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Abstract    Tensors  are  a  popular  programming interface  for  developing artificial  intelligence  (AI)  algorithms.  Layout

refers to the order of placing tensor data in the memory and will affect performance by affecting data locality; therefore

the deep neural network library has a convention on the layout. Since AI applications can use arbitrary layouts, and exist-

ing AI systems do not provide programming abstractions to shield the layout conventions of libraries, operator developers

need to write a lot of layout-related code, which reduces the efficiency of integrating new libraries or developing new oper-

ators. Furthermore, the developer assigns the layout conversion operation to the internal operator to deal with the uncer-

tainty of the input layout, thus losing the opportunity for layout optimization. Based on the idea of polymorphism, we

propose a layout-agnostic virtual tensor programming interface, namely the VTensor framework, which enables developers

to write new operators without caring about the underlying physical layout of tensors. In addition, the VTensor frame-

work performs global layout inference at runtime to transparently resolve the required layout of virtual tensors, and run-

time layout-oriented optimizations to globally minimize the number of layout transformation operations. Experimental re-

sults demonstrate that with VTensor, developers can avoid writing layout-dependent code. Compared with TensorFlow,

for the 16 operations used in 12 popular networks, VTensor can reduce the lines of code (LOC) of writing a new operation

by 47.82% on average, and improve the overall performance by 18.65% on average.
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1    Introduction

As  AI  (artificial  intelligence)  technologies  are

quickly transforming almost every sphere of our lives,

it is imperative to provide an AI programming frame-

work that is  easy to use and deploy across a variety

of  platforms.  In  the  past  few years,  researchers  have

proposed a number of such programming frameworks,

such  as  TensorFlow[1],  MXNet[2],  PyTorch[3],  and

Caffe[4],  which  allow  users  to  train  and  develop  neu-

ral network models.

However, machine learning systems are stuck in a

rut. Paul Barham and Michael Isard, two of the origi-

nal authors of TensorFlow, came to this conclusion in

their  recent  HotOS  paper[5].  They  argued  that  while

TensorFlow  and  similar  frameworks  have  enabled

great  advances  in  machine  learning,  their “current

programming  abstractions  lack  expressiveness,  main-

tainability,  and  modularity,  all  of  which  hinder  re-

search  progress.” In  their  paper[5],  they  pointed  out
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that layout is  one of the factors hindering the devel-

opment of programming models.

Tensors,  also  known  as  NDArray,  were  proposed

to  represent  multidimensional,  fixed-size  homoge-

neous  array,  which are  widely  used in  AI  algorithms

for  mathematical  computations[6].  In  the  mathemati-

cal  sense,  tensors  are  a  generalization  of  two-dimen-

sional  matrices,  one-dimensional  vectors,  and  also

scalars[7]. For instance, when considering a representa-

tive pooling layer in a deep convolutional neural net-

work,  developers  can  utilize  tensors  to  represent  its

input and output data. Typically, data are organized

into  4-dimensional  tensors,  representing  the  number

of  feature  maps  (i.e.,  the  batch  size),  the  number  of

channels,  the  height,  and the width of  feature  maps.

Ideally,  with  tensors,  developers  can  easily  reference

the logical dimensions of a data structure without the

need  to  be  concerned  about  the  underlying  physical

layout.

At  the  application  level,  AI  algorithm developers

use  the  high-level  interfaces  provided  by  the  AI

framework to weave the network. Algorithm develop-

ers focus on the semantics of data at the application

level.  Consequently,  people  propose  named  dimen-

sions①;  in  other  words,  tensor  dimensions  are  associ-

ated with textual names to enhance code readability.

Named dimensions improve readability by facilitating

the determination of how dimensions in the code cor-

respond to  the  semantic  dimensions  described  in,  for

example, a research paper.

At  the  high-performance  library  level,  because

the layout  affects  the  performance  of  library  func-

tions by affecting data locality, libraries have conven-

tions  for  layout.  Between  high-performance  libraries

and applications, developers need to write a lot of lay-

out-related  code  to  bridge  the  two  layers.  Therefore,

the  challenge  here  is  how to  decouple  tensor  layouts

from an  AI  programming  framework,  allowing  devel-

opers to create layout-agnostic operators that can au-

tomatically adapt to different libraries and primitives.

Researchers have noticed that tensor layouts are a

performance-critical  issue  and  have  proposed  numer-

ous approaches to determine the optimal solutions. Li

et  al.[8] analyzed  the  performance  differences  caused

by  different  layouts  and  demonstrated  the  perfor-

mance  benefits  obtainable  by  tuning  the  layouts  for

some  individual  operations.  Anderson  and  Gregg[9]

leveraged  a  Partitioned  Boolean  Quadratic  Assign-

ment (PBQP) formulation to select the optimal data

layouts and optimal primitives. While these approach-

es  are  capable  of  helping  developers  enhance  perfor-

mance through layout tuning, they still rely on tradi-

tional  layout-aware  programming  interfaces.  Conse-

quently,  maintaining  tensor  layouts  and  their  corre-

sponding transformations remains to be a substantial

burden for developers.

By  analyzing  the  code  skeleton  in Fig.1,  we  find

that  the  layout-aware  programming  paradigm  re-

quires  writing  a  significant  amount  of  layout-related

code (indicated by the red lines).  This extensive lay-

out-related  code  adversely  impacts  the  framework's

maintainability.  Furthermore,  within  the  body  of

these  highlighted  functions  (which  are  not  shown

here),  there  is  a  scattering  of  layout  checking and

transformation  code.  Moreover,  as  seen  in Fig.1,  the

layout transformation operation is  carried out within

the  operator.  TensorFlow  leverages  prior  knowledge

to perform layout optimization. For instance, on GPU

platforms, operators employ the NHWC layout due to

its  superior  performance  in  most  cases  indicated  by

cuDNN[10],  as  compared  to  NCHW.  However,  when

the  neural  network  library  cannot  deduce  such  prior

knowledge,  the  layout  conversion  operation  becomes

necessary within the operator,  leading to missing op-

portunities for layout optimization. In summary, Ten-

sorFlow's ad-hoc mechanism exhibits two drawbacks.

● Poor Maintainability.  As shown in Fig.1,  when

new  operators  or  hardware  is  introduced,  developers

have  to  maintain  these  layout-dependent  code  seg-

ments scattered throughout the framework.

● Unoptimized Layout Transformations. Since the

layout used by the application cannot be determined

statically,  and  most  neural  network  libraries  do  not

have  a  dominant  layout,  TensorFlow's  layout  opti-

mizer fails. To make matters worse, a neural network

may use multiple neural network libraries at runtime.

Therefore,  the  layout  transformation  operation  can

only  be  performed within  the  operator,  which  causes

TensorFlow  to  miss  the  opportunity  for  layout  opti-

mization.

We  observe  that  the  application  layer  uses  the

mathematical semantics of the layout, while the neu-

ral network library layer employs the physical seman-

tics  of  the  layout.  Based  on  this  observation,  we

adopt  the  concept  of  polymorphism to  automatically

map the mathematical semantics of the layout to the
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physical  semantics.  In  this  paper,  we  propose  VTen-

sor,  i.e.,  Virtual  Tensor,  a  novel  AI  programming

framework.  VTensor  provides  a  holistic  approach  for

implementing  layout-oblivious  tensors.  Specifically,

the  VTensor  framework  offers  a  programming  inter-

face  for  virtual  tensors  to  decouple  the  physical  se-

mantics  of  layout  from the  programming  framework,

thereby providing operator  developers  with a  layout-

oblivious  programming perspective.  Furthermore,  the

VTensor  framework  incorporates  a  global  runtime

layout  inference  mechanism  that  transparently  re-

solves  the  physical  semantics  of  VTensor  by  analyz-

ing the layout conventions of all operators and under-

lying  library  routines.  To  support  efficient  execution

of  VTensor  applications,  we  extend  the  dataflow

graph  to  explicitly  represent  tensor  layout  transfor-

mation  operations  as  individual  nodes  in  the  graph,

and  perform  layout-oriented  graph  optimizations  to

minimize layout transformations.

We  implement  VTensor  on  top  of  TensorFlow.

This paper makes the following contributions.

● We propose a layout-oblivious programming mo-

del for developers, so that they do not have to be con-

cerned  themselves  with  the  physical  layouts  of  ten-

sors  and  associated  tedious  layout  transformations

when developing new operators.

● We  propose  a  tensor  layout  resolution  mecha-

nism.  This  mechanism  explicitly  exposes  the  layout

convention  for  each  individual  operation  or  library

routine and automatically infers the layout needed for

each operation,  inserting appropriate layout transfor-

mations when necessary.

● We  present  a  global  graph  optimization  en-

abled  by  VTensor,  i.e.,  layout-oriented  optimization.

VTensor  defers  the  timing  of  layout  selection  to  the

runtime phase through partial evaluation, thus creat-

ing  opportunities  for  comprehensive  optimization  of

conversion  operations.  The  layout-oriented  optimiza-

 

Fig.1.  Layout-aware programming for AvgPool in TensorFlow (with the layout-dependent lines shown in red).
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tions  include:  eliminating  redundant  layout  transfor-

mations  based  on  the  graph  structure  and  formulat-

ing the selection of the layout for element-wise opera-

tors  with  broadcast  semantics  as  an  Integer  Linear

Programming (ILP) problem.

● We implement VTensor in TensorFlow to show-

case  its  substantial  impact  on  improving  the  main-

tainability  and  extensibility  of  existing  AI  program-

ming frameworks. Specifically, when developing a new

operation, VTensor can reduce its LOC by 47.82% on

average.  Furthermore,  VTensor  outperforms  Tensor-

Flow  by  18.65%  on  average  for  the  12  popular  net-

works evaluated.

The  remainder  of  this  paper  is  structured  as  fol-

lows. Section 2 provides an introduction to the back-

ground  and  motivation. Section 3 introduces  the

VTensor  framework.  In Section 4,  we  present  the

VTensor  programming  interface. Section 5 delves  in-

to the VTensor runtime. Our experimental validation

is detailed in Section 6. Section 7 offers a comprehen-

sive  discussion of  the  VTensor  framework in  relation

to  portability,  programming  efforts,  and  its  connec-

tion with AI compilers. Section 8 explores the related

work. Finally, Section 9 concludes the paper. 

2    Motivation and Background

In  this  section,  we  initially  introduce  the  layout-

aware programming model from a dataflow graph per-

spective (Subsection 2.1). Subsequently, we utilize ex-

amples  in  the  following  two  subsections  to  illustrate

the  challenges  associated  with  the  layout-aware  pro-

gramming  model,  focusing  on  maintainability  (Sub-

section 2.2) and layout optimization (Subsection 2.3). 

2.1    Design of TensorFlow

In TensorFlow, neural networks are represented as

data  flow  graphs.  A  data  flow  graph  is  a  directed

acyclic graph in which each node represents a mathe-

matical operation and each edge represents a multidi-

mensional  data,  known as  tensors,  upon  which  these

operations operate.

A kernel is an implementation of an operator spe-

cific to a particular library. As illustrated in Fig.2(a),

TensorFlow  employs  tensors  to  traverse  various  li-

brary-based  kernels.  Since  tensors  are  not  decoupled

from  the layout  and  tensors  are  used  at  both  the

graph level  and the neural  network library level,  the

entire  framework  is  tightly  coupled  to  the  layout.

Therefore,  operator  developers  need  a  layout-aware

programming model for operator development.

In  contrast,  we  abstract  the  semantics  of  tensors

at  both  the  graph  and  library  levels,  representing

them as  virtual  tensors  and  physical  tensors,  respec-

tively,  thereby  decoupling  the  framework  from  the

layout,  as  illustrated  in Fig.2(b).  Thus,  the  operator

developer is decoupled from the layout. 

2.2    Poor Maintainability

When  writing  an  operator,  the  primary  concern

for  the  operator  developer  is  to  reorganize  the  input

data  into  a  format  accepted  by  the  library  function

and  then  invoke  the  library  function  to  obtain  the

output result.  However,  the challenge lies  in the fact

that the operator developer cannot determine the lay-

out  of  the  input  data  and  the  optimal  layout  re-

quired  by  the  library  function  at  the  compile  phase.

This leads to the operator developer having to consid-

er  all  possible  mapping  relationships.  Additionally,

each library has its own unique data structure to rep-

resent the layout and operator primitives,  necessitat-

ing  operator  developers  to  rewrite  each  operator  for

each library. Furthermore, the layout design of the li-

brary  function  involves  a  comprehensive  considera-

tion of algorithms and architectures. As a result,  the

relationship between the input layout and the library-

level  layout  is  not  a  simple  injective  and  subjective

one. Consequently, we argue that operator code devel-

oped based on the TensorFlow framework suffers from

poor maintainability.

Taking the example of the AvgPool operator writ-

ten based on MKL-DNN② (refer to Fig.1), the opera-

tor developer first obtains the shape of the input ten-
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Fig.2.  Tensor designed by (a) TensorFlow and (b) VTensor.
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sor for shape inference and legitimacy checks, as high-

lighted in red in the upper half of Fig.1. Since the in-

put data of the operator may originate from the out-

put of the operator implemented based on the Eigen③

library,  the operator developer needs to insert  multi-

ple  branch  statements  and  write  code  to  extract  the

shape from a specific data structure in turn. Next, the

operator  developer  creates  primitives  based  on  the

shape of the input tensor and other parameters. Dur-

ing  this  process,  MKL-DNN  will  determine  the  lay-

out  based on the  input  parameters  and the  shape  of

the input tensor. Subsequently, the operator develop-

er  allocates  the  output  space  and performs data  lay-

out  conversion.  The  output  memory  space  includes

not only the output data output_tensor,  but also the

shape_tensor describing  the  attribute  information  of

this tensor, corresponding to the red code in the low-

er  half  of Fig.1.  Finally,  the  operator  developer  car-

ries  out  the  pooling  operation  by  invoking  the Exe-
cute function.

Based  on  the  aforementioned  observations  and

analysis, we introduce the concepts of virtual tensors

and  physical  tensors.  Similarly,  an  operator  is  divid-

ed into a virtual operator and multiple physical oper-

ators. The virtual tensor circulates among virtual op-

erators,  while  the  physical  tensor  is  exclusively  used

in physical operators. The mapping of virtual tensors

to  physical  tensors  is  accomplished  by  the

framework's  dynamic  layout  resolver.  The  mapping

from  virtual  operators  to  physical  operators  is

achieved  through  the  automatic  generation  of  a  dis-

patch function based on library priority.

Fig.3 illustrates  how  to  implement  the  AvgPool

operator  in  the  VTensor  framework.  It  demonstrates

that  by  using  the  virtual  tensor  APIs  (indicated  by

orange lines), developers can focus solely on the logi-

cal  computation  of  the  operation  (represented  by

black  lines)  and  access  tensor  information  without

needing  awareness  of  the  physical  layout.  Further-

more,  the  layout  checking  and  the library  wrapper

code  are  generated  automatically  by  the  VTensor

framework (as seen in the blue lines). Developers use

the physical tensor APIs to declare the corresponding

physical  tensors for virtual tensors,  and the VTensor

framework  automatically  maintains  the  layout  infor-

mation through the require/produced attributes.

We employ  LOC as  a  metric  to  demonstrate  the

advantages  of  the  layout-oblivious  programming

paradigm. Fig.1 and Fig.3 depict the number of LOC

required  by  an  operator  developer  to  implement  an

AvgPool  operator,  excluding  comments  (represented

by green lines) and automatically generated code (in-

dicated by blue lines). The total LOC in Fig.1 is ap-

proximately  500,  whereas  the  total  LOC  in Fig.3 is

around  140. Fig.3 achieves  a  reduction  of  360  LOC

compared with Fig.1. In particular, the black and or-

ange lines are written by developers (with the orange

lines denoting VTensor API calls),  while all  the blue

lines  are  automatically  generated  by  VTensor.  The

analysis  above  highlights  that  the  layout-oblivious

programming  offered  by  VTensor  significantly  re-

duces the number of LOC required for operator devel-

opment. 

2.3    Unoptimized Layout Transformations

The choice  of  the layout  in  TensorFlow Grappler

depends  on  various  factors,  including  the  operator's

parameters,  algorithms,  accepted  data  types,  and

more. This means that the layout cannot be statical-

ly  determined.  TensorFlow  Grappler④ includes  two

layout  optimizers:  one  for  GPUs  and  the  other  for

CPUs.  The  GPU  layout  optimizer  uses  predefined

rules  based  on  experience  to  determine  the  operator

layout.  For  instance,  when  dealing  with  a  convolu-

tion  operator  that  does  not  trigger  Tensor  Core,  the

NCHW  layout  generally  performs  better  than  the

NHWC layout.  On  the  other  hand,  the  CPU layout

optimizer[11] divides  the dataflow graph into multiple

subgraphs  based  on  whether  the  operator  is  imple-

mented  by  MKL-DNN  library  functions.  These  data

conversion  operations  within  the  subgraph  are  per-

formed  by  the  operator  itself.  The  optimizer  inserts

data  conversion  operations  between  these  subgraphs.

XLA⑤ (Accelerated Linear Algebra) is a domain-spe-

cific  compiler  in  TensorFlow  capable  of  generating

low-level  IR for networks.  When XLA utilizes  the li-

brary  as  a  backend,  the  layout  assignment  optimizer

follows a similar design as TensorFlow's optimizer.

In Fig.4(a),  we  illustrate  a  scenario  where  the

ResNet  network  uses  MKL-DNN  as  the  backend.

Here,  the  output  layout  of  the  Concat  operator  de-
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pends not only on the input layout but also on specif-

ic  implementation  details,  such  as  how  to  choose  an

output  layout  based  on  different  input  layouts.  The

required layout for the MKL-DNN convolution opera-

tor  is  also  statically  uncertain.  Therefore,  Tensor-

Flow delegates the layout conversion operation to the

operator  itself,  as  exemplified  by  the CheckReorder-
ToOpMem function  in Fig.1.  Additionally,  Tensor-

Flow lacks an interface to describe library-specific lay-

outs,  which may introduce  unnecessary  layout  trans-

formations during ad-hoc layout processing.

In  contrast,  as  shown  in Fig.4(b),  the  VTensor

framework utilizes partial evaluation passes to collect

layout  information  for  each  tensor.  It  then  conducts

global layout-oriented graph optimizations. Specifical-

ly, the VTensor framework creates an individual node

for  layout  transformation  and  places  it  immediately

after  the  Concat  operation.  As  a  result,  only  one

transformation is required. 

3    VTensor Framework Overview

Fig.5 shows the overall VTensor framework, com-

prising the “VTensor Programming Framework” (the

bottom part) and the “VTensor Runtime” (the upper

part), serving for the programming interface and run-

time support respectively.

The  VTensor  programming  framework  provides

four categories of programming interfaces to define an

operation, describe a library, and illustrate how to in-

voke a library routine.

● The virtual tensor API (VTensor API) empow-

ers developers to implement operators by writing the

Compute function  to  access  virtual  tensors,  such  as

 

Fig.3.  Motivation example: AvgPool operator in VTensor (layout-oblivious programming) (blue lines are auto-generated and orange
lines are VTensor API calls).
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constructing a virtual tensor or accessing a dimension.

The  corresponding  code  is  illustrated  in  the  green

lines in Fig.5.  In each operation, the Dispatcher API

serves  as  the  unified  entry  point  for  all  libraries  and

devices.  It  uses a list  of  abstract parameters,  and its

function  body  is  automatically  generated  by  the

VTensor Framework.

● The physical tensor (PTensor) API enables de-

velopers  to  declare  physical  tensors  corresponding  to

virtual  tensors,  as  demonstrated  by  the  brown  lines.

Typically,  the  PTensor  API  is  written  within  the li-
braryInvoker function to invoke a specific library rou-

tine.  In  contrast  to  virtual  tensors,  a  physical  tensor

contains its physical layout information, which can be

a specific layout (e.g., LAYOUT::NCHW) or without

constraints  (i.e.,  LAYOUT::ANY).  Additionally,  the

PTensor API provides a “require” function to declare

the physical layout convention for the library routine.

● A  library  description  is  essential  to  facilitate

multi-library support. This file is required for each li-

brary  to  describe  the  mapping  of  physical  layouts

used  by  PTensors  to  library-specific  layout  names.

For  example,  it  maps  from  NCHW8c  to  nChw8c  in

MKL-DNN.  Furthermore,  the  library  description

specifies the layout transformation handler within the

library  and  offers  guidelines  for  selecting  a  layout

from multiple alternatives. The corresponding code is

depicted by the red lines in Fig.5.

● Framework  APIs  allow  developers  to  register

handlers  with  the  VTensor  framework,  as  indicated

by  the  blue  lines  in Fig.5.  The  VTensor  framework

will invoke these handlers during runtime layout reso-

lution.  In  particular,  for  each  library  routine,  a li-
braryInvoker function must be written and registered

as the entry point for invoking the routine. This func-

tion  describes  how  to  create  the  actual  parameters

 

Transform

Concat

Conv 11 Conv 11

Concat

Transform

Conv 11

Transform

Conv 11

(b)

(a)

Fig.4.   Location  where  the  layout  transformation  operation
takes  place.  (a)  Inside  the  operator.  (b)  Outside  the  operator.
Conv: convolutional.

 

Fig.5.   VTensor  framework  overview.  (a)  Extended  data  flow  graph.  (b)  Optimized  data  flow  graph.  (c)  VTensor  programming
framework. Conv: Convolution.
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from the abstract parameter list. Furthermore, a tag-

ger can be embedded within libraryInvoker, serving as

a safeguard for partial evaluation during runtime lay-

out  resolution.  Code following the  tagger  will  not  be

executed during partial  evaluation,  but  will  run dur-

ing normal graph execution.

To resolve layouts for virtual tensors, we propose

a dynamic layout resolver (DLR). DLR partially eval-

uates  the  dataflow  graph  to  determine  the  physical

layout  for  each  node  in  the  graph.  It  identifies  the

necessary locations for layout transformations and in-

serts corresponding transformation operations as indi-

vidual  nodes  into  the  dataflow  graph  (as  shown  in

Fig.5(a)), referred to as the extended dataflow graph.

Finally, we apply layout-oriented optimizations (LOOs)

to  the  extended  dataflow  graph  to  optimize  the  lay-

out transformation nodes (as shown in Fig.5(b)). Fur-

ther details will be discussed in Section 5. 

4    VTensor Programming Interface

The  VTensor  framework  provides  four  categories

of  programming  interfaces:  VTensor  APIs,  PTensor

APIs,  library  description,  and  framework  APIs.  De-

velopers can leverage these APIs to implement a ten-

sor operator, i.e., the Compute function in Fig.5, in a

layout-oblivious  manner.  To  distinguish  between  the

virtual tensor class and the programming model with

the same abbreviation, we employ italics to represent

the  virtual  tensor  class  (VTensor)  and  the  regular

font for the programming model (VTensor). 

4.1    VTensor Class and PTensor Class APIs

Fig.6 demonstrates the APIs of the virtual tensor

class and the physical tensor class. The virtual tensor

class  serves  as  intermediate  data  that  connects  two

operators and remains library-agnostic in terms of its

layout.  When  utilizing  a  virtual  tensor  instance,  de-

velopers need not concern themselves with its layout,

which can remain virtual  until  a specific  library rou-

tine is invoked. Typically, such routines follow prede-

termined layout conventions for parameters. As a re-

sult, we introduce the physical tensor class (PTensor)
to describe the physical layout of a virtual tensor in-

stance.  We  categorize  these  APIs  into  three  groups

based  on  whether  they  are  specific  to  the VTensor
class,  the PTensor class,  or  shared  between  them:

VTensor-specific  APIs,  PTensor-specific  APIs,  and

common APIs.

VTensor-Specific APIs. The VTensor class has its

own  specific  constructor  with  three  parameters:

scalar_type, shape, and option. In particular, shape is
an  array  of  dimensions,  where  each  dimension  con-

sists of two parts: the dimension name and the dimen-

sion size.

V Tensor

vt(float, {(′N ′, NS), (′C ′, CS), (′H ′, HS), (′W ′,WS)},
{ctx, 0})

scalar_type represents  the  data  element  type,

while option is used to provide the necessary context

for space allocation and the index number correspond-

ing  to  the  output  tensor.  An  example  of  using  the

VTensor class constructor is shown as follows: 

 where ctx is  an  instance  of  the OpKernel-
Context class in TensorFlow.

PTensor-Specific APIs. The APIs of the PTensor
class  are  provided  to  express  specific  layout  conven-

tions.

PTensor(V Tensor v)● .  It  constructs  a PTensor
instance from the corresponding VTensor instance.

void require(LAY OUT playout)● .  It  declares  the
 

MKL-DNN

Memory::format

Eigen
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Specific
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N: 1  H: 4   W: 4   C: 16

N: 1  C: 2  H: 4  W: 4   C: 8

Fig.6.  APIs provided by virtual tensor and physical tensor.
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physical  layout  convention  of  the  library  routine,

which  can  be  called  only  once  in  each  operation.

LAYOUT is  an  enumerated  type  used  to  uniformly

represent the physical layout of all libraries. A specif-

ic  LAYOUT::ANY can be provided if  the underlying

library  routine  can  accept  any  layout,  as  commonly

seen  in  element-wise  operators  (e.g.,  ReLU).  Other

values  of LAYOUT are  user-defined.  Taking  the

LAYOUT::HWCN  for  example,  cuDNN  uses

kYXDepthBatch  as  the  keyword,  while  MKL-DNN

uses hwio, and Eigen uses FORMAT_HWCN.

getLibraryDesc(string lib_name)● . It retrieves the

corresponding memory description of the library rou-

tine,  and  the  function  body  is  auto-generated.  The

value of lib_name should be consistent with the value

of name in the library descriptor.

Common APIs. These APIs serve to access a vir-

tual  tensor  or  physical  tensor,  and  they  are  imple-

mented  as  member  functions  of VTensor and PTen-
sor.

int size(char dim_name)

dim_name

dim_name

● . This  function  returns

the  dimension  size  corresponding  to .  We

follow  the  dimension  naming  conventions  of  the

MKL-DNN library, where N represents the batch size,

C represents the number of channels, H represents the

image  height, W represents  the  image  width,  and D
represents  the  image  depth.  The  value  of 

can be any of the aforementioned symbols.

int ndimensions()● .  This  function  returns  the

number of dimensions.

T data()● . This function returns the raw pointer

to the actual data. 

4.2    Library Description

The library  description  interface  enables  develop-

ers to integrate a new library as a plug-in. In particu-

lar,  developers  can  describe  a  library  from  four  as-

pects.

Library  Descriptor.  Developers  are  required  to

specify the name and priority of the library. name is
the sole identifier of a library in our framework, while

priority determines  library  selection  when  an  opera-

tor  is  implemented  using  multiple  libraries.  These

properties  will  be  adopted  by  our  code  generator  to

produce some API implementations, e.g., Dispatcher.
PTensor  Layout  Mapping.  Within  the PTensor

class,  we  employ  a  unified  layout  representation

across  all  libraries.  However,  various  libraries  may

employ  distinct  keywords  for  the  same  layout.  To

_

bridge this gap, developers are encouraged to employ

layout mapper for  mapping  a LAYOUT to  library-

specific  keywords.  This  involves  specifying  keyword-

LAYOUT pairs  to  harmonize  library  keywords  with

the enumeration values.

Layout  Transformation  Handler.  Neural  network

libraries often include routines for layout transforma-

tions, such as CheckReorderToOpMem in MKL-DNN

and TransposeUsingEigen in the Eigen library. These

routines  enable  our  VTensor  framework  to  invoke

them  as  needed.  Developers  can  provide  these  rou-

tines as handlers, using the transformer keyword (see

Fig.5).  Handlers  must  adhere  to  the  following  inter-

face definition: 

void TransformHandle(PTensor src,

PTensor dst, vector < int > permutation).

LAY OUT LayoutGuideLine(PTensor tensor)

Layout  Guideline.  In  state-of-the-art  accelerating

libraries,  the  layout  convention  may  not  be  entirely

static.  For  instance,  MKL-DNN  offers  the

mklDnnAvgProposer routine  to  determine  the  layout

convention at runtime. To accommodate such scenar-

ios,  we provide the guideline keyword for developers.

It allows them to specify a function that operates on

PTensor objects  as  parameters  and  dynamically  de-

termines  the  layout  convention.  The  layout  guide

function must adhere to the following interface defini-

tion: . 

4.3    Framework APIs

When developers create a new operation, some in-

teractions with the VTensor framework are inevitable.

Therefore, we provide a set of framework APIs to fa-

cilitate these interactions, as follows.

● Dispatcher is  the  unique  entry  for  invoking  li-

braries inside an operation. It encapsulates the kernel

computations  from  different  libraries,  and  its  func-

tion body is automatically generated by the VTensor

framework.

● libraryInvoker is  the  entry  for  invoking  one  li-

brary  routine,  which  will  be  automatically  called  by

Dispatcher.  Developers  need  to  write  the  function

body and register it to the VTensor framework.

● libTagger serves as a safeguard for partial evalu-

ation  during  runtime  layout  resolution.  Code  follow-

ing the tagger will not execute during partial evalua-

tion, but will run during normal graph execution.

Since  different  library  functions  have  different

function  signatures, libraryInvoker needs  to  be  writ-
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require

Dispatcher

ten  by  operator  developers. Fig.5 shows  how  to  use

the  PTensor  API  and  the  Framework  API  to  write

the libraryInvoker.  To  begin,  essential PTensor in-

stances  are  created  for  input VTensor instances  and

output VTensor instances  (line  1  and  line  2,  respec-

tively). Next, the required layout of input PTensors is

specified  using  the  API  (lines  3  and  4).  The

tagger  is  then  inserted  to  indicate  that  the  subse-

quent  statement  is  a  library  call,  ensuring  that  lay-

out  information  is  passed  to  the  runtime  for  partial

evaluation and layout resolution (lines 5 and 6). Ab-

stract parameters in  are extracted to gen-

erate  the  actual  parameters  for  invoking  the  library

routine  (line  7).  Finally,  the  library  is  invoked  (line

8). 

4.4    Automatically Generated Code

As  previously  discussed,  the  VTensor  framework

automatically  generates  three  functions: Dispatcher,
getLibGuide, and getMemoryDesc. These functions are

designed  to  insert  developer-provided  plug-in  han-

dlers  at  appropriate  points  in  the  process.  Further-

more, the runtime (as discussed in Subsection 5.1) in-

troduces  a  data  transformation  operator  into  the

dataflow graph. The VTensor framework then gener-

ates the transformation operator's body based on the

provided transformer specified in each library descrip-

tion.

We leverage template-based code generation here.

Specifically,  functions  like Dispatcher are  utilized  to

choose an appropriate function to invoke based on the

runtime  input  parameters  or  to  provide  correspond-

ing values according to the runtime input parameters.

We represent this process as a code template. Taking

the Dispatcher function  (code  highlighted  in  blue  in

Fig.3) as an example, it serves to distribute operators

to an invoker.  In our implementation, Dispatcher se-
lects the invoker based on the device type and the li-

brary's  priority.  Each  operator  has  different  check

conditions  for  different  parameters  and  dimensions.

Consequently,  legitimacy  check  code  is  generated  by

the  code  generator  as  part  of  the ParametersAndDi-
mensionCheck function. 

5    VTensor Runtime

In  this  section,  we  present  the  design  and imple-

mentation of  the  VTensor  runtime.  It  comprises  two

components:  a  DLR  (Subsection 5.1)  responsible  for

inferring  the  physical  layouts  of  VTensor  instances

and inserting the necessary data conversion nodes to

extend  the  dataflow  graph,  and  a  LOO  (Subsection

5.2)  tasked  with  optimizing  the  extended  dataflow

graph. 

5.1    Dynamic Layout Resolver

The  DLR  serves  to  resolve  a  layout-oblivious

VTensor instance  to  a PTensor instance  with a  spe-

cific physical layout defined by the library. The Grap-

pler is the default graph optimization system in Ten-

sorFlow. The DLR is implemented as part of the Ten-

sorFlow Grappler after graph partitioning and device

placement.

Data Structure for Layout Resolution. To assist in

resolving  the  layout,  two  attributes  are  introduced:

produced_layout for  the VTensor class,  and

required_layout for the PTensor class. Specifically, re-
quired_layout indicates  the  physical  layout  required

by  the  library  routine,  specified  using  the require
statement  in libraryInvoker. produced_layout indi-

cates  the  physical  layout  derived  from  predecessor

nodes. A VTensor instance is successfully resolved to

a PTensor instance when its produced_layout match-

es  the  corresponding required_layout of PTensor in-

stance.

Overall  Workflow.  The  DLR  works  as  follows.

First,  it  sets  the  execution  mode  to Partial and  uti-

lizes  partial  evaluator  (PE)  to  determine

produced_layout for  each VTensor instance  and re-
quired_layout for each PTensor instance by executing

only the code in the graph related to layout determi-

nation. This avoids executing time-consuming compu-

tations in the operator, making the DLR's cost negli-

gible. After PE processing, the layout of all VTensor
instances  is  resolved,  as  shown  in Fig.7(b).  Second,

the DLR checks the layout attributes for each pair of

the VTensor instance  and PTensor instance,  insert-

ing a data conversion node (the “transform” node in

red)  when produced_layout does  not  match

required_layout, as shown in Fig.7(c).

Partial  Evaluation  Algorithm.  Determining re-
quired_layout is  challenging  for  three  reasons.  First,

developers may choose different libraries within a sin-

gle operation based on input parameters (e.g., prefer-

ring  cuBlas  over  cuDNN  for  a “1×1” convolution).

Second, operator parameters, algorithms, accepted da-

ta  types  and  other  factors  can  affect  layout  conven-

tions. Third, the application's layout can only be de-
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termined at runtime.

Hence,  as  shown  in Fig.8,  we  propose  a  partial

evaluation  algorithm  to  obtain  layout  information.

The algorithm traverses  the dataflow graph,  process-

ing  each  node  in  topological  order  (lines  2–4,  and

lines 23–28).  Before  traversing,  for  the  original  data

flow graph G's entry node, the produced_layout of all

its input VTensor instances is initialized based on the

input format (line 1).

When  processing  each  node,  PE  partially  exe-

cutes the operation code until encountering the devel-

oper-specified libTagger.  The  layout  resolving  algo-

rithm  works  as  follows.  First,  we  extract  the  input

and output VTensor instances of the current node in-

to vtensor_set (line 5).  Second,  for  each VTensor in-

stance in the set, we create a PTensor instance, deter-

mining  its  physical  layout  per  developer-provided  li-

brary guidelines (lines 8 and 9). If the determined lay-

out is LAYOUT::ANY, it inherits the physical layout

of the first input VTensor instance (if it is an output)

or  inherits  the produced_layout of  the VTensor in-

stance  (if  the  tensor  is  an  input)  (lines  10–15).  The

determined  physical  layout  is  recorded  in  the re-
quired_layout of the PTensor instance (line 16), indi-

cating  the  library's  layout  requirement.  Third,  for

each output VTensor instance, its produced_layout is
set as the required_layout of the corresponding PTen-
sor instance  for  propagating  the  resolved  layout  to

successor nodes (lines 17 and 18).  Finally,  the devel-

oper-specified libTagger function  is  invoked  to  skip

the subsequent library function call and terminate the

partial evaluation of the current node (line 21). 

5.2    Layout-Oriented Optimization

After  explicitly  inserting  layout  transformation

operations  into  the  data  flow  graph,  new  opportuni-

ties  for  globally  optimizing  the  transformations

emerge.

The  optimization  goal  of  this  paper  is  to  mini-

mize  the  number  of  data  conversion  operation.  To

minimize  the  end-to-end  latency  of  the  neural  net-

work, factors such as layout, primitives, and memory

footprint  need  to  be  considered  together.  However,

 

Partial Evaluator

Fig.7.  DLR workflow. Vin and Pin refer to VTensor and PTensor inputs respectively. Vout and Pout are VTensor and PTensor out-
puts respectively. (a) Original data graph. (b) Resolved layout. (c) Extended flow graph. Conv: convolution.
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these factors are beyond the scope of this paper.

As TensorFlow's layout optimization algorithm is

designed without knowing the layout information, the

need arises for a new layout optimizer. In the VTen-

sor framework, we introduce two optimization compo-

nents:  layout  hoisting  optimization  (LHO)  and  ele-

ment-wise optimization (EWO).

Layout Hoisting Optimization. LHO is proposed to

apply  the  optimization  presented  in Fig.4 to  multi-

branch models. We employ a pattern-based graph op-

timization  to  hoist  the  layout  transformation  nodes.

Specifically,  we  traverse  all  the  branch  nodes  in  the

graph from top to bottom. If a branch node satisfies:

1) all of its immediate successors are layout transfor-

mation  nodes,  2)  each  immediate  successor  has  a

PTensor instance  generated  from  a  common VTen-
sor instance,  and  3)  all  of  these  PTensors  have  the

same required_layout,  then the layout transformation

nodes from all immediate successors can be hoisted up

before the branch node.

Element-Wise  Optimization.  Element-wise  nodes

can accept an arbitrary layout of tensors as input in

mathematical semantics. However, element-wise oper-

ations may have broadcasted semantics, requiring the

layouts/shapes  of  their  input  tensors  to  be  compati-

ble[12].  However,  in  TensorFlow,  the  layout  of  an  in-

put tensor can only be determined at runtime. Conse-

quently,  TensorFlow  conservatively  restricts  the  lay-

out as NHWC, as shown in Fig.9(a).

Furthermore, the selection of the output layout of

a  producer  operator  determines  the  input  layouts  of

all  connected  consumer  operators.  Thus,  the  layout

selection cannot be made in isolation.

It is important to note that operators such as con-

volution  specify  the  required  layout  through  the re-
quire statements,  and  we  assume  that  this  specifica-

tion cannot be altered.

Given  an  extended  data  flow  graph G,  we  intro-

duce  a candidate_set variable  for  each  node,  except

for constant operations, and initialize the variable ac-

cording to the following rules.

● Element-Wise Operators with Broadcast Seman-
tics. Assuming tensor A is broadcast to tensor B, with

the  layout  of  tensor A being LA and  the  layout  of

tensor B being LB. If tensor A cannot be represented

by LB (for instance, when the channel size of A is not

 

Algorithm 1. Layout Resolving Algorithm 
Input: G: original data flow graph  
       Entry_Layouts:  the input layouts  of network  
Output: Tensor_Set:  the V/PTensors  of each  node  
 1.InitializeEntryNodeLayout(G, Entry_Layouts) 
 2.ready_queue = {G.entry_node}                        
 3.while ready_queue not empty do                     // Topology-based traversal of data flow graphs 
 4.  work_node = ready_queue.pop() 
 5.  vtensor_set = work_node.vtensor_set()         // Retrieve the input and output VTensor instances       
 6.  ptensor_set = {} 
 7.  for vtensor in vtensor_set do 
 8.    ptensor = PTensor(vtensor) 
 9.    physical_layout = work_node.InvokeLibGuideline(ptensor)

// Determine the physical layout of PTensor instances
10.    if physical_layout == LAYOUT∷ANY then 
11.      if vtensor.is_out then 
12.        physical_layout =  
13.          GetFirstInputTensor(work_node).required_layout 

                                 

 

14.      else 
15.        physical_layout = vtensor.produced_layout  

16.    ptensor.required_layout = physical_layout 
17.    if vtensor.is_out then 
18.      vtensor.produced_layout = ptensor.required_layout  

19.    ptensor_set.append(ptensor) 
20.  end for 
21.  InvokeLibTagger(Tensor_Set, {work_node, ptensor_set}) 
22. 
23.  for succ in work_node.successors() do 
24.    PropagateVTensorToSuccessor(voutputs, succ) 
25.    if IsReady(succ) then 
26.      AppendReadyNode(ready_queue, succ) 
27.  end for 
28.end while 
29.return Tensor_Set 

// Inherit the input VTensor instances's required_layout

// Inherit the VTensor instance's produced_layout

// Distribute the resolved layout to successor nodes

Fig.8.  Layout resolving algorithm.

Feng Yu et al.: VTensor: Using Virtual Tensors to Build a Layout-Oblivious AI Programming Framework 1085



a  multiple  of  16,  i.e.,  it  cannot  be  represented  by

NCHW16c),  then candidate_set is  assigned  to

{NHWC,  NCHW};  otherwise,  it  is  assigned  to {LB,

NHWC, NCHW}.

● Normal  Element-Wise  Operators. candidate_set
is assigned to {the layout of inputs, NHWC, NCHW}.

● Other  Operators.  For  the  other  operators,  e.g.,

convolution, candidate_set is assigned to attribute re-
quired_layout.

The cost of each edge is determined by the layout

of the two nodes connected by the edge. We initialize

the cost matrix as follows: 

Cij[m][k] =

1, if candidate_seti[m] ̸=
candidate_setj[k],

0, otherwise,

where i, j represent nodes, and candidate_seti[m] rep-

resents the m-th candidate layout of node i, as shown

in Fig.9(b). Constructed in this manner, we can map

the  layout  selection  problem  to  an  ILP  problem  as

follows: 

minimize
n∑

i=1

n∑
j=1

xi
TCijxj

subject to xi ∈ {0, 1}|Ci|, i = 1, ..., n,
xi

T1 = 1, i = 1, ..., n.

Our  objective  is  to  minimize  data  conversions

within the graph by selecting the layout for element-

wise  operators.  Each  node  is  associated  with  a

boolean decision vector,  denoted as x,  where  the  ele-

ments  are  binary,  taking  values  of  either  0  or  1.  An

additional constraint is imposed, ensuring that only a
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Fig.9.  Example for EWO. (a) Extended data flow graph. (b) Data flow graph with candidate_set and constant matrix. (c) Data flow
graph after EWO. Const: constant; Conv: convolution.
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single  element  within  these  vectors  is  assigned  the

value  1.  Subsequently,  we  employ  an  ILP  solver  to

identify the optimal solution. Following this, if we en-

counter  an  element-wise  operator  with  broadcast  se-

mantics and its input tensor contains a constant ten-

sor,  the  VTensor  framework  extends  and  transforms

the  constant  tensor  to  match  the  layout  of  the  non-

constant tensor, as illustrated in Fig.9(c).

After applying the EWO and LHO optimizations,

we obtain an optimized extended data flow graph. In

this graph, each node represents an instance of a com-

putation operation or  a  layout transformation opera-

tion,  and  each  edge  represents  a  multidimensional

dataset,  specifically  tensors,  on  which  the  operations

are performed. 

5.3    Implementation

We plug the implementation of DLR and LOO in-

to the Grappler as a pass to implement the runtime of

VTensor framework. Specifically, we begin by extend-

ing  TensorFlow's Executor class  to  implement  the

partial evaluator (PE). The PE initiates TensorFlow's

runtime to execute the entire network. Subsequently,

we  modify  TensorFlow's  runtime  module  to  enable

runtime  layout  information  retrieval.  This  modifica-

tion  involves  adapting  TensorFlow's OpKernelCon-
text class to facilitate the circulation of VTensor class

instances  between  operators,  and  enhancing  Tensor-

Flow's  profiler  to  record  operators'  layout  informa-

tion.  The  implementation  of  these  changes  consumes

approximately 1 500 LOC.

Afterwards, we convert the layout selection prob-

lem into an integer programming problem, leveraging

the collected layout information. This transformation

requires  approximately 2 000 LOC.  To  conclude,  we

introduce the data conversion operation into the dia-

gram, necessitating about 200 LOC for its implemen-

tation.  Additionally,  we  extend  the VTensor and

PTensor classes based on TensorFlow's Tensor class.

The  implementation  of  both  classes  comprises  over

600  LOC.  Furthermore,  within  the  VTensor  frame-

work, we implement 16 operators, resulting in a total

of approximately 5 600 lines of code. 

6    Evaluation 

6.1    Experiment Setup

Hardware  and  Software  Platforms.  We  evaluate

VTensor on both CPU and GPU platforms. The CPU

platform  comprises  a  quad-socket  server,  with  each

socket housing a Westmere-based Intel 2.0 GHz octa-

core Xeon E7-4820 processor. Each processor features

a private 32 KB L1 D-cache and 32 KB L1 I-cache, a

private  256  KB  L2  cache,  and  a  shared  18  MB  L3

cache.  The  GPU  platform  is  a  Volta-based  NVIDIA

TITAN  V  GPU,  featured  with  80  SMs  and  12  GB

global  GDDR5 memory.  VTensor  is  implemented  on

top  of  TensorFlow  1.14.  We  utilize  Intel  MKL-DNN

(v0.18)  and  cuDNN  (7.2)  as  the  vendor-provided  li-

braries  for  CPU  and  GPU  acceleration,  respectively.

In  addition,  TensorFlow  caches  the  optimized  graph

for a compute graph that is  repeatedly executed, en-

suring that the graph optimization system executes it

only  once.  The  evaluation  process  comprises  two

stages: the warm-up stage and the test stage. During

the warm-up stage, we measure the execution time of

DLR  modules  and  layout  optimization.  In  the  test

stage,  we obtain the  network execution time by exe-

cuting one sample at a time and averaging the execu-

tion time across 1 000 samples.

VTensor-Powered  Operators  and  Networks.  In

this  paper,  we  focus  on  deep  learning  inference.  To

accomplish  this,  we  establish  a  benchmark  set  com-

prising  12  DNN  models,  namely  Inception[13–16],

ResNet[17], VGG[18], DenseNet[19], MobileNet[20, 21], and

NasNet[22].  Detailed  information  about  these  models

can be found in Table 1. We have extracted 16 opera-

tors from the aforementioned benchmark set and sub-

sequently  re-implemented  them  using  VTensor.  All

the code adheres to the Google code style⑥, which is

the default style for TensorFlow developers. We man-

ually  count  LOC  of  both  TensorFlow  operators  and

VTensor operators.

Performance  Baseline.  For  the  CPU  and  GPU

platforms  we  evaluate,  we  follow  the  approach  out-

lined  in  [23]  to  configure  TensorFlow's  tunable  pa-

rameters. These parameters, which include inter_op_pa-

rallelism_threads  (inter-op),  intra_op_parallelism_th-

reads  (intra-op),  and  KMP_BLOCKTIME,  are  listed

in Table 1 and serve as the performance baseline. The

batch size is consistently set to 1 for all networks. In-

tel's  implementation  outperforms  the  Eigen  CPU

backend by  up  to  70x  and has  been  seamlessly  inte-

grated into  the  TensorFlow framework[11].  We utilize

its layout optimizer as the baseline for the CPU side.

Regarding the GPU backend, both XLA and Tensor-
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Flow  employ  an  experience-based  layout  optimiza-

tion algorithm, which we adopt as the baseline. 

6.2    Overall Results—Maintainability

Since the primary aim of the VTensor framework

is to reduce the programming burden on operator de-

velopers, our focus is on comparing the maintainabili-

ty of operators rather than the entire framework. Vir-

tual  operators,  which  can  be  shared  among  multiple

physical operators, require writing only once for tasks

such as shape inference, shape validity checks, and so

on. Additionally, tasks like layout conversion and ker-

nel dispatch are handled by the VTensor framework.

Furthermore,  we  provide  concise  APIs  for  operator

developers  to  implement  virtual  and  physical  opera-

tors.  Hence,  we  anticipate  a  substantial  reduction  in

code volume for operator developers when writing op-

erators,  leading  to  improved  maintainability  and  re-

duced file dispersion.

As  LOC is  frequently  used  as  an  indirect  indica-

tor  for  assessing  maintainability,  we  compare  opera-

tor  maintainability  by  examining  LOC  for  operators

in different frameworks. The LOC for the operator in

Fig.10 is  a  sum  of  LOC  implemented  based  on  the

MKL-DNN, Eigen, and cuDNN libraries. The LOC in

Figs.1 and 3 solely represents  implementations based

on the MKL-DNN library.

Fig.10 illustrates  the  maintainability  provided  by

VTensor, with the x-axis representing LOC and the y-

axis representing 16 operators. For each operator, the

green  bar  represents  LOC  in  TensorFlow,  while  the

colored bar indicates LOC in VTensor. The blue sec-

tion  signifies  LOC  for  operation  development,  while

the  yellow/gray/red  sections  represent  LOC  for  li-

brary  descriptions  of  MKL-DNN/cuDNN/Eigen,  re-

spectively.  Compared with TensorFlow,  VTensor  has

achieved a substantial reduction in code size, ranging

from 6.31% to  75.37%,  with  an  average  reduction  of

47.82%.

Furthermore,  in  TensorFlow,  the  layout  mainte-

nance code is organized in an extremely decentralized

manner.  On  average,  developers  need  to  modify  six

distinct  files  when  creating  a  new  operator.  In  con-

trast,  with  VTensor,  developers  only  need  to  modify

one .cc file  (for CPU code) and one .cu file  (for CU-

DA  code),  by  adding  the  corresponding Compute
function  and  handlers  in Section 4.  Additionally,  de-

velopers  need  to  write  three  library  description  files

(Eigen/cuDNN/MKL-DNN),  which  are  shared  by  all

operators.  Occasionally,  slight  modifications  are  re-

quired  for  these  library  description  files  when  new

guidelines are introduced, but these modifications re-

quire minimal effort, and we consider them negligible.

Moreover,  for  performance-critical  operators  that

support  multiple  libraries,  such  as  convolution  and

pooling,  VTensor  demonstrates  even more  significant

improvements  in  maintainability.  Taking  Conv2DOp

as  an  example,  in  TensorFlow,  developers  must  ex-

plicitly  write  three  different  library  wrappers  (Eigen,

cuDNN,  and  MKL-DNN)  for  layout  selection  and

transformation, necessitating changes in 15 files, with

a total  LOC of 1 838.  In  contrast,  VTensor  dramati-

cally reduces this burden, as developers only need to

modify two files, resulting in a reduced LOC of 714. 

6.3    Overall Results—Performance

Fig.11(a)  illustrates  the  overall  performance  of

VTensor and TensorFlow on the CPU platform. The

 

Table  1.    Parameters of the Deep Learning Models in Evaluation

Model Image Size KMP_BLOCKTIME inter_op intra_op Number of Layers Number of Parameters (×106)

GoogleNet 224×224 1 2 16 174 6.80

Inception_Resnet_V2[13–16] 299×299 1 2 16 772 56.00

Inception_V2[13–16] 224×224 1 2 16 212 11.26

Inception_V3[13–16] 299×299 1 2 16 287 23.94

NasNet-Large[22] 331×331 1 2 16 1 142 89.15

ResNet_101[17] 224×224 1 1 32 349 44.76

ResNet_152[17] 224×224 1 1 32 519 60.50

ResNet_50[17] 224×224 1 1 32 179 25.66

VGG19[18] 224×224 1 1 32 27 143.67

DensNet_169[19] 224×224 1 1 32 683 14.47

MobileNet_V1_224[20, 21] 224×224 0 1 32 102 4.27

MobileNet_V2_224[20, 21] 224×224 0 1 32 139 6.13
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horizontal  axis  represents  different  networks,  while

the vertical axis represents inference latency. The re-

sults  reveal  that  VTensor  achieves  a  notable  perfor-

mance  improvement,  ranging  from  1.37% to  48.27%,

with  an  average  improvement  of  18.65%  compared

with TensorFlow.

The  CPU  results  are  particularly  impressive  as

they  involve  the  utilization  of  both  MKL-DNN  and

Eigen in  the same network,  each employing different

layouts. It is worth noting that networks with a sub-

stantial  number  of  element-wise  nodes,  such  as

ResNet  networks,  exhibit  even  greater  performance

enhancements with VTensor. These networks incorpo-

rate  numerous  data  conversion  nodes,  offering  ample

opportunities  for  layout-oriented  optimization  to  en-

hance  global  layout  transformation.  Consequently,
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Fig.10.  Comparison of LOC when writing an operator using VTensor/TensorFlow framework.
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Fig.11.  Inference latency of TensorFlow/VTensor. (a) CPU platform. (b) GPU platform.
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VTensor  effectively  leverages  DLR  to  determine  the

layout  for  each  tensor,  thereby  exposing  additional

optimization prospects.

In Fig.11(b),  VTensor  exhibits  a  slight  perfor-

mance advantage over TensorFlow on the GPU plat-

form,  with  an  improvement  of  merely  0.31%.  The

GPU  results  may  appear  somewhat  underwhelming,

given that cuDNN is utilized for all operators. Howev-

er, cuDNN exclusively adheres to the NCHW layout,

limiting  VTensor's  capacity  to  identify  opportunities

for layout optimizations. 

6.4    Standard Deviation of Execution Time

Fig.12 illustrates  the  standard deviation resulting

from 1 000 executions  of  various  networks  using

VTensor and TensorFlow with a batch size of 1. The

horizontal axis represents distinct networks, while the

vertical axis represents the standard deviation. Fig.12

demonstrates  that  VTensor's  standard  deviation  on

the  CPU/GPU  platform  closely  aligns  with  Tensor-

Flow's.

The  significantly  higher  standard  deviation  in

the network execution time on the CPU platform can

be  attributed  to  thread  over-subscription.  This  phe-

nomenon  is  particularly  pronounced  when  compared

with the GPU platform. It is important to note that

Eigen and MKL-DNN each employ their  own thread

pools,  lacking  a  coordination  mechanism  between

them. Consequently, thread over-subscription may oc-

cur  when  multiple  operators  run  in  parallel  or  when

one  operator  executes  without  an  immediate  thread

sleep. 

6.5    Reduced Data Conversions (LOO)

Fig.13 illustrates  the  performance  contribution  of

LOO  on  the  CPU  platform  with  TensorFlow  as  the
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Fig.12.  Standard deviation of VTensor/TensorFlow when the batch size is 1.
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baseline. The horizontal axis represents different net-

works,  the  left  vertical  axis  represents  the  perfor-

mance  improvement  over  TensorFlow,  and  the  right

vertical  axis  represents  the  reduced  number  of  data

conversions.

As  shown  in Fig.13,  LOO  can  enhance  perfor-

mance  from  0.46%  to  43.92%,  with  an  average  im-

provement  of  15.54%.  LOO  achieves  this  perfor-

mance  boost  by  reducing  data  conversions.  For  in-

stance,  in  the  case  of  ResNet_152,  LOO reduces  the

number of data conversions from 317 to 18, resulting

in  a  performance  gain  of  14.18%.  It  is  important  to

note that for networks without branches and element-

wise nodes, such as VGG19, LOO cannot achieve per-

formance improvement.

The  extent  of  performance  improvement  through

layout  optimization  relies  on  the  percentage  of  time

saved by eliminating data conversion operations dur-

ing the entire network's execution. This clarifies why

NASNet-Large,  which  experiences  the  most  signifi-

cant reduction in data conversion operations, does not

exhibit the largest performance improvement. 

6.6    Overhead of DLR and EWO

Fig.14 displays  the  distribution of  execution time

for  each  optimization  module,  normalized  to  Tensor-

Flow  Grappler's  total  execution  time.  The  yellow,

green, and gray bars represent the percentages of the

execution  time  consumed  by  VTensor  framework's

DLR, LOO, and other optimizations, respectively, al-

so  normalized  to  TensorFlow  Grappler's  total  time.

The red bar signifies the time spent on TensorFlow's

layout  optimization,  while  the  blue  bar  accounts  for

the  overall  execution  time  of  TensorFlow  optimiza-

tions, excluding layout optimization.

From Fig.14,  it  is  evident  that  the  proportion  of

VTensor's  layout  optimization  (the  green  bar)  is

smaller  than  that  of  TensorFlow's  layout  optimiza-

tion (the red bar). Specifically, the execution time of

VTensor's LOO is shorter than that of TensorFlow's

LOO. This discrepancy arises because the most time-

intensive aspect of layout optimization involves creat-

ing and inserting data conversion operators. VTensor

LOO  inserts  significantly  fewer  operators  than  Ten-

sorFlow (as shown in Fig.13), resulting in shorter exe-

cution time for VTensor LOO compared with Tensor-

Flow. Additionally, VTensor's Grappler consumes less

execution time when compared with TensorFlow. 

6.7    Optimization for Different Batch Sizes

Since  VTensor  cannot  identify  further  optimiza-

tion  opportunities  on  the  GPU  platform,  we  exclu-

sively  opt  for  the  CPU  platform  to  evaluate  the

VTensor  network's  performance  across  various  batch

sizes.  As  depicted  in Fig.15,  LOO  consistently  ex-

hibits performance improvements across diverse batch

sizes.  We  calculate  the  network's  execution  time

based  on  the  average  of 1 000 iterations,  with  batch

size  samples  being  executed  in  each  iteration.  The

horizontal axis of Fig.15 denotes different batch sizes,

while the bars of distinct colors represent various net-
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works.  The vertical  axis  represents  the percentage of

performance enhancement achieved by VTensor com-

pared with TensorFlow.

Fig.15 illustrates  that  LOO  remains  effective  for

different  batch  sizes.  Nevertheless,  the  LOO  perfor-

mance enhancement percentage for the same network

fluctuates  across  different  batch  sizes  without  a  dis-

cernible  pattern.  For  the  sake  of  clarity,  we  employ

ResNet-50 as an exemplar to elucidate the variations

in  LOO  performance  enhancement.  This  is  accom-

plished  by  analyzing  the  breakdown  diagram  of  net-

work  execution  time  across  different  batch  sizes,  as

seen in Fig.16. Notably, the percentage of the opera-

tor's execution time relative to the total network time

does not increase with larger batch sizes. The precise

reasons for this phenomenon are beyond the scope of

this paper. Based on our analysis, we discern that one

factor  contributing  to  LOO  performance  improve-

ment hinges on the proportion of data conversion op-

erations within the entire network.
 

7    Discussion

VTensor's idea of layout decoupling is not limited

to a particular AI framework, such as TensorFlow. In

this  section,  we  discuss  how  to  apply  the  ideas  of

VTensor  to  Pytorch,  and  provide  an  initial  assess-

ment  of  the  migration  effort  required  for  developers.

Furthermore,  we  examine  the  integration  of

VTensor's  concept  with  machine  learning  compilers

like XLA. 

7.1    Migration to PyTorch

TensorFlow constructs a data flow graph prior to

executing  a  neural  network,  while  PyTorch  employs

an  imperative  execution  model,  bypassing  a  separate

graph  construction  phase.  These  differing  execution

modes lead to distinct VTensor runtime implementa-

tions.  Firstly,  the  DLR  module's  PE  algorithm  pro-

cesses  individual  nodes  rather  than  the  entire  graph.

Secondly, as PyTorch lacks access to the entire com-

putational  graph,  layout optimization necessitates  ei-

ther  a  heuristic  or  a  greedy  approach.  In  the  greedy

approach, one approach is to maximize the tensor lay-

out's lifecycle. To implement this method, the layout

guideline  function  first  includes  the  use  of

produced_layout as one of the criteria for selecting the

layout. Secondly, after the PE algorithm resolves the

required_layout attribute, it determines whether to in-

sert  the  data  conversion  operation  immediately.  A

commonality  between  PyTorch  and  TensorFlow  is

that neither framework has a mechanism for preserv-

ing layout information. Consequently, operator devel-

opers must remain cognizant of the layout and manu-

ally manage layout information.
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Fig.15.  Percentage of performance improvement of different networks under the VTensor framework.

 

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16 32

Layout Transform
Convolution

Add
ReLU

MaxPool
Other

N
o
rm

a
li
z
e
d
 P

e
rc

e
n
ta

g
e
 o

f
E
x
e
c
u
ti
o
n
 T

im
e
 (

%
)

Batch Size

Fig.16.   Time  breakdown  of  ResNet-50  under  different  batch
sizes under TensorFlow.

1092 J. Comput. Sci. & Technol., Sept. 2023, Vol.38, No.5



The  implementation  of  the  VTensor  program-

ming  framework  in  PyTorch  proceeds  as  follows.

Since the library description pertains to the specific li-

brary and is framework-independent, it can be direct-

ly reused. Other than the library description, we can

implement  the  remaining  VTensor  framework  APIs

through  the  following  steps.  Initially,  we  extract  the

portion of the at::Tensor class that is independent of

the layout as a virtual tensor class. Subsequently, we

extract  the  layout-related  segment  of  the at::Tensor
class as a physical tensor class. We then introduce the

produced_layout attribute  to  the  virtual  tensor  class

and the required_layout attribute to the physical ten-

sor  class.  Finally,  we  divide  each  operation  into  a

computation and a set  of  invokers  (with one invoker

per library). We employ the PTensor API and the lib-
Tagger API  to  encapsulate  data/parameter  prepara-

tion,  library function calls,  and other operations into

the  invoker.  For  libraries  already  supported  by  the

VTensor  framework,  the  invoker/library  description

can  be  reused.  Ultimately,  we  register  each  invoker

using the libraryInvoker API in VTensor. 

7.2    Programming Efforts

It is required approximately 10 000 LOC to imple-

ment the VTensor idea within the TensorFlow frame-

work. This includes 4 300 LOC for the revision of 16

operators  using  VTensor  framework's  APIs,  around

3 700 LOC for  developing  the  VTensor  runtime,  and

roughly  600  LOC  for  crafting  the  VTensor

framework's APIs.

Here,  we conduct an analysis  to determine which

modules  necessitate  adjustments  when  transitioning

the  VTensor  framework,  originally  built  on  Tensor-

Flow, to alternative frameworks. If the current frame-

work supports the acquisition of the entire data flow

graph,  there  is  no  need  for  modifications  to  the  ILP

solver within the LOO module.  However,  due to dis-

parities  between  TensorFlow  and  PyTorch  in  the

graph data structure and layout transfer mechanisms,

we must rewrite the DLR module and the layout opti-

mizer.  For  frameworks  that  do  not  require  the  con-

struction of computational graphs, a complete rewrite

of  the  VTensor  runtime  becomes  imperative.  Addi-

tionally, the API of the VTensor framework must be

reworked,  as  runtime  and  tensor  data  structures  dif-

fer  across  frameworks.  Concerning  operators,  frame-

work-specific  components  encompass  constructors,

class  definitions,  and  parameters  tied  to  the  frame-

work. For instance, the OpKernelContext class is uti-

lized by the TensorFlow framework to record the exe-

cution  context  of  the  current  operator.  The  remain-

ing operators can be reused directly. Moreover, the li-

brary  description  serves  solely  to  document  informa-

tion  about  the  library  and  its  functions,  making  it

suitable for direct reuse. 

7.3    Interaction with XLA

The  aim  of  XLA  is  to  combine  numerous  small

operators  and automatically  generate  the  fused code.

When  dealing  with  large  operators,  like  convolution,

XLA still  invokes the kernel  code that is  implement-

ed based on the library. However, for operators based

on  libraries,  the  VTensor  framework  can  still  offer  a

layout-agnostic programming diagram to assist opera-

tor  developers.  Consequently,  VTensor  remains  inde-

pendent of compilers such as XLA. 

8    Related Work

Layout  Optimization.  A  substantial  body  of  re-

search has addressed the significance of layout tuning

and selection[8, 9, 24–30].  Specifically, Kim et al.[24] ana-

lyzed the performance of five AI frameworks with dif-

ferent  convolution  algorithms  and  found  that  layout

is  a  performance-critical  factor.  Li et  al.[8] investigat-

ed  the  memory  efficiency  of  various  convolutional

neural  network  layers  and  unveiled  performance  im-

plications arising from both data layout and memory

access patterns. Anderson and Gregg[9] abstracted the

layout  and primitive  selection  problem into  a  PBQP

problem from a graph-level perspective. Wen et al.[25, 26]

introduced the ILP technology to address the limited

memory  resource  selection  for  the  optimal  combina-

tion  of  primitives  and  layouts.  Zhang et  al.[27] pro-

posed  a  decision  tree-based  approach  to  select  suit-

able layouts for a network in DSP. Zheng et al.[28] ob-

served that matrix multiplication constitutes the per-

formance bottleneck for LSTM RNN on GPU and in-

troduced EcoRNN for automatic library selection and

layout.  TASO[29] considers  layout  transformations  in

conjunction  with  graph  substitutions.  NeoCPU[30] al-

ters  the  layout  of  all  convolution  operations  to

NCHW[x]  and  globally  tunes  the  parameter x when

providing hardware details. These approaches still re-

ly  on  traditional  layout-aware  programming  inter-

faces, which place a significant maintenance and con-

version burden on developers. Furthermore, the afore-
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mentioned  layout  optimization  methods  are  only  ap-

plicable  in  scenarios  where  the  layout  can  be  deter-

mined at compile time. In contrast, VTensor dynami-

cally  selects  layouts  at  runtime  thanks  to  the  DLR.

Ould-Ahmed-Vall et al.[11] divided the data flow graph

into multiple subgraphs based on whether the opera-

tor  is  implemented  using  MKL-DNN.  Data  conver-

sion  operations  within  each  subgraph  are  performed

by  the  operator.  Although  this  heuristic  method  can

be  executed  at  runtime,  the  layout  choice  represents

only a local optimal solution. In contrast to their ap-

proach, VTensor acquires layout information for each

node  in  the  data  flow  diagram  through  the  DLR  at

runtime  and  then  selects  the  layout.  Consequently,

our  approach  yields  superior  performance  improve-

ments.

Tensor  Processing.  There  has  been  extensive  re-

search  on  tensor  processing,  spanning  from  domain-

specific languages to optimized compilers[1, 31–36]. Most

existing work in this area requires programmers to be

aware  of  tensor  layouts.  Ragan-Kelley et  al.[31] intro-

duced  the  concept  of  separating  computation  from

scheduling,  enabling the efficient generation of  image

processing pipelines. Chen et al.[32, 33] employed a do-

main-specific  language  based  on  tensor  expressions,

along with a comprehensive compilation stack,  to fa-

cilitate efficient tensor operator generation on hetero-

geneous architectures.  FlexTensor[34] and Ansor[35] fo-

cus  on  automatic  schedule  space  exploration.

TACO[36] offers  an  alternative  approach  through  the

generation  of  dense/sparse  kernels  from  tensor  alge-

bra  expressions.  Additionally,  researchers  have  pro-

posed a series of methods for dealing with sparse ten-

sors. Given the diversity of sparsity in sparse tensors,

researchers[37–39] suggested  using  machine  learning  to

analyze non-zero layouts and select the optimal stor-

age format. Nisa et al.[40] proposed a mixed-mode stor-

age format for sparse tensors of arbitrary dimensions,

enabling  efficient  memory  access  across  different  di-

mensions.  Dong et  al.[41] introduced  a  new  data  lay-

out  to  optimize  DNNs  with  input  sparsity.  To  en-

hance  the  performance  of  tensor  contraction  opera-

tors  and  utilize  hardware  resources  efficiently,  vari-

ous techniques, such as tiling and data reorganization,

have  been  proposed  to  improve  data  reuse[42–46] and

manage  data  movement[47].  The  approaches  men-

tioned above primarily focus on exploiting hardware-

specific  properties  to  enhance  tensor  processing  per-

formance,  whereas  VTensor  takes  an  orthogonal  ap-

proach to these methods. 

9    Conclusions

In  this  paper,  we  observed  that  developers  em-

ploy mathematical semantics for layouts at the appli-

cation  layer,  while  adopting  physical  semantics  for

layouts at the neural network library layer. Based on

these  observations,  we  proposed  a  novel  program-

ming abstraction and a layout resolution mechanism.

These innovations aim to bridge the gap between the

application layer's arbitrary layout utilization and the

layout conventions of  high-performance libraries.  No-

tably,  as  layout  resolution  occurs  at  runtime  in  the

VTensor framework, we uncovered two new opportu-

nities  for  layout  optimization:  the  elimination  of  re-

dundant layout transformation operations in the com-

putational  graph,  and the enhancement of  layout  se-

lection  for  element-wise  operators  with  broadcast  se-

mantics.  Our  experimental  results,  driven  by  typical

networks,  demonstrated  significant  benefits.  In  com-

parison to TensorFlow, using the VTensor framework

reduces  the  LOC  required  to  write  operators  by

47.8%.  Furthermore,  the  layout  optimization  tech-

niques  presented  in  this  paper  enhance  the  perfor-

mance of  the  entire  network by 18.6%. Thus,  VTen-

sor exhibits great potential for utilization in operator

development  on  emerging  accelerators  or  hardware,

such  as  Cambricon's  MLU and  Huawei's  Ascend,  ef-

fectively  boosting  network  performance  and  improv-

ing operator development efficiency.

However,  it  is  essential  to  note  that  VTensor  is

currently optimized for the layout decoupling of dense

tensors. The abstract representation of sparse tensors

remains an open challenge. In the future, our plan is

to  integrate  VTensor's  concepts  into  the  compiler's

intermediate  representation  to  support  the  abstract

representation of sparse tensors. 
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