

VTensor: Using Virtual Tensors to Build a Layout-Oblivious AI
Programming Framework

Feng Yu1, 2 (俞　峰), Jia-Cheng Zhao1, 2 (赵家程), Member, CCF
Hui-Min Cui1, 2, * (崔慧敏), Member, CCF, Xiao-Bing Feng1, 2 (冯晓兵), Distinguished Member, CCF
and Jingling Xue3 (薛京灵), Fellow, IEEE

1 Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
2 School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing 100080, China
3 School of Computer Science and Engineering, University of New South Wales, Sydney 1466, Australia

E-mail: yufeng@ict.ac.cn; zhaojiacheng@ict.ac.cn; cuihm@ict.ac.cn; fxb@ict.ac.cn; jingling@cse.unsw.edu.au

Received March 19, 2021; accepted April 12, 2022.

Abstract Tensors are a popular programming interface for developing artificial intelligence (AI) algorithms. Layout

refers to the order of placing tensor data in the memory and will affect performance by affecting data locality; therefore

the deep neural network library has a convention on the layout. Since AI applications can use arbitrary layouts, and exist-

ing AI systems do not provide programming abstractions to shield the layout conventions of libraries, operator developers

need to write a lot of layout-related code, which reduces the efficiency of integrating new libraries or developing new oper-

ators. Furthermore, the developer assigns the layout conversion operation to the internal operator to deal with the uncer-

tainty of the input layout, thus losing the opportunity for layout optimization. Based on the idea of polymorphism, we

propose a layout-agnostic virtual tensor programming interface, namely the VTensor framework, which enables developers

to write new operators without caring about the underlying physical layout of tensors. In addition, the VTensor frame-

work performs global layout inference at runtime to transparently resolve the required layout of virtual tensors, and run-

time layout-oriented optimizations to globally minimize the number of layout transformation operations. Experimental re-

sults demonstrate that with VTensor, developers can avoid writing layout-dependent code. Compared with TensorFlow,

for the 16 operations used in 12 popular networks, VTensor can reduce the lines of code (LOC) of writing a new operation

by 47.82% on average, and improve the overall performance by 18.65% on average.

Keywords artificial intelligence (AI) programming, layout-oblivious, tensor processing

1 Introduction

As AI (artificial intelligence) technologies are

quickly transforming almost every sphere of our lives,

it is imperative to provide an AI programming frame-

work that is easy to use and deploy across a variety

of platforms. In the past few years, researchers have

proposed a number of such programming frameworks,

such as TensorFlow[1], MXNet[2], PyTorch[3], and

Caffe[4], which allow users to train and develop neu-

ral network models.

However, machine learning systems are stuck in a

rut. Paul Barham and Michael Isard, two of the origi-

nal authors of TensorFlow, came to this conclusion in

their recent HotOS paper[5]. They argued that while

TensorFlow and similar frameworks have enabled

great advances in machine learning, their “current

programming abstractions lack expressiveness, main-

tainability, and modularity, all of which hinder re-

search progress.” In their paper[5], they pointed out

Regular Paper

This work was supported by the National Key Research and Development Program of China under Grant No. 2021ZD0110101,
the National Natural Science Foundation of China under Grant Nos. 62090024, 61872043, and 61802368, and the Australian Re-
search Council grant under Grant Nos. DP180104069 and DP210102409.

*Corresponding Author

Yu F, Zhao JC, Cui HM et al. VTensor: Using virtual tensors to build a layout-oblivious AI programming framework.

JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 38(5): 1074−1097 Sept. 2023. DOI: 10.1007/s11390-022-

1457-6

©Institute of Computing Technology, Chinese Academy of Sciences 2023

https://doi.org/10.1007/s11390-022-1457-6
https://doi.org/10.1007/s11390-022-1457-6
https://doi.org/10.1007/s11390-022-1457-6
https://doi.org/10.1007/s11390-022-1457-6
https://doi.org/10.1007/s11390-022-1457-6
https://doi.org/10.1007/s11390-022-1457-6
https://doi.org/10.1007/s11390-022-1457-6

that layout is one of the factors hindering the devel-

opment of programming models.

Tensors, also known as NDArray, were proposed

to represent multidimensional, fixed-size homoge-

neous array, which are widely used in AI algorithms

for mathematical computations[6]. In the mathemati-

cal sense, tensors are a generalization of two-dimen-

sional matrices, one-dimensional vectors, and also

scalars[7]. For instance, when considering a representa-

tive pooling layer in a deep convolutional neural net-

work, developers can utilize tensors to represent its

input and output data. Typically, data are organized

into 4-dimensional tensors, representing the number

of feature maps (i.e., the batch size), the number of

channels, the height, and the width of feature maps.

Ideally, with tensors, developers can easily reference

the logical dimensions of a data structure without the

need to be concerned about the underlying physical

layout.

At the application level, AI algorithm developers

use the high-level interfaces provided by the AI

framework to weave the network. Algorithm develop-

ers focus on the semantics of data at the application

level. Consequently, people propose named dimen-

sions①; in other words, tensor dimensions are associ-

ated with textual names to enhance code readability.

Named dimensions improve readability by facilitating

the determination of how dimensions in the code cor-

respond to the semantic dimensions described in, for

example, a research paper.

At the high-performance library level, because

the layout affects the performance of library func-

tions by affecting data locality, libraries have conven-

tions for layout. Between high-performance libraries

and applications, developers need to write a lot of lay-

out-related code to bridge the two layers. Therefore,

the challenge here is how to decouple tensor layouts

from an AI programming framework, allowing devel-

opers to create layout-agnostic operators that can au-

tomatically adapt to different libraries and primitives.

Researchers have noticed that tensor layouts are a

performance-critical issue and have proposed numer-

ous approaches to determine the optimal solutions. Li

et al.[8] analyzed the performance differences caused

by different layouts and demonstrated the perfor-

mance benefits obtainable by tuning the layouts for

some individual operations. Anderson and Gregg[9]

leveraged a Partitioned Boolean Quadratic Assign-

ment (PBQP) formulation to select the optimal data

layouts and optimal primitives. While these approach-

es are capable of helping developers enhance perfor-

mance through layout tuning, they still rely on tradi-

tional layout-aware programming interfaces. Conse-

quently, maintaining tensor layouts and their corre-

sponding transformations remains to be a substantial

burden for developers.

By analyzing the code skeleton in Fig.1, we find

that the layout-aware programming paradigm re-

quires writing a significant amount of layout-related

code (indicated by the red lines). This extensive lay-

out-related code adversely impacts the framework's

maintainability. Furthermore, within the body of

these highlighted functions (which are not shown

here), there is a scattering of layout checking and

transformation code. Moreover, as seen in Fig.1, the

layout transformation operation is carried out within

the operator. TensorFlow leverages prior knowledge

to perform layout optimization. For instance, on GPU

platforms, operators employ the NHWC layout due to

its superior performance in most cases indicated by

cuDNN[10], as compared to NCHW. However, when

the neural network library cannot deduce such prior

knowledge, the layout conversion operation becomes

necessary within the operator, leading to missing op-

portunities for layout optimization. In summary, Ten-

sorFlow's ad-hoc mechanism exhibits two drawbacks.

● Poor Maintainability. As shown in Fig.1, when

new operators or hardware is introduced, developers

have to maintain these layout-dependent code seg-

ments scattered throughout the framework.

● Unoptimized Layout Transformations. Since the

layout used by the application cannot be determined

statically, and most neural network libraries do not

have a dominant layout, TensorFlow's layout opti-

mizer fails. To make matters worse, a neural network

may use multiple neural network libraries at runtime.

Therefore, the layout transformation operation can

only be performed within the operator, which causes

TensorFlow to miss the opportunity for layout opti-

mization.

We observe that the application layer uses the

mathematical semantics of the layout, while the neu-

ral network library layer employs the physical seman-

tics of the layout. Based on this observation, we

adopt the concept of polymorphism to automatically

map the mathematical semantics of the layout to the

Feng Yu et al.: VTensor: Using Virtual Tensors to Build a Layout-Oblivious AI Programming Framework 1075

①Tensor considered harmful. http://nlp.seas.harvard.edu/NamedTensor, Sept. 2023.

http://nlp.seas.harvard.edu/NamedTensor

physical semantics. In this paper, we propose VTen-

sor, i.e., Virtual Tensor, a novel AI programming

framework. VTensor provides a holistic approach for

implementing layout-oblivious tensors. Specifically,

the VTensor framework offers a programming inter-

face for virtual tensors to decouple the physical se-

mantics of layout from the programming framework,

thereby providing operator developers with a layout-

oblivious programming perspective. Furthermore, the

VTensor framework incorporates a global runtime

layout inference mechanism that transparently re-

solves the physical semantics of VTensor by analyz-

ing the layout conventions of all operators and under-

lying library routines. To support efficient execution

of VTensor applications, we extend the dataflow

graph to explicitly represent tensor layout transfor-

mation operations as individual nodes in the graph,

and perform layout-oriented graph optimizations to

minimize layout transformations.

We implement VTensor on top of TensorFlow.

This paper makes the following contributions.

● We propose a layout-oblivious programming mo-

del for developers, so that they do not have to be con-

cerned themselves with the physical layouts of ten-

sors and associated tedious layout transformations

when developing new operators.

● We propose a tensor layout resolution mecha-

nism. This mechanism explicitly exposes the layout

convention for each individual operation or library

routine and automatically infers the layout needed for

each operation, inserting appropriate layout transfor-

mations when necessary.

● We present a global graph optimization en-

abled by VTensor, i.e., layout-oriented optimization.

VTensor defers the timing of layout selection to the

runtime phase through partial evaluation, thus creat-

ing opportunities for comprehensive optimization of

conversion operations. The layout-oriented optimiza-

Fig.1. Layout-aware programming for AvgPool in TensorFlow (with the layout-dependent lines shown in red).

1076 J. Comput. Sci. & Technol., Sept. 2023, Vol.38, No.5

tions include: eliminating redundant layout transfor-

mations based on the graph structure and formulat-

ing the selection of the layout for element-wise opera-

tors with broadcast semantics as an Integer Linear

Programming (ILP) problem.

● We implement VTensor in TensorFlow to show-

case its substantial impact on improving the main-

tainability and extensibility of existing AI program-

ming frameworks. Specifically, when developing a new

operation, VTensor can reduce its LOC by 47.82% on

average. Furthermore, VTensor outperforms Tensor-

Flow by 18.65% on average for the 12 popular net-

works evaluated.

The remainder of this paper is structured as fol-

lows. Section 2 provides an introduction to the back-

ground and motivation. Section 3 introduces the

VTensor framework. In Section 4, we present the

VTensor programming interface. Section 5 delves in-

to the VTensor runtime. Our experimental validation

is detailed in Section 6. Section 7 offers a comprehen-

sive discussion of the VTensor framework in relation

to portability, programming efforts, and its connec-

tion with AI compilers. Section 8 explores the related

work. Finally, Section 9 concludes the paper.

2 Motivation and Background

In this section, we initially introduce the layout-

aware programming model from a dataflow graph per-

spective (Subsection 2.1). Subsequently, we utilize ex-

amples in the following two subsections to illustrate

the challenges associated with the layout-aware pro-

gramming model, focusing on maintainability (Sub-

section 2.2) and layout optimization (Subsection 2.3).

2.1 Design of TensorFlow

In TensorFlow, neural networks are represented as

data flow graphs. A data flow graph is a directed

acyclic graph in which each node represents a mathe-

matical operation and each edge represents a multidi-

mensional data, known as tensors, upon which these

operations operate.

A kernel is an implementation of an operator spe-

cific to a particular library. As illustrated in Fig.2(a),

TensorFlow employs tensors to traverse various li-

brary-based kernels. Since tensors are not decoupled

from the layout and tensors are used at both the

graph level and the neural network library level, the

entire framework is tightly coupled to the layout.

Therefore, operator developers need a layout-aware

programming model for operator development.

In contrast, we abstract the semantics of tensors

at both the graph and library levels, representing

them as virtual tensors and physical tensors, respec-

tively, thereby decoupling the framework from the

layout, as illustrated in Fig.2(b). Thus, the operator

developer is decoupled from the layout.

2.2 Poor Maintainability

When writing an operator, the primary concern

for the operator developer is to reorganize the input

data into a format accepted by the library function

and then invoke the library function to obtain the

output result. However, the challenge lies in the fact

that the operator developer cannot determine the lay-

out of the input data and the optimal layout re-

quired by the library function at the compile phase.

This leads to the operator developer having to consid-

er all possible mapping relationships. Additionally,

each library has its own unique data structure to rep-

resent the layout and operator primitives, necessitat-

ing operator developers to rewrite each operator for

each library. Furthermore, the layout design of the li-

brary function involves a comprehensive considera-

tion of algorithms and architectures. As a result, the

relationship between the input layout and the library-

level layout is not a simple injective and subjective

one. Consequently, we argue that operator code devel-

oped based on the TensorFlow framework suffers from

poor maintainability.

Taking the example of the AvgPool operator writ-

ten based on MKL-DNN② (refer to Fig.1), the opera-

tor developer first obtains the shape of the input ten-

MKL-DNN Kernel Eigen Kernel

Input

Virtual

Tensor
Physical

Tensor

(a) (b)

Tensor

Fig.2. Tensor designed by (a) TensorFlow and (b) VTensor.

Feng Yu et al.: VTensor: Using Virtual Tensors to Build a Layout-Oblivious AI Programming Framework 1077

②MKL-DNN, Intel math kernel library for deep neural networks. https://01.org/onednn, Sept. 2023.

https://01.org/onednn

sor for shape inference and legitimacy checks, as high-

lighted in red in the upper half of Fig.1. Since the in-

put data of the operator may originate from the out-

put of the operator implemented based on the Eigen③

library, the operator developer needs to insert multi-

ple branch statements and write code to extract the

shape from a specific data structure in turn. Next, the

operator developer creates primitives based on the

shape of the input tensor and other parameters. Dur-

ing this process, MKL-DNN will determine the lay-

out based on the input parameters and the shape of

the input tensor. Subsequently, the operator develop-

er allocates the output space and performs data lay-

out conversion. The output memory space includes

not only the output data output_tensor, but also the

shape_tensor describing the attribute information of

this tensor, corresponding to the red code in the low-

er half of Fig.1. Finally, the operator developer car-

ries out the pooling operation by invoking the Exe-
cute function.

Based on the aforementioned observations and

analysis, we introduce the concepts of virtual tensors

and physical tensors. Similarly, an operator is divid-

ed into a virtual operator and multiple physical oper-

ators. The virtual tensor circulates among virtual op-

erators, while the physical tensor is exclusively used

in physical operators. The mapping of virtual tensors

to physical tensors is accomplished by the

framework's dynamic layout resolver. The mapping

from virtual operators to physical operators is

achieved through the automatic generation of a dis-

patch function based on library priority.

Fig.3 illustrates how to implement the AvgPool

operator in the VTensor framework. It demonstrates

that by using the virtual tensor APIs (indicated by

orange lines), developers can focus solely on the logi-

cal computation of the operation (represented by

black lines) and access tensor information without

needing awareness of the physical layout. Further-

more, the layout checking and the library wrapper

code are generated automatically by the VTensor

framework (as seen in the blue lines). Developers use

the physical tensor APIs to declare the corresponding

physical tensors for virtual tensors, and the VTensor

framework automatically maintains the layout infor-

mation through the require/produced attributes.

We employ LOC as a metric to demonstrate the

advantages of the layout-oblivious programming

paradigm. Fig.1 and Fig.3 depict the number of LOC

required by an operator developer to implement an

AvgPool operator, excluding comments (represented

by green lines) and automatically generated code (in-

dicated by blue lines). The total LOC in Fig.1 is ap-

proximately 500, whereas the total LOC in Fig.3 is

around 140. Fig.3 achieves a reduction of 360 LOC

compared with Fig.1. In particular, the black and or-

ange lines are written by developers (with the orange

lines denoting VTensor API calls), while all the blue

lines are automatically generated by VTensor. The

analysis above highlights that the layout-oblivious

programming offered by VTensor significantly re-

duces the number of LOC required for operator devel-

opment.

2.3 Unoptimized Layout Transformations

The choice of the layout in TensorFlow Grappler

depends on various factors, including the operator's

parameters, algorithms, accepted data types, and

more. This means that the layout cannot be statical-

ly determined. TensorFlow Grappler④ includes two

layout optimizers: one for GPUs and the other for

CPUs. The GPU layout optimizer uses predefined

rules based on experience to determine the operator

layout. For instance, when dealing with a convolu-

tion operator that does not trigger Tensor Core, the

NCHW layout generally performs better than the

NHWC layout. On the other hand, the CPU layout

optimizer[11] divides the dataflow graph into multiple

subgraphs based on whether the operator is imple-

mented by MKL-DNN library functions. These data

conversion operations within the subgraph are per-

formed by the operator itself. The optimizer inserts

data conversion operations between these subgraphs.

XLA⑤ (Accelerated Linear Algebra) is a domain-spe-

cific compiler in TensorFlow capable of generating

low-level IR for networks. When XLA utilizes the li-

brary as a backend, the layout assignment optimizer

follows a similar design as TensorFlow's optimizer.

In Fig.4(a), we illustrate a scenario where the

ResNet network uses MKL-DNN as the backend.

Here, the output layout of the Concat operator de-

1078 J. Comput. Sci. & Technol., Sept. 2023, Vol.38, No.5

③Jacob B, Guennebaud G, Avery P et al. Eigen. https://eigen.tuxfamily.org, Jan. 2019.

④Larsen R M, Shpeisman T. TensorFlow graph optimizations. https://storage.googleapis.com/pub-tools-public-publication-da-
ta/pdf/baea094c34ab32f24e7883096e212baa4578cbda.pdf, Jan. 2019.

⑤Google. XLA: Optimizing compiler for TensorFlow. https://tensorflow.org/xla, Jan. 2019.

https://eigen.tuxfamily.org
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/baea094c34ab32f24e7883096e212baa4578cbda.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/baea094c34ab32f24e7883096e212baa4578cbda.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/baea094c34ab32f24e7883096e212baa4578cbda.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/baea094c34ab32f24e7883096e212baa4578cbda.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/baea094c34ab32f24e7883096e212baa4578cbda.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/baea094c34ab32f24e7883096e212baa4578cbda.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/baea094c34ab32f24e7883096e212baa4578cbda.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/baea094c34ab32f24e7883096e212baa4578cbda.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/baea094c34ab32f24e7883096e212baa4578cbda.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/baea094c34ab32f24e7883096e212baa4578cbda.pdf
https://tensorflow.org/xla

pends not only on the input layout but also on specif-

ic implementation details, such as how to choose an

output layout based on different input layouts. The

required layout for the MKL-DNN convolution opera-

tor is also statically uncertain. Therefore, Tensor-

Flow delegates the layout conversion operation to the

operator itself, as exemplified by the CheckReorder-
ToOpMem function in Fig.1. Additionally, Tensor-

Flow lacks an interface to describe library-specific lay-

outs, which may introduce unnecessary layout trans-

formations during ad-hoc layout processing.

In contrast, as shown in Fig.4(b), the VTensor

framework utilizes partial evaluation passes to collect

layout information for each tensor. It then conducts

global layout-oriented graph optimizations. Specifical-

ly, the VTensor framework creates an individual node

for layout transformation and places it immediately

after the Concat operation. As a result, only one

transformation is required.

3 VTensor Framework Overview

Fig.5 shows the overall VTensor framework, com-

prising the “VTensor Programming Framework” (the

bottom part) and the “VTensor Runtime” (the upper

part), serving for the programming interface and run-

time support respectively.

The VTensor programming framework provides

four categories of programming interfaces to define an

operation, describe a library, and illustrate how to in-

voke a library routine.

● The virtual tensor API (VTensor API) empow-

ers developers to implement operators by writing the

Compute function to access virtual tensors, such as

Fig.3. Motivation example: AvgPool operator in VTensor (layout-oblivious programming) (blue lines are auto-generated and orange
lines are VTensor API calls).

Feng Yu et al.: VTensor: Using Virtual Tensors to Build a Layout-Oblivious AI Programming Framework 1079

constructing a virtual tensor or accessing a dimension.

The corresponding code is illustrated in the green

lines in Fig.5. In each operation, the Dispatcher API

serves as the unified entry point for all libraries and

devices. It uses a list of abstract parameters, and its

function body is automatically generated by the

VTensor Framework.

● The physical tensor (PTensor) API enables de-

velopers to declare physical tensors corresponding to

virtual tensors, as demonstrated by the brown lines.

Typically, the PTensor API is written within the li-
braryInvoker function to invoke a specific library rou-

tine. In contrast to virtual tensors, a physical tensor

contains its physical layout information, which can be

a specific layout (e.g., LAYOUT::NCHW) or without

constraints (i.e., LAYOUT::ANY). Additionally, the

PTensor API provides a “require” function to declare

the physical layout convention for the library routine.

● A library description is essential to facilitate

multi-library support. This file is required for each li-

brary to describe the mapping of physical layouts

used by PTensors to library-specific layout names.

For example, it maps from NCHW8c to nChw8c in

MKL-DNN. Furthermore, the library description

specifies the layout transformation handler within the

library and offers guidelines for selecting a layout

from multiple alternatives. The corresponding code is

depicted by the red lines in Fig.5.

● Framework APIs allow developers to register

handlers with the VTensor framework, as indicated

by the blue lines in Fig.5. The VTensor framework

will invoke these handlers during runtime layout reso-

lution. In particular, for each library routine, a li-
braryInvoker function must be written and registered

as the entry point for invoking the routine. This func-

tion describes how to create the actual parameters

Transform

Concat

Conv 11 Conv 11

Concat

Transform

Conv 11

Transform

Conv 11

(b)

(a)

Fig.4. Location where the layout transformation operation
takes place. (a) Inside the operator. (b) Outside the operator.
Conv: convolutional.

Fig.5. VTensor framework overview. (a) Extended data flow graph. (b) Optimized data flow graph. (c) VTensor programming
framework. Conv: Convolution.

1080 J. Comput. Sci. & Technol., Sept. 2023, Vol.38, No.5

from the abstract parameter list. Furthermore, a tag-

ger can be embedded within libraryInvoker, serving as

a safeguard for partial evaluation during runtime lay-

out resolution. Code following the tagger will not be

executed during partial evaluation, but will run dur-

ing normal graph execution.

To resolve layouts for virtual tensors, we propose

a dynamic layout resolver (DLR). DLR partially eval-

uates the dataflow graph to determine the physical

layout for each node in the graph. It identifies the

necessary locations for layout transformations and in-

serts corresponding transformation operations as indi-

vidual nodes into the dataflow graph (as shown in

Fig.5(a)), referred to as the extended dataflow graph.

Finally, we apply layout-oriented optimizations (LOOs)

to the extended dataflow graph to optimize the lay-

out transformation nodes (as shown in Fig.5(b)). Fur-

ther details will be discussed in Section 5.

4 VTensor Programming Interface

The VTensor framework provides four categories

of programming interfaces: VTensor APIs, PTensor

APIs, library description, and framework APIs. De-

velopers can leverage these APIs to implement a ten-

sor operator, i.e., the Compute function in Fig.5, in a

layout-oblivious manner. To distinguish between the

virtual tensor class and the programming model with

the same abbreviation, we employ italics to represent

the virtual tensor class (VTensor) and the regular

font for the programming model (VTensor).

4.1 VTensor Class and PTensor Class APIs

Fig.6 demonstrates the APIs of the virtual tensor

class and the physical tensor class. The virtual tensor

class serves as intermediate data that connects two

operators and remains library-agnostic in terms of its

layout. When utilizing a virtual tensor instance, de-

velopers need not concern themselves with its layout,

which can remain virtual until a specific library rou-

tine is invoked. Typically, such routines follow prede-

termined layout conventions for parameters. As a re-

sult, we introduce the physical tensor class (PTensor)
to describe the physical layout of a virtual tensor in-

stance. We categorize these APIs into three groups

based on whether they are specific to the VTensor
class, the PTensor class, or shared between them:

VTensor-specific APIs, PTensor-specific APIs, and

common APIs.

VTensor-Specific APIs. The VTensor class has its

own specific constructor with three parameters:

scalar_type, shape, and option. In particular, shape is
an array of dimensions, where each dimension con-

sists of two parts: the dimension name and the dimen-

sion size.

V Tensor

vt(float, {(′N ′, NS), (′C ′, CS), (′H ′, HS), (′W ′,WS)},
{ctx, 0})

scalar_type represents the data element type,

while option is used to provide the necessary context

for space allocation and the index number correspond-

ing to the output tensor. An example of using the

VTensor class constructor is shown as follows:

 where ctx is an instance of the OpKernel-
Context class in TensorFlow.

PTensor-Specific APIs. The APIs of the PTensor
class are provided to express specific layout conven-

tions.

PTensor(V Tensor v)● . It constructs a PTensor
instance from the corresponding VTensor instance.

void require(LAY OUT playout)● . It declares the

MKL-DNN

Memory::format

Eigen

TensorFormat

cuDNN

DataLayout

Common

Layout-Oblivious

APIs

Specific

APIs
N H W C

N: 1 H: 4 W: 4 C: 16

N: 1 C: 2 H: 4 W: 4 C: 8

Fig.6. APIs provided by virtual tensor and physical tensor.

Feng Yu et al.: VTensor: Using Virtual Tensors to Build a Layout-Oblivious AI Programming Framework 1081

physical layout convention of the library routine,

which can be called only once in each operation.

LAYOUT is an enumerated type used to uniformly

represent the physical layout of all libraries. A specif-

ic LAYOUT::ANY can be provided if the underlying

library routine can accept any layout, as commonly

seen in element-wise operators (e.g., ReLU). Other

values of LAYOUT are user-defined. Taking the

LAYOUT::HWCN for example, cuDNN uses

kYXDepthBatch as the keyword, while MKL-DNN

uses hwio, and Eigen uses FORMAT_HWCN.

getLibraryDesc(string lib_name)● . It retrieves the

corresponding memory description of the library rou-

tine, and the function body is auto-generated. The

value of lib_name should be consistent with the value

of name in the library descriptor.

Common APIs. These APIs serve to access a vir-

tual tensor or physical tensor, and they are imple-

mented as member functions of VTensor and PTen-
sor.

int size(char dim_name)

dim_name

dim_name

● . This function returns

the dimension size corresponding to . We

follow the dimension naming conventions of the

MKL-DNN library, where N represents the batch size,

C represents the number of channels, H represents the

image height, W represents the image width, and D
represents the image depth. The value of

can be any of the aforementioned symbols.

int ndimensions()● . This function returns the

number of dimensions.

T data()● . This function returns the raw pointer

to the actual data.

4.2 Library Description

The library description interface enables develop-

ers to integrate a new library as a plug-in. In particu-

lar, developers can describe a library from four as-

pects.

Library Descriptor. Developers are required to

specify the name and priority of the library. name is
the sole identifier of a library in our framework, while

priority determines library selection when an opera-

tor is implemented using multiple libraries. These

properties will be adopted by our code generator to

produce some API implementations, e.g., Dispatcher.
PTensor Layout Mapping. Within the PTensor

class, we employ a unified layout representation

across all libraries. However, various libraries may

employ distinct keywords for the same layout. To

_

bridge this gap, developers are encouraged to employ

layout mapper for mapping a LAYOUT to library-

specific keywords. This involves specifying keyword-

LAYOUT pairs to harmonize library keywords with

the enumeration values.

Layout Transformation Handler. Neural network

libraries often include routines for layout transforma-

tions, such as CheckReorderToOpMem in MKL-DNN

and TransposeUsingEigen in the Eigen library. These

routines enable our VTensor framework to invoke

them as needed. Developers can provide these rou-

tines as handlers, using the transformer keyword (see

Fig.5). Handlers must adhere to the following inter-

face definition:

void TransformHandle(PTensor src,

PTensor dst, vector < int > permutation).

LAY OUT LayoutGuideLine(PTensor tensor)

Layout Guideline. In state-of-the-art accelerating

libraries, the layout convention may not be entirely

static. For instance, MKL-DNN offers the

mklDnnAvgProposer routine to determine the layout

convention at runtime. To accommodate such scenar-

ios, we provide the guideline keyword for developers.

It allows them to specify a function that operates on

PTensor objects as parameters and dynamically de-

termines the layout convention. The layout guide

function must adhere to the following interface defini-

tion: .

4.3 Framework APIs

When developers create a new operation, some in-

teractions with the VTensor framework are inevitable.

Therefore, we provide a set of framework APIs to fa-

cilitate these interactions, as follows.

● Dispatcher is the unique entry for invoking li-

braries inside an operation. It encapsulates the kernel

computations from different libraries, and its func-

tion body is automatically generated by the VTensor

framework.

● libraryInvoker is the entry for invoking one li-

brary routine, which will be automatically called by

Dispatcher. Developers need to write the function

body and register it to the VTensor framework.

● libTagger serves as a safeguard for partial evalu-

ation during runtime layout resolution. Code follow-

ing the tagger will not execute during partial evalua-

tion, but will run during normal graph execution.

Since different library functions have different

function signatures, libraryInvoker needs to be writ-

1082 J. Comput. Sci. & Technol., Sept. 2023, Vol.38, No.5

require

Dispatcher

ten by operator developers. Fig.5 shows how to use

the PTensor API and the Framework API to write

the libraryInvoker. To begin, essential PTensor in-

stances are created for input VTensor instances and

output VTensor instances (line 1 and line 2, respec-

tively). Next, the required layout of input PTensors is

specified using the API (lines 3 and 4). The

tagger is then inserted to indicate that the subse-

quent statement is a library call, ensuring that lay-

out information is passed to the runtime for partial

evaluation and layout resolution (lines 5 and 6). Ab-

stract parameters in are extracted to gen-

erate the actual parameters for invoking the library

routine (line 7). Finally, the library is invoked (line

8).

4.4 Automatically Generated Code

As previously discussed, the VTensor framework

automatically generates three functions: Dispatcher,
getLibGuide, and getMemoryDesc. These functions are

designed to insert developer-provided plug-in han-

dlers at appropriate points in the process. Further-

more, the runtime (as discussed in Subsection 5.1) in-

troduces a data transformation operator into the

dataflow graph. The VTensor framework then gener-

ates the transformation operator's body based on the

provided transformer specified in each library descrip-

tion.

We leverage template-based code generation here.

Specifically, functions like Dispatcher are utilized to

choose an appropriate function to invoke based on the

runtime input parameters or to provide correspond-

ing values according to the runtime input parameters.

We represent this process as a code template. Taking

the Dispatcher function (code highlighted in blue in

Fig.3) as an example, it serves to distribute operators

to an invoker. In our implementation, Dispatcher se-
lects the invoker based on the device type and the li-

brary's priority. Each operator has different check

conditions for different parameters and dimensions.

Consequently, legitimacy check code is generated by

the code generator as part of the ParametersAndDi-
mensionCheck function.

5 VTensor Runtime

In this section, we present the design and imple-

mentation of the VTensor runtime. It comprises two

components: a DLR (Subsection 5.1) responsible for

inferring the physical layouts of VTensor instances

and inserting the necessary data conversion nodes to

extend the dataflow graph, and a LOO (Subsection

5.2) tasked with optimizing the extended dataflow

graph.

5.1 Dynamic Layout Resolver

The DLR serves to resolve a layout-oblivious

VTensor instance to a PTensor instance with a spe-

cific physical layout defined by the library. The Grap-

pler is the default graph optimization system in Ten-

sorFlow. The DLR is implemented as part of the Ten-

sorFlow Grappler after graph partitioning and device

placement.

Data Structure for Layout Resolution. To assist in

resolving the layout, two attributes are introduced:

produced_layout for the VTensor class, and

required_layout for the PTensor class. Specifically, re-
quired_layout indicates the physical layout required

by the library routine, specified using the require
statement in libraryInvoker. produced_layout indi-

cates the physical layout derived from predecessor

nodes. A VTensor instance is successfully resolved to

a PTensor instance when its produced_layout match-

es the corresponding required_layout of PTensor in-

stance.

Overall Workflow. The DLR works as follows.

First, it sets the execution mode to Partial and uti-

lizes partial evaluator (PE) to determine

produced_layout for each VTensor instance and re-
quired_layout for each PTensor instance by executing

only the code in the graph related to layout determi-

nation. This avoids executing time-consuming compu-

tations in the operator, making the DLR's cost negli-

gible. After PE processing, the layout of all VTensor
instances is resolved, as shown in Fig.7(b). Second,

the DLR checks the layout attributes for each pair of

the VTensor instance and PTensor instance, insert-

ing a data conversion node (the “transform” node in

red) when produced_layout does not match

required_layout, as shown in Fig.7(c).

Partial Evaluation Algorithm. Determining re-
quired_layout is challenging for three reasons. First,

developers may choose different libraries within a sin-

gle operation based on input parameters (e.g., prefer-

ring cuBlas over cuDNN for a “1×1” convolution).

Second, operator parameters, algorithms, accepted da-

ta types and other factors can affect layout conven-

tions. Third, the application's layout can only be de-

Feng Yu et al.: VTensor: Using Virtual Tensors to Build a Layout-Oblivious AI Programming Framework 1083

termined at runtime.

Hence, as shown in Fig.8, we propose a partial

evaluation algorithm to obtain layout information.

The algorithm traverses the dataflow graph, process-

ing each node in topological order (lines 2–4, and

lines 23–28). Before traversing, for the original data

flow graph G's entry node, the produced_layout of all

its input VTensor instances is initialized based on the

input format (line 1).

When processing each node, PE partially exe-

cutes the operation code until encountering the devel-

oper-specified libTagger. The layout resolving algo-

rithm works as follows. First, we extract the input

and output VTensor instances of the current node in-

to vtensor_set (line 5). Second, for each VTensor in-

stance in the set, we create a PTensor instance, deter-

mining its physical layout per developer-provided li-

brary guidelines (lines 8 and 9). If the determined lay-

out is LAYOUT::ANY, it inherits the physical layout

of the first input VTensor instance (if it is an output)

or inherits the produced_layout of the VTensor in-

stance (if the tensor is an input) (lines 10–15). The

determined physical layout is recorded in the re-
quired_layout of the PTensor instance (line 16), indi-

cating the library's layout requirement. Third, for

each output VTensor instance, its produced_layout is
set as the required_layout of the corresponding PTen-
sor instance for propagating the resolved layout to

successor nodes (lines 17 and 18). Finally, the devel-

oper-specified libTagger function is invoked to skip

the subsequent library function call and terminate the

partial evaluation of the current node (line 21).

5.2 Layout-Oriented Optimization

After explicitly inserting layout transformation

operations into the data flow graph, new opportuni-

ties for globally optimizing the transformations

emerge.

The optimization goal of this paper is to mini-

mize the number of data conversion operation. To

minimize the end-to-end latency of the neural net-

work, factors such as layout, primitives, and memory

footprint need to be considered together. However,

Partial Evaluator

Fig.7. DLR workflow. Vin and Pin refer to VTensor and PTensor inputs respectively. Vout and Pout are VTensor and PTensor out-
puts respectively. (a) Original data graph. (b) Resolved layout. (c) Extended flow graph. Conv: convolution.

1084 J. Comput. Sci. & Technol., Sept. 2023, Vol.38, No.5

these factors are beyond the scope of this paper.

As TensorFlow's layout optimization algorithm is

designed without knowing the layout information, the

need arises for a new layout optimizer. In the VTen-

sor framework, we introduce two optimization compo-

nents: layout hoisting optimization (LHO) and ele-

ment-wise optimization (EWO).

Layout Hoisting Optimization. LHO is proposed to

apply the optimization presented in Fig.4 to multi-

branch models. We employ a pattern-based graph op-

timization to hoist the layout transformation nodes.

Specifically, we traverse all the branch nodes in the

graph from top to bottom. If a branch node satisfies:

1) all of its immediate successors are layout transfor-

mation nodes, 2) each immediate successor has a

PTensor instance generated from a common VTen-
sor instance, and 3) all of these PTensors have the

same required_layout, then the layout transformation

nodes from all immediate successors can be hoisted up

before the branch node.

Element-Wise Optimization. Element-wise nodes

can accept an arbitrary layout of tensors as input in

mathematical semantics. However, element-wise oper-

ations may have broadcasted semantics, requiring the

layouts/shapes of their input tensors to be compati-

ble[12]. However, in TensorFlow, the layout of an in-

put tensor can only be determined at runtime. Conse-

quently, TensorFlow conservatively restricts the lay-

out as NHWC, as shown in Fig.9(a).

Furthermore, the selection of the output layout of

a producer operator determines the input layouts of

all connected consumer operators. Thus, the layout

selection cannot be made in isolation.

It is important to note that operators such as con-

volution specify the required layout through the re-
quire statements, and we assume that this specifica-

tion cannot be altered.

Given an extended data flow graph G, we intro-

duce a candidate_set variable for each node, except

for constant operations, and initialize the variable ac-

cording to the following rules.

● Element-Wise Operators with Broadcast Seman-
tics. Assuming tensor A is broadcast to tensor B, with

the layout of tensor A being LA and the layout of

tensor B being LB. If tensor A cannot be represented

by LB (for instance, when the channel size of A is not

Algorithm 1. Layout Resolving Algorithm
Input: G: original data flow graph
 Entry_Layouts: the input layouts of network
Output: Tensor_Set: the V/PTensors of each node
 1.InitializeEntryNodeLayout(G, Entry_Layouts)
 2.ready_queue = {G.entry_node}
 3.while ready_queue not empty do // Topology-based traversal of data flow graphs
 4. work_node = ready_queue.pop()
 5. vtensor_set = work_node.vtensor_set() // Retrieve the input and output VTensor instances
 6. ptensor_set = {}
 7. for vtensor in vtensor_set do
 8. ptensor = PTensor(vtensor)
 9. physical_layout = work_node.InvokeLibGuideline(ptensor)

// Determine the physical layout of PTensor instances
10. if physical_layout == LAYOUT∷ANY then
11. if vtensor.is_out then
12. physical_layout =
13. GetFirstInputTensor(work_node).required_layout

14. else
15. physical_layout = vtensor.produced_layout

16. ptensor.required_layout = physical_layout
17. if vtensor.is_out then
18. vtensor.produced_layout = ptensor.required_layout

19. ptensor_set.append(ptensor)
20. end for
21. InvokeLibTagger(Tensor_Set, {work_node, ptensor_set})
22.
23. for succ in work_node.successors() do
24. PropagateVTensorToSuccessor(voutputs, succ)
25. if IsReady(succ) then
26. AppendReadyNode(ready_queue, succ)
27. end for
28.end while
29.return Tensor_Set

// Inherit the input VTensor instances's required_layout

// Inherit the VTensor instance's produced_layout

// Distribute the resolved layout to successor nodes

Fig.8. Layout resolving algorithm.

Feng Yu et al.: VTensor: Using Virtual Tensors to Build a Layout-Oblivious AI Programming Framework 1085

a multiple of 16, i.e., it cannot be represented by

NCHW16c), then candidate_set is assigned to

{NHWC, NCHW}; otherwise, it is assigned to {LB,

NHWC, NCHW}.

● Normal Element-Wise Operators. candidate_set
is assigned to {the layout of inputs, NHWC, NCHW}.

● Other Operators. For the other operators, e.g.,

convolution, candidate_set is assigned to attribute re-
quired_layout.

The cost of each edge is determined by the layout

of the two nodes connected by the edge. We initialize

the cost matrix as follows:

Cij[m][k] =

1, if candidate_seti[m] ̸=
candidate_setj[k],

0, otherwise,

where i, j represent nodes, and candidate_seti[m] rep-

resents the m-th candidate layout of node i, as shown

in Fig.9(b). Constructed in this manner, we can map

the layout selection problem to an ILP problem as

follows:

minimize
n∑

i=1

n∑
j=1

xi
TCijxj

subject to xi ∈ {0, 1}|Ci|, i = 1, ..., n,
xi

T1 = 1, i = 1, ..., n.

Our objective is to minimize data conversions

within the graph by selecting the layout for element-

wise operators. Each node is associated with a

boolean decision vector, denoted as x, where the ele-

ments are binary, taking values of either 0 or 1. An

additional constraint is imposed, ensuring that only a

Const

Conv

Add

ReLU

Vin1: NCHW8c

Shape=[1, 2, 3, 3, 8]

Vin2 : NCHW8c

Shape=[1, 2, 3, 3, 8]

Pin1: NCHW8c

Pin2: NCHW8c
Pout: NCHW8c

Vout: NCHW8c

Vin: NCHW8c

Pin: NCHW8c

Extend &
Conversion

V/P Layout: NCHW8c

Shape=[1, 2, 3, 3, 8]

(a)

ReLU

Transform

Add

Transform

Vin1: NCHW8c

Shape=[1, 2, 3, 3, 8] Vin2: C

Shape=[16]

Vin1’: NHWC

Pout: NHWCPin1: NHWC

Pin2: C

Conv

Vin: NHWC

Vin: NCHW8c

Pin: NCHW8c

Const

Const

Conv

Add

ReLU

Candidate_set={NCHW8c,

NHWC, NCHW}

Candidate_set={NCHW8c, NHWC,

 NCHW}

Candidate_set={NCHW8c}

C=

V/P Layout: C

Shape=[16]

(b)

(c)

0
1
1

1
0
1

1
1
0()

C=

0
1
1()

Fig.9. Example for EWO. (a) Extended data flow graph. (b) Data flow graph with candidate_set and constant matrix. (c) Data flow
graph after EWO. Const: constant; Conv: convolution.

1086 J. Comput. Sci. & Technol., Sept. 2023, Vol.38, No.5

single element within these vectors is assigned the

value 1. Subsequently, we employ an ILP solver to

identify the optimal solution. Following this, if we en-

counter an element-wise operator with broadcast se-

mantics and its input tensor contains a constant ten-

sor, the VTensor framework extends and transforms

the constant tensor to match the layout of the non-

constant tensor, as illustrated in Fig.9(c).

After applying the EWO and LHO optimizations,

we obtain an optimized extended data flow graph. In

this graph, each node represents an instance of a com-

putation operation or a layout transformation opera-

tion, and each edge represents a multidimensional

dataset, specifically tensors, on which the operations

are performed.

5.3 Implementation

We plug the implementation of DLR and LOO in-

to the Grappler as a pass to implement the runtime of

VTensor framework. Specifically, we begin by extend-

ing TensorFlow's Executor class to implement the

partial evaluator (PE). The PE initiates TensorFlow's

runtime to execute the entire network. Subsequently,

we modify TensorFlow's runtime module to enable

runtime layout information retrieval. This modifica-

tion involves adapting TensorFlow's OpKernelCon-
text class to facilitate the circulation of VTensor class

instances between operators, and enhancing Tensor-

Flow's profiler to record operators' layout informa-

tion. The implementation of these changes consumes

approximately 1 500 LOC.

Afterwards, we convert the layout selection prob-

lem into an integer programming problem, leveraging

the collected layout information. This transformation

requires approximately 2 000 LOC. To conclude, we

introduce the data conversion operation into the dia-

gram, necessitating about 200 LOC for its implemen-

tation. Additionally, we extend the VTensor and

PTensor classes based on TensorFlow's Tensor class.

The implementation of both classes comprises over

600 LOC. Furthermore, within the VTensor frame-

work, we implement 16 operators, resulting in a total

of approximately 5 600 lines of code.

6 Evaluation

6.1 Experiment Setup

Hardware and Software Platforms. We evaluate

VTensor on both CPU and GPU platforms. The CPU

platform comprises a quad-socket server, with each

socket housing a Westmere-based Intel 2.0 GHz octa-

core Xeon E7-4820 processor. Each processor features

a private 32 KB L1 D-cache and 32 KB L1 I-cache, a

private 256 KB L2 cache, and a shared 18 MB L3

cache. The GPU platform is a Volta-based NVIDIA

TITAN V GPU, featured with 80 SMs and 12 GB

global GDDR5 memory. VTensor is implemented on

top of TensorFlow 1.14. We utilize Intel MKL-DNN

(v0.18) and cuDNN (7.2) as the vendor-provided li-

braries for CPU and GPU acceleration, respectively.

In addition, TensorFlow caches the optimized graph

for a compute graph that is repeatedly executed, en-

suring that the graph optimization system executes it

only once. The evaluation process comprises two

stages: the warm-up stage and the test stage. During

the warm-up stage, we measure the execution time of

DLR modules and layout optimization. In the test

stage, we obtain the network execution time by exe-

cuting one sample at a time and averaging the execu-

tion time across 1 000 samples.

VTensor-Powered Operators and Networks. In

this paper, we focus on deep learning inference. To

accomplish this, we establish a benchmark set com-

prising 12 DNN models, namely Inception[13–16],

ResNet[17], VGG[18], DenseNet[19], MobileNet[20, 21], and

NasNet[22]. Detailed information about these models

can be found in Table 1. We have extracted 16 opera-

tors from the aforementioned benchmark set and sub-

sequently re-implemented them using VTensor. All

the code adheres to the Google code style⑥, which is

the default style for TensorFlow developers. We man-

ually count LOC of both TensorFlow operators and

VTensor operators.

Performance Baseline. For the CPU and GPU

platforms we evaluate, we follow the approach out-

lined in [23] to configure TensorFlow's tunable pa-

rameters. These parameters, which include inter_op_pa-

rallelism_threads (inter-op), intra_op_parallelism_th-

reads (intra-op), and KMP_BLOCKTIME, are listed

in Table 1 and serve as the performance baseline. The

batch size is consistently set to 1 for all networks. In-

tel's implementation outperforms the Eigen CPU

backend by up to 70x and has been seamlessly inte-

grated into the TensorFlow framework[11]. We utilize

its layout optimizer as the baseline for the CPU side.

Regarding the GPU backend, both XLA and Tensor-

Feng Yu et al.: VTensor: Using Virtual Tensors to Build a Layout-Oblivious AI Programming Framework 1087

⑥Weinberger B, Silverstein C, Eitzmann G et al. Google C++ style guide. Section: Line Length. 2013. http://google-
styleguide.googlecode.com/svn/trunk/cppguide.xml#Line%_Length, Jan. 2019.

http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Line%_Length
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Line%_Length
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Line%_Length
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Line%_Length
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Line%_Length

Flow employ an experience-based layout optimiza-

tion algorithm, which we adopt as the baseline.

6.2 Overall Results—Maintainability

Since the primary aim of the VTensor framework

is to reduce the programming burden on operator de-

velopers, our focus is on comparing the maintainabili-

ty of operators rather than the entire framework. Vir-

tual operators, which can be shared among multiple

physical operators, require writing only once for tasks

such as shape inference, shape validity checks, and so

on. Additionally, tasks like layout conversion and ker-

nel dispatch are handled by the VTensor framework.

Furthermore, we provide concise APIs for operator

developers to implement virtual and physical opera-

tors. Hence, we anticipate a substantial reduction in

code volume for operator developers when writing op-

erators, leading to improved maintainability and re-

duced file dispersion.

As LOC is frequently used as an indirect indica-

tor for assessing maintainability, we compare opera-

tor maintainability by examining LOC for operators

in different frameworks. The LOC for the operator in

Fig.10 is a sum of LOC implemented based on the

MKL-DNN, Eigen, and cuDNN libraries. The LOC in

Figs.1 and 3 solely represents implementations based

on the MKL-DNN library.

Fig.10 illustrates the maintainability provided by

VTensor, with the x-axis representing LOC and the y-

axis representing 16 operators. For each operator, the

green bar represents LOC in TensorFlow, while the

colored bar indicates LOC in VTensor. The blue sec-

tion signifies LOC for operation development, while

the yellow/gray/red sections represent LOC for li-

brary descriptions of MKL-DNN/cuDNN/Eigen, re-

spectively. Compared with TensorFlow, VTensor has

achieved a substantial reduction in code size, ranging

from 6.31% to 75.37%, with an average reduction of

47.82%.

Furthermore, in TensorFlow, the layout mainte-

nance code is organized in an extremely decentralized

manner. On average, developers need to modify six

distinct files when creating a new operator. In con-

trast, with VTensor, developers only need to modify

one .cc file (for CPU code) and one .cu file (for CU-

DA code), by adding the corresponding Compute
function and handlers in Section 4. Additionally, de-

velopers need to write three library description files

(Eigen/cuDNN/MKL-DNN), which are shared by all

operators. Occasionally, slight modifications are re-

quired for these library description files when new

guidelines are introduced, but these modifications re-

quire minimal effort, and we consider them negligible.

Moreover, for performance-critical operators that

support multiple libraries, such as convolution and

pooling, VTensor demonstrates even more significant

improvements in maintainability. Taking Conv2DOp

as an example, in TensorFlow, developers must ex-

plicitly write three different library wrappers (Eigen,

cuDNN, and MKL-DNN) for layout selection and

transformation, necessitating changes in 15 files, with

a total LOC of 1 838. In contrast, VTensor dramati-

cally reduces this burden, as developers only need to

modify two files, resulting in a reduced LOC of 714.

6.3 Overall Results—Performance

Fig.11(a) illustrates the overall performance of

VTensor and TensorFlow on the CPU platform. The

Table 1. Parameters of the Deep Learning Models in Evaluation

Model Image Size KMP_BLOCKTIME inter_op intra_op Number of Layers Number of Parameters (×106)

GoogleNet 224×224 1 2 16 174 6.80

Inception_Resnet_V2[13–16] 299×299 1 2 16 772 56.00

Inception_V2[13–16] 224×224 1 2 16 212 11.26

Inception_V3[13–16] 299×299 1 2 16 287 23.94

NasNet-Large[22] 331×331 1 2 16 1 142 89.15

ResNet_101[17] 224×224 1 1 32 349 44.76

ResNet_152[17] 224×224 1 1 32 519 60.50

ResNet_50[17] 224×224 1 1 32 179 25.66

VGG19[18] 224×224 1 1 32 27 143.67

DensNet_169[19] 224×224 1 1 32 683 14.47

MobileNet_V1_224[20, 21] 224×224 0 1 32 102 4.27

MobileNet_V2_224[20, 21] 224×224 0 1 32 139 6.13

1088 J. Comput. Sci. & Technol., Sept. 2023, Vol.38, No.5

horizontal axis represents different networks, while

the vertical axis represents inference latency. The re-

sults reveal that VTensor achieves a notable perfor-

mance improvement, ranging from 1.37% to 48.27%,

with an average improvement of 18.65% compared

with TensorFlow.

The CPU results are particularly impressive as

they involve the utilization of both MKL-DNN and

Eigen in the same network, each employing different

layouts. It is worth noting that networks with a sub-

stantial number of element-wise nodes, such as

ResNet networks, exhibit even greater performance

enhancements with VTensor. These networks incorpo-

rate numerous data conversion nodes, offering ample

opportunities for layout-oriented optimization to en-

hance global layout transformation. Consequently,

LOC

0 150 300 450 600 750 900 1 050 1 200 1 350 1 500 1 650 1 800

Conv2D

AvgPooling

MaxPoolingNoMask

Bias

BiasGrad

FusedBatchNorm

DepthToSpace

Pooling3D

MaxPooling3dGrad

AvgPooling3dGrad

Conv3D

SpaceToDepth

AvgPoolingGrad

MaxPoolingGrad

FusedBatchNormGrad

Conv2DSlowBackpropInput

TensorFlow VTensor MKL-DNN cuDNN Eigen

Fig.10. Comparison of LOC when writing an operator using VTensor/TensorFlow framework.

0

50

100

150

200

250

300

350

400

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s)

TensorFlow VTensor

0

5

10

15

20

25

30

35

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s)

TensorFlow VTensor

G
oo

gl
eN

et

In
ce

pt
io
n
_V

2

In
ce

pt
io
n
_V

3

N
A
SN

et
-L

ar
ge

M
ob

ile
N
et
_V

1_
22

4

M
ob

ile
N
et
_V

2_
22

4

R
es
N
et
_5

0

R
es
N
et
_1

01

R
es
N
et
_1

52

V
G
G
19

D
en

se
N
et
_1

69

In
ce

pt
io
n
_R

es
N
et
_V

2

A
ve

ra
ge

G
oo

gl
eN

et

In
ce

pt
io
n_

V
2

In
ce

pt
io
n_

V
3

N
A
SN

et
-L

ar
ge

M
ob

ile
N
et
_V

1_
22

4

M
ob

ile
N
et
_V

2_
22

4

R
es
N
et
_5

0

R
es
N
et
_1

01

R
es
N
et
_1

52

V
G
G
19

D
en

se
N
et
_1

69

In
ce

pt
io
n_

R
es
N
et
_V

2

A
ve

ra
ge

(b)(a)

Fig.11. Inference latency of TensorFlow/VTensor. (a) CPU platform. (b) GPU platform.

Feng Yu et al.: VTensor: Using Virtual Tensors to Build a Layout-Oblivious AI Programming Framework 1089

VTensor effectively leverages DLR to determine the

layout for each tensor, thereby exposing additional

optimization prospects.

In Fig.11(b), VTensor exhibits a slight perfor-

mance advantage over TensorFlow on the GPU plat-

form, with an improvement of merely 0.31%. The

GPU results may appear somewhat underwhelming,

given that cuDNN is utilized for all operators. Howev-

er, cuDNN exclusively adheres to the NCHW layout,

limiting VTensor's capacity to identify opportunities

for layout optimizations.

6.4 Standard Deviation of Execution Time

Fig.12 illustrates the standard deviation resulting

from 1 000 executions of various networks using

VTensor and TensorFlow with a batch size of 1. The

horizontal axis represents distinct networks, while the

vertical axis represents the standard deviation. Fig.12

demonstrates that VTensor's standard deviation on

the CPU/GPU platform closely aligns with Tensor-

Flow's.

The significantly higher standard deviation in

the network execution time on the CPU platform can

be attributed to thread over-subscription. This phe-

nomenon is particularly pronounced when compared

with the GPU platform. It is important to note that

Eigen and MKL-DNN each employ their own thread

pools, lacking a coordination mechanism between

them. Consequently, thread over-subscription may oc-

cur when multiple operators run in parallel or when

one operator executes without an immediate thread

sleep.

6.5 Reduced Data Conversions (LOO)

Fig.13 illustrates the performance contribution of

LOO on the CPU platform with TensorFlow as the

0

1

2

3

4

5

6

7

8

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n

VTensor-CPU TensorFlow-CPU VTensor-GPU TensorFlow-GPU

G
oo

lg
N
et

In
ce

pt
io
n
_R

es
N
et
_V

2

In
ce

pt
io
n
_V

2

In
ce

pt
io
n
_V

3

N
A
SN

et
-L

ar
ge

R
es

N
et
_1

01

R
es

N
et
_1

52

R
es

N
et
_5

0

V
G
G
19

D
en

sN
et
_1

69

M
ob

ile
N
et
_V

1_
22

4

M
ob

ile
N
et
_V

2_
22

4

Fig.12. Standard deviation of VTensor/TensorFlow when the batch size is 1.

0

100

200

300

400

500

600

700

0

5

10

15

20

25

30

35

40

45

50

N
u
m

b
e
r

o
f
C

o
n
v
e
rs

io
n
 N

o
d
e
s

P
e
rf

o
rm

a
n
c
e
 I

m
p
ro

v
e
m

e
n
t

(%
)

Performance Improvement Reduced Number of Data Conversions

G
oo

gl
eN

et

In
ce

pt
io
n_

V
2

In
ce

pt
io
n_

V
3

N
A
SN

et
-L

ar
ge

M
ob

ile
N
et
_V

1_
22

4

M
ob

ile
N
et
_V

2_
22

4

R
es
N
et
_5

0

R
es
N
et
_1

01

R
es
N
et
_1

52

V
G
G
19

D
en

se
N
et
_1

69

In
ce

pt
io
n_

R
es
N
et
_V

2

Fig.13. Reduced number of data conversions and performance benefit of LOO.

1090 J. Comput. Sci. & Technol., Sept. 2023, Vol.38, No.5

baseline. The horizontal axis represents different net-

works, the left vertical axis represents the perfor-

mance improvement over TensorFlow, and the right

vertical axis represents the reduced number of data

conversions.

As shown in Fig.13, LOO can enhance perfor-

mance from 0.46% to 43.92%, with an average im-

provement of 15.54%. LOO achieves this perfor-

mance boost by reducing data conversions. For in-

stance, in the case of ResNet_152, LOO reduces the

number of data conversions from 317 to 18, resulting

in a performance gain of 14.18%. It is important to

note that for networks without branches and element-

wise nodes, such as VGG19, LOO cannot achieve per-

formance improvement.

The extent of performance improvement through

layout optimization relies on the percentage of time

saved by eliminating data conversion operations dur-

ing the entire network's execution. This clarifies why

NASNet-Large, which experiences the most signifi-

cant reduction in data conversion operations, does not

exhibit the largest performance improvement.

6.6 Overhead of DLR and EWO

Fig.14 displays the distribution of execution time

for each optimization module, normalized to Tensor-

Flow Grappler's total execution time. The yellow,

green, and gray bars represent the percentages of the

execution time consumed by VTensor framework's

DLR, LOO, and other optimizations, respectively, al-

so normalized to TensorFlow Grappler's total time.

The red bar signifies the time spent on TensorFlow's

layout optimization, while the blue bar accounts for

the overall execution time of TensorFlow optimiza-

tions, excluding layout optimization.

From Fig.14, it is evident that the proportion of

VTensor's layout optimization (the green bar) is

smaller than that of TensorFlow's layout optimiza-

tion (the red bar). Specifically, the execution time of

VTensor's LOO is shorter than that of TensorFlow's

LOO. This discrepancy arises because the most time-

intensive aspect of layout optimization involves creat-

ing and inserting data conversion operators. VTensor

LOO inserts significantly fewer operators than Ten-

sorFlow (as shown in Fig.13), resulting in shorter exe-

cution time for VTensor LOO compared with Tensor-

Flow. Additionally, VTensor's Grappler consumes less

execution time when compared with TensorFlow.

6.7 Optimization for Different Batch Sizes

Since VTensor cannot identify further optimiza-

tion opportunities on the GPU platform, we exclu-

sively opt for the CPU platform to evaluate the

VTensor network's performance across various batch

sizes. As depicted in Fig.15, LOO consistently ex-

hibits performance improvements across diverse batch

sizes. We calculate the network's execution time

based on the average of 1 000 iterations, with batch

size samples being executed in each iteration. The

horizontal axis of Fig.15 denotes different batch sizes,

while the bars of distinct colors represent various net-

0 10 20 30 40

Execution Time (%)

50 60 70 80 90 100

GoogleNet

Inception_ResNet_V2

Inception_V2

Inception_V3

NasNet-Large

ResNet_101

ResNet_152

ResNet_50

VGG19

DensNet_169

MobileNet_V1_224

MobileNet_V2_224

TensorFlow-EXC-LOO TensorFlow-LOO VTensor-EXC-DLR-LOO VTensor-DLR VTensor-LOO

Fig.14. Breakdown of Grappler time under VTensor/TensorFlow.

Feng Yu et al.: VTensor: Using Virtual Tensors to Build a Layout-Oblivious AI Programming Framework 1091

works. The vertical axis represents the percentage of

performance enhancement achieved by VTensor com-

pared with TensorFlow.

Fig.15 illustrates that LOO remains effective for

different batch sizes. Nevertheless, the LOO perfor-

mance enhancement percentage for the same network

fluctuates across different batch sizes without a dis-

cernible pattern. For the sake of clarity, we employ

ResNet-50 as an exemplar to elucidate the variations

in LOO performance enhancement. This is accom-

plished by analyzing the breakdown diagram of net-

work execution time across different batch sizes, as

seen in Fig.16. Notably, the percentage of the opera-

tor's execution time relative to the total network time

does not increase with larger batch sizes. The precise

reasons for this phenomenon are beyond the scope of

this paper. Based on our analysis, we discern that one

factor contributing to LOO performance improve-

ment hinges on the proportion of data conversion op-

erations within the entire network.

7 Discussion

VTensor's idea of layout decoupling is not limited

to a particular AI framework, such as TensorFlow. In

this section, we discuss how to apply the ideas of

VTensor to Pytorch, and provide an initial assess-

ment of the migration effort required for developers.

Furthermore, we examine the integration of

VTensor's concept with machine learning compilers

like XLA.

7.1 Migration to PyTorch

TensorFlow constructs a data flow graph prior to

executing a neural network, while PyTorch employs

an imperative execution model, bypassing a separate

graph construction phase. These differing execution

modes lead to distinct VTensor runtime implementa-

tions. Firstly, the DLR module's PE algorithm pro-

cesses individual nodes rather than the entire graph.

Secondly, as PyTorch lacks access to the entire com-

putational graph, layout optimization necessitates ei-

ther a heuristic or a greedy approach. In the greedy

approach, one approach is to maximize the tensor lay-

out's lifecycle. To implement this method, the layout

guideline function first includes the use of

produced_layout as one of the criteria for selecting the

layout. Secondly, after the PE algorithm resolves the

required_layout attribute, it determines whether to in-

sert the data conversion operation immediately. A

commonality between PyTorch and TensorFlow is

that neither framework has a mechanism for preserv-

ing layout information. Consequently, operator devel-

opers must remain cognizant of the layout and manu-

ally manage layout information.

0

10

20

30

40

50

60

P
e
rf

o
rm

a
n
c
e
 I

m
p
ro

v
e
m

e
n
t

(%
)

Batch Size=1 Batch Size=2 Batch Size=4 Batch Size=8 Batch Size=16 Batch Size=32

G
oo

gl
eN

et

In
ce

pt
io
n_

V
2

In
ce

pt
io
n_

V
3

N
as

N
et
-L

ar
ge

M
ob

ile
N
et
_V

1_
22

4

M
ob

ile
N
et
_V

2_
22

4

R
es
N
et
_5

0

R
es
N
et
_1

01

R
es
N
et
_1

52

VG
G
19

D
en

se
N
et
_1

69

In
ce

pt
io
n_

R
es
N
et
_V

2

Fig.15. Percentage of performance improvement of different networks under the VTensor framework.

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16 32

Layout Transform
Convolution

Add
ReLU

MaxPool
Other

N
o
rm

a
li
z
e
d
 P

e
rc

e
n
ta

g
e
 o

f
E
x
e
c
u
ti
o
n
 T

im
e
 (

%
)

Batch Size

Fig.16. Time breakdown of ResNet-50 under different batch
sizes under TensorFlow.

1092 J. Comput. Sci. & Technol., Sept. 2023, Vol.38, No.5

The implementation of the VTensor program-

ming framework in PyTorch proceeds as follows.

Since the library description pertains to the specific li-

brary and is framework-independent, it can be direct-

ly reused. Other than the library description, we can

implement the remaining VTensor framework APIs

through the following steps. Initially, we extract the

portion of the at::Tensor class that is independent of

the layout as a virtual tensor class. Subsequently, we

extract the layout-related segment of the at::Tensor
class as a physical tensor class. We then introduce the

produced_layout attribute to the virtual tensor class

and the required_layout attribute to the physical ten-

sor class. Finally, we divide each operation into a

computation and a set of invokers (with one invoker

per library). We employ the PTensor API and the lib-
Tagger API to encapsulate data/parameter prepara-

tion, library function calls, and other operations into

the invoker. For libraries already supported by the

VTensor framework, the invoker/library description

can be reused. Ultimately, we register each invoker

using the libraryInvoker API in VTensor.

7.2 Programming Efforts

It is required approximately 10 000 LOC to imple-

ment the VTensor idea within the TensorFlow frame-

work. This includes 4 300 LOC for the revision of 16

operators using VTensor framework's APIs, around

3 700 LOC for developing the VTensor runtime, and

roughly 600 LOC for crafting the VTensor

framework's APIs.

Here, we conduct an analysis to determine which

modules necessitate adjustments when transitioning

the VTensor framework, originally built on Tensor-

Flow, to alternative frameworks. If the current frame-

work supports the acquisition of the entire data flow

graph, there is no need for modifications to the ILP

solver within the LOO module. However, due to dis-

parities between TensorFlow and PyTorch in the

graph data structure and layout transfer mechanisms,

we must rewrite the DLR module and the layout opti-

mizer. For frameworks that do not require the con-

struction of computational graphs, a complete rewrite

of the VTensor runtime becomes imperative. Addi-

tionally, the API of the VTensor framework must be

reworked, as runtime and tensor data structures dif-

fer across frameworks. Concerning operators, frame-

work-specific components encompass constructors,

class definitions, and parameters tied to the frame-

work. For instance, the OpKernelContext class is uti-

lized by the TensorFlow framework to record the exe-

cution context of the current operator. The remain-

ing operators can be reused directly. Moreover, the li-

brary description serves solely to document informa-

tion about the library and its functions, making it

suitable for direct reuse.

7.3 Interaction with XLA

The aim of XLA is to combine numerous small

operators and automatically generate the fused code.

When dealing with large operators, like convolution,

XLA still invokes the kernel code that is implement-

ed based on the library. However, for operators based

on libraries, the VTensor framework can still offer a

layout-agnostic programming diagram to assist opera-

tor developers. Consequently, VTensor remains inde-

pendent of compilers such as XLA.

8 Related Work

Layout Optimization. A substantial body of re-

search has addressed the significance of layout tuning

and selection[8, 9, 24–30]. Specifically, Kim et al.[24] ana-

lyzed the performance of five AI frameworks with dif-

ferent convolution algorithms and found that layout

is a performance-critical factor. Li et al.[8] investigat-

ed the memory efficiency of various convolutional

neural network layers and unveiled performance im-

plications arising from both data layout and memory

access patterns. Anderson and Gregg[9] abstracted the

layout and primitive selection problem into a PBQP

problem from a graph-level perspective. Wen et al.[25, 26]

introduced the ILP technology to address the limited

memory resource selection for the optimal combina-

tion of primitives and layouts. Zhang et al.[27] pro-

posed a decision tree-based approach to select suit-

able layouts for a network in DSP. Zheng et al.[28] ob-

served that matrix multiplication constitutes the per-

formance bottleneck for LSTM RNN on GPU and in-

troduced EcoRNN for automatic library selection and

layout. TASO[29] considers layout transformations in

conjunction with graph substitutions. NeoCPU[30] al-

ters the layout of all convolution operations to

NCHW[x] and globally tunes the parameter x when

providing hardware details. These approaches still re-

ly on traditional layout-aware programming inter-

faces, which place a significant maintenance and con-

version burden on developers. Furthermore, the afore-

Feng Yu et al.: VTensor: Using Virtual Tensors to Build a Layout-Oblivious AI Programming Framework 1093

mentioned layout optimization methods are only ap-

plicable in scenarios where the layout can be deter-

mined at compile time. In contrast, VTensor dynami-

cally selects layouts at runtime thanks to the DLR.

Ould-Ahmed-Vall et al.[11] divided the data flow graph

into multiple subgraphs based on whether the opera-

tor is implemented using MKL-DNN. Data conver-

sion operations within each subgraph are performed

by the operator. Although this heuristic method can

be executed at runtime, the layout choice represents

only a local optimal solution. In contrast to their ap-

proach, VTensor acquires layout information for each

node in the data flow diagram through the DLR at

runtime and then selects the layout. Consequently,

our approach yields superior performance improve-

ments.

Tensor Processing. There has been extensive re-

search on tensor processing, spanning from domain-

specific languages to optimized compilers[1, 31–36]. Most

existing work in this area requires programmers to be

aware of tensor layouts. Ragan-Kelley et al.[31] intro-

duced the concept of separating computation from

scheduling, enabling the efficient generation of image

processing pipelines. Chen et al.[32, 33] employed a do-

main-specific language based on tensor expressions,

along with a comprehensive compilation stack, to fa-

cilitate efficient tensor operator generation on hetero-

geneous architectures. FlexTensor[34] and Ansor[35] fo-

cus on automatic schedule space exploration.

TACO[36] offers an alternative approach through the

generation of dense/sparse kernels from tensor alge-

bra expressions. Additionally, researchers have pro-

posed a series of methods for dealing with sparse ten-

sors. Given the diversity of sparsity in sparse tensors,

researchers[37–39] suggested using machine learning to

analyze non-zero layouts and select the optimal stor-

age format. Nisa et al.[40] proposed a mixed-mode stor-

age format for sparse tensors of arbitrary dimensions,

enabling efficient memory access across different di-

mensions. Dong et al.[41] introduced a new data lay-

out to optimize DNNs with input sparsity. To en-

hance the performance of tensor contraction opera-

tors and utilize hardware resources efficiently, vari-

ous techniques, such as tiling and data reorganization,

have been proposed to improve data reuse[42–46] and

manage data movement[47]. The approaches men-

tioned above primarily focus on exploiting hardware-

specific properties to enhance tensor processing per-

formance, whereas VTensor takes an orthogonal ap-

proach to these methods.

9 Conclusions

In this paper, we observed that developers em-

ploy mathematical semantics for layouts at the appli-

cation layer, while adopting physical semantics for

layouts at the neural network library layer. Based on

these observations, we proposed a novel program-

ming abstraction and a layout resolution mechanism.

These innovations aim to bridge the gap between the

application layer's arbitrary layout utilization and the

layout conventions of high-performance libraries. No-

tably, as layout resolution occurs at runtime in the

VTensor framework, we uncovered two new opportu-

nities for layout optimization: the elimination of re-

dundant layout transformation operations in the com-

putational graph, and the enhancement of layout se-

lection for element-wise operators with broadcast se-

mantics. Our experimental results, driven by typical

networks, demonstrated significant benefits. In com-

parison to TensorFlow, using the VTensor framework

reduces the LOC required to write operators by

47.8%. Furthermore, the layout optimization tech-

niques presented in this paper enhance the perfor-

mance of the entire network by 18.6%. Thus, VTen-

sor exhibits great potential for utilization in operator

development on emerging accelerators or hardware,

such as Cambricon's MLU and Huawei's Ascend, ef-

fectively boosting network performance and improv-

ing operator development efficiency.

However, it is essential to note that VTensor is

currently optimized for the layout decoupling of dense

tensors. The abstract representation of sparse tensors

remains an open challenge. In the future, our plan is

to integrate VTensor's concepts into the compiler's

intermediate representation to support the abstract

representation of sparse tensors.

Conflict of Interest The authors declare that

they have no conflict of interest.

References

 Abadi M, Barham P, Chen J M, Chen Z F, Davis A,

Dean J, Devin M, Ghemawat S, Irving G, Isard M, Kud-

lur M, Levenberg J, Monga R, Moore S, Murray D G,

Steiner B, Tucker P, Vasudevan V, Warden P, Wicke M,

Yu Y, Zheng X Q. TensorFlow: A system for large-scale

machine learning. In Proc. the 12th USENIX Symposium

on Operating Systems Design and Implementation, Nov.

2016, pp.265–283. DOI: 10.5555/3026877.3026899.

[1]

 Chen T Q, Li M, Li Y T, Lin M, Wang N Y, Wang M J,

Xiao T J, Xu B, Zhang C Y, Zhang Z. MXNet: A flexible

[2]

1094 J. Comput. Sci. & Technol., Sept. 2023, Vol.38, No.5

https://doi.org/10.5555/3026877.3026899

and efficient machine learning library for heterogeneous

distributed systems. arXiv: 1512.01274, 2015.https://doi.

org/10.48550/arXiv.1512.01274, Sept. 2023.

 Paszke A, Gross S, Massa F, Lerer A, Bradbury J,

Chanan G, Killeen T, Lin Z M, Gimelshein N, Antiga L,

Desmaison A, Köpf A, Yang E, DeVito Z, Raison M, Te-

jani A, Chilamkurthy S, Steiner B, Fang L, Bai J J, Chin-

tala S. PyTorch: An imperative style, high-performance

deep learning library. In Proc. the 33rd International

Conference on Neural Information Processing Systems,

Dec. 2019, Article No. 721. DOI: 10.5555/3454287.

3455008.

[3]

 Jia Y Q, Shelhamer E, Donahue J, Karayev S, Long J,

Girshick R, Guadarrama S, Darrell T. Caffe: Convolution-

al architecture for fast feature embedding. In Proc. the

22nd ACM International Conference on Multimedia, Nov.

2014, pp.675–678. DOI: 10.1145/2647868.2654889.

[4]

 Barham P, Isard M. Machine learning systems are stuck

in a rut. In Proc. the 2019 Workshop on Hot Topics in

Operating Systems, May 2019, pp.177–183. DOI: 10.1145/

3317550.3321441.

[5]

 Langtangen H P. Numerical computing in Python. In

Python Scripting for Computational Science, Langtangen

H P (ed.), Springer, 2004, pp.131–188. DOI: 10.1007/978–

3-662–05450-5_4.

[6]

 Goldsborough P. A tour of TensorFlow. arXiv: 1610.

01178, 2016. https://doi.org/10.48550/arXiv.1610.01178,

September 2023.

[7]

 Li C, Yang Y, Feng M, Chakradhar S, Zhou H Y. Opti-

mizing memory efficiency for deep convolutional neural

networks on GPUs. In Proc. the 2016 International Con-

ference for High Performance Computing, Networking,

Storage and Analysis, Nov. 2016, pp.633–644. DOI: 10.

1109/SC.2016.53.

[8]

 Anderson A, Gregg D. Optimal DNN primitive selection

with partitioned Boolean quadratic programming. In

Proc. the 2018 International Symposium on Code Genera-

tion and Optimization, Feb. 2018, pp.340–351. DOI: 10.

1145/3168805.

[9]

 Chetlur S, Woolley C, Vandermersch P, Cohen J, Tran J,

Catanzaro B, Shelhamer E. cuDNN: Efficient primitives

for deep learning. arXiv: 1410.0759, 2014. https://doi.org/

10.48550/arXiv.1410.0759, September 2023.

[10]

 Ould-Ahmed-Vall E, Abuzaina M, Amin M, Bobba J,

Dubtsov R, Fomenko E, Gangadhar M, Hasabnis N,

Huang J, Karkada D, Kim J Y, Makineni S, Mishura D,

Raman K, Ramesh A, Rane V, Riera M, Sergeev D, Sri-

pathi V, Subramanian B, Tokas L, Valles A. Accelerat-

ing TensorFlow on modern Intel architectures. In Proc.

the 1st International Workshop on Architectures for Intel-

ligent Machines, Sept. 2017.

[11]

 van der Walt S, Colbert S C, Varoquaux G. The NumPy

array: A structure for efficient numerical computation.

Computing in Science & Engineering, 2011, 13(2): 22–30.

DOI: 10.1109/MCSE.2011.37.

[12]

 Ioffe S, Szegedy C. Batch normalization: Accelerating

deep network training by reducing internal covariate

shift. In Proc. the 32nd International Conference on Ma-

chine Learning, Jul. 2015, pp.448–456. DOI: 10.5555/

3045118.3045167.

[13]

 Szegedy C, Ioffe S, Vanhoucke V, Alemi A A. Inception-

v4, inception-ResNet and the impact of residual connec-

tions on learning. In Proc. the 31st AAAI Conference on

Artificial Intelligence, Feb. 2017, pp.4278–4284. DOI: 10.

5555/3298023.3298188.

[14]

 Szegedy C, Liu W, Jia Y Q, Sermanet P, Reed S,

Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Go-

ing deeper with convolutions. In Proc. the 2015 IEEE

Conference on Computer Vision and Pattern Recognition,

Jun. 2015. DOI: 10.1109/CVPR.2015.7298594.

[15]

 Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Re-

thinking the inception architecture for computer vision. In

Proc. the 2016 IEEE Conference on Computer Vision and

Pattern Recognition, Jun. 2016, pp.2818–2826. DOI: 10.

1109/CVPR.2016.308.

[16]

 He K M, Zhang X Y, Ren S Q, Sun J. Deep residual

learning for image recognition. In Proc. the 2016 IEEE

Conference on Computer Vision and Pattern Recognition,

Jun. 2016, pp.770–778. DOI: 10.1109/CVPR.2016.90.

[17]

 Simonyan K, Zisserman A. Very deep convolutional net-

works for large-scale image recognition. arXiv: 1409.1556,

2014. http://arxiv.org/abs/1409.1556, September 2023.

[18]

 Huang G, Liu Z, Van Der Maaten L, Weinberger K Q.

Densely connected convolutional networks. In Proc. the

2017 IEEE Conference on Computer Vision and Pattern

Recognition, Jul. 2017, pp.2261–2269. DOI: 10.1109/

CVPR.2017.243.

[19]

 Howard A G, Zhu M L, Chen B, Kalenichenko D, Wang

W J, Weyand T, Andreetto M, Adam H. MobileNets: Ef-

ficient convolutional neural networks for mobile vision ap-

plications. arXiv: 1704.04861, 2017. https://doi.org/10.

48550/arXiv.1704.04861, Sept. 2023.

[20]

 Sandler M, Howard A, Zhu M L, Zhmoginov A, Chen L

C. MobileNetV2: Inverted residuals and linear bottle-

necks. In Proc. the 2018 IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, Jun. 2018,

pp.4510–4520. DOI: 10.1109/CVPR.2018.00474.

[21]

 Zoph B, Vasudevan V, Shlens J, Le Q V. Learning trans-

ferable architectures for scalable image recognition. In

Proc. the 2018 IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, Jun. 2018, pp.8697–8710.

DOI: 10.1109/CVPR.2018.00907.

[22]

 Wang Y E, Wu C J, Wang X D, Hazelwood K, Brooks D.

Exploiting parallelism opportunities with deep learning

frameworks. ACM Trans. Architecture and Code Opti-

mization, 2021, 18(1): Article No. 9. DOI: 10.1145/

3431388.

[23]

 Kim H, Nam H, Jung W, Lee J. Performance analysis of

CNN frameworks for GPUs. In Proc. the 2017 IEEE In-

ternational Symposium on Performance Analysis of Sys-

[24]

Feng Yu et al.: VTensor: Using Virtual Tensors to Build a Layout-Oblivious AI Programming Framework 1095

https://doi.org/10.48550/arXiv.1512.01274
https://doi.org/10.48550/arXiv.1512.01274
https://doi.org/10.5555/3454287.3455008
https://doi.org/10.5555/3454287.3455008
https://doi.org/10.1145/2647868.2654889
https://doi.org/10.1145/3317550.3321441
https://doi.org/10.1145/3317550.3321441
https://doi.org/10.1007/978�3-662�05450-5_4
https://doi.org/10.1007/978�3-662�05450-5_4
https://doi.org/10.1007/978�3-662�05450-5_4
https://doi.org/10.1007/978�3-662�05450-5_4
https://doi.org/10.1007/978�3-662�05450-5_4
https://doi.org/10.1007/978�3-662�05450-5_4
https://doi.org/10.1007/978�3-662�05450-5_4
https://doi.org/10.1007/978�3-662�05450-5_4
https://doi.org/10.1007/978�3-662�05450-5_4
https://doi.org/10.1007/978�3-662�05450-5_4
https://doi.org/10.1007/978�3-662�05450-5_4
https://doi.org/10.48550/arXiv.1610.01178
https://doi.org/10.1109/SC.2016.53
https://doi.org/10.1109/SC.2016.53
https://doi.org/10.1145/3168805
https://doi.org/10.1145/3168805
https://doi.org/10.48550/arXiv.1410.0759
https://doi.org/10.48550/arXiv.1410.0759
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.5555/3045118.3045167
https://doi.org/10.5555/3045118.3045167
https://doi.org/10.5555/3298023.3298188
https://doi.org/10.5555/3298023.3298188
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.90
http://arxiv.org/abs/1409.1556
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.48550/arXiv.1704.04861
https://doi.org/10.48550/arXiv.1704.04861
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1109/CVPR.2018.00907
https://doi.org/10.1145/3431388
https://doi.org/10.1145/3431388

tems and Software (ISPASS), Apr. 2017, pp.55–64. DOI:

10.1109/ISPASS.2017.7975270.

 Wen Y, Anderson A, Radu V, O’Boyle M F P, Gregg D.

TASO: Time and space optimization for memory-con-

strained DNN inference. In Proc. the 32nd International

Symposium on Computer Architecture and High Perfor-

mance Computing (SBAC-PAD), Sept. 2020, pp.199–208.

DOI: 10.1109/SBAC-PAD49847.2020.00036.

[25]

 Wen Y, Anderson A, Radu V, O’Boyle M F P, Gregg D.

POSTER: Space and time optimal DNN primitive selec-

tion with integer linear programming. In Proc. the 28th

International Conference on Parallel Architectures and

Compilation Techniques (PACT), Sept. 2019, pp.489–490.

DOI: 10.1109/PACT.2019.00059.

[26]

 Zhang X Y, Xiao J M, Zhang X B, Hu Z Z, Zhu H R,

Tian Z B, Tan G M. Tensor layout optimization of convo-

lution for inference on digital signal processor. In Proc.

the 2019 IEEE International Conference on Parallel &

Distributed Processing with Applications, Big Data &

Cloud Computing, Sustainable Computing & Communica-

tions, Social Computing & Networking (ISPA/BDCloud/

SocialCom/SustainCom), Dec. 2019, pp.184–193. DOI: 10.

1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.

00036.

[27]

 Zheng B J, Vijaykumar N, Pekhimenko G. Echo: Compil-

er-based GPU memory footprint reduction for LSTM

RNN training. In Proc. the 47th Annual International

Symposium on Computer Architecture (ISCA), May

30–Jun. 3, 2020, pp.1089–1102. DOI: 10.1109/ISCA45697.

2020.00092.

[28]

 Jia Z H, Padon O, Thomas J, Warszawski T, Zaharia M,

Aiken A. TASO: Optimizing deep learning computation

with automatic generation of graph substitutions. In Proc.

the 27th ACM Symposium on Operating Systems Princi-

ples, Oct. 2019, pp.47–62. DOI: 10.1145/3341301.3359630.

[29]

 Liu Y Z, Wang Y, Yu R F, Li M, Sharma V, Wang Y D.

Optimizing CNN model inference on CPUs. In Proc. the

2019 USENIX Conference on Usenix Annual Technical

Conference, July 2019, pp.1025–1040. DOI: 10.5555/

3358807.3358895.

[30]

 Ragan-Kelley J, Barnes C, Adams A, Paris S, Durand F,

Amarasinghe S. Halide: A language and compiler for opti-

mizing parallelism, locality, and recomputation in image

processing pipelines. In Proc. the 34th ACM SIGPLAN

Conference on Programming Language Design and Imple-

mentation, Jun. 2013, pp.519–530. DOI: 10.1145/2491956.

2462176.

[31]

 Chen T Q, Moreau T, Jiang Z H, Zheng L M, Yan E,

Cowan M, Shen H C, Wang L Y, Hu Y W, Ceze L,

Guestrin C, Krishnamurthy A. TVM: An automated end-

to-end optimizing compiler for deep learning. In Proc. the

13th USENIX Symposium on Operating Systems Design

and Implementation, Oct. 2018, pp.579–594. DOI: 10.

5555/3291168.3291211.

[32]

 Chen T Q, Zheng L M, Yan E, Jiang Z H, Moreau T,[33]

Ceze L, Guestrin C, Krishnamurthy A. Learning to opti-

mize tensor programs. In Proc. the 32nd International

Conference on Neural Information Processing Systems,

Dec. 2018, pp.3393–3404. DOI: 10.5555/3327144.3327258.

 Zheng S Z, Liang Y, Wang S, Chen R Z, Sheng K W.

FlexTensor: An automatic schedule exploration and opti-

mization framework for tensor computation on heteroge-

neous system. In Proc. the 25th International Conference

on Architectural Support for Programming Languages

and Operating Systems, Mar. 2020, pp.859–873. DOI: 10.

1145/3373376.3378508.

[34]

 Zheng L M, Jia C F, Sun M M, Wu Z, Yu C H, Haj-Ali

A, Wang Y D, Yang J, Zhuo D Y, Sen K, Gonzalez J E,

Stoica I. Ansor: Generating high-performance tensor pro-

grams for deep learning. In Proc. the 14th USENIX Sym-

posium on Operating Systems Design and Implementa-

tion (OSDI 20), Nov. 2020, Article No. 49. DOI: 10.5555/

3488766.3488815.

[35]

 Kjolstad F, Kamil S, Chou S, Lugato D, Amarasinghe S.

The tensor algebra compiler. Proceedings of the ACM on

Programming Languages, 2017, 1(OOPSLA): Article No.

77. DOI: 10.1145/3133901.

[36]

 You Y, Demmel J. Runtime data layout scheduling for

machine learning dataset. In Proc. the 46th International

Conference on Parallel Processing (ICPP), Aug. 2017,

pp.452–461. DOI: 10.1109/ICPP.2017.54.

[37]

 Li J J, Tan G M, Chen M Y, Sun N H. SMAT: An input

adaptive auto-tuner for sparse matrix-vector multiplica-

tion. ACM SIGPLAN Notices, 2013, 48(6): 117–126. DOI:

10.1145/2499370.2462181.

[38]

 Zhao Y, Li J J, Liao C H, Shen X P. Bridging the gap be-

tween deep learning and sparse matrix format selection.

In Proc. the 23rd ACM SIGPLAN Symposium on Princi-

ples and Practice of Parallel Programming, Feb. 2018,

pp.94–108. DOI: 10.1145/3178487.3178495.

[39]

 Nisa I, Li J J, Sukumaran-Rajam A, Rawat P S, Krish-

namoorthy S, Sadayappan P. An efficient mixed-mode

representation of sparse tensors. In Proc. the 2019 Inter-

national Conference for High Performance Computing,

Networking, Storage and Analysis, Nov. 2019, Article No.

49. DOI: 10.1145/3295500.3356216.

[40]

 Dong X, Liu L, Zhao P, Li G L, Li J S, Wang X Y, Feng

X B. Acorns: A framework for accelerating deep neural

networks with input sparsity. In Proc. the 28th Interna-

tional Conference on Parallel Architectures and Compila-

tion Techniques, Sept. 2019, pp.178–191. DOI: 10.1109/

PACT.2019.00022.

[41]

 Hildebrand M, Khan J, Trika S, Lowe-Power J, Akella V.

AutoTM: Automatic tensor movement in heterogeneous

memory systems using integer linear programming. In

Proc. the 25th International Conference on Architectural

Support for Programming Languages and Operating Sys-

tems, Mar. 2020, pp.875–890. DOI: 10.1145/3373376.

3378465.

[42]

 Hong C W, Sukumaran-Rajam A, Nisa I, Singh K, Sa-[43]

1096 J. Comput. Sci. & Technol., Sept. 2023, Vol.38, No.5

https://doi.org/10.1109/ISPASS.2017.7975270
https://doi.org/10.1109/SBAC-PAD49847.2020.00036
https://doi.org/10.1109/SBAC-PAD49847.2020.00036
https://doi.org/10.1109/SBAC-PAD49847.2020.00036
https://doi.org/10.1109/PACT.2019.00059
https://doi.org/10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00036
https://doi.org/10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00036
https://doi.org/10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00036
https://doi.org/10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00036
https://doi.org/10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00036
https://doi.org/10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00036
https://doi.org/10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00036
https://doi.org/10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00036
https://doi.org/10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00036
https://doi.org/10.1109/ISCA45697.2020.00092
https://doi.org/10.1109/ISCA45697.2020.00092
https://doi.org/10.1145/3341301.3359630
https://doi.org/10.5555/3358807.3358895
https://doi.org/10.5555/3358807.3358895
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.5555/3291168.3291211
https://doi.org/10.5555/3291168.3291211
https://doi.org/10.5555/3327144.3327258
https://doi.org/10.1145/3373376.3378508
https://doi.org/10.1145/3373376.3378508
https://doi.org/10.5555/3488766.3488815
https://doi.org/10.5555/3488766.3488815
https://doi.org/10.1145/3133901
https://doi.org/10.1109/ICPP.2017.54
https://doi.org/10.1145/2499370.2462181
https://doi.org/10.1145/3178487.3178495
https://doi.org/10.1145/3295500.3356216
https://doi.org/10.1109/PACT.2019.00022
https://doi.org/10.1109/PACT.2019.00022
https://doi.org/10.1145/3373376.3378465
https://doi.org/10.1145/3373376.3378465

dayappan P. Adaptive sparse tiling for sparse matrix mul-

tiplication. In Proc. the 24th Symposium on Principles

and Practice of Parallel Programming, Feb. 2019,

pp.300–314. DOI: 10.1145/3293883.3295712.

 Jiang P, Hong C W, Agrawal G. A novel data transfor-

mation and execution strategy for accelerating sparse ma-

trix multiplication on GPUs. In Proc. the 25th ACM SIG-

PLAN Symposium on Principles and Practice of Parallel

Programming, Feb. 2020, pp.376–388. DOI: 10.1145/3332

466.3374546.

[44]

 Li R, Sukumaran-Rajam A, Veras R, Low T M, Rastello

F, Rountev A, Sadayappan P. Analytical cache modeling

and tilesize optimization for tensor contractions. In Proc.

the 2019 International Conference for High Performance

Computing, Networking, Storage and Analysis, Nov. 2019,

Article No. 74. DOI: 10.1145/3295500.3356218.

[45]

 Peng X, Shi X H, Dai H L, Jin H, Ma W L, Xiong Q,

Yang F, Qian X H. Capuchin: Tensor-based GPU memo-

ry management for deep learning. In Proc. the 25th Inter-

national Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, Mar. 2020,

pp.891–905. DOI: 10.1145/3373376.3378505.

[46]

 Kim J, Sukumaran-Rajam A, Thumma V, Krishnamoor-

thy S, Panyala A, Pouchet L N, Rountev A, Sadayappan

P. A code generator for high-performance tensor contrac-

tions on GPUs. In Proc. the 2019 IEEE/ACM Interna-

tional Symposium on Code Generation and Optimization,

Feb. 2019, pp.85–95. DOI: 10.1109/CGO.2019.8661182.

[47]

Feng Yu is a Ph.D. candidate in

the State Key Laboratory of Proces-

sors, Institute of Computing Technolo-

gy, Chinese Academy of Sciences, Bei-

jing. He received his Bachelor’s de-

gree in computer science from Henan

University, Kaifeng, in 2016. His re-

search interests include artificial intelligence compiler.

Jia-Cheng Zhao received his B.S.

degree in computer science from Tian-

jin University, Tianjin, in 2012, and

his Ph.D. degree in computer science

from the Institute of Computing Tech-

nology (ICT), Chinese Academy of

Sciences, Beijing, in 2017. He is cur-

rently an associate professor at ICT, Chinese Academy

of Sciences (CAS), Beijing. His research interests in-

clude compiler optimizations, programming languages,

and programming environments.

Hui-Min Cui received her B.S. and

M.S. degrees in computer science from

Tsinghua University, Beijing, in 2001

and 2004, respectively, and her Ph.D.

degree in computer science from the

Institute of Computing Technology

(ICT), Chinese Academy of Sciences

(CAS), Beijing, in 2012. She is currently a professor at

ICT, CAS, Beijing. Her research interests include com-

piler optimizations, programming languages, and pro-

gramming environments.

Xiao-Bing Feng received his B.S.

degree in computer science from Tian-

jin University, Tianjin, in 1992, his

M.S. degree in computer science from

Peking University, Beijing, in 1996,

and his Ph.D. degree in computer sci-

ence from the Institute of Computing

Technology (ICT), Chinese Academy of Sciences (CAS),

Beijing, in 1999. He is currently a professor at ICT,

CAS and the University of Chinese Academy of Sci-

ences, Beijing. His research interests include compiler

optimizations and binary translation.

Jingling Xue received his B.Eng.

and M.Eng. degrees in computer sci-

ence and engineering from Tsinghua

University, Beijing, in 1984 and 1987,

respectively, and his Ph.D. degree in

computer science and engineering from

Edinburgh University, Edinburgh, in

1992. He is currently a scientia professor with the School

of Computer Science and Engineering at the University

of New South Wales, Sydney. His research interests in-

clude programming languages, compiler technology, and

program analysis.

Feng Yu et al.: VTensor: Using Virtual Tensors to Build a Layout-Oblivious AI Programming Framework 1097

https://doi.org/10.1145/3293883.3295712
https://doi.org/10.1145/3332466.3374546
https://doi.org/10.1145/3332466.3374546
https://doi.org/10.1145/3295500.3356218
https://doi.org/10.1145/3373376.3378505
https://doi.org/10.1109/CGO.2019.8661182

	1 Introduction
	2 Motivation and Background
	2.1 Design of TensorFlow
	2.2 Poor Maintainability
	2.3 Unoptimized Layout Transformations

	3 VTensor Framework Overview
	4 VTensor Programming Interface
	4.1 VTensor Class and PTensor Class APIs
	4.2 Library Description
	4.3 Framework APIs
	4.4 Automatically Generated Code

	5 VTensor Runtime
	5.1 Dynamic Layout Resolver
	5.2 Layout-Oriented Optimization
	5.3 Implementation

	6 Evaluation
	6.1 Experiment Setup
	6.2 Overall Results—Maintainability
	6.3 Overall Results—Performance
	6.4 Standard Deviation of Execution Time
	6.5 Reduced Data Conversions (LOO)
	6.6 Overhead of DLR and EWO
	6.7 Optimization for Different Batch Sizes

	7 Discussion
	7.1 Migration to PyTorch
	7.2 Programming Efforts
	7.3 Interaction with XLA

	8 Related Work
	9 Conclusions
	Conflict of Interest
	References

