
 

Query Authentication Using Intel SGX for Blockchain Light Clients

Qi-Feng Shao1, 2 (邵奇峰), Member, CCF, Zhao Zhang1 (张　召), Member, CCF
Che-Qing Jin1, * (金澈清), Distinguished Member, CCF, and Ao-Ying Zhou1 (周傲英), Fellow, CCF

1 School of Data Science and Engineering, East China Normal University, Shanghai 200062, China
2 School of Software, Zhongyuan University of Technology, Zhengzhou 450007, China

E-mail: shao@stu.ecnu.edu.cn; zhzhang@dase.ecnu.edu.cn; cqjin@dase.ecnu.edu.cn; ayzhou@dase.ecnu.edu.cn

Received September 22, 2020; accepted March 4, 2022.

Abstract    Due to limited computing and storage resources, light clients and full nodes coexist in a typical blockchain

system. Any query from light clients must be forwarded to full nodes for execution, and light clients verify the integrity of

query results returned. Since existing verifiable queries based on an authenticated data structure (ADS) suffer from signifi-

cant network, storage and computing overheads by virtue of verification objects (VOs), an alternative way turns to the

trusted execution environment (TEE), with which light clients do not need to receive or verify any VO. However, state-of-

the-art TEEs cannot deal with large-scale applications conveniently due to the limited secure memory space (e.g., the size

of the enclave in Intel SGX (software guard extensions), a typical TEE product, is only 128 MB). Hence, we organize data

hierarchically  in  trusted  (enclave)  and  untrusted  memory,  along  with  hot  data  buffered  in  the  enclave  to  reduce  page

swapping overhead between two kinds of memory. The cost analysis and empirical study validate the effectiveness of our

proposed scheme. The VO size of our scheme is reduced by one to two orders of magnitude compared with that of the tra-

ditional scheme.
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 1    Introduction

The growing popularity  of  blockchains  marks  the

emergence  of  a  new  era  of  distributed  computing.

Blockchain, the underlying technology of Bitcoin①, is

essentially  a  decentralized,  immutable,  verifiable  and

traceable distributed ledger managed by multiple par-

ticipants.  Specifically,  blockchain can achieve trusted

data sharing among untrusted parties without the co-

ordination of any central authority.

A  blockchain  system  commonly  contains  two

kinds of nodes, full nodes and light clients. Full nodes

receive and validate every block, and store the histo-

ry of all transactions. Due to limited storage capacity,

light clients only download block headers to verify the

existence of  each transaction by checking the root of

the Merkle tree in the block header, which consumes

less  resources  than  full  nodes.  Any  query  from  light

clients will  be forwarded to full  nodes for processing.

The integrity of query results returned from full nodes

will be authenticated by light clients, because the full

nodes may be dishonest.

⩽ TotalOutput ⩽

However,  existing  blockchain  systems  have  limit-

ed  ability  to  support  authenticated  queries  for  light

clients. For example, the simple payment verification

(SPV) in Bitcoin can only answer whether a particu-

lar transaction is present in a block or not. With the

popularization  of  the  blockchain  technology,  there  is

an  increasing  demand  for  a  variety  of  authenticated

queries  on  the  blockchain.  For  example,  by  utilizing

range queries, users may want to select Bitcoin trans-

actions satisfying “10 bitcoin   30 bit-

coin” .  Join  queries  combining  blockchain  data  with

off-chain data are important as well.  For instance,  it

is easy to understand that today's Bitcoin fee is $1.5

rather than 0.000 03 bitcoin, which needs to join Bit-
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coin  data  with  USD-based  market  data.  Aggregate

queries  are  widely  adopted  for  business  applications,

and  thus  viewing  blockchain  data  in  aggregation  is

useful to make business decisions. For instance, users

may  be  interested  in  some  aggregate  information,

such as “daily transaction volume”, “transactions per

second”  and  “ average  transaction  fee  per  month” .

Hence,  authenticated  query  processing  becomes  ur-

gent nowadays.

In this  paper,  we focus on range,  join and aggre-

gate query authentications for the blockchain. How to

process authenticated queries can be tracked back to

outsourced  databases,  where  clients  delegate  the

DBMS management to  a  third-party database  server

that  receives  and processes  queries.  In  a  typical  out-

sourced  database,  both  the  signature-based  approach

(e.g.,  signature  chaining[1])  and  the  tree-based  ap-

proach  (e.g.,  MB-tree[2])  are  capable  of  ensuring  the

correctness  and  completeness  of  query  results.  Since

the signature-based approach cannot scale up to large

datasets  when  each  pair  of  adjacent  tuples  must  be

signed,  we adopt the tree-based approach in this  pa-

per.  However,  applying existing  tree-based approach-

es to the blockchain is quite challenging.

● In addition to the query results, full nodes need

to return the verification object (VO). The construc-

tion and transmission of VO incur query latency and

bandwidth consumption respectively, and the splicing

and  the  verification  of  VO  increase  the  computing

overhead of light clients with limited resources.

● When  a  leaf  node  is  updated,  its  hash  change

will  be  propagated  up  to  the  root  digest,  which  in-

duces  write  amplification.  In  general,  the  tree-based

approach assumes the database needs few updates, so

that it is inapplicable to the blockchain that continu-

ously submits transactions by block.

To address the above issues, it is necessary to de-

vise a new scheme to verify query results efficiently.

In  recent  years,  the  trusted  execution  environ-

ment  (TEE)  has  caught  the  attention  of  industrial

and  academic  communities  as  it  provides  crypto-

graphic  constructs  based  on  hardware  and  offers

stronger  protection  in  comparison  with  its  software

counterparts. TEE offers a promising direction of de-

signing  query  authentication  schemes.  For  example,

Intel  SGX  (software  guard  extensions)[3],  a  typical

TEE, can protect sensitive code and data from being

leaked  and  tampered  with,  and  isolate  security-criti-

cal applications even from privileged users. Intel SGX

allows to create one or more isolated contexts, named

enclaves, which contain segments of trusted memory.

To  guarantee  confidentiality  and  integrity,  sensitive

applications  are  installed  in  the  enclave,  no  matter

whether the underlying machine is trusted or not.

ecall ocall

However,  the  security  offered  by  Intel  SGX does

not come for free. The special region of isolated mem-

ory reserved for the enclave, called EPC (enclave page

cache),  currently  has  a  maximal  size  of  128  MB,  of

which only 93 MB are utilizable for applications.  An

EPC page fault occurs when the accessed memory ex-

ceeds the available EPC size. Page swapping is expen-

sive, because the enclave memory is integrity-protect-

ed  and  encrypted.  Intel  SGX  provides  two  built-in

wrapper  codes,  and ,  to  invoke  enter  and

exit  instructions  respectively  to  make  cross-enclave

function  calls.  However,  these  two  codes  add  over-

head  of  approximately 8 000 CPU  cycles,  compared

with  150  cycles  of  a  regular  OS  system  call[4].  Al-

though  Intel  SGX  solves  the  secure  remote  comput-

ing  problem  of  sensitive  data  on  untrusted  servers,

how to  lower  the  expensive  cost  remains  as  an  open

challenge.

In summary, we first propose authenticated range

and join queries for the blockchain by combining MB-

tree[2] with Intel SGX, which is an enhancement of [5].

Then,  we  extend  the  work  of  [5]  by  presenting  au-

thenticated  aggregate  queries  that  integrate  AAB-

tree[6] and  Intel  SGX.  In  addition,  we  explore  more

details,  e.g.,  the  cost  analysis  against  traditional  ap-

proaches  and  thorough  empirical  evaluation.  To  the

best  of  our  knowledge,  it  is  the  first  step  toward in-

vestigating the issue of query authentication with In-

tel SGX over the blockchain. Our main contributions

are as follows.

● We propose an efficient Intel SGX based query

authentication scheme for the blockchain, with which

light clients do not need to receive or verify any VO.

The  scheme  also  alleviates  the  cascading  hash  com-

puting cost induced by updates on the MB-tree, with

a  hybrid  index  leveraging  the  feature  of  the

blockchain to submit transactions by block.

● In view of the space limitation of enclave memo-

ry, we integrate the MB-tree and the AAB-tree with

Intel  SGX to support range and aggregate query au-

thentications respectively.

● We conduct theoretical analysis and an empiri-

cal  study  to  evaluate  our  proposed  scheme.  Analysis

and experimental results show the efficacy of the pro-

posed scheme.

The rest of the paper is organized as follows. Sec-
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tion 2 gives  some  preliminaries,  followed  by  the  re-

view  of  existing  work  in Section 3. Section 4 intro-

duces the problem formulation. Section 5 presents our

scheme of  query authentication with Intel  SGX. The

batch update is discussed in Section 6. The cost anal-

ysis  and  the  security  analysis  are  presented  in Sec-

tion 7 and Section 8 respectively.  The  experimental

results  are  reported  in Section 9. Section 10 con-

cludes this paper.

 2    Preliminaries

In this section, we introduce the authenticated da-

ta  structure  (ADS)  and  Intel  SGX[3],  with  which  we

achieve efficient verifiable queries.

 2.1    Authenticated Data Structure

As more users outsource their database systems to

cloud service providers, query authentication has been

extensively studied to ensure the integrity of query re-

sults returned by untrusted providers. In the existing

solutions, ADS is more efficient and widely applied in

practice.  Merkle  hash  tree  (MHT)[7],  Merkle  B-tree

(MB-tree)[2] and  authenticated  aggregation  B-tree

(AAB-tree)[6] are all typical ADSs.

n

hn = H(hn1
|hn2

) n1 n2

n H()

MHT is a binary tree in which each leaf node corres-

ponds to the digest of a tuple. The digest of an inter-

nal node is computed by hashing the concatenation of

the digests of its two child nodes. For example, an in-

ternal  node  is  assigned  the  digest  value

, where  and  are the children of

 and  is a one-way, collision-resistant hash func-

tion. The internal nodes are iteratively constructed in

a  bottom-up  manner.  Depending  on  the  root  node

that is signed by the data owner, any tampered tuple

can  be  detected,  which  assures  data  integrity.  MHT

has been extensively adapted to many blockchain sys-

tems. In Bitcoin, each leaf node of MHT corresponds

to  the  SHA256  digest  of  a  transaction.  According  to

the  direct  siblings  in  the  path  from the  leaf  node  to

the  root  node,  light  clients  can  use  SPV  to  verify

whether a transaction exists in a block.

f − 1 f

f

h = H(t) t

h = H(h1|...|hf ) h1, ..., hf

MB-tree  supports  authenticated  range  queries.

Each  node  contains  index  keys  and  pointers

to child nodes, where  is the fanout parameter. Ad-

ditionally,  each  pointer  is  augmented  with  a  digest.

The exact structure of a leaf and an internal node is

shown  in Fig.1(a).  In  the  leaf  node,  each  digest  is  a

hash value , where  is a tuple pointed by the

corresponding  pointer.  In  the  internal  node,  each  di-

gest  is  a  hash  value ,  where 

are  the  hash  values  of  the  children  of  the  internal

node. MB-tree is constructed in a bottom-up manner.

The contents of all  nodes in the tree are reflected to

the  root  digest  that  is  signed  by  the  data  owner.

Therefore, the entire tree can be verified by the root

digest  so  that  adversaries  cannot  tamper  with  the

tree.

k

p

a h

h = H(k|a)
H()

k a

h = H(h1|a1|...|hf |af )

l

l + 1

AAB-tree,  an  aggregate  MB-tree  that  combines

the MB-tree with pre-aggregated results, supports au-

thenticated aggregate queries. Besides an index key 

and  a  pointer ,  each entry  of  a  node  is  associated

with an aggregate value  and a digest . The struc-

tures of leaf and internal nodes are shown in Fig.1(b).

In  the  leaf  node,  each  aggregate  value  is  the  aggre-

gate attribute of a tuple, and each digest 

is computed by a hash function  based on the key

 and the aggregate value  in the same entry. In the

internal  node,  each  aggregate  value  is  the  aggrega-

tion of the children of the internal node, and each di-

gest  is  a  hash  value  computed

on the concatenation of  both hash values  and aggre-

gate  values  of  the  children  of  the  internal  node.  All

aggregate  values  in  an  AAB-tree  node  at  level  are

aggregated up to an entry in the parent node at level

,  which  corresponds  to  the  roll-up  materializa-

tion in the OLAP terminology.  Therefore,  when pro-

cessing  aggregate  queries,  we  can  get  pre-aggregated

results directly from the nodes at the upper levels of

the AAB-tree without retrieving and aggregating the

......

' ......
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' ' ' ' '' 

' '  '



' '

......

' ' ......
...

 

  '

' '

(b)(a)

k p a h

Fig.1.  Merkle tree. (a) Example of MB-tree nodes. (b) Example of AAB-tree nodes. The top node is an internal node, and the bot-
tom node is a leaf node.  is the key,  is a pointer to the child node,  is the aggregate of all children, and  is the hash value asso-
ciated with the entry.
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nodes at lower levels of the AAB-tree.

 2.2    Intel SGX

ecall

ocall

ecall ocall

Intel SGX[3] provides an isolated portion of memo-

ry,  called enclave,  to protect sensitive code and data

from view or modification. Applications can create an

enclave to protect the integrity and the confidentiali-

ty  of  the  code  and  data.  Enclave  memory  pages,

stored in the enclave page cache (EPC), are integrity-

protected and encrypted. EPC is limited to 128 MB.

When  this  limit  is  exceeded,  enclave  pages  are  sub-

ject  to  page-swapping  that  leads  to  performance

degradation.  Intel  SGX's  remote  attestation  allows

applications to verify that an enclave runs on a gen-

uine  Intel  processor  with  SGX.  After  successful  re-

mote attestation, secret data is transferred to the en-

clave  through  a  secure  channel.  The  interaction  be-

tween applications and enclaves needs  to call in-

to enclaves (e.g., accessing enclave memory) and 

to call out of enclaves (e.g., calling OS API). The con-

text switches induced by  and  drastically re-

duce  the  performance.  Although  Intel  SGX  offers  a

trusted computing solution based on hardware, an ef-

fective  optimization  strategy  is  needed  when  design-

ing encalve-based solutions.

 3    Related Work

B+

B+

Query Authentication over Outsourced Databases.
Existing query authentication approaches which guar-

antee  query  integrity  against  untrusted  service

providers  are  categorized  into  two  kinds,  signature

chaining[1] and Merkle tree[7]. Signature chaining signs

each pair of adjacent tuples in a chain fashion. Based

on the aggregated signature, the server can return the

VO including only one signature regardless of the re-

sult  set  size,  and  the  client  can  verify  query  results

with  this  signature.  Although  the  signature  chaining

features  small  VO size  and  low  communication  cost,

it cannot scale up to large datasets because of the ex-

pensive  cost  on  signing  adjacent  tuples.  Typical

Merkle  trees  include  MHT[7] and  MB-tree[2].  MHT

aims  at  authenticated  point  queries,  while  MB-tree

combines MHT with -tree to support authenticat-

ed  range  queries.  Since  MB-tree  enables  efficient

search as -tree and query authentication as MHT,

it  is  employed  to  support  authenticated  aggregate[6]

and join[8] queries. [6] proposes AAB-tree, a variant of

cloud

MB-tree,  for  aggregate  queries.  Each  entry  in  an

AAB-tree node is  associated with an aggregate value

summarizing its children and a hash value computed

on the concatenation of  both hash values  and aggre-

gate values of its children. [8] studies the authentica-

tion of the join queries by constructing two MB-trees

on two relation tables. To support authenticated mul-

ti-dimensional  range  queries,  MMB -tree[9] inte-

grates  a  multi-dimensional  indexing  method  (i.e.,

iDistance)  with  MB-tree.  However,  these  studies

mainly focus on outsourced databases, insufficient for

blockchain systems due to poor update performance.

Query  Authentication  over  Blockchains. SPV,  in-

troduced by Satoshi Nakamoto②,  can only verify if a

transaction  exists  in  the  blockchain  or  not.  Hu et
al.[10] leveraged  smart  contracts  for  verifiable  query

processing  over  the  blockchain,  focusing  on  the  file-

level keyword search without investigating the index-

ing issue. To support verifiable boolean range queries,

vChain[11] implements  an  accumulator-based  ADS

scheme  that  enables  aggregate  intra-block  data  over

arbitrary query attribute. vChain also builds an inter-

block  index  that  uses  an  accumulator-based  skip  list

to  further  improve  query  performance.  Though

vChain  can  aggregate  intra-block  and  inter-block

records for verifiable query processing, its light clients

still  need  to  receive  and  verify  VOs.  To  support  au-

thenticated range queries, Zhang et al.[12] stored data

records  in  traditional  databases  (off-chain)  and  MB-

tree  in  Ethereum  (on-chain).  Because  MB-tree  is

maintained by a smart contract, the main purpose of

optimization is to reduce the Ethereum gas cost. Ad-

ditionally, [12] focuses on verifiable queries upon tra-

ditional  data,  not  blockchain  data.  SEBDB[13] con-

structs  an  MB-tree  for  every  block  and  implements

block-based  authenticated  query  processing  for  light

clients. Since full nodes are untrusted, light clients of

SEBDB  reduce  the  risk  by  sampling  from  multiple

full  nodes,  which  further  increases  the  verification

burden of  light clients.  In a nutshell,  how to achieve

authenticated  query  processing  at  low cost  is  the  fo-

cus of the blockchain.

Blockchain  with  Intel  SGX. Present  blockchain

systems  mainly  perform  software-based  cryptograph-

ic algorithms to ensure the trust of data. The appear-

ance  of  trusted  hardware,  Intel  SGX,  opens  up  new

possibility  to  ensure  the  confidentiality  and  the  in-

tegrity of the blockchain. Town Crier[14], an authenti-
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cated data feed system between existing web sites and

smart contracts, employs Intel SGX to furnish data to

Ethereum. To serve authenticated data to smart con-

tracts without a trusted third party, Town Crier com-

bines the smart contract front end and the SGX back

end. Ekiden[15] performs smart contracts over private

data  off-chain  in  Intel  SGX,  and  attests  to  the  cor-

rect execution on-chain, which avoids consensus nodes

from executing contracts and achieves the concurrent

execution  of  contracts.  With  separating  the  consen-

sus from the execution, Ekiden enables efficient confi-

dentiality-preserving  smart  contracts  and  high  scala-

bility.  Yan et  al.[16] presented  a  confidential  smart

contract  execution  engine  to  support  on-chain  confi-

dentiality  by  leveraging  Intel  SGX.  Public  transac-

tions  and  confidential  transactions  are  handled  in

public-engine  and  confidential-engine  respectively,

while  plain-text  and  cipher-text  states  are  generated

and stored on the blockchain. Relying on Intel SGX,

Dang et al.[17] optimized the Byzantine consensus pro-

tocol  and  improved  the  individual  shard's  through-

put significantly. SPV in Bitcoin may leak the client's

addresses and transactions.  BITE[18] prevents leakage

from access patterns and serves privacy-preserving re-

quests  from light  clients  of  Bitcoin  by  leveraging  In-

tel SGX on full nodes. Although existing studies har-

monize  blockchain  and  Intel  SGX,  none  of  them ex-

plore query authentication with Intel SGX.

 4    System Overview

Architecture. Fig.2 elucidates  our  system  that

consists of a full  node and a light client.  Each query

from the light client is forwarded to the full node for

processing.  As  the  full  node  may  be  dishonest,  it  is

critical  to show the integrity of  query results  for  the

light  client.  Traditional  solutions  organize  data  with

an  MB-tree,  and  provide  the  light  client  both  query

results  and  VOs for  further  verification.  In  our  case,

however,  a  big VO, especially  when processing range

queries, may exceed the processing power of the light

client like a mobile device. Consequently, our system,

which  is  equipped  with  Intel  SGX,  provides  trusted

query  processing  on  the  untrusted  full  node,  and  re-

turns  query  results  to  the  light  client  through  a  se-

cure  channel,  which  enables  the  light  client  to  trust

query  results  without  receiving  or  verifying  any  VO.

Due to the space limitation of enclave memory, we or-

ganize the data hierarchically in trusted memory (en-

clave) and untrusted memory (regular memory).

In our scheme, an MB-tree is  constructed for the

entire  blockchain  data,  given  that  one  MB-tree  per

block  imposes  more  complexity  for  query  processing.

The skip list in the enclave memory buffers newly ap-

pended  blocks,  and  merges  the  block  data  into  the

MB-tree  periodically  once  the  used  memory  exceeds

the  predefined  threshold.  Our  scheme  maintains  two

kinds of  caches,  including a hot cache in the enclave

memory and a cold cache in the regular memory. The

hot  cache  caches  frequently-accessed  MB-tree  nodes

that  will  not  need  to  be  verified  in  future.  The  cold

cache caches MB-tree nodes to reduce disk I/O. More

details are discussed in Section 5 and Section 6.

Adversary  Model. Since  no  participant  in  the

blockchain  network  trusts  others,  the  full  node  is  a

potential  adversary  and  may  return  incorrect  or  in-

complete query results. In our scheme, we apply Intel

SGX to process  queries  with integrity assurance.  Be-

cause  the  enclave  memory  space  is  limited,  we  em-

ploy an authenticated index structure,  MB-tree,  out-

side the enclave memory to guarantee data integrity.

Even though an adversary may compromise the oper-

ating  system  and  other  privileged  software  on  a  full

Blockchain

Light Client

Blockchain

Full Node

Encrypted 

Enclave Memory

Skip ListHot Cache

MB-Tree

Cold Cache

New Block

Merge

  

Verify

Query & Result

Fig.2.  Architecture of query authentication with Intel SGX.
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node,  it  cannot  break  the  hardware  security  enforce-

ment of Intel SGX. With our hardware-based scheme,

the light client can trust the correctness and the com-

pleteness of query results under the following criteria.

● Correctness. All results satisfy the query condi-

tions and have not been tampered with.

● Completeness. No valid result is omitted regard-

ing the query range.

 5    Query Authentication with Intel SGX

As Intel SGX can protect the code and data from

being leaked and tampered with,  an ideal  solution is

to  install  the  entire  storage  engine  and  process  all

queries  in  the  enclave,  which  eliminates  computing

and  network  overheads  induced  by  the  VO in  tradi-

tional  solutions.  However,  the  limited  enclave  size

makes  it  infeasible  to  handle  large  datasets.  In  this

study, we design a scheme to organize data hierarchi-

cally  in  trusted  and  untrusted  memory.  Meanwhile,

the data in the untrusted memory is organized as an

MB-tree  and  the  frequently-accessed  internal  nodes

are  cached  in  the  enclave  as  trusted  checkpoints.  A

skip  list,  maintained  in  the  trusted  memory,  buffers

newly appended block data. Once the size of the skip

list reaches a threshold, we merge all data in the skip

list into the MB-tree.

 5.1    MB-Tree in Intel SGX

In  our  scheme,  the  root  node of  the  MB-tree[2] is

always  located  in  the  enclave,  while  the  rest  nodes

will be loaded into the enclave according to query re-

quests.  After  verifying  the  Merkle  proof,  a  node  is

trusted for  search.  The frequently-accessed nodes  are

cached in the enclave to implement verifiable queries

cheaply,  and  the  other  nodes  are  outside  of  the  en-

clave to save enclave usage. The MB-tree can be con-

structed either from scratch or based on existing data.

The  enclave  on  the  full  node  is  firstly  authenticated

with  Intel  SGX's  remote  attestation.  Then  the  root

node  of  the  MB-tree  is  transferred  into  the  enclave

through a secure channel. When the thread maintain-

ing the MB-tree in the enclave receives a new block,

it  begins  to  extract  and  verify  transactions  in  the

block based on verification rules of the blockchain.

As shown in Fig.3(a),  the traditional  point query

on the MB-tree returns the VO (gray boxes in Fig.3)

in addition to the query result (oblique line boxes in

Fig.3). The VO is composed of sibling hashes in each

node  along  the  query  path.  Light  clients  recompute

the root digest based on the query result and VO, so

as  to  verify  the  correctness  of  the  query  result.  For

authenticated  point  queries,  the  size  of  the  VO  is

much greater than that of the query result, which in-

curs significant communication cost.

For the point query with Intel  SGX, because the

previously  verified  MB-tree  nodes  in  the  enclave  are

trusted, only the nodes outside the enclave need to be

verified,  as  described  in Fig.3(b).  When recomputing

the root digest in a bottom-up manner along the veri-

fication path, the verification process may be stopped

early  once  finding  a  node  located  in  the  enclave,

which  shortens  the  verification  path  (dash  arrows  in

Fig.3(b)). In addition, since the SGX has verified VOs

instead  of  light  clients,  light  clients  just  need  to  re-

ceive the query result.

Query1

Query2

As shown in Fig.4(a),  from the root node

to the leaf node adds to the VO all the digests on the

left of the query path, and finds query results in leaf

nodes.  adds all the digests on the right of the

query  path.  Besides  the  correctness,  the  range  query

also needs to ensure the completeness of query results.

Therefore,  the  VO  involves  two  boundary  tuples

Verify

Query

...

Blockchain

Root (Signed by
the Constructor)

...

Enclave
Memory Root

Verify

Query

...
...

Blockchain

 

(b)(a)

Fig.3.  Point query and verification on MB-tree. (a) Point query. (b) Point query with Intel SGX.
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(point  boxes  in Fig.4).  The  two boundary  tuples  are

the left and right boundaries of query results, indicat-

ing  no  tuples  are  omitted  from  query  endpoints.  By

restructuring  the  root  digest  with  the  consecutive

query results and two boundary tuples, we can check

whether all tuples in the query range are involved or

not.  The  authenticated  range  query  needs  to  verify

more  VOs  because  they  involve  more  results,  which

incurs  higher  communication  cost  than  the  point

query. As demonstrated by dash arrows, the results of

the  range  query  involve  consecutive  leaf  nodes,  i.e.,

multiple  verification  paths.  For  verification,  in  order

to  compute the root  digest,  reconstructing the whole

query subtree according to multiple verification paths

will induce significant computing cost to light clients.

Since  the  MB-tree  nodes  cached  in  the  enclave

help  to  shorten  the  verification  path  and  reduce  the

number  of  nodes  to  be  verified,  processing  the  range

query with Intel SGX alleviates the cost of query veri-

fication,  as  illustrated  in Fig.4(b).  Specifically,  when

all leaf nodes covered by the query results are in the

enclave, it is unnecessary to perform any verification.

Thus, the SGX simplifies the query authentication of

the MB-tree.

 5.2    Join Query with Intel SGX

Similar  to  standard  B-tree,  MB-tree[2] only  sup-

ports the query attribute on which it is built. In our

scheme,  to  support  verifiable  queries  on  multiple  at-

tributes,  it  needs  to  build  an  MB-tree  for  each  at-

tribute.  Thereby,  a  disjunctive  selection  can  be  pro-

cessed  by  combining  results  from  multiple  authenti-

cated  range  queries  over  their  respective  MB-trees,

and a conjunctive selection can be transformed to an

authenticated join query over multiple MB-trees.

For  blockchain,  join  queries  integrating  on-chain

data,  or  combining  on-chain  and  off-chain  data  are

R ▷◁P S P
<

>

quite common. Unlike the authenticated range query,

the authenticated join query is inherently more com-

plex because the combination of two relations is hard-

er to verify. The most efficient existing solution is the

authenticated  index  merge  join  (AIM)[8] that  returns

intermediate  results  to  the  clients  who  would  then

verify those results and generate join outputs locally.

The generation of join results undoubtedly incurs con-

siderable  communication  and  computing  costs  to

clients.  Therefore,  if  Intel  SGX is  used  to  match  tu-

ples and generate join outputs, light clients would on-

ly need to receive trusted join results. In this subsec-

tion,  depending  on  MB-tree  and  Intel  SGX,  we

present  two  authenticated  join  algorithms:  Authenti-

cated  Merge  join  (AMJ)  and  Authenticated  Index

Nested-Loop Join (AINLJ). The two algorithms focus

on pairwise joins of the pattern  where  is a

predicate with ordering-based operators such as =, 

and .

 5.2.1    Authenticated Merge Join

supplier ▷◁ order

supplier order

Like the join query between different tables in the

relational  database,  blockchains  also  need  the  join

query  for  different  types  of  transaction  data,  for  in-

stance,  the  join  query  between  the

transactions  and  in a blockchain-based

supply  chain.  If  two  MB-tree  indexes  on  join  at-

tributes  of  two  types  of  transaction  data  are  con-

structed respectively, search keys in the leaf nodes of

the MB-trees  are  ordered.  Therefore,  we can directly

utilize this feature to implement AMJ in the enclave.

R S

TR

TS R S

Rencl Sencl

R S

Algorithm 1 illustrates  AMJ  based  on  the  MB-

tree and Intel SGX.  and  can be transaction data

or  result  sets  from  authenticated  range  queries. 

and  are MB-trees constructed on  and  respec-

tively.  and  are available enclave memory al-

located to  and  respectively. Due to memory limi-

Blockchain
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Fig.4.  Range query and verification on MB-tree. (a) Range query. (b) Range query with Intel SGX.
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NextTuple

Rencl Sencl

NextTuple

tations of the enclave, it is infeasible to load all trans-

actions  into  the  enclave.  Therefore,  function

 loads a batch of leaf nodes of the MB-tree

into the enclave,  when  or  is  empty.  Subse-

quently,  Intel  SGX  performs  the  sort-merge  scan  of

these  leaf  nodes  and adds all  matching tuples  to  the

result  set.  For  the  sort-merge  join,  sorting  is  always

expensive.  The  SGX  does  not  need  to  perform  the

sorting operation because of the ordered leaf nodes of

the MB-tree. To verify the integrity of data read into

the enclave, function  uses leaf nodes in the

enclave  to  incrementally  compute  the  root  digest  of

the MB-tree.

Algorithm 1. AMJ (Authenticated Merge Join)

R S TR TS R

S hroot
R hroot

S R S

Rencl Sencl R S

　Input: , :  transaction data; , :  MB-trees of  and

 respectively; , : root digests of  and  respective-

ly; , : enclaves of  and  respectively;

result← ∅　Output: join result: ;

tR ← nextTuple(TR, Rencl, h
root
R )1 ;

tS ← nextTuple(TS, Sencl, h
root
S )2 ;

tR ̸= null and tS ̸= null3 while     do

S′
encl ← {tS}4　    ;

Sencl S′
encl

tS.joinAttr
5　  Repeat to read the next tuple in  into  if its join
　　 attribute is equal to ;

tR ̸= null and tR.joinAttr < tS.joinAttr6　  while    do

tR ← nextTuple(TR, Rencl, h
root
R )7　　　 ;

tR ̸= null and tR.joinAttr = tS.joinAttr8　  while    do

tS ∈ S′
encl9　　　foreach  do

tR ▷◁ tS result10　　　  Add  to ;

tR ← nextTuple(TR, Rencl, h
root
R )11　　  ;

tS ← nextTuple(TS, Sencl, h
root
S )12　  ;

hroot
R hroot

S13 Verify  and  against their counterparts in the
　  enclave;

result14 return ;

nextTuple T : MB-tree;Mencl: enclave; hroot15 Function (   :
　 root digest)

Mencl16　 if  is empty then

T Mencl17　　 Read the next batch leaf nodes of  into ;

Mencl
hroot

18　　 Use the leaf nodes in  to incrementally compute
　　　  ;

Mencl19 return the next tuple in leaf nodes in ;

 5.2.2    Authenticated Index Nested-Loop Join

ID operator

Due to the requirement of privacy-preserving and

limitation of  storage capacity,  part  of  blockchain da-

ta is stored off-chain (e.g., databases or dedicated file

systems).  For  example,  in  a  blockchain-based  supply

chain,  only  the  of  is  on  the  blockchain,

operator

operator ▷◁ order

and the detailed information of  is stored off-

chain.  To  obtain  complete  information,  we  need  to

perform  the  join  query  integrating  on-chain  and  off-

chain  data  (e.g., ).  It  is  not  easy  to

maintain indexes on various types of off-chain data. If

off-chain data is unordered, we can implement AINLJ

in  the  enclave  by  utilizing  the  MB-tree  index  of  on-

chain  data.  For  on-chain  data,  the  MB-tree  on  the

join  attribute  ensures  query  integrity.  For  off-chain

data, the signature of the entire data assures data in-

tegrity.

R

TS S Rencl

R

ecall ocall

Rencl R

|Rencl| ⌈|R|/
|Rencl|⌉ TS

tR Rencl

TS tR

hroot
S R

R

Algorithm 2 describes  AINLJ  based  on  the  MB-

tree  and  Intel  SGX.  Let  denote  an  off-chain  rela-

tion,  an MB-tree for on-chain data , and  the

enclave memory allocated for . To mitigate the neg-

ative impact of  and  of  Intel  SGX, instead

of calling into  for each tuple of , we process the

tuples in batches so that the cost of enclave calling is

amortized  over  a  batch  of  tuples.  Since  each  batch

reads  tuples  into  the  enclave,  there  are 

 batches  in  total.  Based  on  MB-tree ,  the

nested-loop  join  processing  is  implemented  as  an  ex-

tension of the range query. For each tuple  in ,

the  SGX performs  the  authenticated  range  query  on

 to find the tuples matching .  To ensure the in-

tegrity of the join results, the SGX can verify the re-

sults  of  the range query with the root digest of  MB-

tree .  Off-chain  data  can  be  verified  based  on

the signature of .

Algorithm 2. AINLJ (Authenticated Index Nested-Loop Join)

R S TS

S hroot
S S Rencl R

　Input: :  off-chain  relation; :  transaction  data; :  MB-

tree of ; : root digest of ; : enclave of ;

result← ∅　Output: join result: ;

i← 01 ;

i < ⌈|R|/|Rencl|⌉2 while  do

R Rencl3　  Read the next batch of tuples in  into ;

tR ∈ Rencl4　  foreach  do

resultSet← AuthRangeQuery(TS, tR.joinAttr,
V O) TS

5　　　

　　　  //Perform authenticated range query on 

V O hroot
S6　　　Verify  against  in the enclave;

tS tR resultSet7　　　Extract each tuple  matching  from ;

tR ▷◁ tS result8　　　Add  to ;

i← i+ 19　   ;

R10 Verify the signature of ;

result11 return ;

 5.3    AAB-Tree in Intel SGX

Using a traditional MB-tree for the authenticated
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aggregate  query,  light  clients  can  only  authenticate

the  correctness  and  the  completeness  of  the  range

query, incapable of verifying the correctness of the ag-

gregate result. For this reason, after verifying the re-

sult  set  according  to  the  query  range,  light  clients

must  aggregate  the  result  set  locally.  This  strategy

imposes further complexity to light clients.  If  the re-

sult set is large, it will induce considerable communi-

cation  and computing  costs,  linear  to  the  size  of  the

result set, to light clients. When aggregate queries are

based on the MB-tree with Intel  SGX, the result  set

can be aggregated in the enclave on the full node, and

only  the  aggregate  result  is  returned  to  light  clients

through a  secure  channel.  This  scheme alleviates  the

burden of light clients, but increases the overhead for

the space-limited enclave. Therefore, we need an effi-

cient index structure suitable for authenticated aggre-

gate queries. AAB-tree[6] is such an index with verifi-

cation cost sub-linear to the result set.

Starting  from  the  root  node,  the  query  processor

traverses  the  AAB-tree  in  a  breadth-first  manner.

When  visiting  a  node,  the  query  processor  compares

the  key range of  each entry with the  query range:  if

the  key  range  is  within  the  query  range,  the  entry's

aggregate value will be added to the result set; if the

key range intersects with the range query, the entry's

children  will  be  visited  recursively;  if  the  key  range

and the query range do not intersect, the entry's hash

value  and  aggregate  value  will  be  added  to  the  VO.

For  example,  node A has  three  entries,  as  shown  in

Fig.5(a).  Since the first  entry is  outside of  the query

range, it is only necessary to get the verification infor-

mation;  since  the  second entry  partially  overlaps  the

query range, we continue to traverse for the exact re-

sult;  since  the  third  entry  is  inside  the  query  range,

we directly retrieve the aggregate value of  the entire

subtree under the entry without traversing down.

An AAB-tree occupies less memory footprint than

an MB-tree  when processing  authenticated  aggregate

queries  in  the  enclave.  The  pre-aggregated  informa-

tion  reserved  in  each  internal  node  of  the  AAB-tree

can  help  to  answer  the  aggregate  query  without

traversing  the  tree  all  the  way  down  to  the  leaves.

Therefore, as shown in Fig.5(b), without caching low-

level  nodes,  we  only  need  to  cache  frequently-ac-

cessed high-level nodes in the enclave. For some veri-

fication paths of the AAB-tree, query verification can

start from high-level nodes, not from the leaves, such

as the third entry of node A. If the retrieved high-lev-

el  nodes are all  in the enclave,  they will  not need to

be  authenticated.  In  other  words,  AAB-tree  avoids

the authentication of  low-level  nodes,  while the SGX

avoids that of high-level nodes.

There are three kinds of aggregate queries[19]: dis-

tributive, algebraic and holistic. Except for the holis-

tic  aggregate  (like  MEDIAN),  an  AAB-tree  supports

the  authentication  of  the  distributive  aggregate  (like

SUM, COUNT, MAX and MIN) and algebraic aggre-

gate  (like  AVG, expressed as  SUM/COUNT),  by re-

placing  the  aggregate  function  in  each  entry.  More-

over, the AAB-tree can be extended to deal with the

multi-aggregate  query.  Instead  of  storing  one  aggre-

gate value in each entry of a node, we store a list of

aggregate values for all necessary aggregate functions.

 5.4    Cache Architecture of Query Processing

To  improve  the  efficiency  of  accessing  the  MB-

tree,  we  design  a  three-level  storage  scheme,  includ-

ing  a  disk  storage,  a  cold  cache  and  a  hot  cache,  as

shown in Fig.6. The disk storage, at the lowest level,

persists the entire MB-tree. The cold cache, deployed

on  the  untrusted  memory,  caches  MB-tree  nodes  to

Enclave
Memory Root

...
... ...

Blockchain
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Blockchain
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Fig.5.  Aggregate query and verification on AAB-tree. (a) Aggregate query. (b) Aggregate query with Intel SGX.
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reduce the I/O cost. Hot cache, located on the trust-

ed  enclave,  only  caches  frequently-accessed  and  veri-

fied MB-tree nodes to alleviate the verifying cost. We

integrate these two types of caches and design an effi-

cient cache replacement strategy.

When  directly  applying  an  LRU  cache  replace-

ment  algorithm  to  the  MB-tree  in  the  enclave,  the

burst access and sequential scan may load some nodes

that are only accessed once into the enclave. However,

these nodes will not be swapped out of the enclave in

a short time according to the LRU replacement strat-

egy, which lowers the utilization of the enclave memo-

ry. Motivated by the LRU-K cache replacement algo-

rithm[20] that keeps the last K reference times for each

page to estimate evicted pages, we propose a replace-

ment  algorithm,  H-LRU  (hierarchical  least  recently

used),  for  the  two-level  cache  architecture  composed

of  a  hot  cache  and  a  cold  cache.  H-LRU  considers

more  of  the  reference  history  besides  the  recent  ac-

cess for each node and addresses the issue of correlat-

ed references.

As shown in Algorithm 3, when an MB-tree node

is  accessed for  the first  time,  it  is  read out from the

disk and buffered in the cold cache, thus avoiding the

potential I/O cost in future. Once such a node is ac-

cessed again, if that has been quite a while since the

last access, i.e., uncorrelated reference, it is promoted

to  the  hot  cache,  thus  eliminating  the  verifying  cost

in  future. Algorithm 3 uses  the  following  data  struc-

ture.

HIST (n, t) i

n

HIST (n, 1)

n HIST (n, 2)

n

●  denotes the -th most recent access

time  of  node ,  and  does  not  contain  the  correlated

reference. For example,  denotes the most

recent access time of node , and  the sec-

ond most recent access time of node .

LAST (n)

n

●  records the most recent access time of

node , and may be a correlated reference or not.

Algorithm 3. H-LRU (Hierarchical Least Recently Used)

n t n
t

　Input: :  MB-tree  node; :  time;            /*  is  referenced
at time  */

n is in HotCache
(n, t)

1 if    then
2　 if isUncorrelated  then

n HotCache3　　    Move  to the head of ;

n ColdCache4 else if  is in  then

isUncorrelated(n, t)5　 if  then

HotCache.isFull()6　　    if  then

HotCache7　　　　 Remove the tail of ;

n HotCache8　　    Add  to the head of ;
n9 else                                      /*  is not in memory */

ColdCache.isFull()10  if  then      /* Select a victim */

min← t11　　    ;

node ColdCache12　　   foreach  in  do

t− LAST (node) > CR_Period HIST
(node, 2) < min

13　　　　if  and 

　　　　    then

CR_Period　　　　  /* : Correlated Reference Period */

victim← node14　　　　　   　/* Eligible for replacement */

min← HIST (node, 2)15　　　　　   ;

victim ColdCache16　　   Remove  from ;

n ColdCache17　Add  to ;

HIST (n, 2)← HIST (n, 1)18　 ;

HIST (n, 1)← t19　 ;

LAST (n)← t20　 ;

isUncorrelated n t21 Function ( , )

flag ←22　  FALSE;

t-LAST (n) > CR_Period23　if  then
　                                  /* An uncorrelated reference */

HIST (n, 2)← LAST (n);24　　   

HIST (n, 1)← t25　　    ;

LAST (n)← t26　　    ;

flag ←27　　     TRUE;

28　else                               /* A correlated reference */

LAST (n)← t29　　    ;

flag30  return ;

Compared  with  H-LRU,  LRU  may  replace  fre-
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isUncorrelated

quently referenced pages with pages unlikely to be ref-

erenced  again.  H-LRU  moves  hot  nodes  to  the  en-

clave and allows infrequently referenced nodes to stay

in the regular memory. Cold cache and hot cache call

the function  to exclude nodes that are

accidentally  visited.  If  that  is  an  uncorrelated  refer-

ence,  the  node  is  promoted  to  the  hot  cache  and

moved to the head of the cache queue since the head

has the highest buffer priority. When the hot cache is

full,  it  evicts the least recently used node. When the

cold  cache  is  full,  it  evicts  the  node  whose  second-

most  recent  reference  is  the  furthest  in  the  past.

Therefore,  only  the  nodes  that  are  frequently  ac-

cessed for a long time are located in the enclave. Our

algorithm  considers  both  recentness  and  frequency,

and avoids the interference of related references, so as

to improve the utilization of the enclave memory and

achieve better performance.

 6    Batch Updates

For  an  MB-tree[2],  when  a  leaf  node  is  updated,

the  digest  change  will  be  propagated  up  to  the  root

node, which will lock the entire index in the exclusive

mode and block other updates and queries. If the en-

tire  subtree  to  be  updated  is  cached  in  the  enclave,

the digest changes caused by multiple updates can be

combined  and  written  back  to  the  root  node  at  one

time  so  that  the  update  cost  can  be  reduced  signifi-

cantly. In addition, since blockchain periodically sub-

mits transactions by block, it is suitable for batch up-

dates.

Since only the signed root node is trusted in a tra-

ditional  MB-tree,  the  digest  change  must  be  propa-

gated to the root node immediately once a leaf node is

updated.  When  the  updates  occur  frequently,  it  will

significantly  downgrade  the  system  performance.

With  Intel  SGX,  since  all  nodes  cached  by  the  en-

clave  are  verified  and  trusted  as  mentioned  before,

the propagation of a digest change can end at an in-

ternal node located in the enclave.

Update1 Update2
Update3

As  shown  in Fig.7(a), , ,  and

 represent  three  update  operations  on  differ-

ent leaf nodes. Since node A in the enclave is trusted,

the  digest  propagation  of  three  updates  will  be

stopped at node A. Once node A is evicted in future,

or its structure changes due to the split or merge op-

eration,  the  deferred  digest  changes  reflecting  three

updates will be propagated to the root node immedi-

ately.  The digest  of  each node is  reserved in its  par-

ent  node.  When  the  digest  change  of  a  node  is  de-

ferred for its parent node, the previous digests in the

ancestor  nodes  will  not  affect  the  verification  of  the

other branches[21]. In Fig.7(a),  node A in the enclave

does not propagate its digest changes to the root node

immediately, which does not affect the verification of

the other branches. All subtrees under node A can be

verified  based  on A's  current  digest.  Other  branches

without node A can be verified with A's previous di-

gest in the root node. In other words, nodes C, D and

E can  be  verified  by  node A,  a  trusted  root  for  its

subtree;  nodes F and G can  be  verified  by  the  root

node.

For  an AAB-tree[6],  besides  batch  updates  in  leaf

nodes,  we  take  an  incremental  manner  to  maintain

aggregate  values  in  the  internal  nodes.  When  a  leaf

node is updated, besides the digest change, the aggre-

gate  change  also  needs  to  be  propagated  up  to  the

root  node.  If  we defer  the  aggregate  change just  like

deferring the digest change, it will  affect the correct-
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Fig.7.  Batch update and merge. (a) Deferring digest update. (b) Dual-stage hybrid index.
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ness  of  aggregate  queries.  The procedure that  propa-

gates a change in the leaf node to the root node, es-

sentially  visits  the  same  nodes  as  the  search  proce-

dure. Therefore, incrementally maintaining the aggre-

gate value of each internal node along the search path

can  improve  update  performance,  while  locating  the

leaf node for an update operation.

 6.1    Batch Updates with Hybrid Index

Besides propagating digest changes, the lock oper-

ation  for  a  node  update  will  block  query  processing

and limit concurrency. To alleviate the update cost of

the  MB-tree,  previous  work[2] generally  adopts  batch

updates  to  defer  the  installation  of  a  single  update

and  process  multiple  updates  at  the  same  time.

Blockchain  accumulates  multiple  transactions  in  a

block and submits them in batches, which is applica-

ble for batch updates.

B+

We  present  a  dual-stage  hybrid  index  architec-

ture. As shown in Fig.7(b), it maintains a skip list in

the  enclave  to  buffer  multiple  new  blocks.  The  skip

list, without additional rebalancing cost, is more suit-

able for the memory index compared with typical bal-

anced trees (e.g., -tree or red-black tree). Our hy-

brid index is composed of a skip list and an MB-tree.

The  skip  list,  located  in  the  enclave,  indexes  newly

appended  blocks,  and  the  MB-tree,  located  on  disk,

indexes historical blocks. The query processor search-

es both the skip list and the MB-tree to get the com-

plete result. Moreover, a bloom filter atop of the skip

list is added to speed up searching.

 6.2    Merge

The main purpose of applying merge processing is

to utilize batch updates to alleviate the cost of digest

propagation  in  the  MB-tree.  Since  blockchain  up-

dates  data  by  block, different  from  the  traditional

database,  we  design  a  more  appropriate  merge  algo-

rithm.

There  are  two solutions  for  batch  updates  in  the

MB-tree:  full  rebuild  and  delta  update.  Full  rebuild

merges  and  reorders  existing  leaf  nodes  of  the  MB-

tree  with  a  batch  of  new  transactions,  and  rebuilds

the  entire  MB-tree.  Delta  update  directly  adds  new

sorted  data  to  the  MB-tree  in  batches.  Full  rebuild

will  incur  considerable  cost  to  recompute  the  digests

of  the  entire  MB-tree  and  block  queries  for  a  long

time. Therefore, delta update is applied to our merge

processing, as shown in Algorithm 4.

Algorithm 4. Batch Update

root txs
txs

　Input: : root node; : transaction array;
　　　　 /*  is sorted in skip list */

i← 11 ;

parent← root2 ;                            /* Search from root */

parent3 X-LOCK( );

i ⩽ txs.length4 while  do

leaf ← SearchNode(parent, txs[i]. key);

(txs[i]. key, txs[i]. poniter, txs[i]. digest)
leaf

5　  
6　  Repeat
7　　  if txs[i].op = INSERT then
8　　　   Insert 
into ;

9　　  else

(txs[i].key, txs[i].pointer, txs[i].digest)
leaf

10　　　   Delete 
　　　　   from ;

i← i+ 111　　  ;

12　 until all txs belonging to leaf have been inserted/deleted

13　　OR parent has either n – 1 children when deleting or 2n
　　   children when inserting;

14　 if parent is not in the enclave then

parent15　　 Verify  and move it into enclave;

updateDigest(leaf, parent)
parent

16　  ;
　                            /* Propagate digests to  only */

leaf17　 UNLOCK( );

txs[i].key parent parent
n− 1 2n

18　 if  is in the range of  and  has
　    either  or  children

txs[i].key parent19　　OR  is not in the range of  then

updateDigest(parent, root)20　　  ;
　　                                    /* Propagate digests to root */

parent21　　 UNLOCK( );

parent← root22　　  ;                /* Re-search from root */

parent23　　 X-LOCK( );

parent24 UNLOCK( );

SearchNode parent k25 Function ( , )

node← getChildNode(parent, k)
node parent

26　  ;
　                                   /*  is the child of  */

node27　 X-LOCK( );

node28　 while  is not a leaf node do

node contains 2n keys
n− 1 2n

29　　 if     then
　　             /*Each node has between  and  keys */

split(parent, node)30　　　  ;

node contains n− 1 keys31　　 else if     then

merge(parent, node)32　　　  ;

parent33　　 UNLOCK( );

parent← node node parent34　　  ;   /* Make  as a new  */

node← getChildNode(parent, k)35　　  ;

node36　　 X-LOCK( );

node37　 return ;

Our batch update algorithm is efficient because it

performs searching and propagates digest changes on-

ly  once for  all  updates  belonging to the same parent

node.  When  traversing  the  tree,  the  algorithm  ap-
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2n

plies the lock-coupling strategy of nodes, which means

only  the  node  and  its  parent  are  locked  exclusively.

The  parent  is  kept  locked  until  all  child  nodes  have

been updated and the digest changes from them have

been  applied.  For  bulk  insertions,  if  a  parent  node

gets full (i.e., the parent node contains  keys) or all

data  belonging  to  a  parent  node  has  been  inserted,

the  previously  deferred  digest  changes  in  the  parent

node will be propagated back to the root node. After

that,  restarting  from  the  root  node,  the  algorithm

searches a leaf node for next insertion.

SearchNode

To find the corresponding entry for a search key,

the  function  starts  from  the  root  and

traverses all the way to the leaf. If an internal node is

full  or  half  full,  the  split  or  merge  operation  is  trig-

gered accordingly.

According to which data is moved out of the skip

list and merged into the MB-tree, there are two solu-

tions: merge-cold and merge-all. Merge-cold selective-

ly  moves  infrequently  accessed  cold  data  out  of  the

skip list that is used as a write back cache. Merge-all

moves all data out of the skip list, and treats the skip

list  as  a  write  buffer  that  continuously  accumulates

new  blocks  from  the  blockchain  network.  Since  our

system has the hot cache and the cold cache for query

processing, and needs to buffer enough new blocks to

reduce  the  MB-tree  update  cost,  merge-all  is  more

suitable.

Moreover,  it  is  important  to  determine  a  merge

threshold about how many blocks are buffered for one

merge processing. If the number of buffered blocks is

too small to form a considerable sequence length, the

MB-tree  update  cost  will  not  be  reduced  drastically.

Contrary,  too  many  buffered  blocks  will  take  longer

to search in the skip list and process merging. There-

fore, the specific threshold can be set according to the

actual requirement.

 7    Cost Analysis

We  compare  our  scheme  with  MB-tree[2] and

AAB-tree[6] in  terms  of  the  communication,  verifica-

tion  and  update  costs.  The  comparison  results  are

summarized in Table 1. The cost of the VO construc-

tion  in  our  scheme  is  the  same  as  that  in  the  tradi-

tional  scheme.  The  traditional  query  verification  is

performed on the client. Our query verification is pro-

cessed  with  Intel  SGX  on  the  server,  and  thus  the

client does not need to receive or verify any VO.

 7.1    Cost Analysis of MB-Tree

2(logf nq)

(f − 1)|h|
f − 1 |h|

(logf nt − logf nq)(f − 1)|h|
(logf (ntnq))× (f − 1)|h|

|R|+ (logf (ntnq))(f − 1)|h|
|R| |R|

The VO of the authenticated range query has two

parts: 1) the sibling hashes along two boundary paths

of  the  query  subtree,  with  the  size  of 

 (each  entry  along  the  path  has  at  most

 siblings  and  is  the  size  of  a  hash  value  in

bytes),  and  2)  the  sibling  hashes  along  the  common

path  of  the  query  subtree,  with  the  size  of

.  Hence,  the  VO  size  is

.  Since  MB-tree  contains

query results and VOs, and our scheme only requires

query  results,  the  communication  costs  of  MB-tree

and  our  scheme  are  and

 respectively  (  is  the  size  of  query  results  in

bytes).

(
∑(logf nq)−1

i=0 f i)Ch

(logf
nt

nq
)Ch

(
∑(logf nq)−1

i=0 f i+

logf
nt

nq
)Ch + Cv

The verification of  the authenticated range query

has  three  parts:  1)  the  hashing  for  the  entire  query

subtree  except  the  common  path,  with  the  cost  of

,  2)  the  hashing  for  the  common

path  of  the  query  subtree,  with  the  cost  of

,  and 3) the verification of  the root signa-

ture. Therefore, the verification cost is 

. Because our query verification is pro-

cessed with Intel SGX on the full node, which avoids

verifying nodes at upper levels and the root signature,

 

Table  1.    Cost Comparison

Communication Cost Verification Cost Update Cost

MB-Tree[2] |R|+ (logf (ntnq))(f − 1)|h| (
∑(logf nq)−1

i=0 f i + logf
nt
nq

)Ch + Cv (logf nt)Ch + Cs

MB-Tree in Intel SGX |R| (
∑(logf nq)−1

i=0 f i + logf
nt
nq

)Ch (logf nt)Ch

AAB-Tree[6] |a|+ (logf (ntnq))(f − 1)(|h|+ |a|) (
∑(logf nq)−1

i=0 f i + logf
nt
nq

)Ch + Cv (logf nt)(Ch + Ca) + Cs

AAB-Tree in Intel SGX |a| (
∑(logf nq)−1

i=0 f i + logf
nt
nq

)Ch (logf nt)(Ch + Ca)

nt nq f i

i Ch Cv Cs

Ca R f
h a

Note:  represents the number of tuples;  represents the number of tuples in a query result;  represents the number of nodes at
the -th  level  of  a  query  subtree;  represents  the  cost  per  hash  operation;  represents  the  cost  per  verification  operation; 
represents the cost per sign operation;  represents the cost per aggregate operation;  represents a query result;  represents the
node fanout;  represents a hash value;  represents an aggregate value.
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(
∑(logfnq)−1

i=0 f i + logf
nt

nq
)Ch

the  verification  cost  is  less  than  or  equal  to

.

(logf nt)Ch

(logf nt)Ch + Cs

(logf nt)Ch

The update of MB-tree has two steps: 1) re-hash-

ing for  every node on the search path,  with the cost

of ,  and  2)  re-signing  for  the  root  node.

Hence,  the  update  cost  is .  As  our

scheme reduces the propagation of digest changes and

removes  the  signing  operation  for  the  root  node,  the

update  cost  is  less  than  or  equal  to .

 7.2    Cost Analysis of AAB-Tree

2(logf nq)(f − 1)(|h|+ |a|) |a|

(logf nt − logf nq)

(f − 1)(|h|+ |a|)

|a|+ (logf (ntnq))

(f − 1)(|h|+ |a|)

The VO of the authenticated aggregate query has

two parts: 1) the sibling hashes and aggregate values

along two boundary paths of the query subtree, with

the size of  (  is the size of

an aggregate value in bytes), and 2) the sibling hash-

es  and  aggregate  values  along  the  common  path  of

the  query  subtree,  with  the  size  of 

.  As  an  AAB-tree  commonly  only

contains VOs from nodes at upper levels, the commu-

nication cost is less than or equal to 

.  Our  scheme  does  not  contain  the

VO,  and  thus  the  communication  cost  is  the  size  of

an aggregate value.

(
∑(logf nq)−1

i=0 f i)Ch

(logf nt − logf nq)Ch

The  verification  of  the  authenticated  aggregate

query  has  three  parts:  1)  the  hashing  for  the  entire

query subtree except the common path, with the cost

of ,  2)  the  hashing  for  the  common

path  of  the  query  subtree,  with  the  cost  of

,  and  3)  the  verification  for  the

root  signature.  The  AAB-tree  computes  the  aggre-

gate result based on nodes at upper levels in compari-

son with the MB-tree,  which shortens the query and

verification path, and our scheme with Intel SGX fur-

ther shortens the verification path from the nodes at

upper levels to the root node. Hence, the verification

costs are at most  (logf nq)−1∑
i=0

f i + logf
nt

nq

Ch + Cv

and  (logf nq)−1∑
i=0

f i + logf
nt

nq

Ch

respectively.  When a leaf  node is  updated,  AAB-tree

needs to propagate both digest changes and aggrega-

tion changes from the leaf node to the root node, with

recomputing  hash  values  and  aggregate  values  (with

(logf nt)Ch (logf nt)Ca

(logf nt)(Ch + Ca) + Cs

(logf nt)(Ch + Ca)

the  cost  of  and ),  and  re-sign-

ing  the  root  node.  Our  scheme  avoids  the  propaga-

tion  of  digest  changes  and  the  root  signature.  Thus,

the  update  costs  are  at  most 

and  respectively.

 8    Security Analysis

We perform security analysis  in this  section.  Our

basic  security model  is  secure,  provided that  the un-

derlying hash function is collision-resistant and the se-

curity enforcement of Intel SGX cannot be broken.

Tampering  Attack. As  the  frequently-accessed

nodes of the MB-tree and the entire skip list are resi-

dent  in  the  enclave,  attackers  cannot  tamper  with

them. Although the other nodes of the MB-tree locat-

ed in  the  regular  memory may be tampered with by

adversaries, the integrity of query results can be veri-

fied  by  the  trusted  nodes  in  the  enclave.  Using  the

query  results  and  VOs,  the  query  processor  recon-

structs the digests in a bottom-up fashion until reach-

ing the first cached node, and compares the comput-

ed  digest  against the  one  reserved  in  the  enclave.  In

this way, for the case that a node has been successful-

ly tampered with, there exist two MB-trees with dif-

ferent nodes but the same root digest. This implies a

successful  collision  of  the  underlying  hash  function,

which leads to a contradiction.

Network  Attack. In  our  scheme,  the  MB-tree  en-

sures the integrity of query results in the application

layer, and the transport layer security (TLS) channel

assures  the  integrity  of  communication  data  in  the

network layer.  The application layer  transmits  query

results  to  the  network  layer  through  the  secure  en-

clave  that  cannot  be  accessed  by  the  full  node.  To

protect data transmission between the light client and

the secure enclave, the light client can establish a se-

cure  TLS channel  with  the  enclave  on the  full  node.

Intel SGX's remote attestation ensures that the chan-

nel's  remote  endpoint  terminates  within  the  secure

enclave. After verifying query results returned by the

MB-tree, the SGX sends it from the secure enclave to

the  light  client  through  the  TLS  channel.  The  TLS

channel  uses  128-bit  AES-GCM in  the  encrypt-then-

MAC  (message  authentication  code)  mode  for  sym-

metric encryption and authentication. The MAC that

behaves like a hash function can detect any malicious

alteration  to  the  data  over  the  channel.  Thereby,  a

network  stack  implementation  could  remain  untrust-

ed, as long as a TLS connection on its top terminates
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inside  the  trusted  enclave.  In  our  system,  the  AES-

GCM only takes  about 1 µs  to encrypt or  decrypt 1

KB data; hence it will not incur expensive cost unless

the query result is very large.

Rollback  Attack. The  support  of  persistence  for

the  MB-tree  requires  protection  against  rollback  at-

tacks.  In  a  rollback  attack,  the  untrusted  node  re-

places the MB-tree with an earlier version, so that the

client reads stale results. A trusted monotonic counter

can ensure the enclave always uses the latest version

of  an  MB-tree.  To  defend  the  rollback  attack  and

guarantee  the  freshness  of  query  results,  we  can  use

the Intel SGX monotonic counter service or distribut-

ed rollback-protection systems such as ROTE[22].

Untrusted  Blockchain  Data. In  our  scheme,  Intel

SGX on the full node performs all verification for the

light client, yet a dishonest full  node may deliver in-

correct  or  incomplete  block,  and  even  not  send  the

latest  block  to  the  enclave.  To  protect  against  such

compromises,  a  light  client  can  acquire  the  latest

block hash from other sources, compares it with that

from the SGX, and deduces if the result is integral or

not.

 9    Implementation and Evaluation

In this section, we evaluate the performance of our

query authentication scheme that contains range and

aggregate  queries,  join  processing,  cache  replacement

and batch updates.

 9.1    Experimental Setup

⌊(2 048− (8 + 20))/(8 + 8 + 20)⌋

⌊(2 048− (8 + 8+20))/(8 + 8 + 8 + 20)⌋

We use BChainBench[13], a mini benchmark for bl-

ockchain  databases,  to  generate  a  synthetic  block-

chain  dataset  that  consists  of  1  million  transactions,

of which each key has eight bytes and each value has

500  bytes.  In  our  implementation,  the  page  sizes  of

the MB-tree and the AAB-tree are set to 2 KB. Each

entry  of  the  MB-tree  occupies  36  bytes  (8  bytes  for

the key, 8 bytes for the pointer and 20 bytes for the

digest),  so  that  each  node  has  56  entries

(  = 56). Each entry of

the AAB-tree occupies 44 bytes (8 bytes for the key,

8 bytes for the pointer, 8 bytes for the aggregate val-

ue and 20 bytes for the digest), so that each node has

45  entries  (  =

45).  Initially,  in  our  scheme,  the  MB-tree  and  the

AAB-tree  are  stored  on  disk,  except  that  the  root

node  is  located  in  the  enclave.  Intel  SGX's  EPC  is

limited to 128 MB whereof only 93 MB are available

for usage due to the metadata. Allocating the limited

enclave memory is a trade-off between query time and

update cost. For the current blockchains, considering

their  block  generation  interval  and  a  few  thousand

transactions  per  block,  we  allocate  less  memory  for

batch  updates.  Therefore,  70  MB and  10  MB of  the

enclave  memory  are  allocated  for  the  hot  cache and

the  skip  list  respectively,  and  the  rest  for  the  code

base. In addition, 1 GB of the regular memory is allo-

cated  for  the  cold  cache.  All  experiments  were  con-

ducted  on  a  server  equipped  with  32  GB  RAM and

Intel  Core  i7-8700k  CPU  @2.70Hz,  and  running

Ubuntu  16.04  OS  with  Intel  SGX  Linux  SDK  and

SGXSSL library.

 9.2    Query Performance

We report the performance of four solutions in the

following  series  of  experiments,  including  MB-tree,

AAB-tree,  MB-tree  in  Intel  SGX,  and  AAB-tree  in

Intel  SGX.  Note  that  the  former  two  are  traditional

solutions while the latter two are based on Intel SGX.

Fig.8(a) manifests  the  performance  of  the  point

query in the Zipfian distribution. With the increment

of the skew parameter, the throughput of the MB-tree

in Intel SGX is about 1.5 times more than that of the

MB-tree  solution,  because  the  frequently-accessed

MB-tree nodes in the enclave shorten the verification

path. In Fig.8(b), the VO size of the MB-tree in Intel

SGX  decreases  by  one  or  two  orders  of  magnitude

compared with the traditional  solution.  For the MB-

tree in Intel SGX, the verification is accomplished by

the  SGX  on  the  full  node,  so  that  the  light  client

avoids receiving and processing the VO.

Fig.8(c) demonstrates  the  performance  of  the

range query. The execution time of the MB-tree in In-

tel  SGX  is  merely  60%  of  the  MB-tree  solution.  In

Fig.8(d), the reduction of the VO size is more remark-

able,  since  the  range  query  has  more  verification  in-

formation  than  the  point  query.  The  VO size  of  the

MB-tree solution increases linearly with the query se-

lectivity,  which  exhibits  significant  communication

and  verification  costs  for  light  clients,  especially  for

mobile devices.

Fig.9(a) shows the aggregate query performance of

the AAB-tree. The query time of the AAB-tree in In-

tel  SGX  is  around  60%  of  the  AAB-tree  solution

when  the  selectivity  rises  from  20%  to  50%.  In

Fig.9(b), the VO size of the AAB-tree in Intel SGX is

728 J. Comput. Sci. & Technol., May 2023, Vol.38, No.3



Zipf Query Distribution

0.5 1.0

Q
u
e
ri
e
s 

p
e
r 

S
e
c
o
n
d
 (


1
0

4
)

V
O

 S
iz

e
 (

b
y
te

)

T
im

e
 (

s)

1.5

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0
2.0

(a)

(c)

Zipf Query Distribution

0.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

V
O

 S
iz

e
 (

b
y
te

)

3.0

2.5

2.0

1.5

1.0

0.5

0.0

1.0 1.5 2.0

(b)

MB-Tree

MB-Tree in Intel SGX

MB-Tree

MB-Tree in Intel SGX

MB-Tree

MB-Tree in Intel SGX

MB-Tree

MB-Tree in Intel SGX

103

105

0.0 0.1 0.2 0.3 0.4 0.5
Selectivity

(d)

0.0

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00
0.1 0.2 0.3 0.4 0.5

Selectivity

Fig.8.  Query performance and VO size of MB-tree. (a) Point query. (b) VO size of the point query. (c) Range query. (d) VO size of
the range query.

(a)

0.0 0.1

8

6

4

2

0
0.2 0.3 0.4 0.5

Selectivity

(b)

0.0 0.1 0.2 0.3 0.4 0.5

Selectivity

T
im

e
 (

s)

10-4

V
O

 S
iz

e
 (

b
y
te

)

4

3

2

1

0

103

AAB-Tree

AAB-Tree in Intel SGX

AAB-Tree

AAB-Tree in Intel SGX

Fig.9.  Query performance and VO size of AAB-tree. (a) Aggregate query. (b) VO size of the aggregate query.

Qi-Feng Shao et al.: Query Authentication Using Intel SGX for Blockchain Light Clients 729



around 20%–30% of the traditional solution. With the

increment of query selectivity, the execution time for

aggregate queries tends to be constant, because AAB-

tree  can  retrieve  pre-aggregated  values  directly  from

high-level  nodes  without  traversing  down  and  per-

forming linear scan on the leaf nodes. The greater the

query  range,  the  more  the  aggregate  values  in  high-

level nodes the AAB-tree can utilize, due to a greater

aggregation opportunity. By integrating the AAB-tree

with Intel SGX, high-level nodes of the AAB-tree are

completely  cached  in  the  enclave,  which  further  re-

duces the verification cost. As a result, the AAB-tree

solution outperforms the MB-tree solution when pro-

cessing aggregate queries.

 9.3    Join Performance

R

S

R S

For evaluating the join query we compare the per-

formance  of  the  proposed  algorithms  (AMJ  and

AINLJ)  against  AIM[8].  The  experiment  investigates

both Foreign Key (FK) and Equi (EQ) joins as in [8].

For the FK join, each tuple in  matches at least one

tuple in  due to foreign-key constraint. For the EQ

join, both  and  contain unmatched tuples. We use

two datasets,  each with 1 million tuples  and a vary-

ing tuple size.

TR TS

Fig.10(a) displays  the  execution  time  of  the  FK

join query for various tuple sizes. The execution time

of AMJ is about three times lower than that of AIM.

AMJ  only  needs  to  perform  the  authenticated  range

query once on MB-trees  and ; hence it has less

overhead  than  AIM  in  verification  processing.  With

TR TS

R

the  increment  of  the  tuple  size,  AMJ  needs  to  per-

form enclave function calls more times to load tuples

into  the  enclave,  which  increases  its  execution  time.

Compared  with  AMJ,  AIM needs  to  execute  the  in-

dex-traversal multiple times on MB-trees  and ,

generating  redundant  boundary  tuples  and  Merkle

proofs  for  matched  or  unmatched  tuples.  The  main

disadvantage  of  AIM  is  that  the  client  needs  to  re-

ceive intermediate results and generate join results lo-

cally, which induces considerable burden to the client.

AINLJ has the worst performance because it needs to

perform the authenticated range query for each tuple

in . AINLJ is still a good choice if the off-chain da-

ta is small. Fig.10(b) shows the execution time of the

EQ  join  query.  The  EQ  join  results  in  more  un-

matched tuples  compared with the  FK join.  Because

the  query  results  of  AMJ  and  AINLJ  only  contain

matching tuples, the performance is rarely affected by

the  cardinality  of  join  results.  The execution time of

AIM is reduced, because it can utilize the MB-tree to

prune unmatched tuples from VO.

 9.4    Cache Performance

Fig.11(a) reports  the  performance  of  H-LRU and

LRU.  We  run 100 000 point  queries,  and  report  the

cache hit rate, i.e., the number of accesses to MB-tree

nodes  located  in  the  hot  cache  to  the  number  of  ac-

cesses  to  all  nodes.  We raise  the  cache size  from 5%

to  40%  of  the  cache  size  of  the  highest  hit  rate.  H-

LRU provides about 10% improvement over the tradi-

tional  LRU.  The  performance  boost  is  higher  with  a
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Fig.10.  Join performance. (a) Foreign key join. (b) Equi join.
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smaller cache size.

In Fig.11(b), we randomly mix some range queries

in point queries, which will start scan operations occa-

sionally.  We  set  the  probability  of  starting  a  range

query  to  0.1,  i.e.,  1/10  of  the  generated  queries  are

range  queries.  We  vary  the  selectivity  based  on  the

cache  size  of  the  highest  hit  rate.  The  experiments

confirm that H-LRU is more adaptable than LRU.

 9.5    Update Performance

Fig.12 presents  the  update  performance  of  the

MB-tree.  The  batch  update  consists  of  a  number  of

insertions, ranging from 1% to 50% of the blockchain

data size. We use the insert-only workload in this ex-

periment  because  it  generates  higher  merge  demand

than  the  update  workload.  When  the  insertion  ratio

reaches 50%, the update time and the number of  re-

hashing are diminished by about four times,  and the

number  of  I/O  operations  is  reduced  by  about  six

times.  It  is  because  the  MB-tree  is  bulk-loaded  with

70%  utilization,  and  bulk  insertions  quickly  lead  to

many  split  operations,  which  creates  a  lot  of  new

nodes.  Although  most  improvements  are  contributed

by  reducing  the  I/O  cost,  our  batch  update  algo-

rithm avoids hash computing being propagated to the

root node and reduces the lock operations on MB-tree

nodes. The MB-tree solution requires expensive signa-

ture  re-computation  for  every  update.  In  order  to

show  the  update  performance  of  the  MB-tree  itself,

we omit the cost on the signature re-computation.

Fig.13 shows the update performance of the AAB-

tree.  When  the  insertion  ratio  reaches  50%,  the  up-

date  time  and the  number  of  hash  computations  are

diminished  by  about  five  times,  and  the  number  of

I/O operations is reduced by about seven times. The

update  performance  of  the  AAB-tree  is  lower  than

that of  the MB-tree no matter whether it  is  a single

insertion or a bulk insertion, because each entry of an

AAB-tree  node  contains  an  aggregate  value.  For  the
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Fig.12.  Update performance of MB-tree. (a) Update time. (b) I/O operations. (c) Hash computations.
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same node size, the AAB-tree has smaller fanout than

the MB-tree, which will trigger more split operations.

For  the  single  insertion,  the  AAB-tree  has  to  cope

with  the  propagations  of  the  digest  change  and  the

aggregation change at the same time, which incurs a

significant cost. For the bulk insertion, the changes of

the digests will be propagated up to the root node on-

ly  after  all  new  data  belonging  to  the  same  parent

node is inserted, which induces reasonable overhead.

 10    Conclusions

We explored the issue of query authentication us-

ing Intel SGX for blockchain light clients. Specifically,

we  integrated  MB-tree  and  Intel  SGX,  which  opti-

mizes the verifiable query performance of blockchains.

Compared  with  the  traditional  verifiable  query

scheme,  the  light  client  is  completely  freed  from the

tedious verification logic by having Intel SGX on the

full node handle the query result verification. In addi-

tion,  we  proposed  a  two-level  cache  architecture,

which alleviates the space limitation of enclave memo-

ry. We also designed a batch update method based on

a hybrid index structure to reduce the digest  update

cost of MB-tree. Our scheme can also be used to im-

prove verifiable queries over traditional databases. Se-

curity analysis and empirical results substantiated the

robustness and the efficiency of our proposed scheme.

The VO size of our scheme is reduced by one to two

orders of magnitude compared with that of the tradi-

tional MB-tree.

Both  blockchains  and  TEE  emphasize  trust,  and

therefore  we  applied  hardware-based  TEE  to

blockchains for improving the trust of query process-

ing. In future, we will plan to extend our idea to pro-

cess  other  authenticated  queries,  such  as  top-k and

sliding-window queries.
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