

Query Authentication Using Intel SGX for Blockchain Light Clients

Qi-Feng Shao1, 2 (邵奇峰), Member, CCF, Zhao Zhang1 (张　召), Member, CCF
Che-Qing Jin1, * (金澈清), Distinguished Member, CCF, and Ao-Ying Zhou1 (周傲英), Fellow, CCF

1 School of Data Science and Engineering, East China Normal University, Shanghai 200062, China
2 School of Software, Zhongyuan University of Technology, Zhengzhou 450007, China

E-mail: shao@stu.ecnu.edu.cn; zhzhang@dase.ecnu.edu.cn; cqjin@dase.ecnu.edu.cn; ayzhou@dase.ecnu.edu.cn

Received September 22, 2020; accepted March 4, 2022.

Abstract Due to limited computing and storage resources, light clients and full nodes coexist in a typical blockchain

system. Any query from light clients must be forwarded to full nodes for execution, and light clients verify the integrity of

query results returned. Since existing verifiable queries based on an authenticated data structure (ADS) suffer from signifi-

cant network, storage and computing overheads by virtue of verification objects (VOs), an alternative way turns to the

trusted execution environment (TEE), with which light clients do not need to receive or verify any VO. However, state-of-

the-art TEEs cannot deal with large-scale applications conveniently due to the limited secure memory space (e.g., the size

of the enclave in Intel SGX (software guard extensions), a typical TEE product, is only 128 MB). Hence, we organize data

hierarchically in trusted (enclave) and untrusted memory, along with hot data buffered in the enclave to reduce page

swapping overhead between two kinds of memory. The cost analysis and empirical study validate the effectiveness of our

proposed scheme. The VO size of our scheme is reduced by one to two orders of magnitude compared with that of the tra-

ditional scheme.

Keywords blockchain, query authentication, Merkle B-tree (MB-tree), Intel software guard extensions (SGX)

 1 Introduction

The growing popularity of blockchains marks the

emergence of a new era of distributed computing.

Blockchain, the underlying technology of Bitcoin①, is

essentially a decentralized, immutable, verifiable and

traceable distributed ledger managed by multiple par-

ticipants. Specifically, blockchain can achieve trusted

data sharing among untrusted parties without the co-

ordination of any central authority.

A blockchain system commonly contains two

kinds of nodes, full nodes and light clients. Full nodes

receive and validate every block, and store the histo-

ry of all transactions. Due to limited storage capacity,

light clients only download block headers to verify the

existence of each transaction by checking the root of

the Merkle tree in the block header, which consumes

less resources than full nodes. Any query from light

clients will be forwarded to full nodes for processing.

The integrity of query results returned from full nodes

will be authenticated by light clients, because the full

nodes may be dishonest.

⩽ TotalOutput ⩽

However, existing blockchain systems have limit-

ed ability to support authenticated queries for light

clients. For example, the simple payment verification

(SPV) in Bitcoin can only answer whether a particu-

lar transaction is present in a block or not. With the

popularization of the blockchain technology, there is

an increasing demand for a variety of authenticated

queries on the blockchain. For example, by utilizing

range queries, users may want to select Bitcoin trans-

actions satisfying “10 bitcoin 30 bit-

coin” . Join queries combining blockchain data with

off-chain data are important as well. For instance, it

is easy to understand that today's Bitcoin fee is $1.5

rather than 0.000 03 bitcoin, which needs to join Bit-

Regular Paper

This work was supported by the National Key Research and Development Program of China under Grant No. 2021YFB-
2700100 and the National Natural Science Foundation of China under Grant Nos. U1911203, U1811264 and 61972152.

*Corresponding Author

Shao QF, Zhang Z, Jin CQ et al. Query authentication using Intel SGX for blockchain light clients. JOURNAL OF COM-

PUTER SCIENCE AND TECHNOLOGY 38(3): 714−734 May 2023. DOI: 10.1007/s11390-022-1007-2

①Nakamoto S. Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/bitcoin.pdf, Oct. 2021.
©Institute of Computing Technology, Chinese Academy of Sciences 2023

https://doi.org/10.1007/s11390-022-1007-2

coin data with USD-based market data. Aggregate

queries are widely adopted for business applications,

and thus viewing blockchain data in aggregation is

useful to make business decisions. For instance, users

may be interested in some aggregate information,

such as “daily transaction volume”, “transactions per

second” and “ average transaction fee per month” .

Hence, authenticated query processing becomes ur-

gent nowadays.

In this paper, we focus on range, join and aggre-

gate query authentications for the blockchain. How to

process authenticated queries can be tracked back to

outsourced databases, where clients delegate the

DBMS management to a third-party database server

that receives and processes queries. In a typical out-

sourced database, both the signature-based approach

(e.g., signature chaining[1]) and the tree-based ap-

proach (e.g., MB-tree[2]) are capable of ensuring the

correctness and completeness of query results. Since

the signature-based approach cannot scale up to large

datasets when each pair of adjacent tuples must be

signed, we adopt the tree-based approach in this pa-

per. However, applying existing tree-based approach-

es to the blockchain is quite challenging.

● In addition to the query results, full nodes need

to return the verification object (VO). The construc-

tion and transmission of VO incur query latency and

bandwidth consumption respectively, and the splicing

and the verification of VO increase the computing

overhead of light clients with limited resources.

● When a leaf node is updated, its hash change

will be propagated up to the root digest, which in-

duces write amplification. In general, the tree-based

approach assumes the database needs few updates, so

that it is inapplicable to the blockchain that continu-

ously submits transactions by block.

To address the above issues, it is necessary to de-

vise a new scheme to verify query results efficiently.

In recent years, the trusted execution environ-

ment (TEE) has caught the attention of industrial

and academic communities as it provides crypto-

graphic constructs based on hardware and offers

stronger protection in comparison with its software

counterparts. TEE offers a promising direction of de-

signing query authentication schemes. For example,

Intel SGX (software guard extensions)[3], a typical

TEE, can protect sensitive code and data from being

leaked and tampered with, and isolate security-criti-

cal applications even from privileged users. Intel SGX

allows to create one or more isolated contexts, named

enclaves, which contain segments of trusted memory.

To guarantee confidentiality and integrity, sensitive

applications are installed in the enclave, no matter

whether the underlying machine is trusted or not.

ecall ocall

However, the security offered by Intel SGX does

not come for free. The special region of isolated mem-

ory reserved for the enclave, called EPC (enclave page

cache), currently has a maximal size of 128 MB, of

which only 93 MB are utilizable for applications. An

EPC page fault occurs when the accessed memory ex-

ceeds the available EPC size. Page swapping is expen-

sive, because the enclave memory is integrity-protect-

ed and encrypted. Intel SGX provides two built-in

wrapper codes, and , to invoke enter and

exit instructions respectively to make cross-enclave

function calls. However, these two codes add over-

head of approximately 8 000 CPU cycles, compared

with 150 cycles of a regular OS system call[4]. Al-

though Intel SGX solves the secure remote comput-

ing problem of sensitive data on untrusted servers,

how to lower the expensive cost remains as an open

challenge.

In summary, we first propose authenticated range

and join queries for the blockchain by combining MB-

tree[2] with Intel SGX, which is an enhancement of [5].

Then, we extend the work of [5] by presenting au-

thenticated aggregate queries that integrate AAB-

tree[6] and Intel SGX. In addition, we explore more

details, e.g., the cost analysis against traditional ap-

proaches and thorough empirical evaluation. To the

best of our knowledge, it is the first step toward in-

vestigating the issue of query authentication with In-

tel SGX over the blockchain. Our main contributions

are as follows.

● We propose an efficient Intel SGX based query

authentication scheme for the blockchain, with which

light clients do not need to receive or verify any VO.

The scheme also alleviates the cascading hash com-

puting cost induced by updates on the MB-tree, with

a hybrid index leveraging the feature of the

blockchain to submit transactions by block.

● In view of the space limitation of enclave memo-

ry, we integrate the MB-tree and the AAB-tree with

Intel SGX to support range and aggregate query au-

thentications respectively.

● We conduct theoretical analysis and an empiri-

cal study to evaluate our proposed scheme. Analysis

and experimental results show the efficacy of the pro-

posed scheme.

The rest of the paper is organized as follows. Sec-

Qi-Feng Shao et al.: Query Authentication Using Intel SGX for Blockchain Light Clients 715

tion 2 gives some preliminaries, followed by the re-

view of existing work in Section 3. Section 4 intro-

duces the problem formulation. Section 5 presents our

scheme of query authentication with Intel SGX. The

batch update is discussed in Section 6. The cost anal-

ysis and the security analysis are presented in Sec-

tion 7 and Section 8 respectively. The experimental

results are reported in Section 9. Section 10 con-

cludes this paper.

 2 Preliminaries

In this section, we introduce the authenticated da-

ta structure (ADS) and Intel SGX[3], with which we

achieve efficient verifiable queries.

 2.1 Authenticated Data Structure

As more users outsource their database systems to

cloud service providers, query authentication has been

extensively studied to ensure the integrity of query re-

sults returned by untrusted providers. In the existing

solutions, ADS is more efficient and widely applied in

practice. Merkle hash tree (MHT)[7], Merkle B-tree

(MB-tree)[2] and authenticated aggregation B-tree

(AAB-tree)[6] are all typical ADSs.

n

hn = H(hn1
|hn2

) n1 n2

n H()

MHT is a binary tree in which each leaf node corres-

ponds to the digest of a tuple. The digest of an inter-

nal node is computed by hashing the concatenation of

the digests of its two child nodes. For example, an in-

ternal node is assigned the digest value

, where and are the children of

 and is a one-way, collision-resistant hash func-

tion. The internal nodes are iteratively constructed in

a bottom-up manner. Depending on the root node

that is signed by the data owner, any tampered tuple

can be detected, which assures data integrity. MHT

has been extensively adapted to many blockchain sys-

tems. In Bitcoin, each leaf node of MHT corresponds

to the SHA256 digest of a transaction. According to

the direct siblings in the path from the leaf node to

the root node, light clients can use SPV to verify

whether a transaction exists in a block.

f − 1 f

f

h = H(t) t

h = H(h1|...|hf) h1, ..., hf

MB-tree supports authenticated range queries.

Each node contains index keys and pointers

to child nodes, where is the fanout parameter. Ad-

ditionally, each pointer is augmented with a digest.

The exact structure of a leaf and an internal node is

shown in Fig.1(a). In the leaf node, each digest is a

hash value , where is a tuple pointed by the

corresponding pointer. In the internal node, each di-

gest is a hash value , where

are the hash values of the children of the internal

node. MB-tree is constructed in a bottom-up manner.

The contents of all nodes in the tree are reflected to

the root digest that is signed by the data owner.

Therefore, the entire tree can be verified by the root

digest so that adversaries cannot tamper with the

tree.

k

p

a h

h = H(k|a)
H()

k a

h = H(h1|a1|...|hf |af)

l

l + 1

AAB-tree, an aggregate MB-tree that combines

the MB-tree with pre-aggregated results, supports au-

thenticated aggregate queries. Besides an index key

and a pointer , each entry of a node is associated

with an aggregate value and a digest . The struc-

tures of leaf and internal nodes are shown in Fig.1(b).

In the leaf node, each aggregate value is the aggre-

gate attribute of a tuple, and each digest

is computed by a hash function based on the key

 and the aggregate value in the same entry. In the

internal node, each aggregate value is the aggrega-

tion of the children of the internal node, and each di-

gest is a hash value computed

on the concatenation of both hash values and aggre-

gate values of the children of the internal node. All

aggregate values in an AAB-tree node at level are

aggregated up to an entry in the parent node at level

, which corresponds to the roll-up materializa-

tion in the OLAP terminology. Therefore, when pro-

cessing aggregate queries, we can get pre-aggregated

results directly from the nodes at the upper levels of

the AAB-tree without retrieving and aggregating the

......

'
...

' ' ' ' ''

' ' '

' '

......

' '
...

 '

' '

(b)(a)

k p a h

Fig.1. Merkle tree. (a) Example of MB-tree nodes. (b) Example of AAB-tree nodes. The top node is an internal node, and the bot-
tom node is a leaf node. is the key, is a pointer to the child node, is the aggregate of all children, and is the hash value asso-
ciated with the entry.

716 J. Comput. Sci. & Technol., May 2023, Vol.38, No.3

nodes at lower levels of the AAB-tree.

 2.2 Intel SGX

ecall

ocall

ecall ocall

Intel SGX[3] provides an isolated portion of memo-

ry, called enclave, to protect sensitive code and data

from view or modification. Applications can create an

enclave to protect the integrity and the confidentiali-

ty of the code and data. Enclave memory pages,

stored in the enclave page cache (EPC), are integrity-

protected and encrypted. EPC is limited to 128 MB.

When this limit is exceeded, enclave pages are sub-

ject to page-swapping that leads to performance

degradation. Intel SGX's remote attestation allows

applications to verify that an enclave runs on a gen-

uine Intel processor with SGX. After successful re-

mote attestation, secret data is transferred to the en-

clave through a secure channel. The interaction be-

tween applications and enclaves needs to call in-

to enclaves (e.g., accessing enclave memory) and

to call out of enclaves (e.g., calling OS API). The con-

text switches induced by and drastically re-

duce the performance. Although Intel SGX offers a

trusted computing solution based on hardware, an ef-

fective optimization strategy is needed when design-

ing encalve-based solutions.

 3 Related Work

B+

B+

Query Authentication over Outsourced Databases.
Existing query authentication approaches which guar-

antee query integrity against untrusted service

providers are categorized into two kinds, signature

chaining[1] and Merkle tree[7]. Signature chaining signs

each pair of adjacent tuples in a chain fashion. Based

on the aggregated signature, the server can return the

VO including only one signature regardless of the re-

sult set size, and the client can verify query results

with this signature. Although the signature chaining

features small VO size and low communication cost,

it cannot scale up to large datasets because of the ex-

pensive cost on signing adjacent tuples. Typical

Merkle trees include MHT[7] and MB-tree[2]. MHT

aims at authenticated point queries, while MB-tree

combines MHT with -tree to support authenticat-

ed range queries. Since MB-tree enables efficient

search as -tree and query authentication as MHT,

it is employed to support authenticated aggregate[6]

and join[8] queries. [6] proposes AAB-tree, a variant of

cloud

MB-tree, for aggregate queries. Each entry in an

AAB-tree node is associated with an aggregate value

summarizing its children and a hash value computed

on the concatenation of both hash values and aggre-

gate values of its children. [8] studies the authentica-

tion of the join queries by constructing two MB-trees

on two relation tables. To support authenticated mul-

ti-dimensional range queries, MMB -tree[9] inte-

grates a multi-dimensional indexing method (i.e.,

iDistance) with MB-tree. However, these studies

mainly focus on outsourced databases, insufficient for

blockchain systems due to poor update performance.

Query Authentication over Blockchains. SPV, in-

troduced by Satoshi Nakamoto②, can only verify if a

transaction exists in the blockchain or not. Hu et
al.[10] leveraged smart contracts for verifiable query

processing over the blockchain, focusing on the file-

level keyword search without investigating the index-

ing issue. To support verifiable boolean range queries,

vChain[11] implements an accumulator-based ADS

scheme that enables aggregate intra-block data over

arbitrary query attribute. vChain also builds an inter-

block index that uses an accumulator-based skip list

to further improve query performance. Though

vChain can aggregate intra-block and inter-block

records for verifiable query processing, its light clients

still need to receive and verify VOs. To support au-

thenticated range queries, Zhang et al.[12] stored data

records in traditional databases (off-chain) and MB-

tree in Ethereum (on-chain). Because MB-tree is

maintained by a smart contract, the main purpose of

optimization is to reduce the Ethereum gas cost. Ad-

ditionally, [12] focuses on verifiable queries upon tra-

ditional data, not blockchain data. SEBDB[13] con-

structs an MB-tree for every block and implements

block-based authenticated query processing for light

clients. Since full nodes are untrusted, light clients of

SEBDB reduce the risk by sampling from multiple

full nodes, which further increases the verification

burden of light clients. In a nutshell, how to achieve

authenticated query processing at low cost is the fo-

cus of the blockchain.

Blockchain with Intel SGX. Present blockchain

systems mainly perform software-based cryptograph-

ic algorithms to ensure the trust of data. The appear-

ance of trusted hardware, Intel SGX, opens up new

possibility to ensure the confidentiality and the in-

tegrity of the blockchain. Town Crier[14], an authenti-

Qi-Feng Shao et al.: Query Authentication Using Intel SGX for Blockchain Light Clients 717

②Nakamoto S. Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/bitcoin.pdf, Oct. 2021.

https://bitcoin.org/bitcoin.pdf

cated data feed system between existing web sites and

smart contracts, employs Intel SGX to furnish data to

Ethereum. To serve authenticated data to smart con-

tracts without a trusted third party, Town Crier com-

bines the smart contract front end and the SGX back

end. Ekiden[15] performs smart contracts over private

data off-chain in Intel SGX, and attests to the cor-

rect execution on-chain, which avoids consensus nodes

from executing contracts and achieves the concurrent

execution of contracts. With separating the consen-

sus from the execution, Ekiden enables efficient confi-

dentiality-preserving smart contracts and high scala-

bility. Yan et al.[16] presented a confidential smart

contract execution engine to support on-chain confi-

dentiality by leveraging Intel SGX. Public transac-

tions and confidential transactions are handled in

public-engine and confidential-engine respectively,

while plain-text and cipher-text states are generated

and stored on the blockchain. Relying on Intel SGX,

Dang et al.[17] optimized the Byzantine consensus pro-

tocol and improved the individual shard's through-

put significantly. SPV in Bitcoin may leak the client's

addresses and transactions. BITE[18] prevents leakage

from access patterns and serves privacy-preserving re-

quests from light clients of Bitcoin by leveraging In-

tel SGX on full nodes. Although existing studies har-

monize blockchain and Intel SGX, none of them ex-

plore query authentication with Intel SGX.

 4 System Overview

Architecture. Fig.2 elucidates our system that

consists of a full node and a light client. Each query

from the light client is forwarded to the full node for

processing. As the full node may be dishonest, it is

critical to show the integrity of query results for the

light client. Traditional solutions organize data with

an MB-tree, and provide the light client both query

results and VOs for further verification. In our case,

however, a big VO, especially when processing range

queries, may exceed the processing power of the light

client like a mobile device. Consequently, our system,

which is equipped with Intel SGX, provides trusted

query processing on the untrusted full node, and re-

turns query results to the light client through a se-

cure channel, which enables the light client to trust

query results without receiving or verifying any VO.

Due to the space limitation of enclave memory, we or-

ganize the data hierarchically in trusted memory (en-

clave) and untrusted memory (regular memory).

In our scheme, an MB-tree is constructed for the

entire blockchain data, given that one MB-tree per

block imposes more complexity for query processing.

The skip list in the enclave memory buffers newly ap-

pended blocks, and merges the block data into the

MB-tree periodically once the used memory exceeds

the predefined threshold. Our scheme maintains two

kinds of caches, including a hot cache in the enclave

memory and a cold cache in the regular memory. The

hot cache caches frequently-accessed MB-tree nodes

that will not need to be verified in future. The cold

cache caches MB-tree nodes to reduce disk I/O. More

details are discussed in Section 5 and Section 6.

Adversary Model. Since no participant in the

blockchain network trusts others, the full node is a

potential adversary and may return incorrect or in-

complete query results. In our scheme, we apply Intel

SGX to process queries with integrity assurance. Be-

cause the enclave memory space is limited, we em-

ploy an authenticated index structure, MB-tree, out-

side the enclave memory to guarantee data integrity.

Even though an adversary may compromise the oper-

ating system and other privileged software on a full

Blockchain

Light Client

Blockchain

Full Node

Encrypted

Enclave Memory

Skip ListHot Cache

MB-Tree

Cold Cache

New Block

Merge

Verify

Query & Result

Fig.2. Architecture of query authentication with Intel SGX.

718 J. Comput. Sci. & Technol., May 2023, Vol.38, No.3

node, it cannot break the hardware security enforce-

ment of Intel SGX. With our hardware-based scheme,

the light client can trust the correctness and the com-

pleteness of query results under the following criteria.

● Correctness. All results satisfy the query condi-

tions and have not been tampered with.

● Completeness. No valid result is omitted regard-

ing the query range.

 5 Query Authentication with Intel SGX

As Intel SGX can protect the code and data from

being leaked and tampered with, an ideal solution is

to install the entire storage engine and process all

queries in the enclave, which eliminates computing

and network overheads induced by the VO in tradi-

tional solutions. However, the limited enclave size

makes it infeasible to handle large datasets. In this

study, we design a scheme to organize data hierarchi-

cally in trusted and untrusted memory. Meanwhile,

the data in the untrusted memory is organized as an

MB-tree and the frequently-accessed internal nodes

are cached in the enclave as trusted checkpoints. A

skip list, maintained in the trusted memory, buffers

newly appended block data. Once the size of the skip

list reaches a threshold, we merge all data in the skip

list into the MB-tree.

 5.1 MB-Tree in Intel SGX

In our scheme, the root node of the MB-tree[2] is

always located in the enclave, while the rest nodes

will be loaded into the enclave according to query re-

quests. After verifying the Merkle proof, a node is

trusted for search. The frequently-accessed nodes are

cached in the enclave to implement verifiable queries

cheaply, and the other nodes are outside of the en-

clave to save enclave usage. The MB-tree can be con-

structed either from scratch or based on existing data.

The enclave on the full node is firstly authenticated

with Intel SGX's remote attestation. Then the root

node of the MB-tree is transferred into the enclave

through a secure channel. When the thread maintain-

ing the MB-tree in the enclave receives a new block,

it begins to extract and verify transactions in the

block based on verification rules of the blockchain.

As shown in Fig.3(a), the traditional point query

on the MB-tree returns the VO (gray boxes in Fig.3)

in addition to the query result (oblique line boxes in

Fig.3). The VO is composed of sibling hashes in each

node along the query path. Light clients recompute

the root digest based on the query result and VO, so

as to verify the correctness of the query result. For

authenticated point queries, the size of the VO is

much greater than that of the query result, which in-

curs significant communication cost.

For the point query with Intel SGX, because the

previously verified MB-tree nodes in the enclave are

trusted, only the nodes outside the enclave need to be

verified, as described in Fig.3(b). When recomputing

the root digest in a bottom-up manner along the veri-

fication path, the verification process may be stopped

early once finding a node located in the enclave,

which shortens the verification path (dash arrows in

Fig.3(b)). In addition, since the SGX has verified VOs

instead of light clients, light clients just need to re-

ceive the query result.

Query1

Query2

As shown in Fig.4(a), from the root node

to the leaf node adds to the VO all the digests on the

left of the query path, and finds query results in leaf

nodes. adds all the digests on the right of the

query path. Besides the correctness, the range query

also needs to ensure the completeness of query results.

Therefore, the VO involves two boundary tuples

Verify

Query

...

Blockchain

Root (Signed by
the Constructor)

...

Enclave
Memory Root

Verify

Query

...
...

Blockchain

(b)(a)

Fig.3. Point query and verification on MB-tree. (a) Point query. (b) Point query with Intel SGX.

Qi-Feng Shao et al.: Query Authentication Using Intel SGX for Blockchain Light Clients 719

(point boxes in Fig.4). The two boundary tuples are

the left and right boundaries of query results, indicat-

ing no tuples are omitted from query endpoints. By

restructuring the root digest with the consecutive

query results and two boundary tuples, we can check

whether all tuples in the query range are involved or

not. The authenticated range query needs to verify

more VOs because they involve more results, which

incurs higher communication cost than the point

query. As demonstrated by dash arrows, the results of

the range query involve consecutive leaf nodes, i.e.,

multiple verification paths. For verification, in order

to compute the root digest, reconstructing the whole

query subtree according to multiple verification paths

will induce significant computing cost to light clients.

Since the MB-tree nodes cached in the enclave

help to shorten the verification path and reduce the

number of nodes to be verified, processing the range

query with Intel SGX alleviates the cost of query veri-

fication, as illustrated in Fig.4(b). Specifically, when

all leaf nodes covered by the query results are in the

enclave, it is unnecessary to perform any verification.

Thus, the SGX simplifies the query authentication of

the MB-tree.

 5.2 Join Query with Intel SGX

Similar to standard B-tree, MB-tree[2] only sup-

ports the query attribute on which it is built. In our

scheme, to support verifiable queries on multiple at-

tributes, it needs to build an MB-tree for each at-

tribute. Thereby, a disjunctive selection can be pro-

cessed by combining results from multiple authenti-

cated range queries over their respective MB-trees,

and a conjunctive selection can be transformed to an

authenticated join query over multiple MB-trees.

For blockchain, join queries integrating on-chain

data, or combining on-chain and off-chain data are

R ▷◁P S P
<

>

quite common. Unlike the authenticated range query,

the authenticated join query is inherently more com-

plex because the combination of two relations is hard-

er to verify. The most efficient existing solution is the

authenticated index merge join (AIM)[8] that returns

intermediate results to the clients who would then

verify those results and generate join outputs locally.

The generation of join results undoubtedly incurs con-

siderable communication and computing costs to

clients. Therefore, if Intel SGX is used to match tu-

ples and generate join outputs, light clients would on-

ly need to receive trusted join results. In this subsec-

tion, depending on MB-tree and Intel SGX, we

present two authenticated join algorithms: Authenti-

cated Merge join (AMJ) and Authenticated Index

Nested-Loop Join (AINLJ). The two algorithms focus

on pairwise joins of the pattern where is a

predicate with ordering-based operators such as =,

and .

 5.2.1 Authenticated Merge Join

supplier ▷◁ order

supplier order

Like the join query between different tables in the

relational database, blockchains also need the join

query for different types of transaction data, for in-

stance, the join query between the

transactions and in a blockchain-based

supply chain. If two MB-tree indexes on join at-

tributes of two types of transaction data are con-

structed respectively, search keys in the leaf nodes of

the MB-trees are ordered. Therefore, we can directly

utilize this feature to implement AMJ in the enclave.

R S

TR

TS R S

Rencl Sencl

R S

Algorithm 1 illustrates AMJ based on the MB-

tree and Intel SGX. and can be transaction data

or result sets from authenticated range queries.

and are MB-trees constructed on and respec-

tively. and are available enclave memory al-

located to and respectively. Due to memory limi-

Blockchain

Root (Signed by
the Constructor)

...
...

Enclave
Memory

Root

...
...

Blockchain

(b)(a)

Fig.4. Range query and verification on MB-tree. (a) Range query. (b) Range query with Intel SGX.

720 J. Comput. Sci. & Technol., May 2023, Vol.38, No.3

NextTuple

Rencl Sencl

NextTuple

tations of the enclave, it is infeasible to load all trans-

actions into the enclave. Therefore, function

 loads a batch of leaf nodes of the MB-tree

into the enclave, when or is empty. Subse-

quently, Intel SGX performs the sort-merge scan of

these leaf nodes and adds all matching tuples to the

result set. For the sort-merge join, sorting is always

expensive. The SGX does not need to perform the

sorting operation because of the ordered leaf nodes of

the MB-tree. To verify the integrity of data read into

the enclave, function uses leaf nodes in the

enclave to incrementally compute the root digest of

the MB-tree.

Algorithm 1. AMJ (Authenticated Merge Join)

R S TR TS R

S hroot
R hroot

S R S

Rencl Sencl R S

　Input: , : transaction data; , : MB-trees of and

 respectively; , : root digests of and respective-

ly; , : enclaves of and respectively;

result← ∅　Output: join result: ;

tR ← nextTuple(TR, Rencl, h
root
R)1 ;

tS ← nextTuple(TS, Sencl, h
root
S)2 ;

tR ̸= null and tS ̸= null3 while do

S′
encl ← {tS}4　 ;

Sencl S′
encl

tS.joinAttr
5　 Repeat to read the next tuple in into if its join
　　 attribute is equal to ;

tR ̸= null and tR.joinAttr < tS.joinAttr6　 while do

tR ← nextTuple(TR, Rencl, h
root
R)7　　　 ;

tR ̸= null and tR.joinAttr = tS.joinAttr8　 while do

tS ∈ S′
encl9　　　foreach do

tR ▷◁ tS result10　　　 Add to ;

tR ← nextTuple(TR, Rencl, h
root
R)11　　 ;

tS ← nextTuple(TS, Sencl, h
root
S)12　 ;

hroot
R hroot

S13 Verify and against their counterparts in the
　 enclave;

result14 return ;

nextTuple T : MB-tree;Mencl: enclave; hroot15 Function (:
　 root digest)

Mencl16　 if is empty then

T Mencl17　　 Read the next batch leaf nodes of into ;

Mencl
hroot

18　　 Use the leaf nodes in to incrementally compute
　　　 ;

Mencl19 return the next tuple in leaf nodes in ;

 5.2.2 Authenticated Index Nested-Loop Join

ID operator

Due to the requirement of privacy-preserving and

limitation of storage capacity, part of blockchain da-

ta is stored off-chain (e.g., databases or dedicated file

systems). For example, in a blockchain-based supply

chain, only the of is on the blockchain,

operator

operator ▷◁ order

and the detailed information of is stored off-

chain. To obtain complete information, we need to

perform the join query integrating on-chain and off-

chain data (e.g.,). It is not easy to

maintain indexes on various types of off-chain data. If

off-chain data is unordered, we can implement AINLJ

in the enclave by utilizing the MB-tree index of on-

chain data. For on-chain data, the MB-tree on the

join attribute ensures query integrity. For off-chain

data, the signature of the entire data assures data in-

tegrity.

R

TS S Rencl

R

ecall ocall

Rencl R

|Rencl| ⌈|R|/
|Rencl|⌉ TS

tR Rencl

TS tR

hroot
S R

R

Algorithm 2 describes AINLJ based on the MB-

tree and Intel SGX. Let denote an off-chain rela-

tion, an MB-tree for on-chain data , and the

enclave memory allocated for . To mitigate the neg-

ative impact of and of Intel SGX, instead

of calling into for each tuple of , we process the

tuples in batches so that the cost of enclave calling is

amortized over a batch of tuples. Since each batch

reads tuples into the enclave, there are

 batches in total. Based on MB-tree , the

nested-loop join processing is implemented as an ex-

tension of the range query. For each tuple in ,

the SGX performs the authenticated range query on

 to find the tuples matching . To ensure the in-

tegrity of the join results, the SGX can verify the re-

sults of the range query with the root digest of MB-

tree . Off-chain data can be verified based on

the signature of .

Algorithm 2. AINLJ (Authenticated Index Nested-Loop Join)

R S TS

S hroot
S S Rencl R

　Input: : off-chain relation; : transaction data; : MB-

tree of ; : root digest of ; : enclave of ;

result← ∅　Output: join result: ;

i← 01 ;

i < ⌈|R|/|Rencl|⌉2 while do

R Rencl3　 Read the next batch of tuples in into ;

tR ∈ Rencl4　 foreach do

resultSet← AuthRangeQuery(TS, tR.joinAttr,
V O) TS

5　　　

　　　 //Perform authenticated range query on

V O hroot
S6　　　Verify against in the enclave;

tS tR resultSet7　　　Extract each tuple matching from ;

tR ▷◁ tS result8　　　Add to ;

i← i+ 19　 ;

R10 Verify the signature of ;

result11 return ;

 5.3 AAB-Tree in Intel SGX

Using a traditional MB-tree for the authenticated

Qi-Feng Shao et al.: Query Authentication Using Intel SGX for Blockchain Light Clients 721

aggregate query, light clients can only authenticate

the correctness and the completeness of the range

query, incapable of verifying the correctness of the ag-

gregate result. For this reason, after verifying the re-

sult set according to the query range, light clients

must aggregate the result set locally. This strategy

imposes further complexity to light clients. If the re-

sult set is large, it will induce considerable communi-

cation and computing costs, linear to the size of the

result set, to light clients. When aggregate queries are

based on the MB-tree with Intel SGX, the result set

can be aggregated in the enclave on the full node, and

only the aggregate result is returned to light clients

through a secure channel. This scheme alleviates the

burden of light clients, but increases the overhead for

the space-limited enclave. Therefore, we need an effi-

cient index structure suitable for authenticated aggre-

gate queries. AAB-tree[6] is such an index with verifi-

cation cost sub-linear to the result set.

Starting from the root node, the query processor

traverses the AAB-tree in a breadth-first manner.

When visiting a node, the query processor compares

the key range of each entry with the query range: if

the key range is within the query range, the entry's

aggregate value will be added to the result set; if the

key range intersects with the range query, the entry's

children will be visited recursively; if the key range

and the query range do not intersect, the entry's hash

value and aggregate value will be added to the VO.

For example, node A has three entries, as shown in

Fig.5(a). Since the first entry is outside of the query

range, it is only necessary to get the verification infor-

mation; since the second entry partially overlaps the

query range, we continue to traverse for the exact re-

sult; since the third entry is inside the query range,

we directly retrieve the aggregate value of the entire

subtree under the entry without traversing down.

An AAB-tree occupies less memory footprint than

an MB-tree when processing authenticated aggregate

queries in the enclave. The pre-aggregated informa-

tion reserved in each internal node of the AAB-tree

can help to answer the aggregate query without

traversing the tree all the way down to the leaves.

Therefore, as shown in Fig.5(b), without caching low-

level nodes, we only need to cache frequently-ac-

cessed high-level nodes in the enclave. For some veri-

fication paths of the AAB-tree, query verification can

start from high-level nodes, not from the leaves, such

as the third entry of node A. If the retrieved high-lev-

el nodes are all in the enclave, they will not need to

be authenticated. In other words, AAB-tree avoids

the authentication of low-level nodes, while the SGX

avoids that of high-level nodes.

There are three kinds of aggregate queries[19]: dis-

tributive, algebraic and holistic. Except for the holis-

tic aggregate (like MEDIAN), an AAB-tree supports

the authentication of the distributive aggregate (like

SUM, COUNT, MAX and MIN) and algebraic aggre-

gate (like AVG, expressed as SUM/COUNT), by re-

placing the aggregate function in each entry. More-

over, the AAB-tree can be extended to deal with the

multi-aggregate query. Instead of storing one aggre-

gate value in each entry of a node, we store a list of

aggregate values for all necessary aggregate functions.

 5.4 Cache Architecture of Query Processing

To improve the efficiency of accessing the MB-

tree, we design a three-level storage scheme, includ-

ing a disk storage, a cold cache and a hot cache, as

shown in Fig.6. The disk storage, at the lowest level,

persists the entire MB-tree. The cold cache, deployed

on the untrusted memory, caches MB-tree nodes to

Enclave
Memory Root

...
... ...

Blockchain

Query

Blockchain

Query

...
...

...

Root (Signed by
the Constructor)

(b)(a)

Fig.5. Aggregate query and verification on AAB-tree. (a) Aggregate query. (b) Aggregate query with Intel SGX.

722 J. Comput. Sci. & Technol., May 2023, Vol.38, No.3

reduce the I/O cost. Hot cache, located on the trust-

ed enclave, only caches frequently-accessed and veri-

fied MB-tree nodes to alleviate the verifying cost. We

integrate these two types of caches and design an effi-

cient cache replacement strategy.

When directly applying an LRU cache replace-

ment algorithm to the MB-tree in the enclave, the

burst access and sequential scan may load some nodes

that are only accessed once into the enclave. However,

these nodes will not be swapped out of the enclave in

a short time according to the LRU replacement strat-

egy, which lowers the utilization of the enclave memo-

ry. Motivated by the LRU-K cache replacement algo-

rithm[20] that keeps the last K reference times for each

page to estimate evicted pages, we propose a replace-

ment algorithm, H-LRU (hierarchical least recently

used), for the two-level cache architecture composed

of a hot cache and a cold cache. H-LRU considers

more of the reference history besides the recent ac-

cess for each node and addresses the issue of correlat-

ed references.

As shown in Algorithm 3, when an MB-tree node

is accessed for the first time, it is read out from the

disk and buffered in the cold cache, thus avoiding the

potential I/O cost in future. Once such a node is ac-

cessed again, if that has been quite a while since the

last access, i.e., uncorrelated reference, it is promoted

to the hot cache, thus eliminating the verifying cost

in future. Algorithm 3 uses the following data struc-

ture.

HIST (n, t) i

n

HIST (n, 1)

n HIST (n, 2)

n

● denotes the -th most recent access

time of node , and does not contain the correlated

reference. For example, denotes the most

recent access time of node , and the sec-

ond most recent access time of node .

LAST (n)

n

● records the most recent access time of

node , and may be a correlated reference or not.

Algorithm 3. H-LRU (Hierarchical Least Recently Used)

n t n
t

　Input: : MB-tree node; : time; /* is referenced
at time */

n is in HotCache
(n, t)

1 if then
2　 if isUncorrelated then

n HotCache3　　 Move to the head of ;

n ColdCache4 else if is in then

isUncorrelated(n, t)5　 if then

HotCache.isFull()6　　 if then

HotCache7　　　　 Remove the tail of ;

n HotCache8　　 Add to the head of ;
n9 else /* is not in memory */

ColdCache.isFull()10 if then /* Select a victim */

min← t11　　 ;

node ColdCache12　　 foreach in do

t− LAST (node) > CR_Period HIST
(node, 2) < min

13　　　　if and

　　　　 then

CR_Period　　　　 /* : Correlated Reference Period */

victim← node14　　　　　 　/* Eligible for replacement */

min← HIST (node, 2)15　　　　　 ;

victim ColdCache16　　 Remove from ;

n ColdCache17　Add to ;

HIST (n, 2)← HIST (n, 1)18　 ;

HIST (n, 1)← t19　 ;

LAST (n)← t20　 ;

isUncorrelated n t21 Function (,)

flag ←22　 FALSE;

t-LAST (n) > CR_Period23　if then
　 /* An uncorrelated reference */

HIST (n, 2)← LAST (n);24　　

HIST (n, 1)← t25　　 ;

LAST (n)← t26　　 ;

flag ←27　　 TRUE;

28　else /* A correlated reference */

LAST (n)← t29　　 ;

flag30 return ;

Compared with H-LRU, LRU may replace fre-

数据

Main
Memory

Query
Processor

Request
 Handler

Blockchain
Light Client

Blockchain
Full Node

Encrypted

Query & Result

①

②

③

④

Cold CacheHot Cache
(Verified)

Enclave
Memory

Fig.6. Cache architecture of query processing.

Qi-Feng Shao et al.: Query Authentication Using Intel SGX for Blockchain Light Clients 723

isUncorrelated

quently referenced pages with pages unlikely to be ref-

erenced again. H-LRU moves hot nodes to the en-

clave and allows infrequently referenced nodes to stay

in the regular memory. Cold cache and hot cache call

the function to exclude nodes that are

accidentally visited. If that is an uncorrelated refer-

ence, the node is promoted to the hot cache and

moved to the head of the cache queue since the head

has the highest buffer priority. When the hot cache is

full, it evicts the least recently used node. When the

cold cache is full, it evicts the node whose second-

most recent reference is the furthest in the past.

Therefore, only the nodes that are frequently ac-

cessed for a long time are located in the enclave. Our

algorithm considers both recentness and frequency,

and avoids the interference of related references, so as

to improve the utilization of the enclave memory and

achieve better performance.

 6 Batch Updates

For an MB-tree[2], when a leaf node is updated,

the digest change will be propagated up to the root

node, which will lock the entire index in the exclusive

mode and block other updates and queries. If the en-

tire subtree to be updated is cached in the enclave,

the digest changes caused by multiple updates can be

combined and written back to the root node at one

time so that the update cost can be reduced signifi-

cantly. In addition, since blockchain periodically sub-

mits transactions by block, it is suitable for batch up-

dates.

Since only the signed root node is trusted in a tra-

ditional MB-tree, the digest change must be propa-

gated to the root node immediately once a leaf node is

updated. When the updates occur frequently, it will

significantly downgrade the system performance.

With Intel SGX, since all nodes cached by the en-

clave are verified and trusted as mentioned before,

the propagation of a digest change can end at an in-

ternal node located in the enclave.

Update1 Update2
Update3

As shown in Fig.7(a), , , and

 represent three update operations on differ-

ent leaf nodes. Since node A in the enclave is trusted,

the digest propagation of three updates will be

stopped at node A. Once node A is evicted in future,

or its structure changes due to the split or merge op-

eration, the deferred digest changes reflecting three

updates will be propagated to the root node immedi-

ately. The digest of each node is reserved in its par-

ent node. When the digest change of a node is de-

ferred for its parent node, the previous digests in the

ancestor nodes will not affect the verification of the

other branches[21]. In Fig.7(a), node A in the enclave

does not propagate its digest changes to the root node

immediately, which does not affect the verification of

the other branches. All subtrees under node A can be

verified based on A's current digest. Other branches

without node A can be verified with A's previous di-

gest in the root node. In other words, nodes C, D and

E can be verified by node A, a trusted root for its

subtree; nodes F and G can be verified by the root

node.

For an AAB-tree[6], besides batch updates in leaf

nodes, we take an incremental manner to maintain

aggregate values in the internal nodes. When a leaf

node is updated, besides the digest change, the aggre-

gate change also needs to be propagated up to the

root node. If we defer the aggregate change just like

deferring the digest change, it will affect the correct-

Enclave
Memory

Root

...
...

Blockchain

Deferred Update

Skip List
Enclave
Memory

Untrusted
Disk

MB-Tree

Merge

Query
New Block

IndexingIndexing

Bloom
Filter

(b)(a)

Fig.7. Batch update and merge. (a) Deferring digest update. (b) Dual-stage hybrid index.

724 J. Comput. Sci. & Technol., May 2023, Vol.38, No.3

ness of aggregate queries. The procedure that propa-

gates a change in the leaf node to the root node, es-

sentially visits the same nodes as the search proce-

dure. Therefore, incrementally maintaining the aggre-

gate value of each internal node along the search path

can improve update performance, while locating the

leaf node for an update operation.

 6.1 Batch Updates with Hybrid Index

Besides propagating digest changes, the lock oper-

ation for a node update will block query processing

and limit concurrency. To alleviate the update cost of

the MB-tree, previous work[2] generally adopts batch

updates to defer the installation of a single update

and process multiple updates at the same time.

Blockchain accumulates multiple transactions in a

block and submits them in batches, which is applica-

ble for batch updates.

B+

We present a dual-stage hybrid index architec-

ture. As shown in Fig.7(b), it maintains a skip list in

the enclave to buffer multiple new blocks. The skip

list, without additional rebalancing cost, is more suit-

able for the memory index compared with typical bal-

anced trees (e.g., -tree or red-black tree). Our hy-

brid index is composed of a skip list and an MB-tree.

The skip list, located in the enclave, indexes newly

appended blocks, and the MB-tree, located on disk,

indexes historical blocks. The query processor search-

es both the skip list and the MB-tree to get the com-

plete result. Moreover, a bloom filter atop of the skip

list is added to speed up searching.

 6.2 Merge

The main purpose of applying merge processing is

to utilize batch updates to alleviate the cost of digest

propagation in the MB-tree. Since blockchain up-

dates data by block, different from the traditional

database, we design a more appropriate merge algo-

rithm.

There are two solutions for batch updates in the

MB-tree: full rebuild and delta update. Full rebuild

merges and reorders existing leaf nodes of the MB-

tree with a batch of new transactions, and rebuilds

the entire MB-tree. Delta update directly adds new

sorted data to the MB-tree in batches. Full rebuild

will incur considerable cost to recompute the digests

of the entire MB-tree and block queries for a long

time. Therefore, delta update is applied to our merge

processing, as shown in Algorithm 4.

Algorithm 4. Batch Update

root txs
txs

　Input: : root node; : transaction array;
　　　　 /* is sorted in skip list */

i← 11 ;

parent← root2 ; /* Search from root */

parent3 X-LOCK();

i ⩽ txs.length4 while do

leaf ← SearchNode(parent, txs[i]. key);

(txs[i]. key, txs[i]. poniter, txs[i]. digest)
leaf

5　
6　 Repeat
7　　 if txs[i].op = INSERT then
8　　　 Insert
into ;

9　　 else

(txs[i].key, txs[i].pointer, txs[i].digest)
leaf

10　　　 Delete
　　　　 from ;

i← i+ 111　　 ;

12　 until all txs belonging to leaf have been inserted/deleted

13　　OR parent has either n – 1 children when deleting or 2n
　　 children when inserting;

14　 if parent is not in the enclave then

parent15　　 Verify and move it into enclave;

updateDigest(leaf, parent)
parent

16　 ;
　 /* Propagate digests to only */

leaf17　 UNLOCK();

txs[i].key parent parent
n− 1 2n

18　 if is in the range of and has
　 either or children

txs[i].key parent19　　OR is not in the range of then

updateDigest(parent, root)20　　 ;
　　 /* Propagate digests to root */

parent21　　 UNLOCK();

parent← root22　　 ; /* Re-search from root */

parent23　　 X-LOCK();

parent24 UNLOCK();

SearchNode parent k25 Function (,)

node← getChildNode(parent, k)
node parent

26　 ;
　 /* is the child of */

node27　 X-LOCK();

node28　 while is not a leaf node do

node contains 2n keys
n− 1 2n

29　　 if then
　　 /*Each node has between and keys */

split(parent, node)30　　　 ;

node contains n− 1 keys31　　 else if then

merge(parent, node)32　　　 ;

parent33　　 UNLOCK();

parent← node node parent34　　 ; /* Make as a new */

node← getChildNode(parent, k)35　　 ;

node36　　 X-LOCK();

node37　 return ;

Our batch update algorithm is efficient because it

performs searching and propagates digest changes on-

ly once for all updates belonging to the same parent

node. When traversing the tree, the algorithm ap-

Qi-Feng Shao et al.: Query Authentication Using Intel SGX for Blockchain Light Clients 725

2n

plies the lock-coupling strategy of nodes, which means

only the node and its parent are locked exclusively.

The parent is kept locked until all child nodes have

been updated and the digest changes from them have

been applied. For bulk insertions, if a parent node

gets full (i.e., the parent node contains keys) or all

data belonging to a parent node has been inserted,

the previously deferred digest changes in the parent

node will be propagated back to the root node. After

that, restarting from the root node, the algorithm

searches a leaf node for next insertion.

SearchNode

To find the corresponding entry for a search key,

the function starts from the root and

traverses all the way to the leaf. If an internal node is

full or half full, the split or merge operation is trig-

gered accordingly.

According to which data is moved out of the skip

list and merged into the MB-tree, there are two solu-

tions: merge-cold and merge-all. Merge-cold selective-

ly moves infrequently accessed cold data out of the

skip list that is used as a write back cache. Merge-all

moves all data out of the skip list, and treats the skip

list as a write buffer that continuously accumulates

new blocks from the blockchain network. Since our

system has the hot cache and the cold cache for query

processing, and needs to buffer enough new blocks to

reduce the MB-tree update cost, merge-all is more

suitable.

Moreover, it is important to determine a merge

threshold about how many blocks are buffered for one

merge processing. If the number of buffered blocks is

too small to form a considerable sequence length, the

MB-tree update cost will not be reduced drastically.

Contrary, too many buffered blocks will take longer

to search in the skip list and process merging. There-

fore, the specific threshold can be set according to the

actual requirement.

 7 Cost Analysis

We compare our scheme with MB-tree[2] and

AAB-tree[6] in terms of the communication, verifica-

tion and update costs. The comparison results are

summarized in Table 1. The cost of the VO construc-

tion in our scheme is the same as that in the tradi-

tional scheme. The traditional query verification is

performed on the client. Our query verification is pro-

cessed with Intel SGX on the server, and thus the

client does not need to receive or verify any VO.

 7.1 Cost Analysis of MB-Tree

2(logf nq)

(f − 1)|h|
f − 1 |h|

(logf nt − logf nq)(f − 1)|h|
(logf (ntnq))× (f − 1)|h|

|R|+ (logf (ntnq))(f − 1)|h|
|R| |R|

The VO of the authenticated range query has two

parts: 1) the sibling hashes along two boundary paths

of the query subtree, with the size of

 (each entry along the path has at most

 siblings and is the size of a hash value in

bytes), and 2) the sibling hashes along the common

path of the query subtree, with the size of

. Hence, the VO size is

. Since MB-tree contains

query results and VOs, and our scheme only requires

query results, the communication costs of MB-tree

and our scheme are and

 respectively (is the size of query results in

bytes).

(
∑(logf nq)−1

i=0 f i)Ch

(logf
nt

nq
)Ch

(
∑(logf nq)−1

i=0 f i+

logf
nt

nq
)Ch + Cv

The verification of the authenticated range query

has three parts: 1) the hashing for the entire query

subtree except the common path, with the cost of

, 2) the hashing for the common

path of the query subtree, with the cost of

, and 3) the verification of the root signa-

ture. Therefore, the verification cost is

. Because our query verification is pro-

cessed with Intel SGX on the full node, which avoids

verifying nodes at upper levels and the root signature,

Table 1. Cost Comparison

Communication Cost Verification Cost Update Cost

MB-Tree[2] |R|+ (logf (ntnq))(f − 1)|h| (
∑(logf nq)−1

i=0 f i + logf
nt
nq

)Ch + Cv (logf nt)Ch + Cs

MB-Tree in Intel SGX |R| (
∑(logf nq)−1

i=0 f i + logf
nt
nq

)Ch (logf nt)Ch

AAB-Tree[6] |a|+ (logf (ntnq))(f − 1)(|h|+ |a|) (
∑(logf nq)−1

i=0 f i + logf
nt
nq

)Ch + Cv (logf nt)(Ch + Ca) + Cs

AAB-Tree in Intel SGX |a| (
∑(logf nq)−1

i=0 f i + logf
nt
nq

)Ch (logf nt)(Ch + Ca)

nt nq f i

i Ch Cv Cs

Ca R f
h a

Note: represents the number of tuples; represents the number of tuples in a query result; represents the number of nodes at
the -th level of a query subtree; represents the cost per hash operation; represents the cost per verification operation;
represents the cost per sign operation; represents the cost per aggregate operation; represents a query result; represents the
node fanout; represents a hash value; represents an aggregate value.

726 J. Comput. Sci. & Technol., May 2023, Vol.38, No.3

(
∑(logfnq)−1

i=0 f i + logf
nt

nq
)Ch

the verification cost is less than or equal to

.

(logf nt)Ch

(logf nt)Ch + Cs

(logf nt)Ch

The update of MB-tree has two steps: 1) re-hash-

ing for every node on the search path, with the cost

of , and 2) re-signing for the root node.

Hence, the update cost is . As our

scheme reduces the propagation of digest changes and

removes the signing operation for the root node, the

update cost is less than or equal to .

 7.2 Cost Analysis of AAB-Tree

2(logf nq)(f − 1)(|h|+ |a|) |a|

(logf nt − logf nq)

(f − 1)(|h|+ |a|)

|a|+ (logf (ntnq))

(f − 1)(|h|+ |a|)

The VO of the authenticated aggregate query has

two parts: 1) the sibling hashes and aggregate values

along two boundary paths of the query subtree, with

the size of (is the size of

an aggregate value in bytes), and 2) the sibling hash-

es and aggregate values along the common path of

the query subtree, with the size of

. As an AAB-tree commonly only

contains VOs from nodes at upper levels, the commu-

nication cost is less than or equal to

. Our scheme does not contain the

VO, and thus the communication cost is the size of

an aggregate value.

(
∑(logf nq)−1

i=0 f i)Ch

(logf nt − logf nq)Ch

The verification of the authenticated aggregate

query has three parts: 1) the hashing for the entire

query subtree except the common path, with the cost

of , 2) the hashing for the common

path of the query subtree, with the cost of

, and 3) the verification for the

root signature. The AAB-tree computes the aggre-

gate result based on nodes at upper levels in compari-

son with the MB-tree, which shortens the query and

verification path, and our scheme with Intel SGX fur-

ther shortens the verification path from the nodes at

upper levels to the root node. Hence, the verification

costs are at most (logf nq)−1∑
i=0

f i + logf
nt

nq

Ch + Cv

and (logf nq)−1∑
i=0

f i + logf
nt

nq

Ch

respectively. When a leaf node is updated, AAB-tree

needs to propagate both digest changes and aggrega-

tion changes from the leaf node to the root node, with

recomputing hash values and aggregate values (with

(logf nt)Ch (logf nt)Ca

(logf nt)(Ch + Ca) + Cs

(logf nt)(Ch + Ca)

the cost of and), and re-sign-

ing the root node. Our scheme avoids the propaga-

tion of digest changes and the root signature. Thus,

the update costs are at most

and respectively.

 8 Security Analysis

We perform security analysis in this section. Our

basic security model is secure, provided that the un-

derlying hash function is collision-resistant and the se-

curity enforcement of Intel SGX cannot be broken.

Tampering Attack. As the frequently-accessed

nodes of the MB-tree and the entire skip list are resi-

dent in the enclave, attackers cannot tamper with

them. Although the other nodes of the MB-tree locat-

ed in the regular memory may be tampered with by

adversaries, the integrity of query results can be veri-

fied by the trusted nodes in the enclave. Using the

query results and VOs, the query processor recon-

structs the digests in a bottom-up fashion until reach-

ing the first cached node, and compares the comput-

ed digest against the one reserved in the enclave. In

this way, for the case that a node has been successful-

ly tampered with, there exist two MB-trees with dif-

ferent nodes but the same root digest. This implies a

successful collision of the underlying hash function,

which leads to a contradiction.

Network Attack. In our scheme, the MB-tree en-

sures the integrity of query results in the application

layer, and the transport layer security (TLS) channel

assures the integrity of communication data in the

network layer. The application layer transmits query

results to the network layer through the secure en-

clave that cannot be accessed by the full node. To

protect data transmission between the light client and

the secure enclave, the light client can establish a se-

cure TLS channel with the enclave on the full node.

Intel SGX's remote attestation ensures that the chan-

nel's remote endpoint terminates within the secure

enclave. After verifying query results returned by the

MB-tree, the SGX sends it from the secure enclave to

the light client through the TLS channel. The TLS

channel uses 128-bit AES-GCM in the encrypt-then-

MAC (message authentication code) mode for sym-

metric encryption and authentication. The MAC that

behaves like a hash function can detect any malicious

alteration to the data over the channel. Thereby, a

network stack implementation could remain untrust-

ed, as long as a TLS connection on its top terminates

Qi-Feng Shao et al.: Query Authentication Using Intel SGX for Blockchain Light Clients 727

inside the trusted enclave. In our system, the AES-

GCM only takes about 1 µs to encrypt or decrypt 1

KB data; hence it will not incur expensive cost unless

the query result is very large.

Rollback Attack. The support of persistence for

the MB-tree requires protection against rollback at-

tacks. In a rollback attack, the untrusted node re-

places the MB-tree with an earlier version, so that the

client reads stale results. A trusted monotonic counter

can ensure the enclave always uses the latest version

of an MB-tree. To defend the rollback attack and

guarantee the freshness of query results, we can use

the Intel SGX monotonic counter service or distribut-

ed rollback-protection systems such as ROTE[22].

Untrusted Blockchain Data. In our scheme, Intel

SGX on the full node performs all verification for the

light client, yet a dishonest full node may deliver in-

correct or incomplete block, and even not send the

latest block to the enclave. To protect against such

compromises, a light client can acquire the latest

block hash from other sources, compares it with that

from the SGX, and deduces if the result is integral or

not.

 9 Implementation and Evaluation

In this section, we evaluate the performance of our

query authentication scheme that contains range and

aggregate queries, join processing, cache replacement

and batch updates.

 9.1 Experimental Setup

⌊(2 048− (8 + 20))/(8 + 8 + 20)⌋

⌊(2 048− (8 + 8+20))/(8 + 8 + 8 + 20)⌋

We use BChainBench[13], a mini benchmark for bl-

ockchain databases, to generate a synthetic block-

chain dataset that consists of 1 million transactions,

of which each key has eight bytes and each value has

500 bytes. In our implementation, the page sizes of

the MB-tree and the AAB-tree are set to 2 KB. Each

entry of the MB-tree occupies 36 bytes (8 bytes for

the key, 8 bytes for the pointer and 20 bytes for the

digest), so that each node has 56 entries

(= 56). Each entry of

the AAB-tree occupies 44 bytes (8 bytes for the key,

8 bytes for the pointer, 8 bytes for the aggregate val-

ue and 20 bytes for the digest), so that each node has

45 entries (=

45). Initially, in our scheme, the MB-tree and the

AAB-tree are stored on disk, except that the root

node is located in the enclave. Intel SGX's EPC is

limited to 128 MB whereof only 93 MB are available

for usage due to the metadata. Allocating the limited

enclave memory is a trade-off between query time and

update cost. For the current blockchains, considering

their block generation interval and a few thousand

transactions per block, we allocate less memory for

batch updates. Therefore, 70 MB and 10 MB of the

enclave memory are allocated for the hot cache and

the skip list respectively, and the rest for the code

base. In addition, 1 GB of the regular memory is allo-

cated for the cold cache. All experiments were con-

ducted on a server equipped with 32 GB RAM and

Intel Core i7-8700k CPU @2.70Hz, and running

Ubuntu 16.04 OS with Intel SGX Linux SDK and

SGXSSL library.

 9.2 Query Performance

We report the performance of four solutions in the

following series of experiments, including MB-tree,

AAB-tree, MB-tree in Intel SGX, and AAB-tree in

Intel SGX. Note that the former two are traditional

solutions while the latter two are based on Intel SGX.

Fig.8(a) manifests the performance of the point

query in the Zipfian distribution. With the increment

of the skew parameter, the throughput of the MB-tree

in Intel SGX is about 1.5 times more than that of the

MB-tree solution, because the frequently-accessed

MB-tree nodes in the enclave shorten the verification

path. In Fig.8(b), the VO size of the MB-tree in Intel

SGX decreases by one or two orders of magnitude

compared with the traditional solution. For the MB-

tree in Intel SGX, the verification is accomplished by

the SGX on the full node, so that the light client

avoids receiving and processing the VO.

Fig.8(c) demonstrates the performance of the

range query. The execution time of the MB-tree in In-

tel SGX is merely 60% of the MB-tree solution. In

Fig.8(d), the reduction of the VO size is more remark-

able, since the range query has more verification in-

formation than the point query. The VO size of the

MB-tree solution increases linearly with the query se-

lectivity, which exhibits significant communication

and verification costs for light clients, especially for

mobile devices.

Fig.9(a) shows the aggregate query performance of

the AAB-tree. The query time of the AAB-tree in In-

tel SGX is around 60% of the AAB-tree solution

when the selectivity rises from 20% to 50%. In

Fig.9(b), the VO size of the AAB-tree in Intel SGX is

728 J. Comput. Sci. & Technol., May 2023, Vol.38, No.3

Zipf Query Distribution

0.5 1.0

Q
u
e
ri
e
s

p
e
r

S
e
c
o
n
d
 (

1
0

4
)

V
O

 S
iz

e
 (

b
y
te

)

T
im

e
 (

s)

1.5

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0
2.0

(a)

(c)

Zipf Query Distribution

0.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

V
O

 S
iz

e
 (

b
y
te

)

3.0

2.5

2.0

1.5

1.0

0.5

0.0

1.0 1.5 2.0

(b)

MB-Tree

MB-Tree in Intel SGX

MB-Tree

MB-Tree in Intel SGX

MB-Tree

MB-Tree in Intel SGX

MB-Tree

MB-Tree in Intel SGX

103

105

0.0 0.1 0.2 0.3 0.4 0.5
Selectivity

(d)

0.0

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00
0.1 0.2 0.3 0.4 0.5

Selectivity

Fig.8. Query performance and VO size of MB-tree. (a) Point query. (b) VO size of the point query. (c) Range query. (d) VO size of
the range query.

(a)

0.0 0.1

8

6

4

2

0
0.2 0.3 0.4 0.5

Selectivity

(b)

0.0 0.1 0.2 0.3 0.4 0.5

Selectivity

T
im

e
 (

s)

10-4

V
O

 S
iz

e
 (

b
y
te

)

4

3

2

1

0

103

AAB-Tree

AAB-Tree in Intel SGX

AAB-Tree

AAB-Tree in Intel SGX

Fig.9. Query performance and VO size of AAB-tree. (a) Aggregate query. (b) VO size of the aggregate query.

Qi-Feng Shao et al.: Query Authentication Using Intel SGX for Blockchain Light Clients 729

around 20%–30% of the traditional solution. With the

increment of query selectivity, the execution time for

aggregate queries tends to be constant, because AAB-

tree can retrieve pre-aggregated values directly from

high-level nodes without traversing down and per-

forming linear scan on the leaf nodes. The greater the

query range, the more the aggregate values in high-

level nodes the AAB-tree can utilize, due to a greater

aggregation opportunity. By integrating the AAB-tree

with Intel SGX, high-level nodes of the AAB-tree are

completely cached in the enclave, which further re-

duces the verification cost. As a result, the AAB-tree

solution outperforms the MB-tree solution when pro-

cessing aggregate queries.

 9.3 Join Performance

R

S

R S

For evaluating the join query we compare the per-

formance of the proposed algorithms (AMJ and

AINLJ) against AIM[8]. The experiment investigates

both Foreign Key (FK) and Equi (EQ) joins as in [8].

For the FK join, each tuple in matches at least one

tuple in due to foreign-key constraint. For the EQ

join, both and contain unmatched tuples. We use

two datasets, each with 1 million tuples and a vary-

ing tuple size.

TR TS

Fig.10(a) displays the execution time of the FK

join query for various tuple sizes. The execution time

of AMJ is about three times lower than that of AIM.

AMJ only needs to perform the authenticated range

query once on MB-trees and ; hence it has less

overhead than AIM in verification processing. With

TR TS

R

the increment of the tuple size, AMJ needs to per-

form enclave function calls more times to load tuples

into the enclave, which increases its execution time.

Compared with AMJ, AIM needs to execute the in-

dex-traversal multiple times on MB-trees and ,

generating redundant boundary tuples and Merkle

proofs for matched or unmatched tuples. The main

disadvantage of AIM is that the client needs to re-

ceive intermediate results and generate join results lo-

cally, which induces considerable burden to the client.

AINLJ has the worst performance because it needs to

perform the authenticated range query for each tuple

in . AINLJ is still a good choice if the off-chain da-

ta is small. Fig.10(b) shows the execution time of the

EQ join query. The EQ join results in more un-

matched tuples compared with the FK join. Because

the query results of AMJ and AINLJ only contain

matching tuples, the performance is rarely affected by

the cardinality of join results. The execution time of

AIM is reduced, because it can utilize the MB-tree to

prune unmatched tuples from VO.

 9.4 Cache Performance

Fig.11(a) reports the performance of H-LRU and

LRU. We run 100 000 point queries, and report the

cache hit rate, i.e., the number of accesses to MB-tree

nodes located in the hot cache to the number of ac-

cesses to all nodes. We raise the cache size from 5%

to 40% of the cache size of the highest hit rate. H-

LRU provides about 10% improvement over the tradi-

tional LRU. The performance boost is higher with a

Tuple Size (byte)

32 64 128 256 512

(a)

Tuple Size (byte)

32 64 128 256 512

(b)

120

100

80

60

40

20

0

T
o
ta

l
E
x
e
c
u
ti
o
n
 T

im
e
 (

s)

120

100

80

60

40

20

0

T
o
ta

l
E
x
e
c
u
ti
o
n
 T

im
e
 (

s)

AIM

AMJ with Intel SGX

AINLJ with Intel SGX

AIM

AMJ with Intel SGX

AINLJ with Intel SGX

Fig.10. Join performance. (a) Foreign key join. (b) Equi join.

730 J. Comput. Sci. & Technol., May 2023, Vol.38, No.3

smaller cache size.

In Fig.11(b), we randomly mix some range queries

in point queries, which will start scan operations occa-

sionally. We set the probability of starting a range

query to 0.1, i.e., 1/10 of the generated queries are

range queries. We vary the selectivity based on the

cache size of the highest hit rate. The experiments

confirm that H-LRU is more adaptable than LRU.

 9.5 Update Performance

Fig.12 presents the update performance of the

MB-tree. The batch update consists of a number of

insertions, ranging from 1% to 50% of the blockchain

data size. We use the insert-only workload in this ex-

periment because it generates higher merge demand

than the update workload. When the insertion ratio

reaches 50%, the update time and the number of re-

hashing are diminished by about four times, and the

number of I/O operations is reduced by about six

times. It is because the MB-tree is bulk-loaded with

70% utilization, and bulk insertions quickly lead to

many split operations, which creates a lot of new

nodes. Although most improvements are contributed

by reducing the I/O cost, our batch update algo-

rithm avoids hash computing being propagated to the

root node and reduces the lock operations on MB-tree

nodes. The MB-tree solution requires expensive signa-

ture re-computation for every update. In order to

show the update performance of the MB-tree itself,

we omit the cost on the signature re-computation.

Fig.13 shows the update performance of the AAB-

tree. When the insertion ratio reaches 50%, the up-

date time and the number of hash computations are

diminished by about five times, and the number of

I/O operations is reduced by about seven times. The

update performance of the AAB-tree is lower than

that of the MB-tree no matter whether it is a single

insertion or a bulk insertion, because each entry of an

AAB-tree node contains an aggregate value. For the

0.0 0.1 0.2 0.3 0.4 0.5

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Selectivity

0.0 0.1 0.2 0.3

0.85

0.80

0.75

0.70

0.65
0.4

Percent of Pages in Cache

H
it
 R

a
te

H
it
 R

a
te

LRU

H-LRU

LRU

H-LRU

(b)(a)

Fig.11. Effect of H-LRU. (a) Hit rate vs cache size. (b) Hit rate vs selectivity.

0.0 0.1 0.2 0.3 0.4 0.5

Insertion Ratio

(a)

0.0 0.1 0.2 0.3 0.4 0.5

Insertion Ratio

(b)

0.0 0.1 0.2 0.3 0.4 0.5

Insertion Ratio

(c)

16

12

8

4

0

1.25

1.00

0.75

0.50

0.25

0.00

U
p
d
a
te

 T
im

e
 (

s)

Single
Bulk

Single
Bulk

Single
Bulk

N
u
m

b
e
r

o
f
I/

O

O
p
e
ra

ti
o
n
s

(
1
0

6
)

2.50

2.00

1.50

1.00

0.50

0.00

N
u
m

b
e
r

o
f
H

a
sh

C
o
m

p
u
ta

ti
o
n
s

(
1
0

6
)

Fig.12. Update performance of MB-tree. (a) Update time. (b) I/O operations. (c) Hash computations.

Qi-Feng Shao et al.: Query Authentication Using Intel SGX for Blockchain Light Clients 731

same node size, the AAB-tree has smaller fanout than

the MB-tree, which will trigger more split operations.

For the single insertion, the AAB-tree has to cope

with the propagations of the digest change and the

aggregation change at the same time, which incurs a

significant cost. For the bulk insertion, the changes of

the digests will be propagated up to the root node on-

ly after all new data belonging to the same parent

node is inserted, which induces reasonable overhead.

 10 Conclusions

We explored the issue of query authentication us-

ing Intel SGX for blockchain light clients. Specifically,

we integrated MB-tree and Intel SGX, which opti-

mizes the verifiable query performance of blockchains.

Compared with the traditional verifiable query

scheme, the light client is completely freed from the

tedious verification logic by having Intel SGX on the

full node handle the query result verification. In addi-

tion, we proposed a two-level cache architecture,

which alleviates the space limitation of enclave memo-

ry. We also designed a batch update method based on

a hybrid index structure to reduce the digest update

cost of MB-tree. Our scheme can also be used to im-

prove verifiable queries over traditional databases. Se-

curity analysis and empirical results substantiated the

robustness and the efficiency of our proposed scheme.

The VO size of our scheme is reduced by one to two

orders of magnitude compared with that of the tradi-

tional MB-tree.

Both blockchains and TEE emphasize trust, and

therefore we applied hardware-based TEE to

blockchains for improving the trust of query process-

ing. In future, we will plan to extend our idea to pro-

cess other authenticated queries, such as top-k and

sliding-window queries.

References

 Pang H H, Tan K L. Authenticating query results in edge

computing. In Proc. the 20th IEEE International Confer-

ence on Data Engineering, Apr. 2004, pp.560–571. DOI:

10.1109/ICDE.2004.1320027.

[1]

 Li F F, Hadjieleftheriou M, Kollios G, Reyzin L. Dynam-

ic authenticated index structures for outsourced databas-

es. In Proc. the 2006 ACM SIGMOD International Con-

ference on Management of Data, Jun. 2006, pp.121–132.

DOI: 10.1145/1142473.1142488.

[2]

 McKeen F, Alexandrovich I, Berenzon A, Rozas C V,

Shafi H, Shanbhogue V, Savagaonkar U R. Innovative in-

structions and software model for isolated execution. In

Proc. the 2nd International Workshop on Hardware and

Architectural Support for Security and Privacy, Jun.

2013, Article No. 10. DOI: 10.1145/2487726.2488368.

[3]

 Weisse O, Bertacco V, Austin T. Regaining lost cycles

with HotCalls: A fast interface for SGX secure enclaves.

In Proc. the 44th ACM/IEEE Annual International Sym-

posium on Computer Architecture, Jun. 2017, pp.81–93.

DOI: 110.1145/3079856.3080208.

[4]

 Shao Q F, Pang S F, Zhang Z, Jin C Q. Authenticated

range query using SGX for blockchain light clients. In

Proc. the 25th International Conference on Database Sys-

tems for Advanced Applications, Aug. 2020, pp.306–321.

DOI: 10.1007/978-3-030-59419-0_19.

[5]

 Li F F, Hadjieleftheriou M, Kollios G, Reyzin L. Authen-

ticated index structures for aggregation queries. ACM

Trans. Information and System Security, 2010, 13(4): 32.

DOI: 10.1145/1880022.1880026.

[6]

 Merkle R C. A certified digital signature. In Proc. the

1989 Conference on the Theory and Application of Cryp-

tology, Aug. 1989, pp.218–238. DOI: 10.1007/0-387-34805-

0_21.

[7]

 Yang Y, Papadias D, Papadopoulos S, Kalnis P. Authen-

ticated join processing in outsourced databases. In Proc.

the 2009 ACM SIGMOD International Conference on

Management of Data, Jun. 2009, pp.5–18. DOI: 10.1145/

1559845.1559849.

[8]

 Li J W, Squicciarini A C, Lin D, Sundareswaran S, Jia C

F. MMBc l oud-tree: Authenticated index for verifiable cloud

service selection. IEEE Trans. Dependable and Secure

[9]

Single
Bulk

Single
Bulk

Single
Bulk

0.0 0.1 0.2 0.3 0.4 0.5

Insertion Ratio

(a)

0.0 0.1 0.2 0.3 0.4 0.5

Insertion Ratio

(b)

0.0 0.1 0.2 0.3 0.4 0.5

Insertion Ratio

(c)

20

16

12

8

4

0

1.50

1.25

1.00

0.75

0.50

0.25

0.00

U
p
d
a
te

 T
im

e
 (

s)

N
u
m

b
e
r

o
f
I/

O

O
p
e
ra

ti
o
n
s

(
1
0

6
)

3.00

2.50

2.00

1.50

1.00

0.50

0.00

N
u
m

b
e
r

o
f
H

a
sh

C
o
m

p
u
ta

ti
o
n
s

(
1
0

6
)

Fig.13. Update performance of AAB-tree. (a) Update time. (b) I/O operations. (c) Hash computations.

732 J. Comput. Sci. & Technol., May 2023, Vol.38, No.3

https://doi.org/10.1109/ICDE.2004.1320027
https://doi.org/10.1145/1142473.1142488
https://doi.org/10.1145/2487726.2488368
https://doi.org/110.1145/3079856.3080208
https://doi.org/10.1007/978-3-030-59419-0_19
https://doi.org/10.1007/978-3-030-59419-0_19
https://doi.org/10.1145/1880022.1880026
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1145/1559845.1559849
https://doi.org/10.1145/1559845.1559849

Computing, 2017, 14(2): 185–198. DOI: 10.1109/TDSC.

2015.2445752.

 Hu S S, Cai C J, Wang Q, Wang C, Luo X Y, Ren K.

Searching an encrypted cloud meets blockchain: A decen-

tralized, reliable and fair realization. In Proc. the 2018

IEEE Conference on Computer Communications, Apr.

2018, pp.792–800. DOI: 10.1109/INFOCOM.2018.8485890.

[10]

 Xu C, Zhang C, Xu J J. vChain: Enabling verifiable

Boolean range queries over blockchain databases. In Proc.

the 2019 International Conference on Management of Da-

ta, Jun. 2019, pp.141–158. DOI: 10.1145/3299869.3300083.

[11]

 Zhang C, Xu C, Xu J L, Tang Y Z, Choi B. GEM^2-tree:

A gas-efficient structure for authenticated range queries in

blockchain. In Proc. the 35th IEEE International Confer-

ence on Data Engineering, Apr. 2019, pp.842–853. DOI:

10.1109/ICDE.2019.00080.

[12]

 Zhu Y C, Zhang Z, Jin C Q, Zhou A Y, Yan Y. SEBDB:

Semantics empowered blockChain database. In Proc. the

35th IEEE International Conference on Data Engineering,

Apr. 2019, pp.1820–1831. DOI: 10.1109/ICDE.2019.00198.

[13]

 Zhang F, Cecchetti E, Croman K, Juels A, Shi E. Town

crier: An authenticated data feed for smart contracts. In

Proc. the 2016 ACM SIGSAC Conference on Computer

and Communications Security, Oct. 2016, pp.270–282.

DOI: 10.1145/2976749.2978326.

[14]

 Cheng R, Zhang F, Kos J, He W, Hynes N, Johnson N,

Juels A, Miller A, Song D. Ekiden: A platform for confi-

dentiality-preserving, trustworthy, and performant smart

contracts. In Proc. the 2019 IEEE European Symposium

on Security and Privacy, Jun. 2019, pp.185–200. DOI: 10.

1109/EuroSP.2019.00023.

[15]

 Yan Y, Wei C Z, Guo X P, Lu X M, Zheng X F, Liu Q,

Zhou C H, Song X Y, Zhao B R, Zhang H, Jiang G F.

Confidentiality support over financial grade consortium

blockchain. In Proc. the 2020 ACM SIGMOD Internation-

al Conference on Management of Data, Jun. 2020, pp.

2227–2240. DOI: 10.1145/3318464.3386127.

[16]

 Dang H, Dinh T T A, Loghin D, Chang E C, Lin Q, Ooi

B C. Towards scaling blockchain systems via sharding. In

Proc. the 2019 Int. Conf. Management of Data, Jun.

2019, pp.123–140. DOI: 10.1145/3299869.3319889.

[17]

 Matetic S, Wüst K, Schneider M, Kostiainen K, Karame

G, Capkun S. BITE: Bitcoin lightweight client privacy us-

ing trusted execution. In Proc. the 28th USENIX Confer-

ence on Security Symposium, Aug. 2019, pp.783–800.

[18]

 Gray J, Bosworth A, Lyaman A, Pirahesh H. Data cube:

A relational aggregation operator generalizing GROUP-

BY, CROSS-TAB, and SUB-TOTAL. In Proc. the 12th

IEEE International Conference on Data Engineering, Feb.

1996, pp.152–159. DOI: 10.1109/ICDE.1996.492099.

[19]

 O'Neil E J, O'Neil P E, Weikum G. The LRU-K page re-

placement algorithm for database disk buffering. In Proc.

the 1993 ACM SIGMOD Int. Conf. Management of Data,

Jun. 1993, pp.297–306. DOI: 10.1145/170035.170081.

[20]

 Gassend B, Suh G E, Clarke D E, Van Dijk M, Devadas

S. Caches and hash trees for efficient memory integrity

verification. In Proc. the 9th Int. Symp. High-Perfor-

[21]

mance Computer Architecture, Feb. 2003, pp.295–306.

DOI: 10.1109/HPCA.2003.1183547.

 Matetic S, Ahmed M, Kostiainen K, Dhar A, Sommer D,

Gervais A, Juels A, Capkun S. ROTE: Rollback protec-

tion for trusted execution. In Proc. the 26th USENIX

Conference on Security Symposium, Aug. 2017, pp.1289–

1306.

[22]

Qi-Feng Shao received his M.S. de-

gree in computer technology from

Wuhan University, Wuhan, in 2011.

He is an associate professor with

Zhongyuan University of Technology,

Zhengzhou. Currently, he is working

toward his Ph.D. degree in East Chi-

na Normal University, Shanghai. His research interests

include verifiable query and data provenance over

blockchain databases.

Zhao Zhang received her B.S. de-

gree in computer science from North-

west Normal University, Lanzhou, in

2000, and her M.S. and Ph.D. degrees

in computer application technology

from East China Normal University,

Shanghai, in 2003 and 2012, respec-

tively. She is a professor with East China Normal Uni-

versity, Shanghai. Her research interests include dis-

tributed databases, blockchain, and location-based ser-

vice.

Che-Qing Jin received his B.S. and

M.S. degrees in computer science from

Zhejiang University, Hangzhou, in

1999 and 2002 respectively, and his

Ph.D. degree in computer science from

Fudan University, Shanghai, in 2005.

He is a professor with East China Nor-

mal University, Shanghai. He is the winner of the Fok

Ying Tung Education Foundation Fourteenth Young

Teacher Award. He is a distinguished member of CCF,

and serves as an editor of Journal of Computer Re-

search and Development. His research interests include

blockchain, streaming data management, location-based

services, and uncertain data management.

Qi-Feng Shao et al.: Query Authentication Using Intel SGX for Blockchain Light Clients 733

https://doi.org/10.1109/TDSC.2015.2445752
https://doi.org/10.1109/TDSC.2015.2445752
https://doi.org/10.1109/INFOCOM.2018.8485890
https://doi.org/10.1145/3299869.3300083
https://doi.org/10.1109/ICDE.2019.00080
https://doi.org/10.1109/ICDE.2019.00198
https://doi.org/10.1145/2976749.2978326
https://doi.org/10.1109/EuroSP.2019.00023
https://doi.org/10.1109/EuroSP.2019.00023
https://doi.org/10.1145/3318464.3386127
https://doi.org/10.1145/3299869.3319889
https://doi.org/10.1145/3299869.3319889
https://doi.org/10.1145/3299869.3319889
https://doi.org/10.1109/ICDE.1996.492099
https://doi.org/10.1145/170035.170081
https://doi.org/10.1145/170035.170081
https://doi.org/10.1145/170035.170081
https://doi.org/10.1109/HPCA.2003.1183547
https://doi.org/10.1109/HPCA.2003.1183547
https://doi.org/10.1109/HPCA.2003.1183547

Ao-Ying Zhou received his B.S. and

M.S. degrees in computer science from

Sichuan University, Chengdu, and his

Ph.D. degree in computer software

and theory from Fudan University,

Shanghai, in 1988, 1985, and 1993, re-

spectively. He is a professor with East

China Normal University, Shanghai. He is the winner of

the National Science Fund for Distinguished Young

Scholars supported by the National Natural Science

Foundation of China (NSFC) and the professorship ap-

pointment under the Changjiang Scholars Program of

Ministry of Education (MoE). He is a CCF fellow, and

an associate editor-in-chief of the Chinese Journal of

Computer. He served as the general chair of the

ER2004, vice PC chair of ICDE2009 and ICDE2012, and

PC co-chair of VLDB2014. His research interests in-

clude Web data management, data management for da-

ta-intensive computing, in-memory cluster computing

and distributed transaction processing, and benchmark-

ing for big data and performance.

734 J. Comput. Sci. & Technol., May 2023, Vol.38, No.3

	1 Introduction
	2 Preliminaries
	2.1 Authenticated Data Structure
	2.2 Intel SGX

	3 Related Work
	4 System Overview
	5 Query Authentication with Intel SGX
	5.1 MB-Tree in Intel SGX
	5.2 Join Query with Intel SGX
	5.2.1 Authenticated Merge Join
	5.2.2 Authenticated Index Nested-Loop Join

	5.3 AAB-Tree in Intel SGX
	5.4 Cache Architecture of Query Processing

	6 Batch Updates
	6.1 Batch Updates with Hybrid Index
	6.2 Merge

	7 Cost Analysis
	7.1 Cost Analysis of MB-Tree
	7.2 Cost Analysis of AAB-Tree

	8 Security Analysis
	9 Implementation and Evaluation
	9.1 Experimental Setup
	9.2 Query Performance
	9.3 Join Performance
	9.4 Cache Performance
	9.5 Update Performance

	10 Conclusions
	References

