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Abstract    The emerging mobile robot industry has spurred a flurry of interest in solving the simultaneous localization

and mapping (SLAM) problem. However, existing SLAM platforms have difficulty in meeting the real-time and low-pow-

er requirements imposed by mobile systems. Though specialized hardware is promising with regard to achieving high per-

formance and lowering the power, designing an efficient accelerator for SLAM is severely hindered by a wide variety of

SLAM algorithms. Based on our detailed analysis of representative SLAM algorithms, we observe that SLAM algorithms

advance two challenges for designing efficient hardware accelerators: the large number of computational primitives and ir-

regular control flows. To address these two challenges, we propose a hardware accelerator that features composable com-

putation units classified as the matrix, vector, scalar, and control units. In addition, we design a hierarchical instruction

set for coping with a broad range of SLAM algorithms with irregular control flows. Experimental results show that, com-

pared against an Intel x86 processor, on average, our accelerator with the area of 7.41 mm2 achieves 10.52x and 112.62x

better performance and energy savings, respectively, across different datasets. Compared against a more energy-efficient

ARM Cortex processor,  our accelerator still  achieves 33.03x and 62.64x better performance and energy savings,  respec-

tively.

Keywords    hardware accelerator, instruction set, mobile system, simultaneous localization and mapping (SLAM) algo-

rithm

  

1    Introduction

Autonomous  navigation  in  an  unknown  environ-

ment is a fundamental ability for mobile robots (e.g.,

unmanned ground vehicles, self-driving cars, and aeri-

al robots). In the absence of an initial map of the un-

known  environment,  the  robot  must  simultaneously

construct a map of the environment and keep track of

its position on the map. This is the well-known simul-

taneous localization and mapping (SLAM[1]) problem.

Conventionally,  the  SLAM  problem  can  be  approxi-

mately  solved  in  acceptable  time  using  statistical

techniques  such  as  particle  filtering[2, 3],  Kalman  fil-

ters[4],  and  scan  matching  of  range  data[5] to  process

the  data  provided  by  a  proper  set  of  sensors  (e.g.,

laser, sonar, radar, and camera). However, accurately

solving SLAM in mobile robots with the limited com-

putational  ability  and  stringent  power  budget  re-

mains a challenging problem.

Currently,  most  of  few  accelerating  solutions  are

proposed  for  hardware  platforms  such  as  GPUs[6–9]

and  FPGAs/FPGA+DSPs[10–12].  However,  such  plat-

forms  cannot  fulfill  the  real-time  processing  require-

ments of mobile systems with a limited power budget.
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For  desktop-level  GPUs,  efforts  such  as  [6, 7]

achieved  around  10x  performance  (compared  against

CPUs),  but  the  power  consumption  is  nearly  100

watts.  For  embedded  GPUs,  Mardi et  al.[8] achieved

only  9.31x  speedup  on  average  on  high-performance

embedded GPUs, including NVIDIA Tegra and ARM

Maili. Peng et al.[9] achieved only 1.41x–1.68x speedup

on energy-efficient embedded GPUs which targets AI

computing, including Jetson Xavier, Jetson TX2, and

Jetson  Nano.  For  FPGAs/FPGA+DSPs,  despite  the

efficiency  in  performance  and  power,  implementa-

tions are usually fixed to a certain algorithm and thus

lack flexibility. Thus, efficient hardware for SLAM al-

gorithms is still urged.

While specialized hardware promises to offer a re-

al-time  and  low-power  SLAM  solution  for  mobile

robots,  several  challenges  exist  in  designing  a  highly

efficient  hardware  accelerator  for  multiple  SLAM al-

gorithm variants,  e.g.,  monocular  SLAM[13, 14],  stereo

SLAM[15, 16],  and  RGB-D  camera-based  SLAM[17, 18].

First,  unlike  traditional  accelerators  that  handle  a

limited  number  of  computation  patterns  for  limited

algorithms, SLAM algorithms have significant diversi-

ty in their computations. For example, feature extrac-

tion in SLAM usually processes two-dimensional (2D)

input  images  with  massive  matrix  operations,  while

the optimization on the built  map processes vertexes

and edges that are complex data structures. Even th-

ese two specific functions involve many matrix/vector/

scalar  operations.  Second,  data  access  patterns  vary

drastically  among  different  SLAM  algorithms  and

even  within  a  specific  algorithm.  Taking  the  data

reuse  distance  in  SLAM  for  example,  input  frames

will  be  used  only  once  but  the  extracted  feature  de-

scriptors will be visited all the time in execution, not

to mention the access patterns among different orga-

nized data.  Third,  very different  from traditional  ac-

celerated algorithms, SLAM algorithms are data-con-

trol  tightly  coupled  and  contain  many  logic  opera-

tions, which raises a challenge for designing accelera-

tors with such complex control flows. In Section 4 of

the real  system analysis,  the branch mispredicted in-

structions  ratio  in  MonoSLAM  is  3.17%,  which  is

3.36x/2.01x more than that in the convolutional neu-

ral  network  (CNN)  training/testing  phase,  a  recent

common  accelerated  algorithm  with  ASIC  (applica-

tion  specific  integrated  circuit)[19, 20].  Handling  such

control  in  an  accelerator  is  critical.  As  a  result,  an

ideal  accelerator  for  SLAM  should  exploit  varying

computation  and  data  access  patterns  with  complex

control for both high performance and energy efficien-

cy.

In this paper, we propose a novel hardware accel-

erator to efficiently cope with a broad range of SLAM

algorithms.  We  conduct  a  thorough  analysis  of  vari-

ous SLAM algorithms, and make several key observa-

tions,  leading  to  our  novel  design  solution.  First,  al-

though  different  computation  patterns  exist,  almost

all operations can be classified into seven matrices, six

vectors, and 12 scalar computation primitives. For ex-

ample,  Gaussian  pyramid  establishment  in  scale  in-

variant  feature  transform  algorithm  (SIFT)[21] con-

sists  only  of  matrix  convolution,  matrix  down-sam-

pling,  and matrix  multiplication  with  scalar.  Precon-

ditioned conjugate gradient (PCG)[22] in optimization

consists of vector multiplication and vector inner pro-

duction. Thus, we implement a matrix processing unit

(MPU), a vector processing unit (VPU), and a scalar

processing unit (SPU) for the very few remaining op-

erations  to  address  the  challenge  of  the  variety  of

computation  patterns.  Second,  data  access  patterns

can  be  divided  into  two  main  categories:  2D  data

mainly  for  matrix  operations  and  one-dimensional

(1D) data for vector and scalar operations. Thus, we

implement  two  types  of  on-chip  buffers,  2D  SRAM

and 1D SRAM, to feed different processing units effi-

ciently.  Gaussian  pyramid  establishment  only  needs

to access 2D SRAM for input and outputs, and PCG

only  needs  to  access  vectors  which  are  stored  in  1D

SRAM.  Third,  we  propose  a  specially  designed  in-

struction  set  architecture  (ISA)  with  the  jump  and

condition  branch  instructions  to  well  support  com-

plex  control/data  flows.  Additionally,  with  the  pro-

posed ISA, future SLAM algorithms that contain the

same patterns  can be  efficiently  accelerated with  the

same ISA-based accelerator as well.

The key contributions of this paper are as follows.

● We  propose  a  benchmark  suite  BenchSLAM,

which is the basis for our later analysis, based on the

principles  of  completeness,  representativeness,  and

practicability.

● We  conduct  a  thorough  analysis  of  different

SLAM  algorithms  in  BenchSLAM  to  extract  their

computation  and  control  flow  behaviors,  which  pro-

vides  a  solid  foundation  for  designing  an  efficient

SLAM accelerator.

● We  propose  a  SLAM  accelerator  built  on  ma-

trix/vector/scalar  processing  units,  a  dedicated  con-

trol unit, as well as an on-chip storage system, for ef-

ficiently coping with various SLAM tasks.

Zhe Fan et al.: Hardware Acceleration for SLAM in Mobile Systems 1301



● We propose a hierarchical instruction set which

not  only  copes  with  a  broad  range  of  SLAM  algo-

rithms  with  irregular  control  flows  but  also  provides

both  flexibility  and  scalability  in  our  accelerator  for

future SLAM algorithms.

● We show how to map algorithms to our acceler-

ator  and  evaluate  BenchSLAM  in  our  accelerator.

The  experimental  results  show  that  our  accelerator

with  the  area  of  7.41  mm2 achieves  10.52x  and

112.62x  better  performance  and  energy  savings  over

Intel Core i7-3770 processor respectively, and achieves

22.03x and 62.64x better performance and energy sav-

ings over ARM Cortex A57 processor respectively.

The  remainder  of  this  paper  is  organized  as  fol-

lows. Section 2 makes  a  brief  introduction  to  SLAM

algorithms,  which  can  be  divided  into  three  cate-

gories: extended Kalman filtering (EKF) SLAM, par-

ticle  filtering  (PF)  SLAM,  and  graph-based  SLAM.

Section 3 builds  BenchSLAM,  a  benchmark  contain-

ing  mainstream  SLAM  algorithms,  and  extracts  key

operations  of  these  SLAM algorithms. Section 4 con-

ducts a detailed analysis of deploying BenchSLAM on

a  real  system,  including  the  performance  and  power

behaviors,  architectural  bottlenecks,  and  the  control

flow  behaviors. Section 5 illustrates  the  architecture

of  the  proposed  accelerator  and  its  submodules. Sec-

tion 6 introduces  our  proposed  hierarchical  instruc-

tion  set  which  bridges  the  gap  between  the

software/algorithm and hardware/scheduling. Section

7 elaborates how to map various SLAM algorithms to

our  accelerator. Section 8 evaluates  the  proposed  ac-

celerator against the baseline hardware. Section 9 lists

some  related  work,  including  SLAM  algorithms  and

hardware acceleration methods. Section 10 draws sev-

eral conclusions. 

2    SLAM Background

k

(xk,mk) xk

mk

o0:k

u0:k

x0

Solving the SLAM problem can be formulated as

the estimation of a joint state of the robot's pose and

the locations of map landmarks[1]. Mathematically, at

time step ,  the  joint  SLAM state  vector  is  denoted

as , where  is the vector of the robot's pose

and  is the vector of landmarks. The basic idea of

solving the SLAM problem is to estimate the posteri-

or  probability  of  the  joint  SLAM state  vector  based

on the observations of the environment , the histo-

ry  of  control  inputs ,  and  an  arbitrarily  selected

initial position : 

P (xk,mk | o0:k,u0:k,x0) . (1)

A  large  variety  of  solutions  have  already  been

used for solving the above equation, and they can be

roughly  divided  into  three  categories  from  the  per-

spective of  computational  paradigms[23]:  EKF SLAM,

PF SLAM, and graph-based SLAM.

The  EKF  SLAM  employs  the  well-studied  stan-

dard extended Kalman filtering techniques to approxi-

mate  the  joint  posterior  distribution  of  (1).  Though

EKF  approaches  are  relatively  easy  to  implement,

they  are  computation- and  memory-intensive  as  the

size of joint covariance matrix increases quadratically

with  the  number  of  landmarks.  Also,  since  the

Kalman filter works under a linear Gaussian assump-

tion, the nonlinear motion and observation models in

SLAM may easily  lead  to  inconsistent  and divergent

solutions[24].

The PF SLAM relies on particle filters, which are

sequential Monte Carlo methods using particle repre-

sentation  of  probability  densities[25],  allowing  for  the

direct  representation  of  nonlinear  models  and  non-

Gaussian distribution. This is different from the EKF

approaches  that  assume  Gaussian  distribution  at  ev-

ery time step. Though the particle filtering approach

has  led  to  several  important  and  famous  algorithms

such  as  FastSLAM[3],  setting  the  proper  number  of

particles  remains  a  challenging  problem[26].  Besides,

the particle filtering approach may suffer from the in-

consistency problem as well[27].

The  graph-based  SLAM  addresses  the  SLAM

problem  via  graph-based  formulation[28].  A  sparse

graph,  where  the  node  corresponds  to  a  robot  posi-

tion during mapping and the edge between two nodes

corresponds  to  the  spatial  constraints  between them,

is  constructed.  Once the graph is  constructed,  it  can

be  addressed  by  solving  a  large  error  minimization

problem[29].  Due  to  the  sparsity  of  the  constructed

graph, this approach can be solved efficiently with ad-

vanced optimization methods (e.g., sparse linear alge-

bra libraries). However, the initial position can signifi-

cantly affect the final result. 

3    BenchSLAM Design

In this section, we introduce our proposed Bench-

SLAM,  a  benchmark  suite  containing  several  repre-

sentative SLAM algorithms. 

3.1    Design Objectives

We  focus  on  three  key  objectives  during  the  de-
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sign of BenchSLAM.

● Completeness. The benchmark suite should cov-

er existing SLAM algorithms as many as possible.

● Representativeness. The benchmark suite should

include the most representative SLAM algorithms.

● Practicability. The studied algorithms should be

practical  for  mobile  robots  with  real-time  and  low-

power requirements. 

3.2    Benchmarks and Algorithmic

Components

Based  on  the  discussion  in Section 2,  to  guaran-

tee  completeness,  we  choose  SLAM  solutions  from

three main SLAM categories: EKF SLAM, PF SLAM,

and graph-based SLAM. To guarantee representative-

ness,  we  consider  the  most  well-known  approaches

from each category. Also, due to the practicability re-

quirement,  we  only  consider  algorithms  that  can  be

easily deployed on mobile robots. Eventually, four al-

gorithms  are  considered  in  BenchSLAM:  EKF

SLAM[4],  PF  SLAM[3],  RGB-D  SLAM[18],  and  ORB

(oriented  FAST  (features  from  accelerated  segment

test)[30] and  rotated  BRIEF  (binary  robust  indepen-

dent  elementary  features)[31])  SLAM[32],  where  both

RGB-D SLAM and ORB SLAM are  the  most  repre-

sentative  and  practical  graph-based  SLAM  algo-

rithms. Note that we also notice SLAMBench[8], but it

is  a  benchmark  for  only  3D scene  understanding  ap-

plications.  Thus,  we  propose  BenchSLAM instead  in

this  paper  for  benchmarking  various  SLAM  algo-

rithms. 

3.2.1    EKF/PF SLAM

The  overall  flow  of  EKF/PF  SLAM  is  shown  in

Fig.1 as they share the same stages.  Generally,  EKF

SLAM is composed of three steps: computing, predic-

tion, and update.

In  the  computing  step,  true  coordinates  are  ob-

tained through motion modeling.

In the prediction step, the new robot state is pre-

dicted  based  on  the  last  estimation  and  the  control

inputs.

In  the  update  step,  which  may  only  happen  un-

der  specific  requirements,  the  observed  range  and

bearing measurements are obtained and used for find-

ing  associated  data,  and  then  the  state  and  covari-

ance are updated. 

3.2.2    RGB-D SLAM

RGB-D SLAM is designed for the RGB-D camera,

and the most well-known RGB-D SLAM algorithm is

from  the  Kinect  platform[18].  The  overall  flow  of

RGB-D  SLAM  is  shown  in Fig.2[18],  including  the

frontend for processing camera data to the geometric

relationship  (feature  extraction,  transformation  vali-

dation,  and  transformation  estimation),  the  backend

for  finding  the  maximum  likelihood  graph  of  robot

trajectory  and  the  landmarks  geometric  relationship

(graph optimization), and final map generation.

Feature  extraction  is  the  first  step  of  processing

after  a  frame  is  received  from  an  RGB-D  camera.

During this step, various kinds of features extraction

algorithms,  e.g.,  SIFT  (Scale  Invariant  Feature

Transform)[21],  and SURF  (Speeded  up  Robust  Fea-

tures)[33],  can  be  applied  to  calculate  features  of  se-

lected key points on the current input frame.

In  transformation  estimation,  the  transformation

information  between  two  frames  will  be  estimated

based on matched pairs  of  key points,  which are ob-

tained  by  measuring  the  similarity  (e.g.,  Euclidean

distance or Hamming distance in their feature spaces)

of  two  key  points  from  each  frame.  The RANSAC

(Random  Sample  Consensus)  algorithm[34] is  applied

instead  of  ICP  (Iterative  Closest  Point)[35–37] in  [18]

for fastness and robustness.

 

Compute
True Data

State/
Measurement
Prediction

Data
Association

Perform
Update

Computing Prediction Update

Fig.1.  Overall flow of EKF/PF SLAM.
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Fig.2.  Overall flow of RGB-D SLAM[18].
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After  that,  in  transformation  validation,  a  beam-

based  environment  measurement  model  (EMM)  is

used  to  verify  the  estimated  transformation  informa-

tion  since  both  RANSAC and ICP cannot  avoid  un-

successful estimation especially when two frames have

low overlap or few features.

Then  in  graph  optimization,  based  on  the  graph

obtained in the frontend, which contains the estimat-

ed  transformation  between  different  frames,  i.e.,  sen-

sor  poses,  backend  processing  computes  the  global

consistent trajectory with maximum likelihood by op-

timizing  the  estimation  errors.  A  widely-used  frame-

work,  called  g2o  (General  Graph  Optimization)[38],  is

implemented to perform the minimization of a nonlin-

ear error function.

The  final  map  generation  is  a  projection  of  the

original  points  measurements  with  the  optimized

graph  to  form  a  point  cloud  representation[39] of  the

outside environment in the same coordinates. 

3.2.3    ORB SLAM

ORB SLAM[32] is a binary invariant feature (e.g.,

256-bit descriptor) built upon the FAST key-point de-

tector and the BRIEF descriptor. It is widely used for

object  recognition,  image  stitching,  visual  mapping,

etc.[40].  The  essential  ORB  SLAM algorithm  consists

of  three  parallel  tasks:  tracking,  local  mapping,  and

loop closing, as shown in Fig.3[32].

The tracking task localizes the pose of the camera

with every received frame and determines when to in-

sert  a  keyframe.  Initially,  the  ORB  features  are  ex-

tracted from the input frame. Then, an initial feature

matching with the last frame is conducted. If success-

ful,  the  camera  pose  is  estimated  from  the  previous

frame; otherwise, global relocalization is performed for

predicting  the  camera  pose.  Once  we  have  an  initial

estimation  of  the  camera  pose  and  a  set  of  feature

matches, a local map can be projected into the frame

and more map points are searched in the frame. With

found  map  points,  the  camera  pose  is  optimized

again.  Finally,  the  task  determines  whether  the  cur-

rent frame should be inserted as a keyframe.

The local mapping task is in charge of processing

new  keyframes  and  optimizing  their  local  neighbor-

hood. In more detail, the new keyframe is inserted as

a node into the so-called covisibility graph. The local

BA (bundle  adjustment)  optimizes  the keyframe and

all  its  neighbors  in  the  covisibility  graph.  The  map

points seen by these keyframes are optimized as well.

The local mapping also removes redundant keyframes.

The loop closing task is designed to maintain the

global  consistency of  the  constructed map.  This  task

can be further divided into two steps:  loop detection

and loop correction. In loop detection, once a loop is

detected  with  the  current  keyframe,  a  similarity

transformation is computed to obtain the accumulat-

ed error in the loop. Then, in loop correction, the du-

plicate points in the loop are fused, and the optimiza-

tion over the essential graph (i.e., a sparse graph gen-
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erated  from  the  original  covisibility  graph)  is  per-

formed to guarantee consistency. 

3.2.4    Algorithmic Components

All the key operations in the above algorithms can

be grouped into three categories:  matrix,  vector,  and

scalar operations.

● The  most  representative  matrix  operations  in

BenchSLAM include the convolution operation in the

RGB-D SLAM and the  singular  value  decomposition

(SVD) in the ORB SLAM.

● Typical vector operations are the key-points Eu-

clidean distance calculation and the coordinate projec-

tion  in  the  RGB-D SLAM and  the  ORB SLAM,  re-

spectively.

● The scalar operations are also very common for

all benchmarks, for example, range and bearing com-

puting  in  the  EKF SLAM,  particles  sampling  in  the

PF  SLAM,  distance  ranking  in  the  RGB-D  SLAM,

and similarity evaluation in the ORB SLAM.

Therefore,  an  ideal  SLAM  accelerator  should  be

able to efficiently process various matrix, vector, and

scalar operations to guarantee high energy efficiency. 

4    Real System Analysis

In this section, we conduct a detailed analysis on

a real system. First, we introduce the evaluated plat-

form  and  tools.  Then,  we  analyze  the  performance

and power behaviors of  BenchSLAM. We also evalu-

ate the control flow behaviors. 

4.1    Platform and Tools

All the experiments are conducted on a 4-core In-

tel Core i7-3770 processor. Multiple analysis tools are

used  throughout  to  study  BenchSLAM  from  various

aspects.  First  to  investigate  the  performance  and

power  bottlenecks,  the  performance  application  pro-

gramming  interface  (PAPI)[41] is  employed  to  collect

related  performance  counters.  Second,  to  investigate

the control flow behavior, the Intel Pin[42] is used for

dynamic instrumentation. 

4.2    Performance and Power Analysis

To  identify  both  the  computational  and  power

bottlenecks  of  BenchSLAM,  we  profile  the  execution

of BenchSLAM with PAPI.

On the one hand, for different SLAM algorithms,

the  distribution  of  execution  time  in  their  algorithm

stages varies greatly. In Fig.4(a), for the EKF SLAM,

most of the time is spent in the prediction and com-

puting  stages.  However,  for  the  PF  SLAM,  the  up-

date stage consumes 66.5% of the total time. For the

RGB-D  SLAM,  the  frontend  (including  feature  ex-

traction, matching, and RANSAC) dominates the en-

tire  execution  time  (i.e.,  93.5% in  RGB-D SIFT and

98.4% in RGB-D SURF). For the ORB SLAM, as the

loop closing  is  not  frequently  invoked,  the  other  two

tasks (tracking and local mapping) cost 99.5% of the

execution time.

On  the  other  hand,  the  power  consumption  does

not correlate with the execution time. In Fig.4(b), for
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EKF,  the  power  consumption  of  the  update  stage  is

higher than that of the other two stages, though the

update  stage  consumes  only  8.1%  of  the  total  time.

The  observation  is  also  validated  by  the  power  con-

sumption  of  RGB-D  SURF,  where  the  power  of  the

g2o  stage  is  higher  than  that  of  the  other  stages,

where  the  execution  time  is  only  1.6%  of  the  total

time.  Thus,  to  improve both performance and power

efficiency, almost all stages of SLAM algorithms need

to  be  well  addressed.  Furthermore,  considering  the

significant  diversity  of  the  different  stages  in  various

algorithms, it is unwise to have the intuitive solution

of  combining  the  corresponding  fixed-function  hard-

ware,  which  not  only  is  costly  but  also  has  strictly

limited functionality.

In  general,  according  to  above  observations

(shown in Fig.4),  we have proved the inhomogeneity

of  performance  and  power  consumption  across  vari-

ous  SLAM  algorithms.  Therefore,  in  terms  of  build-

ing  a  SLAM  accelerator,  it  is  inefficient  to  combine

the corresponding fixed-function ASICs. For the com-

bination  method,  each  ASIC  of  the  SLAM  accelera-

tor  only  processes  the  specific  stages  in  SLAM algo-

rithms,  causing  the  low utilization  and poor  general-

ization of the whole hardware.

Moreover,  an  interesting  observation  is  that  all

performance and power bottlenecks are dominated by

matrix/vector  operations.  For  example,  in  the  EKF

SLAM,  most  operations  are  basic  matrix  operations

(matrix/vector multiplication and matrix/vector addi-

tion).  In  the  feature  extraction  phase  of  RGB-D

SLAM,  the  convolution  and  pooling  operations  are

the  most  time-critical.  As  a  result,  it  is  necessary  to

accelerate a broad range of matrix and vector opera-

tions to improve the energy efficiency of SLAM algo-

rithms. 

4.3    Architectural Bottlenecks

We  also  identify  the  architectural  bottlenecks  of

BenchSLAM  to  investigate  the  potential  improve-

ments  derived  from  using  an  optimized  general-pur-

pose  architecture,  which  is  an  intuitive  option  for

SLAM  acceleration. Fig.5 shows  the  CPI  (cycle  per

instruction)  stack[43] of  different  SLAM  algorithms.

The  base  CPI  is  0.25  for  different  algorithms  as  we

are  evaluating  on  a  CPU  with  an  issue  width  of  4 

and  the  resultant  CPI  varies  significantly.  In  this

case,  even  adopting  a  general-purpose  processor  and

assuming  unlimited  cache  sizes  and  perfect  branch

5.8

2.6

predictors,  the  potential  speedup  is  limited  for  these

algorithms.  For  example,  the  EKF  can  achieve x

speedup, while the RGB-D SIFT only achieves a x

speedup.  Therefore,  it  can  be  concluded  that  a  cus-

tomized architecture rather than an optimized gener-

al-purpose architecture is required for extremely high

efficiency. 

4.4    Control Flow Analysis

The complicated control  flow behaviors in SLAM

algorithms  significantly  hinder  the  exploitation  of

hardware parallelism.  To gain more insights  into the

control  flow  behaviors,  we  compare  the  branch  mis-

prediction  of  BenchSLAM,  neural  network  algo-

rithms  (which  are  built  with  relatively  regular  and

simple control flows, and have received increasing at-

tention  recently[19, 20]),  and  several  general-purpose

applications from SPEC CPU 2006, including gcc and

libquantum  with  a  large  number  of  hard-to-predict

branches[44].  In Fig.6,  we  report  the  ratios  of  branch
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misprediction which indicate  the  frequency of  irregu-

lar  jumps  in  algorithms,  i.e.,  the  complexity  of  con-

trol flow, while the regular branch structure can still

be easily handled by the hardware design. We can ob-

serve  that  the  misprediction  ratios  in  SLAM  algo-

rithms are higher than those in neural network algo-

rithms  (e.g.,  15.6%  in  EKF  vs  1.6%  in  CNN  test).

Even  compared  against  general-purpose  applications,

the  misprediction  ratios  are  higher,  e.g.,  3% in  ORB

SLAM vs 1% in gcc.

The  above  observations  demonstrate  that  SLAM

algorithms  have  relatively  complicated  control  flow

behaviors.  Thus,  light  control  units  in  traditional

hardware accelerators (e.g., the control units in CNN

processors[19, 20] for neural network algorithms) are not

able to process the control flows in SLAM algorithms.

On  the  other  hand,  heavy  control  units  (such  as

branch  predictors  in  general  purpose  processors)  are

inappropriate  for  processing  control  flows  in  SLAM

algorithms  because  of  stringent  power  and  perfor-

mance constraints. In other words, a dedicated hard-

ware  unit  specifically  targeting  the  control  flows  in

SLAM algorithms  advances  a  great  challenge  during

the accelerator design. 

5    Accelerator Design

Fig.7 illustrates  the  overall  architecture  of  the

proposed  accelerator.  It  mainly  consists  of  a  matrix

processing  unit  (MPU),  a  vector  processing  unit

(VPU),  a  scalar  processing  unit  (SPU),  multiple  da-

ta/instruction SRAMs, and a control unit (CU). The

MPU, VPU, and SPU are used for the computation of

matrix,  vector,  and  scalar  operations,  respectively.

The input data of these processing units are accessed

from the data SRAMs through DMA (direct memory

access). In particular, the MPU requires two SRAMs

to  provide  sufficient  data  from  both  the  horizontal

and  vertical  directions.  The  CU  controls  the  execu-

tion of the entire accelerator with compiler-generated

instructions stored in the instruction SRAM. 

5.1    Matrix Processing Unit

Px × Py

The MPU is in charge of  processing a large vari-

ety of dominant matrix operations (e.g., matrix trans-

position, matrix multiplication, singular value decom-

position,  QR  decomposition,  and  convolution  opera-

tion). Fig.8(a)  shows  the  detailed  architecture  of  the

MPU,  which  can  be  further  decomposed  into  a  2D

mesh  of  matrix  processing  elements  (MPEs)

and a buffer controller. All the MPEs are organized as

a  2D  mesh  with  the  adjacent-interconnection  struc-

ture  and  controlled  by  the  central  buffer  controller.

The  buffer  controller  supplies  data  to  the  rightmost

column  and  the  bottom  row  of  the  MPE array,  i.e.,

Input-H  and  Input-V  in Fig.8(a),  respectively.  The
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buffer  controller  can also  directly  provide  input  data

(i.e., input in Fig.8) to all the MPEs. In addition, the

output  data  (i.e.,  output  in Fig.8)  computed  by  all

the MPEs can be collected by the buffer controller for

storing in the SRAMs.

Fig.8(b) shows the architecture of each MPE. The

central component of the MPE is the functional unit

(FU)  that  is  capable  of  completing  basic  operations

(e.g., floating-point addition/multiplication and float-

ing-point/fixed-point  conversion).  The  FU  can  re-

ceive  data  from  its  right  and  bottom  neighbors  (In-

put-H and Input-V, respectively) as an input. In addi-

tion, the FU may also use previous data stored in its

internal  register  as  one  of  the  inputs.  This  is  simply

because  multiplication-accumulation  is  commonly

used  in  arithmetic  operations  such  as  vector  inner

production  and  matrix  multiplication.  Thus  each

MPE can  be  activated  in  a  multiplication-accumula-

tion  mode.  Another  source  of  inputs  is  the  data  di-

rectly  accessed  from  the  outside  SRAM (i.e.,  input).

The  input  data  from  the  outside  SRAM  also  enter

two FIFOs (i.e.,  FIFO-V and FIFO-H) for  providing

data to the top and left MPEs (Data-V and Data-H,

respectively).  Once  the  FU finishes  the  computation,

the MPE outputs  the result  from the FU or directly

from  the  internal  register.  The  opcode  from  the  CU

selects the input data and decides which concrete op-

eration will be performed.

The  key  reasons  for  the  adjacent-interconnection

structure  in  2D  MPE  mesh  (allowing  each  MPE  to

access data from its  neighboring MPEs and SRAMs)

are:  1)  to  support  the  accumulation  of  intermediate

results among MPEs for operations such as inner pro-

duction,  2)  to  elevate  the  data  utility  by  leveraging

the data locality and reuse for operations such as con-

volution,  and 3)  to  remain an efficient  hardware  im-

plementation  by  avoiding  full  connections  among  all

MPEs. 

5.2    Vector Processing Unit

Pz

The VPU processes the vector operations, such as

vector  addition/multiplication/accumulation,  in  Ben-

chSLAM.  The  organization  of  the  VPU  is  shown  in

Fig.9(a).  It  contains  vector  processing  elements

(VPEs).  For  each  VPE,  there  are  three  main  input

sources:  1)  data in  the outside SRAM, 2)  outputs  of

the  MPU, and 3)  outputs  of  the  right-side  neighbor-

ing  VPE  (Data-H  in Fig.9(b)).  The  concrete  inputs

are determined by the opcode from the CU. The key

reason  to  have  multiple  input  sources  is  that  VPU

can efficiently support independent operations such as

dot  production  (independent  inputs  for  each  VPE)

and  dependent  operations  such  as  inner  production

(multiplication-accumulation  mode  and  inputs  from

the neighboring VPE and the internal register). Espe-

cially  for  the  latter  inter-PE  data  movements,  the

VPU can fetch data from the neighbor PEs and thus

eliminate  data  accesses  from  SRAM  in  some  opera-

tions,  which  is  different  from  commonly  used  vector

units in parallel machines.

The  detailed  architecture  of  a  VPE  is  shown  in

Fig.9(b). Two input multiplexers (MUX) are used for

selecting inputs for the functional unit.  The result of

the functional unit will be directly treated as the out-

put or stored into the internal register. Similar to the

MPE, the output multiplexer determines whether the

output of the VPE is from the functional unit or the

internal register. 
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5.3    Scalar Processing Unit

The SPU is required for processing relatively gen-

eral  scalar  operations  in  BenchSLAM.  The  detailed

architecture  of  SPU  is  similar  to  that  of  one  VPE.

The major difference is that the functional unit of the

SPU is more versatile than that of the VPE, as more

operations  (such  as  sqrt,  sin,  cos,  and  random num-

ber generation) are supported by the SPU. 

5.4    Control Unit

The control unit schedules and configures the en-

tire  hardware  accelerator  with  user-provided  instruc-

tions.  All  those  VLIW (very  long  instruction  word)-

like  instructions  are  first  stored  in  the  instruction

SRAM  and  then  processed  by  the  control  unit  as

shown in Fig.10. More specifically, the CU fetches an

instruction  according  to  the  program  counter  (PC),

and then different parts of the instruction are sent to

the corresponding decoders (including the macro, ma-

trix, vector, scalar, and data decoders). The decoders

will  generate  control  signals  for  the  corresponding

processing  unit  except  for  the  macro  decoder,  which

will  generate  control  signals  for  all  processing  units.

The  CU supports  direct  jump  and  indirect  jump  in-

structions  with  the  address  stored  in  the  operand

fields of the instructions and internal controller regis-

ters, respectively, allowing the handling of complicat-

ed control flows in SLAM algorithms. 

5.5    Data SRAMs

In  addition  to  the  instruction  SRAM,  two  data

SRAMs are provided for storing inputs and outputs of

all  the  processing  units  (MPU,  VPU,  and  SPU)  to

avoid  data  conflicts.  In  particular,  the  input  data  of

the  MPU  are  first  read  into  two  buffers  (the  row

buffer  and  the  column  buffer)  for  supplying  data  to

the bottom and the right boundaries of the MPU, re-

spectively.  The  roles  of  the  two  SRAMs  can  be  ex-

changed only after a computation stage is totally fin-

ished,  and  the  previous  output  data  become  the  in-

put for later processing, such as the Gaussian blur op-

eration after the frame is resized in SIFT. Additional-

ly,  data  are  stored based on their  different  organiza-

tion, such as 2D matrix data (2D SRAM), 1D vector

data, and scalar data (1D SRAM), to simplify the ac-

cess  patterns.  Thus,  the  MPU  requires  massive  2D

SRAM and a few 1D SRAM accesses as most matrix

operations  are  mapped  to  the  MPU,  while  the  VPU

requires both 2D SRAM and 1D SRAM accesses, and

the SPU can only access 1D SRAM. 

6    Instruction Set Design

In this section, we introduce our proposed hierar-

chical  instruction  set  for  bridging  the  gap  between

software/algorithm and hardware/scheduling. 

6.1    Design Objectives and Components

There  are  three  design  principles  in  our  instruc-

tion set.

● Effectiveness  and  User-Friendliness.  The  in-

struction  set  should  balance  the  trade-off  between

programmability and efficiency.

● Completeness.  The  instruction  set  should  be

complete for programming existing SLAM algorithms.

● Scalability.  The  instruction  set  should  be  com-

patible with future potential SLAM algorithms.

Following  these  three  principles,  we  design  six

groups of  instructions—data,  control,  macro,  matrix,

vector, and scalar instructions, which are organized as
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the VLIW style to have a flexible control flow.

● We use five data instructions for data transfer-

ring among DRAM, SRAM, and internal buffers.

● Based on the  algorithmic  components  analyzed

in Subsection 3.2.4,  we  design  21  macro  instructions

dedicated  to  performing  those  algorithmic  compo-

nents with both high performance and energy efficien-

cy.

● We also provide two control instructions, seven

matrix  instructions,  six  vector  instructions,  and  12

scalar instructions for the remaining computation, de-

livering flexibility and scalability for future SLAM al-

gorithms.

The  reason  behind  our  instruction  set  design  is

threefold.  First,  with  the  higher-level  functionality

provided by macro instructions, programmers are ex-

pected  to  easily  build  their  SLAM  algorithms  using

mostly common algorithmic components. Second, oth-

er  non-macro  instructions  provide  the  potential  to

perform other  computations  in  both  existing  and  fu-

ture SLAM algorithms using our built compiler. Note

that  low-level  functional  instructions,  i.e.,  non-macro

instructions,  can  also  perform the  same  functionality

as macro instructions.  Third,  macro instructions also

release the heavy burden on the compiler in tradition-

al  VLIW  processors  for  parallel-executing  programs

with high efficiency. Therefore, our instruction set has

hierarchical  instructions  to  guarantee  effectiveness,

user-friendliness, completeness, and scalability.

Moreover,  we  have  discussed  irregular  control

flows in Subsection 4.4, which could be solved by the

hierarchical instruction set,  together with the control

flow unit (introduced in Subsection 5.4) which acts as

the  specialized  decoder  matching  the  hierarchical  in-

struction  set.  More  specifically,  high-level  functional

instructions  (macro  instructions)  deal  with  complex

(and common) computational patterns in SLAM algo-

rithms,  which simplifies  the instruction flow and sig-

nificantly  reduces  branches/jumps.  For  example,  the

EKF  SLAM  algorithm  is  executed  in  an  iterative

mode.  In  each  iteration,  robots  receive  motion  con-

trol signals and observe various landmarks. However,

it  is  uncertain  about  how  many  landmarks  are  ob-

served  in  the  current  iteration  and  which  of  them

have  been  observed  before  (i.e.,  the  observed  land-

marks need to be updated). Therefore, there are com-

putational  imbalances  in  processing  related  vectors

and  submatrices  among  iterations.  As  a  result,  such

uncertainty and imbalance would cause irregular con-

trol  flows. Moreover,  there are many small-scale vec-

tor  and  matrix  operations  as  the  dimensions  of  the

pose state and the landmark state are generally small,

e.g., three dimensions for the pose state in a 2D scene.

These small operations, implemented by loops, would

bring  intensive  branches/jumps,  which  may  exhaust

history  entries  of  the  branch  predictor  in  CPUs  and

cause  a  high-branch  misprediction  ratio.  We propose

macro instructions to hide the uncertainty in control

flows  by  aggregating  multiple  small-scale  operations

into monolithic matrix operations and making the un-

certain  number  of  landmarks  (to  be  updated)  be  a

configurable  instruction  field.  Therefore,  intensive

branches/jumps in small operations are eliminated at

source,  and  mispredictions  could  be  reduced  in  algo-

rithm  implementations.  Regular  operations  (e.g.,

CONV)  in  SLAM  algorithms  also  benefit  from  this

method, and thus branch mispredictions could be re-

duced further.

Table 1 lists  a  subset  of  the  proposed instruction

set as illustrative examples. The data instructions can

be  roughly  grouped  into  three  types:  1)  LD/ST

(load/store) for data transferring between SRAM and

DRAM,  2)  MOV  (move)  for  data  transferring  be-

tween SRAMs, and 3) RD/WR (read/write) for data

transferring between SRAM and internal buffers. The

 

Table  1.    Subset of Proposed Instruction Set

Instruction Type Opcode Note

Data LD/ST ↔SRAM  DRAM

MOV ↔SRAM  SRAM

RD/WR ↔SRAM  buffers

Control CB Condition branch

JUMP Direct/indirect jump

Macro CONV Convolution operation

POOL Pooling operation

IMGACC Image accumulation operation

BOX Image box filtering operation

LOCAL
EXTREMA

Local extrema operation

COUNTCMPCompare with counter
operation

Matrix MMmM/
MMaM

on-MPU-matrix-mult/
add-matrix operation

MMmV on-MPU-matrix-mult-vector
operation

MMmS/
MMaS

on-MPU-matrix-mult/
add-scalar operation

MVmV/
MVoV

on-MPU-vector-mult/outer
product-vector operation

Vector VVmV/
VVaV

on-VPU-vector-mult/
add-vector operation

Scalar SQRT on-SPU-scalar-square-root
operation

RANDOM on-SPU-random-generate-scalar
operation
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control  instructions  contain  CB  (condition  branch)

and JUMP (direct/indirect  jump).  The computation-

al instructions include the macro, matrix, vector, and

scalar  instructions.  The  macro  instructions  are  de-

signed  for  relatively  complicated  operations  such  as

convolution (CONV), pooling (POOL), and image ac-

cumulation  (IMGACC).  The  matrix  instructions  in-

clude  matrix-matrix,  matrix-vector,  matrix-scalar,

and vector-vector operations, while the vector instruc-

tions only include vector-vector and vector-scalar op-

erations.  The  scalar  instructions  only  contain  scalar-

scalar operations.  The choice of different instructions

is left for an assembler. 

6.2    Driving Examples

We  introduce  several  important  computing  in-

structions  as  driving  examples,  including  CONV  for

macro  instructions,  MMmV  (on-MPU-matrix-multi-

ply-vector),  MMmM  (on-MPU-matrix-multiply-ma-

trix),  MVmV  (on-MPU-vector-multiply-vector)  for

matrix instructions, and VVmV (on-VPU-vector-mul-

tiply-vector) for vector instructions. 

6.2.1    CONV

In Fig.11(a),  we  show  the  scheduling  of  the

CONV instruction in the accelerator, which finishes a

3× 3 3× 3

3× 3

3× 3

2D  convolution  operation  on  an  input  matrix/image

to construct an output matrix/image (a common op-

eration in the feature extraction stage of SLAM algo-

rithms), using  convolution on a  MPU for a

clearer  illustration.  The  input/output  image  will  be

split  into  chunks  (i.e.,  pixel  submatrices  of  the

input/output image). The output image will  be com-

puted  according  to  chunks  and  related  kernels  (i.e.,

parameters  shared  among  input  chunks),  and  each

chunk will  be  loaded into  on-chip  2D SRAM. In  the

CONV  computation,  the  process  of  kernels  sliding

over  an  input  image  is  split  into  the  sliding  over

chunks (green and blue data in the row/column buffer

shown in Fig.11) for  parallelism. In each sliding step

for one kernel, there is an element-wise multiplication

between this kernel and an equal-size pixel submatrix

of  the  chunk,  and  the  sum  of  these  intermediates

yields  an output pixel.  Each MPE works  on a single

output pixel on the output image and changes to an-

other  output  pixel  in  the  same  chunk  until  the  cur-

rent  pixel  is  finished.  The  MPU processes  out-

put pixels concurrently (i.e., the  green square on

the output image in Fig.11).  While computing a row

in convolution, the input data from the column buffer

will  be  passed  from  right  MPEs  to  left  MPEs  (also

buffered in MPEs); while computing the next row, the

input  data  from  the  row  buffer  will  be  passed  from

bottom MPEs to upper MPEs.

 

Input Image Output Image Kernel: , , , , ..., 

2D SRAM
MPU

Column Buffer

Row Buffer

MPE

MPE

MPE

MPE

MPE

MPE

MPE

MPE

MPE

P21

P22

Kernel

MPE

MPE

MPE

MPE

Cycle

        

        

        

        

        

(b)

(a)

3× 3Fig.11.  CONV on MPU (using  MPU in the example). (a) Scheduling of CONV instruction. (b) Data reuse between MPEs
(four MPEs in the example).
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K00 MPE00 MPE10

MPE01 P01 P02

MPE11 P11 P12

To  be  clear  about  such  inter-MPE  data  move-

ments and reuses, we show the input data for four out

of nine MPEs in the above example cycle by cycle in

Fig.11(b). At the very first cycle, every MPE needs to

fetch  their  input  data  from  the  outside  SRAM  and

multiplies  with  the  same  convolutional  kernel  value

( ). In the next two cycles,  and  can

reuse  the  input  data  from  (i.e., , )  and

 (i.e., , ),  respectively,  as  indicated  in

blue in Fig.11(b). Then all MPEs will start new rows.

Thus  bottom-up  data  movements  are  activated  as

bottom MPEs just use and buffer such data (indicat-

ed  in  green).  Repeating  such  inter-MPE  data  move-

ment patterns, the 2D convolution of nine output pix-

els can be finished in nine cycles, and then all the pix-

els in the chunk and the whole output image.

We  provide  massive  macro  instructions  such  as

CONV for high efficiency, even though the functional-

ity  of  macro  instructions  can  also  be  achieved  using

the provided matrix, vector, scalar, data, and control

instructions.  In Fig.12,  we  present  the  computation

part  of  the  assemble  code  for  the  convolution  opera-

tion  using  non-macro  instructions  (the vector  field  is

not used in this fragment) as well, which is scheduled

in the same efficient flow as CONV. We can observe

that  data  cannot  be  fully  reused  between  different

blocks, leading to costly data movements. In addition,

explicit  control  instructions  (e.g.,  CB  and  JUMP)

used  to  implement  loops  may  cause  control  flow  is-

sues, such as branch misprediction. Together with the

synchronization  between  different  fields  of  VLIW in-

structions,  which  are  used  for  eliminating  data  con-

flicts,  the  non-macro  code  is  not  so  efficient  as  the

macro one in terms of  performance and energy.  Fur-

thermore,  even  with  the  extra  cost  of  the  macro  de-

coder, the CU only takes 3.10% of the area of the en-

tire implemented accelerator. 

 

//R0: column counter  //R4: block counter   //R8: iblock address    //R12: row size

//R1: column number  //R5: block number   //R9: kernel address    //R13: block size

//R2: row counter      //R6: chunk counter  //R10: ichunk address  //R14: input addr

//R3: row number      //R7: chunk number  //R11: obuffer address //R15: output addr

L1: //one block in the input frame                                            //R16: old kernel addr

     MMmS R11, R9, R8, None, None, ... MV R0, 1             //reset column counter

                                                      MV R2, 1             //reset row counter

                                                      JUMP L3

L2: MMmS R11, R9, R8, Bottom, Acc, ... MV R0, 1             //reset col counter, bottom input

L3: //loop all the rows in 2D convolution

                                                      SSaS R9, R9, 1      //update kernel addr

     MMmS R11, R9, R8, Right, Acc, ...                            //one row, acc, input from right

                                                      SSaS R0, R0, 1      //count column

                                                      CB L3, R0, R1       //continue if finish one row

                                                      SSaS R2, R2,1       //count row

                                                      SSaS R8, R8, R12  //update block addr

                                                      CB L2, R2, R3      //continue if finsh a block

L4:

                                                      MV R9, R16     WR Mode, R15, R11, ...  //reset kernel addr

                                                      SSaS R4, R4, 1      //count block

                                                      CB L5, R4, R5      //continue if finish all blocks

                                                      MV R4, 1             //reset block counter

                                                      SSaS R6, R6, 1      //count chunk

                                                      CB L6, R6, R7      //continue if finish all chunks

                                                      JUMP L7             //finsh all chunks? yes go to L7

L5:

                                                      SSaS R8, R8, R13  //reset block addr

                                                      JUMP L1         RD Mode, R8, R10, ...   //start a new block

L6:

                                                      JUMP L1         LD Mode, R10, R14, ...  //load a new chunk

L7: 

Fig.12.  Convolution code using non-macro instructions.
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6.2.2    MMmV

3× 3

N N + 1

3× 3

In Fig.13,  we  show  the  scheduling  of  MMmV,

which  finishes  the  matrix-vector  multiplication  on  a

 MPU  example.  Each  MPE  calculates  one  out-

put data in the output vector by multiplying a row of

the matrix with the input vector, and it will not move

to  another  output  until  the  current  one  is  finished.

During the process of MMmV, the MPEs concurrent-

ly  work  in  a  pipelined  multiplication-accumulation

mode  and  accumulate  the  multiplication  results  in

their  inside  registers;  thus  for  an  input  vector  of

length ,  it  will  take  cycles  to  calculate  nine

data of the output vector in this  MPU example.
  

MPE

MPU Input Matrix Input
Vector

*

Cycle

C
y
c
le

∗
Fig.13.  MMmV: the matrix-vector multiplication on MPU.

 means the multiplication operation. 

6.2.3    MMmM

3× 3

A (m× n) B (n× k) A

B

A

B

In Fig.14,  we  show  the  scheduling  of  MMmM,

which operates the matrix-matrix multiplication on a

 MPU  example.  Similar  to  MMmV,  each  MPE

also calculates an output but here in the output ma-

trix, and will insist on computing the current output

until it is finished. For the case of multiplying matrix

 with matrix , three rows in  and

three columns in  are fed into the MPU sequential-

ly, while the MPEs in the same row share a row from

,  and  the  MPEs  in  the  same  column  share  a  col-

umn from , as shown in Fig.14. Thus, nine outputs

C (m× k)

n+ 1

in  the  output  matrix  can  be  computed  in

 cycles  as  the  MPEs  concurrently  work  in  a

pipelined multiplication-accumulation mode. 

6.2.4    MVmV

Px × Py

Px × Py

Px × Py

Px × Py

Px × Py

In Fig.15,  we  show  the  scheduling  of  MVmV,

which  computes  the  vector-vector  multiplication  on

MPU. An intuitive scheduling is mapping this compu-

tation  to  the  VPU  instead  of  the  MPU.  However,

there  also  exists  the  case  where  the  vectors  are  ex-

tremely long; thus, mapping on the VPU can be time-

consuming.  We  provide  the  solution  that  maps  such

operations on the MPU to leverage the parallelism of

MPEs (e.g., vector dot production operation and vec-

tor  addition  operation).  With  MPEs  in  the

MPU, it can finish the multiplication of  pairs

of  inputs and accumulate results  into inside registers

in each cycle (Fig.15(a)). After all inputs are fed into

the  MPU,  accumulated  partial  productions

are maintained in the  MPEs (Fig.15(b)). The

final  result  is  obtained  by  adding  all  the  in-

termediate  results.  Thus,  the  MPU is  activated  in  a

propagating-accumulation-summation mode where the

MPEs  are  activated  in  row/column  from  the

right/bottom  to  left/top  sequentially  to  add  inputs

from  the  right/bottom  and  pass  results  to  left/top

(Fig.15(c)  and Fig.15(d),  respectively).  Then  the  fi-

nal result is collected from the top-left-most MPE. 

 

MPE

MPU Input Matrix

A

Input Matrix

B

*
Cycle

C
y
c
le

Fig.14.  MMmM: the matrix-matrix multiplication on MPU.
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Fig.15.  MVmV: the vector-vector multiplication on MPU. (a) Multiplication of  pairs of inputs. (b) Accumulated partial
productions in each MPE (  MPEs in total). (c) Propagating accumulation-summation from right to left in each MPE row.
(d) Propagating accumulation-summation (Acc-Sum) from bottom to top in the left-most MPE column and outputting the final re-
sult from the top-left-most MPE.
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6.2.5    VVmV

Pz

Pz

In Fig.16,  we  show  the  scheduling  of  VVmV,

which  computes  the  vector-vector  multiplication  on

the  VPU.  Commonly,  vector  operations  (e.g.,  vector

multiplication  and  vector  dot  multiplication/addi-

tion/comparison) are mapped on the VPU. Similar to

MVmV,  each  VPE  performs  the  multiplication  of  a

pair of inputs and accumulates the result into its in-

side  register,  and  thus  intermediate  results  in  to-

tal  for  the  VPU.  After  all  data  in  the  input  vectors

are visited, the VPU works in a similar propagating-

accumulation-summation  mode  as  the  MPU  for

MVmV  except  that  only  one  direction  propagation

exists to add all  intermediate results. Then the fi-

nal result is collected from the left-most VPE. 

7    Algorithm Mapping

In this section, we elaborate on how to map vari-

ous  SLAM algorithms to our accelerator.  Due to the

page limit, we only introduce the mapping process of

most representative algorithms (or phases) in Bench-

SLAM. Thus we select SIFT and g2o as driving exam-

ples  as  they  are  representatives  of  the  frontend  and

the  backend  in  graph-based  SLAMs,  respectively.

Note that for all the processing algorithms, we build a

simple compiler that can be used to generate instruc-

tions to reduce the heavy burden of programming so-

phisticated SLAM algorithms. 

7.1    Feature Extraction: SIFT

As stated in Subsection 3.2.2, the SIFT algorithm

is one of the key operations in RGB-D SLAM. How-

ever,  it  is  nontrivial  to  map  the  entire  SIFT  algo-

rithm to our accelerator, because it requires all types

of  computational  instructions,  including  macro,  ma-

trix, vector, and scalar instructions.

Fig.17 shows the mapping process of the SIFT al-

gorithm. The original image is first smoothed and re-

duced  with  the  Gaussian  pyramid,  which  can  be  de-

composed into multiple CONV and POOL macro in-

structions.  Then,  the  DoG  (difference  of  Gaussian),

which is employed to detect features, can be obtained

by  conducting  matrix  subtraction  operations  on  dif-

ferent octaves of the image in the Gaussian pyramid.

Once  the  DoG  is  found,  the  local  extrema  are

searched  on  the  image  using  a  specially  designed

macro  instruction,  i.e.,  LOCAL  EXTREMA.  This  is

achieved  by  comparing  a  pixel  with  its  neighboring

pixels  within  one  scale  and  across  different  scales  as

well.  The local extrema are further filtered for deter-

mining  the  final  keypoints.  This  process  consists  of

numerous vector and scalar operations, e.g., vector in-

ner  production  and  matrix  determinant/trace.  Final-

ly,  the  keypoint  descriptor  is  created  by  computing

multiple  histograms on the neighboring points  of  the

keypoint.  This  process  also  consists  of  multiple  vec-
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Fig.16.  VVmV: the vector-vector multiplication on VPU. (a) Multiplication of  pairs of inputs. (b) Accumulated partial produc-
tions in each VPE (  VPEs in total). (c) Propagating accumulation-summation from right to left and outputting the final result
from the left-most VPE.
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Fig.17.  Mapping process of the SIFT algorithm. : subtraction.
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tor and scalar operations. In more detail, the compu-

tation  of  the  histogram  is  achieved  by  using  the

macro instruction HIST which consists of vector oper-

ations  of  comparison  and  counting.  The  rotation  of

the  neighbor  pixel  area  is  achieved  by  matrix-vector

multiplication  operations.  Several  transcendental

functions  such  as  exponential  operation  are  comput-

ed by the SPU. 

7.2    Graph Optimization: g2o

The g2o[38], a nonlinear graph optimization frame-

work  with  least  squares,  is  one  of  the  bases  of  the

graph-based  SLAM  (including  RGB-D  SLAM  and

ORB  SLAM).  In  contrast  to  the  SIFT  algorithm,

most operations in the g2o are matrix and vector op-

erations.

i j

Fig.18 shows the mapping process of the g2o algo-

rithm.  Given  two  poses ,  (i.e.,  two  nodes  in  the

pose  graph)  and  their  constraint  (i.e.,  the  edge  be-

tween these two nodes), a user-defined error function

and  the  corresponding  Jacobian  are  first  computed

with  matrix/vector  operations  such  as  matrix  multi-

plication  and  vector  MAC (multiply  and  accumulate

operation).  Then,  a  linear  system  is  constructed  to

minimize  the  objective  function.  This  is  achieved  by

using multiple matrix/vector multiplication. To solve

the  linear  system,  an  efficient  linear  solver,  the  pre-

conditioned  conjugate  gradient  (PCG)[45],  is  em-

ployed and PCG is  performed by the  macro  instruc-

tion  PCG,  which  can  also  be  decomposed  into  ma-

trix/vector multiplication operations. Finally, the pos-

es are optimized and updated with vector MAC. 

8    Experiments
 

8.1    Experimental Methodology
 

8.1.1    Tools

We implement the hardware accelerator with Ver-

ilog RTL, synthesize it with Synopsys Design Compil-

er,  and  perform  the  layout  with  IC  Compiler.  The

power consumption of the logic is estimated by using

Synopsys  PrimeTime  PX.  The  timing  and  power  in-

formation is obtained with the TSMC 45 nm technol-

ogy. 

8.1.2    Baseline

As  the  baseline  for  comparison,  we  also  evaluate

the  performance  and  power  of  BenchSLAM on  both

Intel  x86 and ARM Cortex platforms.  The x86 plat-

form has a 4-core i7-3770 processor running at 3.4 GHz,

and the ARM platform has a 4-core Cortex A57 pro-

cessor running at 1.9 GHz. The reason for evaluating

an  ARM processor  is  that  ARM-like  embedded  pro-

cessors  are  widely  deployed  in  mobile  robots  due  to

their  relatively  high  energy  efficiency.  Also,  to  avoid

inefficient software implementations for a fair compar-

ison,  we  use  a  high-performance  arithmetic  library

such  as  OpenCV  and  Eigen3[46] and  compile  all  the

programs with SIMD support, e.g., AVX, MMX, SSE,

SSE2, SSE4.1, and SSE4.2 on the x86 CPU (with the

option “-march = native”), and NEON (with the op-

tion “-mfpu  =  neo”)  on  the  ARM  CPU.  The  input

datasets are selected from FastSLAM[47], TUM[48], and

CoRBS[49].

All  the  above  discussion  does  not  involve  GPUs,

and  the  reasons  are  threefold.  First,  for  x86  CPUs

such as the one evaluated in this paper, accompanied

GPUs  are  usually  powerful  with  thousands  of  cores

commonly with a power of tens of watts. Thus, desk-

top-level  GPUs  seldom  become  a  potential  solution

for  current  platforms,  especially  energy-sensitive  em-

bedded  systems.  The  energy  issue  will  become  more

critical with the growing markets for mobile robotics,

which  are  expected  to  have  promoted  cognition  and

mobility with fully autonomous solutions to adapt to

the surrounding environment for complex tasks in In-

dustry  4.0  and  IoT.  Second,  even  using  embedded

GPUs, the performance of  embedded GPUs does not

fulfill the real-time processing requirements of mobile
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systems  with  a  limited  power  budget.  For  instance,

Nardi et al.[8] achieved only 9.31x speedup on average

on  high-performance  embedded  GPUs,  including

NVIDIA  Tegra  and  ARM  Maili.  Peng et  al.[9]

achieved  only  1.41x–1.68x  speedup  on  energy-effi-

cient embedded GPUs which target AI computing, in-

cluding Jetson Xavier, Jetson TX2, and Jetson Nano.

Third, for GPU+CPUs, which means using GPUs to

process computation-intensive sub-tasks and CPUs to

process  memory-intensive  sub-tasks,  such  an  alloca-

tion  scheme  seems  to  take  advantage  of  both  CPUs

and GPUs, but a large amount of host-device data ac-

cesses  and  synchronization  primitives  cause  signifi-

cant inefficiency. 

8.1.3    Benchmarks

We  use  BenchSLAM  as  our  benchmark,  which

contains  four  representative  SLAM algorithms  as  in-

troduced  in Section 3,  i.e.,  EKF  SLAM,  PF  SLAM,

RGB-D  SLAM,  and  ORB  SLAM.  According  to  the

difference  of  feature  descriptors  and datasets,  we  de-

rive 12 benchmarks as shown in Table 2. If there are

several  image  sequences  in  one  dataset,  we  evaluate

each sequence, and then average over them.
  

Table  2.    Benchmarks Configuration

Benchmark Algorithm Feature
Descriptor

Dataset

EFK 1 EKF SLAM - Sparse map[47]

EKF 2 EKF SLAM - Dense map[47]

PF 1 PF SLAM - Sparse map[47]

PF 2 PF SLAM - Dense map[47]

RGB-D SIFT
TUM1

RGB-D SLAM SIFT TUM freiburg1
scene[48]

RGB-D SIFT
TUM2

RGB-D SLAM SIFT TUM freiburg2
scene[48]

RGB-D SURF
TUM1

RGB-D SLAM SURF TUM freiburg1
scene[48]

RGB-D SURF
TUM2

RGB-D SLAM SURF TUM freiburg2
scene[48]

ORB TUM1 ORB SLAM ORB TUM freiburg1
scene[48]

ORB TUM2 ORB SLAM ORB TUM freiburg2
scene[48]

ORB DESK1 ORB SLAM ORB CoRBS desk
scene[49]

ORB EleBox1 ORB SLAM ORB CoRBS electrical
cabinet scene[49]

 

8.2    Hardware Characteristics

In Table 3,  we  report  the  hardware  parameters

used  for  implementing  our  accelerator.  To  avoid  the

Px = Py = Pz

16× 16 Px = Py = 16

Pz = 16

inefficiency  among  different  computing  units  and

buffers  caused  by  unequal  numbers  of  data  for

read/write/computing at a time, we set 

for  computing units  and the same length for  on-chip

buffers.  Furthermore,  to  support  real-time processing

within the embedded system power budget, we select

our  accelerator  having  MPEs  ( )

in the MPU, 16 VPE ( ) in the VPU, and 768

KB on-chip SRAM in total.

Fig.19 shows the layout of the implemented accel-

erator,  and  we  report  the  layout  characteristics  in

Table 4. The total area of the accelerator is moderate

at  the  cost  of  7.41  mm2 at  45  nm,  1.94x  and  21.6x

 

Table  3.    Hardware Parameters for the Accelerator

Parameter Value Note

Px 16 MPEs in a row of MPU

Py 16 MPEs in a column of MPU

Pz 16 VPEs in VPU

Iw 256 Instruction bit-width

Dw 16 Data bit-width

Rn 64 Number of control registers

Inst. SRAM 32 KB Storage of instruction SRAM

2D SRAM 224 KB Storage of 2D SRAM

1D SRAM 512 KB Storage of 1D SRAM

Note: Inst. is the abbreviation of instruction.
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FU

Fig.19.  Layout of the implemented accelerator (45 nm).

 

Table  4.    Accelerator Hardware Characteristics (45 nm)

Hardware Module Area (mm2) Power (mW)

Whole accelerator 7.41 1 346.69

FU in total 4.20 1 072.02

FU in MPU 3.48 964.12

FU in VPU 0.10 16.69

FU in SPU 0.02 3.64

Controller 0.23 83.00

SRAM in total 2.98 191.67

2D SRAM 0.69 64.13

1D SRAM 1.58 114.91

Inst. SRAM 0.78 12.64
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4× 3.6smaller than that of the quad ARM CPU (  mm2 at

20 nm[50]) and the x86 CPU (160 mm2 at 22 nm[51]),

respectively. For fairness, we carefully scale our accel-

erator to corresponding technology nodes, i.e., 1.58 mm2

at  20  nm[52] and  1.63  mm2 at  22  nm[53],  achieving

9.11x and 98.2x smaller area than that of quad ARM

CPU and x86 CPU, respectively. The storage system

(SRAM) has almost the same area cost as the compu-

tation logic (FU) (i.e., 2.98 mm2 vs 3.82 mm2), in or-

der  to  accommodate  at  least  one  chunk  of  1 080  p

frame (e.g., ORB Desk1 and ORB EbleBox1) as well

as  more  globally  used  1D  data.  Thus  the  computa-

tion units can always process inputs without stalling. 

8.3    Experimental Results
 

8.3.1    Performance

In Fig.20,  we  report  the  performance  comparison

of ARM, x86, and our accelerator on all 12 test cases

in BenchSLAM. On average, our accelerator is 33.03x

faster  than  the  ARM  CPU,  while  the  x86  processor

only  achieves  a  3.14x  speedup  over  the  ARM  CPU.

Notably, we observe that unlike the x86 CPU, which

achieves almost equal acceleration on all  benchmarks

(1.86x–4.91x),  the  speedups  of  our  accelerator  over

the ARM processor vary significantly on different al-

gorithms.  More  specifically,  our  accelerator  outper-

forms  the  ARM  CPU  75.35x  on  average

(51.46x–108.83x)  on  RGB-D  SLAM  algorithms,

60.13x (34.92x–75.57x) on the filter-based SLAM (i.e.,

EKF  and  PF),  and  only  8.73x  (7.77x–9.74x)  on  the

ORB SLAM. The main reason for the high speedup is

10.52

that the relatively large proportion of operations can

be mapped to the MPU (rather than the VPU) as it

contains 16x more PEs than the VPU. To further val-

idate this, we analyze the proportion of operations on

the  processing  units  and  observe  that  99.93%  of  the

operations are processed on the MPU but only 0.04%

on the VPU for RGB-D SLAM on average. The case

is 97.53% on the MPU and 2.38% on the VPU for fil-

ter-based  SLAM  algorithms.  For  ORB  SLAM,  it  is

92.08%  on  the  MPU  and  7.9%  on  the  VPU.  When

compared  with  the  traditional  x86  CPU,  the  imple-

mented accelerator achieves a x speedup on aver-

age over all 12 benchmarks. Similarly, our accelerator

also exhibits significantly different behaviors on differ-

ent  algorithms  over  x86  CPU  (i.e.,  15.48x,  22.37x,

and 3.97x speedup on the filter-based SLAM, RGB-D

SLAM, and ORB SLAM, respectively). 

8.3.2    Energy Consumption

In Fig.21, we report the energy costs of the CPUs

and  our  accelerator  on  all  12  test  cases  in  Bench-

SLAM, where the energy costs of the DRAM accesses

are also included. On average, the implemented accel-

erator achieves 62.64x and 112.62x better energy sav-

ings  than  the  ARM  and  x86  CPUs,  respectively.

Moreover,  when  executing  benchmarks  with  relative-

ly small data sizes, such as the EKF and PF SLAM,

our  accelerator  is  much  more  energy-efficient,  i.e.,

75.69x  and  117.08x  less  energy  costs  than  the  ARM

and  x86  CPUs,  respectively,  as  most  data  can  be

stored in on-chip SRAMs, which thus reduces the en-

ergy  costs  of  the  DRAM  accesses.  Regarding  vision

SLAM tasks (i.e.,  RGB-D and ORB SLAM), our ac-
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celerator also performs well with regular computation

patterns (i.e., 101.25x and 197.42x less than the ARM

and  x86  CPUs  on  the  RGB-D  SLAM,  respectively,

10.99x and 23.37x less than the ARM and x86 CPUs

on  the  ORB  SLAM,  respectively).  This  performance

should be mainly attributed to the efficient macro in-

structions.

With the current configuration of parameters, our

accelerator is able to process BenchSLAM in real time

efficiently. Specifically, it performs all the graph-based

SLAM  algorithms  in  BenchSLAM  with  average

frames  per  second  (FPS)  of  28.05  and  the  power  of

467.75 mW. 

9    Related Work
 

9.1    SLAM Algorithms

Unlike  traditional  SLAM algorithms  that  process

limited  data  from  sensors  such  as  laser,  sonar,  and

radar,  the  recent  advanced  vision  SLAM  problem

raises the processing challenge with a high input data

rate and a real-time requirement under a limited pow-

er budget for less powerful computation capability on

mobile  platforms.  Typical  vision  SLAM  algorithms

such  as  RGB-D camera-based  SLAM[17, 18] and  ORB

SLAM[32] require complex processing flows in both da-

ta  and  control.  Meanwhile,  emerging  SLAM  algo-

rithms  are  evolving  quickly  towards  wider  scenarios

(e.g.,  underwater[54],  semi-dense  mapping[55])  with

more techniques integration (e.g., reinforcement learn-

ing[56] and  spatial  modeling[57])  and  thus  are  growing

in variation and complexity. Hence, our design is sub-

stantially effective in fulfilling such requirements with

its high flexibility and efficiency. 

9.2    Hardware Acceleration of SLAM

The  SLAM problem  has  been  evolving  for  many

years, especially in recent years together with the ad-

vance of robotic and sensor technology. However, few

researchers have worked on general hardware acceler-

ators for SLAM algorithms.

With  regard  to  the  general-purpose  processor  de-

sign,  research on one of  the most typical  solutions is

conducted  by  Hashimoto et  al.[58].  In  this  work,  the

ROS (robot  operating  system)[59] based  SLAM is  de-

ployed on desktop operation systems such as Ubuntu

on the CPU. Zhang et  al.[60] presented the PerceptIn

robotics vision system (PIRVS), a visual-inertial com-

puting hardware for SLAM algorithms. The PIRVS is

equipped  with  a  multi-core  processor,  a  global-shut-

ter stereo camera, and an IMU (inertial measurement

unit) with precise hardware synchronization.

With  regard  to  the  ASIC  design,  several  FPGA-

based  architectures  have  been  proposed.  Most  work

focuses  on  only  one  specific  SLAM  algorithm.  One

more recent work is by Wu et al.[10]. They realized an

FPGA-based  customized  accelerator  for  the  DS-

SLAM  (semantic  SLAM  towards  dynamic  environ-

ment) algorithm. Compared with Intel i7-8750H CPU

on the TUM dataset, their accelerator achieves up to

13x frame rate improvement, and up to 18x energy ef-

ficiency  improvement.  Liu et  al.[61] proposed  a  het-

erogenous  ORB-based  visual  SLAM system,  eSLAM,

which  is  based  on  an  FPGA platform and dedicated

to  accelerating  feature  extraction  and  matching

stages.  When  evaluating  on  the  TUM  dataset,  eS-

LAM  achieves  1.7x–3.0x  speedup  in  the  frame  rate

and  41x–71x  improvement  in  the  energy  efficiency

than those of Intel i7-4700mq CPU, while it achieves

17.8x–31x speedup and 14x–25x energy efficiency than

those  of  the  ARM  Cortex-A9  processor.  Boikos  and

Bouganis[62] also  proposed  an  FPGA-based  architec-

ture  to  accelerate  the  large-scale  direct  monocular

SLAM  (LSD-SLAM)  algorithm,  achieving  the  real-

time processing requirement. Gu et al.[63] presented an

FPGA-based  solution  for  the  visual  odometry  based

SLAM  (VO-SLAM)  algorithm,  achieving  10x  energy

saving per frame than Intel i7-3770K CPU. The com-

parison  of  performance  and  energy  consumption

among the above hardware and ours is shown in Ta-

ble 5. Only our accelerator supports general SLAM al-

gorithms and achieves the best energy efficiency with

an acceptable frame rate.
  

Table  5.    Comparison with Other Hardware

Hardware Target
Algorithm

Performance
(FPS)

Energy
(mJ/frame)

eSLAM[61] ORB-SLAM 52.7  36.7

Boikos and
Bouganis[62]

LSD-SLAM 61.7 105.3

Gu et al.[63] VO-SLAM 31.0 190.0

Ours general SLAM 28.1  16.6

Note:  Those  in  bold  are  the  best  ones  in  the  corresponding
column.
 

There  is  some  other  work  which  only  focuses  on

feature extraction stages in the SLAM algorithm. Lee

and  Byun[64] proposed  an  FPGA-based  implementa-

tion to accelerate only the ORB algorithm within 18

ms,  without  evaluating  the  whole  ORB-SLAM  algo-

rithm.  Na  and  Jeong[65] proposed  an  FPGA solution
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specifically  for  the  SURF  algorithm.  Jiang et  al.[66]

proposed  a  real-time  SIFT  hardware  implementation

on  FPGA with  task-level  parallelism.  Zhong et  al.[67]

also  proposed  a  SIFT  hardware  implementation  but

with  an  FPGA+DSP  architecture.  Huang et  al.[68]

proposed an ASIC implementation of  the SIFT algo-

rithm  for  the  real-time  VGA  (video  graphics  array)

feature  extraction.  As  a  result,  although many hard-

ware implementations on FPGA/DSP for SLAM (or a

part  of  SLAM algorithms)  exist,  they  are  specialized

for  specific  algorithms  with  unchangeable  IP

blocks/functions  and  thus  lack  the  flexibility  to  ad-

dress  other  possible  algorithms  with  high  perfor-

mance  and  efficiency.  Our  proposed  accelerator  not

only  supports  general  SLAM  algorithms  but  also

meets the performance and power requirements in the

mobile systems. 

10    Conclusions

In  this  paper,  we  proposed  a  novel  hardware  ac-

celerator, equipped with a hierarchical instruction set,

to efficiently cope with a broad range of SLAM algo-

rithms  at  an  area  cost  of  7.41  mm2 and  a  power  of

1 346.67 mW. The experimental results based on our

proposed  BenchSLAM  showed  that  our  accelerator

achieves  significant  performance  and  energy  gains

over the embedded platform, i.e., 33.03x speedup and

62.64x energy saving,  on average.  With its  high per-

formance,  low  energy  consumption,  and  small  area,

our  accelerator  is  suitable  for  integration  in  today's

mobile robotic systems. This would significantly boost

the development of the emerging mobile robot indus-

try. 
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