployed on desktop operation systems such as Ubuntu

on the CPU. Zhang et al.[60] presented the PerceptIn

robotics vision system (PIRVS), a visual-inertial com-

puting hardware for SLAM algorithms. The PIRVS is

equipped with a multi-core processor, a global-shut-

ter stereo camera, and an IMU (inertial measurement

unit) with precise hardware synchronization.

With regard to the ASIC design, several FPGA-

based architectures have been proposed. Most work

focuses on only one specific SLAM algorithm. One

more recent work is by Wu et al.[10]. They realized an

FPGA-based customized accelerator for the DS-

SLAM (semantic SLAM towards dynamic environ-

ment) algorithm. Compared with Intel i7-8750H CPU

on the TUM dataset, their accelerator achieves up to

13x frame rate improvement, and up to 18x energy ef-

ficiency improvement. Liu et al.[61] proposed a het-

erogenous ORB-based visual SLAM system, eSLAM,

which is based on an FPGA platform and dedicated

to accelerating feature extraction and matching

stages. When evaluating on the TUM dataset, eS-

LAM achieves 1.7x–3.0x speedup in the frame rate

and 41x–71x improvement in the energy efficiency

than those of Intel i7-4700mq CPU, while it achieves

17.8x–31x speedup and 14x–25x energy efficiency than

those of the ARM Cortex-A9 processor. Boikos and

Bouganis[62] also proposed an FPGA-based architec-

ture to accelerate the large-scale direct monocular

SLAM (LSD-SLAM) algorithm, achieving the real-

time processing requirement. Gu et al.[63] presented an

FPGA-based solution for the visual odometry based

SLAM (VO-SLAM) algorithm, achieving 10x energy

saving per frame than Intel i7-3770K CPU. The com-

parison of performance and energy consumption

among the above hardware and ours is shown in Ta-

ble 5. Only our accelerator supports general SLAM al-

gorithms and achieves the best energy efficiency with

an acceptable frame rate.

Table 5. Comparison with Other Hardware

Hardware Target
Algorithm

Performance
(FPS)

Energy
(mJ/frame)

eSLAM[61] ORB-SLAM 52.7 36.7

Boikos and
Bouganis[62]

LSD-SLAM 61.7 105.3

Gu et al.[63] VO-SLAM 31.0 190.0

Ours general SLAM 28.1 16.6

Note: Those in bold are the best ones in the corresponding
column.

There is some other work which only focuses on

feature extraction stages in the SLAM algorithm. Lee

and Byun[64] proposed an FPGA-based implementa-

tion to accelerate only the ORB algorithm within 18

ms, without evaluating the whole ORB-SLAM algo-

rithm. Na and Jeong[65] proposed an FPGA solution

1318 J. Comput. Sci. & Technol., Nov. 2023, Vol.38, No.6

specifically for the SURF algorithm. Jiang et al.[66]

proposed a real-time SIFT hardware implementation

on FPGA with task-level parallelism. Zhong et al.[67]

also proposed a SIFT hardware implementation but

with an FPGA+DSP architecture. Huang et al.[68]

proposed an ASIC implementation of the SIFT algo-

rithm for the real-time VGA (video graphics array)

feature extraction. As a result, although many hard-

ware implementations on FPGA/DSP for SLAM (or a

part of SLAM algorithms) exist, they are specialized

for specific algorithms with unchangeable IP

blocks/functions and thus lack the flexibility to ad-

dress other possible algorithms with high perfor-

mance and efficiency. Our proposed accelerator not

only supports general SLAM algorithms but also

meets the performance and power requirements in the

mobile systems.

10 Conclusions

In this paper, we proposed a novel hardware ac-

celerator, equipped with a hierarchical instruction set,

to efficiently cope with a broad range of SLAM algo-

rithms at an area cost of 7.41 mm2 and a power of

1 346.67 mW. The experimental results based on our

proposed BenchSLAM showed that our accelerator

achieves significant performance and energy gains

over the embedded platform, i.e., 33.03x speedup and

62.64x energy saving, on average. With its high per-

formance, low energy consumption, and small area,

our accelerator is suitable for integration in today's

mobile robotic systems. This would significantly boost

the development of the emerging mobile robot indus-

try.

Conflict of Interest The authors declare that

they have no conflict of interest.

References

 Durrant-Whyte H, Bailey T. Simultaneous localization

and mapping: Part I. IEEE Robotics & Automation Mag-

azine, 2006, 13(2): 99–110. DOI: 10.1109/MRA.2006.1638

022.

[1]

 Doucet A, De Freitas N, Gordon N. An introduction to

sequential Monte Carlo methods. In Sequential Monte

Carlo Methods in Practice, Doucet A, De Freitas N, Gor-

don N (eds.), Springer, 2001, pp.3–14. DOI: 10.1007/978-

1-4757-3437-9_1.

[2]

 Montemerlo M, Thrun S, Roller D, Wegbreit B. Fast-

SLAM 2.0: An improved particle filtering algorithm for si-

multaneous localization and mapping that provably con-

verges. In Proc. the 18th International Joint Conference

[3]

on Artificial Intelligence (IJCAI), Aug. 2003, pp.1151–
1156.

 Guivant J E, Nebot E M. Optimization of the simultane-

ous localization and map-building algorithm for real-time

implementation. IEEE Trans. Robotics and Automation,

2001, 17(3): 242–257. DOI: 10.1109/70.938382.

[4]

 Olson E B. Real-time correlative scan matching. In Proc.

the 2009 IEEE International Conference on Robotics and

Automation, May 2009, pp.4387–4393. DOI: 10.1109/

ROBOT.2009.5152375.

[5]

 Yan B, Xin J, Shan M, Wang Y Q. CUDA implementa-

tion of a parallel particle filter for mobile robot pose esti-

mation. In Proc. the 14th IEEE Conference on Industrial

Electronics and Applications (ICIEA), Jun. 2019,

pp.578–582. DOI: 10.1109/ICIEA.2019.8833856.

[6]

 Mittal R, Pathak V, Mithal A. A novel approach to opti-

mize SLAM using GP-GPU. In Proc. International Con-

ference on Data Science and Applications, Ray K, Roy K

C, Toshniwal S K, Sharma H, Bandyopadhyay A (eds.),

Springer, 2021, pp.273–280. DOI: 10.1007/978-981-15-

7561-7_22.

[7]

 Nardi L, Bodin B, Zia M Z, Mawer J, Nisbet A, Kelly P

H J, Davison A J, Lujan M, O'Boyle M F P, Riley G,

Topham N, Furber S. Introducing SLAMBench, a perfor-

mance and accuracy benchmarking methodology for

SLAM. In Proc. the 2015 IEEE International Conference

on Robotics and Automation (ICRA), May 2015,

pp.5783–5790. DOI: 10.1109/ICRA.2015.7140009.

[8]

 Peng T, Zhang D N, Liu R X, Asari V K, Loomis J S.

Evaluating the power efficiency of visual SLAM on em-

bedded GPU systems. In Proc. the 2019 IEEE National

Aerospace and Electronics Conference (NAECON), July

2019, pp.117–121. DOI: 10.1109/NAECON46414.2019.

9058059.

[9]

 Wu Y K, Luo L, Yin S J, Yu M Q, Qiao F, Huang H Z,

Shi X S, Wei Q, Liu X J. An FPGA based energy effi-

cient DS-SLAM accelerator for mobile robots in dynamic

environment. Applied Sciences, 2021, 11(4): 1–15. DOI:

10.3390/app11041828.

[10]

 Bouhoun S, Sadoun R, Adnane M. OpenCL implementa-

tion of a SLAM system on an SoC-FPGA. Journal of Sys-

tems Architecture, 2020, 111: 101825. DOI: 10.1016/j.

sysarc.2020.101825.

[11]

 Nguyen D D, El Ouardi A, Rodríguez S, Bouaziz S. FP-

GA implementation of HOOFR bucketing extractor-based

real-time embedded SLAM applications. Journal of Real-

Time Image Processing, 2021, 18(3): 525–538. DOI: 10.

1007/s11554-020-00986-9.

[12]

 Czarnowski J, Laidlow T, Clark R, Davison A J. Deep-

Factors: Real-time probabilistic dense monocular SLAM.

IEEE Robotics and Automation Letters, 2020, 5(2):

721–728. DOI: 10.1109/LRA.2020.2965415.

[13]

 Li Y Y, Brasch N, Wang Y D, Navab N, Tombari F.

Structure-SLAM: Low-drift monocular SLAM in indoor

environments. IEEE Robotics and Automation Letters,

2020, 5(4): 6583–6590. DOI: 10.1109/LRA.2020.3015456.

[14]

 Gomez-Ojeda R, Moreno F A, Zuniga-Noël D, Scaramuz-[15]

Zhe Fan et al.: Hardware Acceleration for SLAM in Mobile Systems 1319

https://doi.org/10.1109/MRA.2006.1638022
https://doi.org/10.1109/MRA.2006.1638022
http://dx.doi.org/10.1007/978-1-4757-3437-9_1
http://dx.doi.org/10.1007/978-1-4757-3437-9_1
http://dx.doi.org/10.1007/978-1-4757-3437-9_1
http://dx.doi.org/10.1007/978-1-4757-3437-9_1
http://dx.doi.org/10.1007/978-1-4757-3437-9_1
http://dx.doi.org/10.1007/978-1-4757-3437-9_1
http://dx.doi.org/10.1007/978-1-4757-3437-9_1
http://dx.doi.org/10.1007/978-1-4757-3437-9_1
http://dx.doi.org/10.1007/978-1-4757-3437-9_1
http://dx.doi.org/10.1007/978-1-4757-3437-9_1
http://dx.doi.org/10.1007/978-1-4757-3437-9_1
https://doi.org/10.1109/70.938382
http://dx.doi.org/10.1109/ROBOT.2009.5152375
http://dx.doi.org/10.1109/ROBOT.2009.5152375
http://dx.doi.org/10.1109/ICIEA.2019.8833856
http://dx.doi.org/10.1007/978-981-15-7561-7_22
http://dx.doi.org/10.1007/978-981-15-7561-7_22
http://dx.doi.org/10.1007/978-981-15-7561-7_22
http://dx.doi.org/10.1007/978-981-15-7561-7_22
http://dx.doi.org/10.1007/978-981-15-7561-7_22
http://dx.doi.org/10.1007/978-981-15-7561-7_22
http://dx.doi.org/10.1007/978-981-15-7561-7_22
http://dx.doi.org/10.1007/978-981-15-7561-7_22
http://dx.doi.org/10.1007/978-981-15-7561-7_22
http://dx.doi.org/10.1007/978-981-15-7561-7_22
http://dx.doi.org/10.1007/978-981-15-7561-7_22
http://dx.doi.org/10.1109/ICRA.2015.7140009
http://dx.doi.org/10.1109/NAECON46414.2019.9058059
http://dx.doi.org/10.1109/NAECON46414.2019.9058059
https://doi.org/10.3390/app11041828
https://doi.org/10.1016/j.sysarc.2020.101825
https://doi.org/10.1016/j.sysarc.2020.101825
https://doi.org/10.1007/s11554-020-00986-9
https://doi.org/10.1007/s11554-020-00986-9
https://doi.org/10.1007/s11554-020-00986-9
https://doi.org/10.1007/s11554-020-00986-9
https://doi.org/10.1007/s11554-020-00986-9
https://doi.org/10.1007/s11554-020-00986-9
https://doi.org/10.1007/s11554-020-00986-9
https://doi.org/10.1007/s11554-020-00986-9
https://doi.org/10.1109/LRA.2020.2965415
https://doi.org/10.1109/LRA.2020.3015456

za D, Gonzalez-Jimenez J. PL-SLAM: A stereo SLAM

system through the combination of points and line seg-

ments. IEEE Trans. Robotics, 2019, 35(3): 734–746. DOI:

10.1109/TRO.2019.2899783.

 Li X, Li Y Y, Örnek E P, Lin J L, Tombari F. Co-Planar

parametrization for Stereo-SLAM and visual-inertial

odometry. IEEE Robotics and Automation Letters, 2020,

5(4): 6972–6979. DOI: 10.1109/LRA.2020.3027230.

[16]

 Kolhatkar C, Wagle K. Review of SLAM algorithms for

indoor mobile robot with LIDAR and RGB-D camera

technology. In Innovations in Electrical and Electronic

Engineering: Proceedings of ICEEE 2020, Favorskaya M

N, Mekhilef S, Pandey R K, Singh N (eds.), Springer,

2021, pp.397–409. DOI: 10.1007/978-981-15-4692-1_30.

[17]

 Endres F, Hess J, Sturm J, Cremers D, Burgard W. 3-D

mapping with an RGB-D camera. IEEE Trans. Robotics,

2014, 30(1): 177–187. DOI: 10.1109/TRO.2013.2279412.

[18]

 Kala S, Jose B R, Mathew J, Nalesh S. High-performance

CNN accelerator on FPGA using unified winograd-

GEMM architecture. IEEE Trans. Very Large Scale Inte-

gration (VLSI) Systems, 2019, 27(12): 2816–2828. DOI:

10.1109/TVLSI.2019.2941250.

[19]

 Tavakoli M R, Sayedi S M, Khaleghi M J. A high

throughput hardware CNN accelerator using a novel mul-

ti-layer convolution processor. In Proc. the 28th Iranian

Conference on Electrical Engineering (ICEE), Aug. 2020.

DOI: 10.1109/ICEE50131.2020.9260785.

[20]

 Lowe D G. Distinctive image features from scale-invari-

ant keypoints. International Journal of Computer Vision,

2004, 60(2): 91–110. DOI: 10.1023/B:VISI.0000029664.9961

5.94.

[21]

 Knyazev A V. A preconditioned conjugate gradient

method for eigenvalue problems and its implementation in

a subspace. In Numerical Treatment of Eigenvalue Prob-

lems Vol. 5/Numerische Behandlung von Eigenwertauf-

gaben Band 5, Albrecht J, Collatz L, Hagedorn P, Velte

W (eds.), Birkhäuser, 1991, pp.143–154. DOI: 10.1007/978-

3-0348-6332-2_11.

[22]

 Strasdat H, Montiel J M M, Davison A J. Visual SLAM:

Why filter? Image and Vision Computing, 2012, 30(2):

65–77. DOI: 10.1016/j.imavis.2012.02.009.

[23]

 Tan F, Lohmiller W, Slotine J J. Analytical SLAM with-

out linearization. arXiv: 1512.08829, 2016. https://arxiv.

org/abs/1512.08829, Oct. 2023.

[24]

 Arulampalam M S, Maskell S, Gordon N, Clapp T. A tu-

torial on particle filters for online nonlinear/non-Gaus-

sian Bayesian tracking. IEEE Trans. Signal Processing,

2002, 50(2): 174–188. DOI: 10.1109/78.978374.

[25]

 Grisetti G, Stachniss C, Burgard W. Improved tech-

niques for grid mapping with rao-blackwellized particle fil-

ters. IEEE Trans. Robotics, 2007, 23(1): 34–46. DOI: 10.

1109/TRO.2006.889486.

[26]

 Bailey T, Durrant-Whyte H. Simultaneous localization

and mapping (SLAM): Part II. IEEE Robotics & Au-

tomation Magazine, 2006, 13(3): 108–117. DOI: 10.1109/

MRA.2006.1678144.

[27]

 Lu F, Milios E. Globally consistent range scan alignment[28]

for environment mapping. Autonomous Robots, 1997,

4(4): 333–349. DOI: 10.1023/A:1008854305733.

 Grisetti G, Kummerle R, Stachniss C, Burgard W. A tu-

torial on graph-based SLAM. IEEE Intelligent Trans-

portation Systems Magazine, 2010, 2(4): 31–43. DOI: 10.

1109/MITS.2010.939925.

[29]

 Rosten E, Drummond T. Machine learning for high-speed

corner detection. In Proc. the 9th European Conference

on Computer Vision (ECCV), May 2006, pp.430–443.
DOI: 10.1007/11744023_34.

[30]

 Calonder M, Lepetit V, Strecha C, Fua P. BRIEF: Bina-

ry robust independent elementary features. In Proc. the

11th European Conference on Computer Vision (ECCV),

Sept. 2010, pp.778–792. DOI: 10.1007/978-3-642-15561-1_
56.

[31]

 Mur-Artal R, Montiel J M M, Tardós J D. ORB-SLAM:

A versatile and accurate monocular SLAM system. IEEE

Trans. Robotics, 2015, 31(5): 1147–1163. DOI: 10.1109/

TRO.2015.2463671.

[32]

 Bay H, Tuytelaars T, Van Gool L. SURF: Speeded up ro-

bust features. In Proc. the 9th European Conference on

Computer Vision, May 2006, pp.404–417. DOI: 10.1007/

11744023_32.

[33]

 Fischler M A, Bolles R C. Random sample consensus: A

paradigm for model fitting with applications to image

analysis and automated cartography. Communications of

the ACM, 1981, 24(6): 381–395. DOI: 10.1145/358669.

358692.

[34]

 Besl P J, McKay N D. A method for registration of 3-D

shapes. In Proc. the SPIE 1611, Sensor Fusion IV: Con-

trol Paradigms and Data Structures, Apr. 1992, pp.586–
606. DOI: 10.1117/12.57955.

[35]

 Censi A. An ICP variant using a point-to-line metric. In

Proc. the 2008 IEEE International Conference on

Robotics and Automation, May 2008, pp.19–25. DOI: 10.

1109/ROBOT.2008.4543181.

[36]

 Rusinkiewicz S, Levoy M. Efficient variants of the ICP al-

gorithm. In Proc. the 3rd International Conference on 3-D

Digital Imaging and Modeling, May 28–Jun. 1, 2001,

pp.145–152. DOI: 10.1109/IM.2001.924423.

[37]

 Kümmerle R, Grisetti G, Strasdat H, Konolige K, Bur-

gard W. g2o: A general framework for graph optimization.

In Proc. the 2011 IEEE International Conference on

Robotics and Automation (ICRA), May 2011, pp.3607–
3613. DOI: 10.1109/ICRA.2011.5979949.

[38]

 Linsen L. Point cloud representation. Technical Report,

Faculty of Computer Science, University of Karlsruhe:

Univ., Fak. für Informatik, Bibliothek, 2001. https://ge-

om.ivd.kit.edu/downloads/pubs/publinsen_2001.pdf, July

2020.

[39]

 Campos C, Elvira R, Rodríguez J J G, Montiel J M M,

Tardós J D. ORB-SLAM3: An accurate open-source li-

brary for visual, visual-inertial, and multimap SLAM.

IEEE Trans. Robotics, 2021, 37(6): 1874–1890. DOI: 10.

1109/TRO.2021.3075644.

[40]

 Mucci P J, Browne S, Deane C, Ho G. PAPI: A portable

interface to hardware performance counters. https://icl.

[41]

1320 J. Comput. Sci. & Technol., Nov. 2023, Vol.38, No.6

https://doi.org/10.1109/TRO.2019.2899783
https://doi.org/10.1109/LRA.2020.3027230
http://dx.doi.org/10.1007/978-981-15-4692-1_30
http://dx.doi.org/10.1007/978-981-15-4692-1_30
http://dx.doi.org/10.1007/978-981-15-4692-1_30
http://dx.doi.org/10.1007/978-981-15-4692-1_30
http://dx.doi.org/10.1007/978-981-15-4692-1_30
http://dx.doi.org/10.1007/978-981-15-4692-1_30
http://dx.doi.org/10.1007/978-981-15-4692-1_30
http://dx.doi.org/10.1007/978-981-15-4692-1_30
http://dx.doi.org/10.1007/978-981-15-4692-1_30
http://dx.doi.org/10.1007/978-981-15-4692-1_30
http://dx.doi.org/10.1007/978-981-15-4692-1_30
https://doi.org/10.1109/TRO.2013.2279412
https://doi.org/10.1109/TVLSI.2019.2941250
http://dx.doi.org/10.1109/ICEE50131.2020.9260785
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1007/978-3-0348-6332-2_11
http://dx.doi.org/10.1007/978-3-0348-6332-2_11
http://dx.doi.org/10.1007/978-3-0348-6332-2_11
http://dx.doi.org/10.1007/978-3-0348-6332-2_11
http://dx.doi.org/10.1007/978-3-0348-6332-2_11
http://dx.doi.org/10.1007/978-3-0348-6332-2_11
http://dx.doi.org/10.1007/978-3-0348-6332-2_11
http://dx.doi.org/10.1007/978-3-0348-6332-2_11
http://dx.doi.org/10.1007/978-3-0348-6332-2_11
http://dx.doi.org/10.1007/978-3-0348-6332-2_11
http://dx.doi.org/10.1007/978-3-0348-6332-2_11
https://doi.org/10.1016/j.imavis.2012.02.009
https://arxiv.org/abs/1512.08829
https://arxiv.org/abs/1512.08829
https://doi.org/10.1109/78.978374
https://doi.org/10.1109/TRO.2006.889486
https://doi.org/10.1109/TRO.2006.889486
https://doi.org/10.1109/MRA.2006.1678144
https://doi.org/10.1109/MRA.2006.1678144
https://doi.org/10.1023/A:1008854305733
https://doi.org/10.1109/MITS.2010.939925
https://doi.org/10.1109/MITS.2010.939925
http://dx.doi.org/10.1007/11744023_34
http://dx.doi.org/10.1007/11744023_34
http://dx.doi.org/10.1007/11744023_34
http://dx.doi.org/10.1007/978-3-642-15561-1_56
http://dx.doi.org/10.1007/978-3-642-15561-1_56
http://dx.doi.org/10.1007/978-3-642-15561-1_56
http://dx.doi.org/10.1007/978-3-642-15561-1_56
http://dx.doi.org/10.1007/978-3-642-15561-1_56
http://dx.doi.org/10.1007/978-3-642-15561-1_56
http://dx.doi.org/10.1007/978-3-642-15561-1_56
http://dx.doi.org/10.1007/978-3-642-15561-1_56
http://dx.doi.org/10.1007/978-3-642-15561-1_56
http://dx.doi.org/10.1007/978-3-642-15561-1_56
http://dx.doi.org/10.1007/978-3-642-15561-1_56
https://doi.org/10.1109/TRO.2015.2463671
https://doi.org/10.1109/TRO.2015.2463671
http://dx.doi.org/10.1007/11744023_32
http://dx.doi.org/10.1007/11744023_32
http://dx.doi.org/10.1007/11744023_32
http://dx.doi.org/10.1007/11744023_32
https://doi.org/10.1145/358669.358692
https://doi.org/10.1145/358669.358692
http://dx.doi.org/10.1117/12.57955
http://dx.doi.org/10.1109/ROBOT.2008.4543181
http://dx.doi.org/10.1109/ROBOT.2008.4543181
http://dx.doi.org/10.1109/IM.2001.924423
http://dx.doi.org/10.1109/ICRA.2011.5979949
https://geom.ivd.kit.edu/downloads/pubs/publinsen_2001.pdf
https://geom.ivd.kit.edu/downloads/pubs/publinsen_2001.pdf
https://geom.ivd.kit.edu/downloads/pubs/publinsen_2001.pdf
https://geom.ivd.kit.edu/downloads/pubs/publinsen_2001.pdf
https://geom.ivd.kit.edu/downloads/pubs/publinsen_2001.pdf
http://dx.doi.org/10.1109/TRO.2021.3075644
http://dx.doi.org/10.1109/TRO.2021.3075644
https://icl.utk.edu/projectsfiles/papi/pubs/dodugc99-papi.pdf

utk.edu/projectsfiles/papi/pubs/dodugc99-papi.pdf, Nov.

2023.

 Luk C K, Cohn R, Muth R, Patil H, Klauser A, Lowney

G, Wallace S, Reddi V J, Hazelwood K. Pin: Building

customized program analysis tools with dynamic instru-

mentation. In Proc. the 2005 ACM SIGPLAN Confer-

ence on Programming Language Design and Implementa-

tion (PLDI), Jun. 2005, pp.190–200. DOI: 10.1145/1065010.

1065034.

[42]

 Eyerman S, Eeckhout L, Karkhanis T, Smith J E. A per-

formance counter architecture for computing accurate

CPI components. In Proc. the 12th International Confer-

ence on Architectural Support for Programming Lan-

guages and Operating Systems, Oct. 2006, pp.175–184.
DOI: 10.1145/1168857.1168880.

[43]

 Bird S, Phansalkar A, John L K, Mericas A, Indukuru R.

Performance characterization of SPEC CPU benchmarks

on Intel's Core microarchitecture based processor. In

Proc. SPEC Benchmark Workshop, Jan. 2007.

[44]

 Jeong Y, Nister D, Steedly D, Szeliski R, Kweon I S.

Pushing the envelope of modern methods for bundle ad-

justment. In Proc. the 2010 IEEE Computer Society Con-

ference on Computer Vision and Pattern Recognition

(CVPR), Jun. 2010, pp.1474–1481. DOI: 10.1109/CVPR.

2010.5539795.

[45]

 Guennebaud G, Jacob B. Eigen v3. Technical Report,

CGLibs, 2010. https://eigen.tuxfamily.org, October 2023.

[46]

 Bailey T, Nieto J, Nebot E. Consistency of the Fast-

SLAM algorithm. In Proc. the 2006 IEEE International

Conference on Robotics and Automation (ICRA), May

2006, pp.424–429. DOI: 10.1109/ROBOT.2006.1641748.

[47]

 Sturm J, Engelhard N, Endres F, Burgard W, Cremers D.

A benchmark for the evaluation of RGB-D SLAM sys-

tems. In Proc. the 2012 IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS), Oct.

2012, pp.573–580. DOI: 10.1109/IROS.2012.6385773.

[48]

 Wasenmüller O, Meyer M, Stricker D. CoRBS: Compre-

hensive RGB-D benchmark for SLAM using Kinect v2. In

Proc. the 2016 IEEE Winter Conference on Applications

of Computer Vision (WACV), Mar. 2016. DOI: 10.1109/

WACV.2016.7477636.

[49]

 Joseph J. Huawei's Kirin 930 balances power & perfor-

mance using Cortex A53e cores! 2015. https://www.giz-

mochina.com/2015/03/27/huawei-reveals-kirin-930-uses-

enhanced-cortex-a53e-cores/, October 2023.

[50]

 Shimpi A L, Smith R. The Intel Ivy Bridge (Core i7

3770k) review. Technical Report, Intel Research, 2012.

https://www.anandtech.com/show/5771/theintel-ivy-

bridge-core-i7-3770k-review/3, October 2023.

[51]

 Stillmaker A, Baas B. Scaling equations for the accurate

prediction of CMOS device performance from 180 nm to 7

nm. Integration, 2017, 58: 74–81. DOI: 10.1016/j.vlsi.2017.

02.002.

[52]

 Sarangi S, Baas B. DeepScaleTool: A tool for the accu-

rate estimation of technology scaling in the deep-submi-

cron era. In Proc. the 2021 IEEE International Sympo-

sium on Circuits and Systems (ISCAS), May 2021. DOI:

[53]

10.1109/ISCAS51556.2021.9401196.

 Hong S, Kim J. Three-dimensional visual mapping of un-

derwater ship hull surface using piecewise-planar SLAM.

International Journal of Control, Automation and Sys-

tems, 2020, 18(3): 564–574. DOI: 10.1007/s12555-019-

0646-8.

[54]

 Wu L Y, Wan W G, Yu X Q, Ye C K, Muzahid A A M.

A novel augmented reality framework based on monocu-

lar semi-dense simultaneous localization and mapping.

Computer Animation and Virtual Worlds, 2020, 31(3):

e1922. DOI: 10.1002/cav.1922.

[55]

 Wen S H, Zhao Y F, Yuan X, Wang Z T, Zhang D, Man-

fredi L. Path planning for active SLAM based on deep re-

inforcement learning under unknown environments. Intel-

ligent Service Robotics, 2020, 13(2): 263–272. DOI: 10.

1007/s11370-019-00310-w.

[56]

 Yang J J, Wang C, Zhang Q, Chang B S, Wang F, Wang

X L, Wu M. Modeling of laneway environment and locat-

ing method of roadheader based on self-coupling and hec-

tor SLAM. In Proc. the 5th International Conference on

Electromechanical Control Technology and Transporta-

tion (ICECTT), May 2020, pp.263–268. DOI: 10.1109/

ICECTT50890.2020.00067.

[57]

 Hashimoto K, Saito F, Yamamoto T, Ikeda K. A field

study of the human support robot in the home environ-

ment. In Proc. the 2013 IEEE Workshop on Advanced

Robotics and Its Social Impacts, Nov. 2013, pp.143–150.
DOI: 10.1109/ARSO.2013.6705520.

[58]

 Quigley M, Conley K, Gerkey B, Faust J, Foote T, Leibs

J, Wheeler R, Ng A. ROS: An open-source robot operat-

ing system. In Proc. the 2009 ICRA Workshop on Open

Source Software, May 2009.

[59]

 Zhang Z, Liu S S, Tsai G, Hu H B, Chu C C, Zheng F.

PIRVS: An advanced visual-inertial SLAM system with

flexible sensor fusion and hardware co-design. In Proc. the

2018 IEEE International Conference on Robotics and Au-

tomation (ICRA), May 2018, pp.3826–3832. DOI: 10.

1109/ICRA.2018.8460672.

[60]

 Liu R Z, Yang J L, Chen Y R, Zhao W S. eSLAM: An

energy-efficient accelerator for real-time ORB-SLAM on

FPGA platform. In Proc. the 56th Annual Design Au-

tomation Conference, Jun. 2019, Article No. 193. DOI: 10.

1145/3316781.3317820.

[61]

 Boikos K, Bouganis C S. A scalable FPGA-based archi-

tecture for depth estimation in SLAM. In Proc. the 15th

International Symposium on Applied Reconfigurable

Computing (ARC), Apr. 2019, pp.181–196. DOI: 10.1007/

978-3-030-17227-5_14.

[62]

 Gu M Y, Guo K Y, Wang W Q, Wang Y, Yang H Z. An

FPGA-based real-time simultaneous localization and map-

ping system. In Proc. the 2015 International Conference

on Field Programmable Technology (FPT), Dec. 2015,

pp.200–203. DOI: 10.1109/FPT.2015.7393150.

[63]

 Lee K Y, Byun K J. A hardware design of optimized

ORB algorithm with reduced hardware cost. Advanced

Science and Technology Letters, 2013, 43(3): 58–62. DOI:

[64]

Zhe Fan et al.: Hardware Acceleration for SLAM in Mobile Systems 1321

https://icl.utk.edu/projectsfiles/papi/pubs/dodugc99-papi.pdf
https://icl.utk.edu/projectsfiles/papi/pubs/dodugc99-papi.pdf
https://icl.utk.edu/projectsfiles/papi/pubs/dodugc99-papi.pdf
https://icl.utk.edu/projectsfiles/papi/pubs/dodugc99-papi.pdf
https://icl.utk.edu/projectsfiles/papi/pubs/dodugc99-papi.pdf
http://dx.doi.org/10.1145/1065010.1065034
http://dx.doi.org/10.1145/1065010.1065034
http://dx.doi.org/10.1145/1168857.1168880
http://dx.doi.org/10.1109/CVPR.2010.5539795
http://dx.doi.org/10.1109/CVPR.2010.5539795
https://eigen.tuxfamily.org
http://dx.doi.org/10.1109/ROBOT.2006.1641748
http://dx.doi.org/10.1109/IROS.2012.6385773
http://dx.doi.org/10.1109/WACV.2016.7477636
http://dx.doi.org/10.1109/WACV.2016.7477636
https://www.gizmochina.com/2015/03/27/huawei-reveals-kirin-930-uses-enhanced-cortex-a53e-cores/
https://www.gizmochina.com/2015/03/27/huawei-reveals-kirin-930-uses-enhanced-cortex-a53e-cores/
https://www.gizmochina.com/2015/03/27/huawei-reveals-kirin-930-uses-enhanced-cortex-a53e-cores/
https://www.gizmochina.com/2015/03/27/huawei-reveals-kirin-930-uses-enhanced-cortex-a53e-cores/
https://www.gizmochina.com/2015/03/27/huawei-reveals-kirin-930-uses-enhanced-cortex-a53e-cores/
https://www.gizmochina.com/2015/03/27/huawei-reveals-kirin-930-uses-enhanced-cortex-a53e-cores/
https://www.gizmochina.com/2015/03/27/huawei-reveals-kirin-930-uses-enhanced-cortex-a53e-cores/
https://www.gizmochina.com/2015/03/27/huawei-reveals-kirin-930-uses-enhanced-cortex-a53e-cores/
https://www.gizmochina.com/2015/03/27/huawei-reveals-kirin-930-uses-enhanced-cortex-a53e-cores/
https://www.gizmochina.com/2015/03/27/huawei-reveals-kirin-930-uses-enhanced-cortex-a53e-cores/
https://www.gizmochina.com/2015/03/27/huawei-reveals-kirin-930-uses-enhanced-cortex-a53e-cores/
https://www.gizmochina.com/2015/03/27/huawei-reveals-kirin-930-uses-enhanced-cortex-a53e-cores/
https://www.gizmochina.com/2015/03/27/huawei-reveals-kirin-930-uses-enhanced-cortex-a53e-cores/
https://www.gizmochina.com/2015/03/27/huawei-reveals-kirin-930-uses-enhanced-cortex-a53e-cores/
https://www.gizmochina.com/2015/03/27/huawei-reveals-kirin-930-uses-enhanced-cortex-a53e-cores/
https://www.gizmochina.com/2015/03/27/huawei-reveals-kirin-930-uses-enhanced-cortex-a53e-cores/
https://www.gizmochina.com/2015/03/27/huawei-reveals-kirin-930-uses-enhanced-cortex-a53e-cores/
https://www.gizmochina.com/2015/03/27/huawei-reveals-kirin-930-uses-enhanced-cortex-a53e-cores/
https://www.gizmochina.com/2015/03/27/huawei-reveals-kirin-930-uses-enhanced-cortex-a53e-cores/
https://www.anandtech.com/show/5771/theintel-ivybridge-core-i7-3770k-review/3
https://www.anandtech.com/show/5771/theintel-ivybridge-core-i7-3770k-review/3
https://www.anandtech.com/show/5771/theintel-ivybridge-core-i7-3770k-review/3
https://www.anandtech.com/show/5771/theintel-ivybridge-core-i7-3770k-review/3
https://www.anandtech.com/show/5771/theintel-ivybridge-core-i7-3770k-review/3
https://www.anandtech.com/show/5771/theintel-ivybridge-core-i7-3770k-review/3
https://www.anandtech.com/show/5771/theintel-ivybridge-core-i7-3770k-review/3
https://www.anandtech.com/show/5771/theintel-ivybridge-core-i7-3770k-review/3
https://www.anandtech.com/show/5771/theintel-ivybridge-core-i7-3770k-review/3
https://www.anandtech.com/show/5771/theintel-ivybridge-core-i7-3770k-review/3
https://www.anandtech.com/show/5771/theintel-ivybridge-core-i7-3770k-review/3
https://www.anandtech.com/show/5771/theintel-ivybridge-core-i7-3770k-review/3
https://doi.org/10.1016/j.vlsi.2017.02.002
https://doi.org/10.1016/j.vlsi.2017.02.002
http://dx.doi.org/10.1109/ISCAS51556.2021.9401196
https://doi.org/10.1007/s12555-019-0646-8
https://doi.org/10.1007/s12555-019-0646-8
https://doi.org/10.1007/s12555-019-0646-8
https://doi.org/10.1007/s12555-019-0646-8
https://doi.org/10.1007/s12555-019-0646-8
https://doi.org/10.1007/s12555-019-0646-8
https://doi.org/10.1007/s12555-019-0646-8
https://doi.org/10.1002/cav.1922
https://doi.org/10.1007/s11370-019-00310-w
https://doi.org/10.1007/s11370-019-00310-w
https://doi.org/10.1007/s11370-019-00310-w
https://doi.org/10.1007/s11370-019-00310-w
https://doi.org/10.1007/s11370-019-00310-w
https://doi.org/10.1007/s11370-019-00310-w
https://doi.org/10.1007/s11370-019-00310-w
https://doi.org/10.1007/s11370-019-00310-w
http://dx.doi.org/10.1109/ICECTT50890.2020.00067
http://dx.doi.org/10.1109/ICECTT50890.2020.00067
http://dx.doi.org/10.1109/ARSO.2013.6705520
http://dx.doi.org/10.1109/ICRA.2018.8460672
http://dx.doi.org/10.1109/ICRA.2018.8460672
http://dx.doi.org/10.1145/3316781.3317820
http://dx.doi.org/10.1145/3316781.3317820
http://dx.doi.org/10.1007/978-3-030-17227-5_14
http://dx.doi.org/10.1007/978-3-030-17227-5_14
http://dx.doi.org/10.1007/978-3-030-17227-5_14
http://dx.doi.org/10.1007/978-3-030-17227-5_14
http://dx.doi.org/10.1007/978-3-030-17227-5_14
http://dx.doi.org/10.1007/978-3-030-17227-5_14
http://dx.doi.org/10.1007/978-3-030-17227-5_14
http://dx.doi.org/10.1007/978-3-030-17227-5_14
http://dx.doi.org/10.1007/978-3-030-17227-5_14
http://dx.doi.org/10.1007/978-3-030-17227-5_14
http://dx.doi.org/10.1007/978-3-030-17227-5_14
http://dx.doi.org/10.1007/978-3-030-17227-5_14
http://dx.doi.org/10.1109/FPT.2015.7393150

10.14257/ASTL.2013.43.11.

 Na E S, Jeong Y J. FPGA implementation of SURF-

based feature extraction and descriptor generation. Jour-

nal of Korea Multimedia Society, 2013, 16(4): 483–492.

DOI: 10.9717/KMMS.2013.16.4.483.

[65]

 Jiang J, Li X Y, Zhang G J. SIFT hardware implementa-

tion for real-time image feature extraction. IEEE Trans.

Circuits and Systems for Video Technology, 2014, 24(7):

1209–1220. DOI: 10.1109/TCSVT.2014.2302535.

[66]

 Zhong S, Wang J H, Yan L X, Kang L, Cao Z G. A real-

time embedded architecture for SIFT. Journal of Systems

Architecture, 2013, 59(1): 16–29. DOI: 10.1016/j.sysarc.

2012.09.002.

[67]

 Huang F C, Huang S Y, Ker J W, Chen Y C. High-per-

formance SIFT hardware accelerator for real-time image

feature extraction. IEEE Trans. Circuits and Systems for

Video Technology, 2012, 22(3): 340–351. DOI: 10.1109/

TCSVT.2011.2162760.

[68]

Zhe Fan received his B.E. degree in

computer science and technology from

the Department of Computer Science

and Technology, Huazhong Universi-

ty of Science and Technology, Wuhan,

in 2017. Currently he is a Ph.D. candi-

date in the Institute of Computing

Technology, Chinese Academy of Sciences, Beijing, and

the University of Chinese Academy of Sciences, Beijing.

His research interests include hardware architecture and

artificial intelligence.

Yi-Fan Hao received his B.S. de-

gree in statistics from the School of

the Gifted Young, University of Sci-

ence and Technology of China, Hefei,

in 2016, and his Ph.D. degree in com-

puter architecture in the Institute of

Computing Technology, Chinese

Academy of Sciences, Beijing, in 2021. He is currently

an engineer at the Institute of Computing Technology,

Chinese Academy of Sciences, Beijing. His research in-

terests include algorithms and hardware architectures

for artificial intelligence.

Tian Zhi received her B.E. degree

in biomedical engineering from the De-

partment of Biomedical Engineering &

Instrument Science, Zhejiang Universi-

ty, Hangzhou, in 2009, and her Ph.D.

degree in reconfigurable integrated cir-

cuits design from the Institute of Elec-

tronics, Chinese Academy of Sciences, Beijing, in 2014.

She is currently an associate professor at the Institute of

Computing Technology, Chinese Academy of Sciences,

Beijing. Her research interests include integrated circuit

design and reconfigurable computing.

Qi Guo received his B.E. degree in

computer science from Tongji Univer-

sity, Shanghai, in 2007, and his Ph.D.

degree in computer architecture from

the Institute of Computing Technolo-

gy, Chinese Academy of Sciences, Bei-

jing, in 2012. From 2012 to 2014, he

was a staff researcher at IBM Research, Beijing. From

2014 to 2015, he was a postdoctoral researcher with

Carnegie Mellon University, Pittsburgh. He is currently

a professor with the Institute of Computing Technology,

Chinese Academy of Sciences, Beijing. His research in-

terests include computer architecture, system software,

and machine learning.

Zi-Dong Du received his B.E. de-

gree in electronic science and technolo-

gy from the Department of Electronic

Engineering, Tsinghua University, Bei-

jing, in 2011, and his Ph.D. degree in

computer architecture from the Insti-

tute of Computing Technology, Chi-

nese Academy of Sciences, Beijing, in 2016. He is cur-

rently an associate professor at the Institute of Comput-

ing Technology, Chinese Academy of Sciences, Beijing.

His research interests mainly focus on novel architec-

ture for artificial intelligence, including deep learning

processors, inexact/approximate computing, neural net-

work architecture, and neuromorphic architecture.

1322 J. Comput. Sci. & Technol., Nov. 2023, Vol.38, No.6

https://doi.org/10.14257/ASTL.2013.43.11
https://doi.org/10.9717/KMMS.2013.16.4.483
https://doi.org/10.1109/TCSVT.2014.2302535
https://doi.org/10.1016/j.sysarc.2012.09.002
https://doi.org/10.1016/j.sysarc.2012.09.002
https://doi.org/10.1109/TCSVT.2011.2162760
https://doi.org/10.1109/TCSVT.2011.2162760

	1 Introduction
	2 SLAM Background
	3 BenchSLAM Design
	3.1 Design Objectives
	3.2 Benchmarks and Algorithmic Components
	3.2.1 EKF/PF SLAM
	3.2.2 RGB-D SLAM
	3.2.3 ORB SLAM
	3.2.4 Algorithmic Components

	4 Real System Analysis
	4.1 Platform and Tools
	4.2 Performance and Power Analysis
	4.3 Architectural Bottlenecks
	4.4 Control Flow Analysis

	5 Accelerator Design
	5.1 Matrix Processing Unit
	5.2 Vector Processing Unit
	5.3 Scalar Processing Unit
	5.4 Control Unit
	5.5 Data SRAMs

	6 Instruction Set Design
	6.1 Design Objectives and Components
	6.2 Driving Examples
	6.2.1 CONV
	6.2.2 MMmV
	6.2.3 MMmM
	6.2.4 MVmV
	6.2.5 VVmV

	7 Algorithm Mapping
	7.1 Feature Extraction: SIFT
	7.2 Graph Optimization: g2o

	8 Experiments
	8.1 Experimental Methodology
	8.1.1 Tools
	8.1.2 Baseline
	8.1.3 Benchmarks

	8.2 Hardware Characteristics
	8.3 Experimental Results
	8.3.1 Performance
	8.3.2 Energy Consumption

	9 Related Work
	9.1 SLAM Algorithms
	9.2 Hardware Acceleration of SLAM

	10 Conclusions
	Conflict of Interest
	References

