

A Survey of Non-Volatile Main Memory File Systems

Ying Wang (王　盈), Member, CCF, ACM, IEEE
Wen-Qing Jia (贾文庆), Student Member, CCF, ACM, IEEE
De-Jun Jiang (蒋德钧), Member, CCF, ACM, IEEE, and
Jin Xiong (熊　劲), Senior Member, CCF, Member, ACM, IEEE

State Key Laboratory of Processors, Institute of Computing Technology, Chinese Academy of Sciences
Beijing 100190, China

Research Center for Advanced Computer Systems, Institute of Computing Technology, Chinese Academy of Sciences
Beijing 100190, China

University of Chinese Academy of Sciences, Beijing 100049, China

E-mail: wangying2023@ict.ac.cn; jiawenqing@ict.ac.cn; jiangdejun@ict.ac.cn; xiongjin@ict.ac.cn

Received October 9, 2020; accepted March 12, 2023.

Abstract Non-volatile memories (NVMs) provide lower latency and higher bandwidth than block devices. Besides,

NVMs are byte-addressable and provide persistence that can be used as memory-level storage devices (non-volatile main

memory, NVMM). These features change storage hierarchy and allow CPU to access persistent data using load/store in-

structions. Thus, we can directly build a file system on NVMM. However, traditional file systems are designed based on

slow block devices. They use a deep and complex software stack to optimize file system performance. This design results in

software overhead being the dominant factor affecting NVMM file systems. Besides, scalability, crash consistency, data

protection, and cross-media storage should be reconsidered in NVMM file systems. We survey existing work on optimizing

NVMM file systems. First, we analyze the problems when directly using traditional file systems on NVMM, including

heavy software overhead, limited scalability, inappropriate consistency guarantee techniques, etc. Second, we summarize

the technique of 30 typical NVMM file systems and analyze their advantages and disadvantages. Finally, we provide a few

suggestions for designing a high-performance NVMM file system based on real hardware Optane DC persistent memory

module. Specifically, we suggest applying various techniques to reduce software overheads, improving the scalability of vir-

tual file system (VFS), adopting highly-concurrent data structures (e.g., lock and index), using memory protection keys

(MPK) for data protection, and carefully designing data placement/migration for cross-media file system.

Keywords non-volatile main memory (NVMM), file system, performance, scalability, crash consistency, data protec-

tion, crossmeida

 1 Introduction

Emerging non-volatile memory (NVM)[1–4] is byte-

addressable and non-volatile, which can be used as a

memory-level storage device (non-volatile main mem-

ory, NVMM) to store file data. Compared with tradi-

tional block devices, such as solid state drives (SSDs)

and hard disk drives (HDDs), NVMM provides lower

latency and higher bandwidth. The performance bot-

tleneck of file systems is no longer the slow storage

devices, and software overhead becomes the major

factor affecting the performance[5, 6]. This motivates a

number of research efforts to optimize or redesign file

systems for NVMM over the past decade.

However, designing a high-performance and cost-

effective NVMM file system is non-trivial. Firstly, re-

ducing software overhead is important. Traditional

block-based file systems (such as ext3, ext4[7], xfs[8],

zfs①, btrfs[9], f2fs[10] and [11–15]) adopt a deep softw-

are stack to optimize the file I/O on block devices, in-

Survey

This work is supported by the Major Research Plan of the National Natural Science Foundation of China under Grant No.
92270202, and the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No. XDB44030200.

Wang Y, Jia WQ, Jiang DJ et al. A survey of non-volatile main memory file systems. JOURNAL OF COMPUTER SCI-

ENCE AND TECHNOLOGY 38(2): 348−372 Mar. 2023. DOI: 10.1007/s11390-023-1054-3

①S.Microsystems. ZFS. http://www.opensolaris.org/os/community/zfs, Mar. 2022.
©Institute of Computing Technology, Chinese Academy of Sciences 2023

https://doi.org/10.1007/s11390-023-1054-3
http://www.opensolaris.org/os/community/zfs

cluding page cache, block layer and I/O scheduler lay-

er. This deep software stack provides caching and I/O

scheduling to reduce data operations on slow disks

and accelerate file accessing. However, NVMM is

byte-addressable and provides lower access latency

than block devices. The deep software stack can re-

duce the performance of NVMM file systems. Remov-

ing these software stacks directly, such as page cache,

can improve the performance, but will reduce read

performance. This is because the read latency of real

NVMM hardware—Intel Optane DC persistent mem-

ory module (Optane PMM)② is longer than that of

DRAM (dynamic random access memory). Therefore,

re-architecting an NVMM aware software stack is

crucial to NVMM file systems. Besides, existing in-

dex structures in traditional file systems, such as B-

tree for the index file data block, are designed based

on block devices and cannot take the advantage of

NVMM being byte-addressable. Therefore, we should

consider the problems above to reduce software over-

heads of NVMM file systems.

Secondly, the increasing number of CPU cores al-

lows multiple threads to access file systems simultane-

ously and NVMM supports high concurrent acces-

ses[16–18]. Therefore, the NVMM file system should su-

pport high concurrent operations. However, the tradi-

tional block-based file systems are designed based on

deep software stacks, such as VFS and page

cache[19–22], which limits the concurrency of the file sy-

stem. Some studies improve concurrency by using

partition or storing data in memory temporarily and

then migrating to storage device. These studies bring

additional software operations, such as data merg-

ing[23, 24] and garbage collection[20], which increase the

latency on NVMM file systems. Therefore, NVMM

file systems should be reconsidered to improve scala-

bility and avoid long latency.

Thirdly, guaranteeing crash consistency is a fun-

damental requirement for file systems. Modern CPU

and memory systems may reorder data store instruc-

tions to memory, which may result in crash inconsis-

tency[18]. However, flushing data from the CPU cache

to NVMM sequentially harms the performance[12]. Be-

sides, traditional crash consistency techniques, such as

copy-on-write and log-structuring[25], are designed for

block devices that write the data at block granularity,

which results in write amplification on NVMM file

systems, and increases the amount of the data that

needs to be written and further reduces performance.

How to guarantee consistency and reduce the over-

head of guaranteeing consistency is an issue that

NVMM file systems need to consider.

Fourthly, data protection and NVMM endurance

are needed for NVMM file systems. Since NVMM can

be directly attached on the memory bus, threads can

access NVMM as regular memory. Some bugs from

unrelated threads may generate stray writes and re-

sult in data errors on NVMM file systems. Besides,

media errors from NVMM can cause incorrect values.

NVMM file systems need techniques to avoid errors

and to detect and correct errors after they occur. Ex-

isting studies provide software (e.g., error-correction

codes, checksum) and hardware (e.g., Intel memory

protection keys) techniques to solve these problems.

However, these techniques may degrade system per-

formance or require hardware support. Choosing an

efficient and appropriate write protection technique is

important for NVMM file systems. Besides, NVMMs

have limited endurance[17] and some cells may wear

out faster than others. In NVMM file systems, differ-

ent data has different update frequencies. Updating

some cells or blocks frequently may cause permanent

loss of data or even file corruption. Some studies[26, 27]

focus on metadata of file systems, which are often up-

dated in the fixed location. How to guarantee NVMM

cells to be evenly worn is an issue that should be con-

sidered when designing NVMM file systems.

Finally, NVMM is more expensive than block de-

vices[23, 28]. Building file systems only on NVMM is

too expensive especially for a data center. Consider-

ing the cost, capacity, performance and accessing

mode of different storage media and building a cross-

media file system are more desirable. How to place

data and perform data migration on NVMM and

block devices (SSD and disk) to build a high-perfor-

mance, cost-effective file system is a challenging issue.

There have been already a few surveys that sum-

marize the impacts of NVMM on storage systems. Wu

et al.[29] focused on Phase Change Memory (PCM) as

NVMM, explored the challenges of adopting PCM as

storage and main memory, and summarized and clas-

sified existing solutions. Chen[30] summarized device-

level optimization techniques for NVMM. Mittal and

Vetter[31] focused on using software and system-level

Ying Wang et al.: A Survey of Non-Volatile Main Memory File Systems 349

②Intel Corporation. Revolutionary memory technology. https://www.intel.com/content/www/us/en/architecture-and-technology/
intel-optane-technology.html, Mar. 2022.

https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html

techniques to exploit the advantages and mitigate the

disadvantages of NVMMs. However, these researches

are based on assumptions about NVMM performance,

which are different in certain aspects with the real

NVMMs.

To reveal the performance of previous NVMM file

systems on the real hardware Optane PMM, we sur-

vey the techniques of NVMM file systems and ana-

lyze their advantages and disadvantages in this paper.

Izraelevitz et al.[16] tested the performance of Optane

PMM and summarized the device characteristics,

which provide us suggestions for designing NVMM file

systems. Puglia et al.[32] derived the main concerns

and challenges currently being studied and discussed

in the academia and industry for NVMM file systems,

as well as the trends and solutions being proposed to

address them. However, they focused on theoretical

contents rather than experimental results and tech-

niques. We make a deeper introduction to the soft-

ware techniques of NVMM file systems, analyze these

techniques based on the performance of real hard-

ware Optane PMM, and provide some suggestions.

In this paper, we survey 30 NVMM file systems

and focus on the main problems on them. The main

contributions of the paper are as follows.

1) We summarize the challenging issues of NVMM

file systems and survey existing techniques, including

reducing software overhead, improving concurrency,

guaranteeing crash consistency, protecting file data,

and building cost-effective cross-media NVMM file

systems. Besides, we summarize the advantages and

limitations of existing techniques.

2) We propose possible optimizations and re-

search directions of NVMM file systems with real

hardware NVMM.

The remainder of this paper is organized as fol-

lows. Section 2 presents the characteristics of NVMM

and introduces file systems. Sections 3–6 survey the te-

chniques to reduce software overhead, improve scala-

bility, guarantee consistency, and protect data respec-

tively. We discuss building a cross-media file system

to reduce cost in Section 7. Finally, we conclude this

paper in Section 8.

 2 Background

 2.1 Non-Volatile Main Memory

The emerging non-volatile memory (NVM) pro-

vides low latency and persistent storage, which can be

used as a storage device to improve file system perfor-

mance. The existing NVM devices include ReRAM[2],

STT-RAM[3], Phase Change Memory (PCM)[1, 4] and

3D Xpoint③. Although these devices use different

techniques, they have the following advantages: pro-

viding access latency close to DRAM, and supporting

high concurrent accesses and persistent storage.

Currently, there are two ways to use NVM. One is

for external memory-level storage devices, providing

block access interfaces and connecting to the mother-

board by using PCIe bus (such as Optane DC SSD,

Optane SSD). The other is for memory-level storage

devices (NVMM), connecting to the memory bus and

providing load/store interfaces.

Table 1 shows the read and write (R/W) latency,

R/W bandwidth, capacity and price of DRAM, NVM-

M (PCM, Optane PMM), SSD, and disk[5, 16, 28, 33–36]

and the data is from Intel's website④ and jd.com in

July 2019. PCM is used as the basic device for aca-

demic research because of its high density, high scala-

bility and mature techniques. PCM has similar read

latency, 3x– 5x write latency and 1/8 bandwidth of

DRAM. A lot of researches[6, 18, 37–39] have considered

Table 1. Comparison of NVM Technologies with DRAM, SSD and Disk

Memory R/W Latency R/W Bandwidth (GB/s) Volatility Product Capacity Price (＄/GB)

DRAM 60 ns/60 ns 20 Yes 64 GB 4.49

PCM 50 ns–70 ns/150 ns–1 000 ns 7.8 No – –

Optane DC PMM 305 ns/81 ns 6–7/2–3 No 512 GB 5.34

Optane DC SSD µ µ10 s/10 s 2–3 No 1.5 TB 1.28

NVMe SSD µ µ120 s/30 s 2/0.5 No 8 TB 0.21

Disk 5 ms/5 ms 0.1 No 16 TB 0.03

Note: – means there is no data.

350 J. Comput. Sci. & Technol., Mar. 2023, Vol.38, No.2

③Intel. Intel and Micron produce breakthrough memory technology. https://www.intc.com/news-events/press-releases/detail/
324/intel-and-micron-produce-breakthrough-memory-technolog, Mar. 2022.

④https://www.intel.com/content/www/us/en/products/details/memory-storage/consumer-ssds/optane-ssd-9-series.html, Mar.
2022.

https://www.intc.com/news-events/press-releases/detail/324/intel-and-micron-produce-breakthrough-memory-technolog
https://www.intc.com/news-events/press-releases/detail/324/intel-and-micron-produce-breakthrough-memory-technolog
https://www.intel.com/content/www/us/en/products/details/memory-storage/consumer-ssds/optane-ssd-9-series.html

optimizing the file systems on PCM. However, due to

lacking real PCM products, the existing work evalu-

ates the performance using an emulator[18, 23, 40]. Re-

cently, Intel has provided the real NVMM device Op-

taneTM DC Persistent Memory Module (Optane

PMM) based on 3D XPoint that can be used for file

systems evaluations and replace the emulator. The

performance of Optane PMM in Table 1 comes from

experiments and existing work[16, 41]. We can see that

Optane PMM shows 3x slower read latency and simi-

lar write latency to DRAM. Besides, its read and

write bandwidth are about 1/3 and 1/8 of those of

DRAM respectively. The performance change from

PCM to Optane PMM motivates us to reconsider the

design of NVMM file systems.

In Table 1, we can see that NVMM provides low-

er latency than SSD and disk. Besides, it provides a

larger capacity than DRAM and is non-volatile. We

can build a file system on NVMM to improve perfor-

mance. However, NVMM is more expensive than SSD

and disk, and we should build a cross-media file sys-

tem on multiple storage media to reduce cost. In this

paper, we only focus on file systems on NVMM,

which can be used as memory and provide load/store

interfaces.

To show the performance of Optane PMM and

obtain some conclusions, we run some experiments

and show results in this paper. We conduct all experi-

ments on a server equipped with two sockets (NUMA

nodes). Each socket contains one Intel Xeon Gold

6271 CPU, 128 GB DRAM and two 256 GB Optane

PMMs. Each CPU has 24 cores and a shared 3.3 MB

last level cache (LLC). All experiments are running in

Centos 7.4.1708 with Linux kernel 4.18.8. We run all

evaluations in NUMA node 0 to exclude the impact of

NUMA architecture. We set Optane PMM in App Di-

rect Mode[16], which is directly exposed to the CPU

and operating system.

 2.2 File System

The file system divides the data into file data and

metadata. The application data is stored in the file

data. The file system is not aware of the content of

file data and only treats the file data as byte streams.

Applications use write interface to store data and

read interface to read data. Metadata records the file

system and file information to support file data read

and write operations.

File system metadata is mainly divided into two

categories. One is the file system metadata, which

records the global information of the file system, such

as storage space and namespace. For example, we can

use the namespace to find the target file. The other is

file metadata⑤, which records the attribute informa-

tion and data location of each file. When accessing a

file, the file system finds the target file by using the

namespace, and locates the file data block by using

file metadata.

Taking writing a file on ext4 as an example, the

application needs to execute at least three system

calls: open, write and close. The open operation finds

the target file, checks the write permission and marks

the file accessing. The write operation locates the tar-

get file data block, and then writes the data. In this

process, the file system may need metadata informa-

tion to allocate new space to write data. Finally, the

application uses close to stop the file operations, and

the file system can recycle the file cache in DRAM.

During the entire operation, the file system needs ac-

cess data and metadata in storage devices.

The existing studies optimize these operations to

improve performance. The file system calls (such as

open and close) are handled in the virtual file system

(VFS, as shown in Fig.1(a)). Since the block device is

not byte-addressable and metadata is usually updat-

ed by several or tens of bytes, VFS caches file system

metadata in DRAM to accelerate the file lookup. Be-

cause the disk provides high access latency, the block-

based file system builds page cache in DRAM to re-

duce data operations on disk. Besides, file systems use

the block layer to support block devices and use the

I/O scheduler layer to reorder requests to reduce long

disk seek time.

 2.3 Design Challenges of NVMM File

Systems

We introduce the challenges of file systems on

NVMM, including performance, data correctness and

cost.

 2.3.1 Performance

File systems should provide low latency. This in-

cludes avoiding additional software operations, opti-

Ying Wang et al.: A Survey of Non-Volatile Main Memory File Systems 351

⑤The file refers to the original file and the special file, such as the directory file.

mizing file system index structures and using DRAM

cache. How to design software operations to obtain

low latency for NVMM file systems is a challenge.

Besides, file systems should support high concur-

rency. With the development of multicore, paralleliz-

ing I/O operations is a key technique to improve stor-

age performance. Nearly all applications implement

concurrent I/O operations, including mobile[42] and

desktop[43]. NVMM supports concurrency accessing,

and requires file systems to avoid contention across

the entire I/O path and support highly concurrent

operations.

 2.3.2 Data Correctness

File systems should guarantee the crash consisten-

cy and correctness of file data. Crash inconsistency is

caused by performing incomplete write operations.

For example, a file write operation needs to update

file data and metadata. The system may crash when

the data has been updated but the metadata is not

updated. When one file system is remounted, only up-

dating the data causes the file system being inconsis-

tent. File systems need to guarantee crash consisten-

cy with minimal overhead.

Apps

VFS

Traditional FS

Page Cache

I/O Scheduler Layer

Disk/SSD

IO

Block Layer

Kernel

Buffer I/O Direct I/O

Apps

VFS

IO

Kernel

NVM FS

Memory Interface

NVMM

Apps

User

User

UserUser

Kernel

Memory Interface

NVMM

NVM FS

Apps

Memory Interface

FS Library

User

Data Access

Privilege Change
File Mapping

Module

Kernel

Apps

VFS

IO

Memory Interface

Kernel

NVM FS

Asyn Writes

Syn Writes

DRAM

(b)(a) (c)

(d) (e)

NVMM NVMM

Fig.1. Architecture of several major NVMM file systems. (a) Traditional I/O architecture. (b) NVMM FS architecture. (c) Bypass-
ing VFS architecture. (d) User-level architecture. (e) Using cache architecture.

352 J. Comput. Sci. & Technol., Mar. 2023, Vol.38, No.2

In addition, file systems need to protect the data

on NVMM. This is because stray writes and storage

media errors can cause changes to the data that has

been written to the file system. File systems should

provide data protection techniques to avoid, detect

and correct these data errors.

 2.3.3 Cost to Build

Building file systems should also consider cost.

NVMM provides high performance and is byte-ad-

dressable, building file systems only on it has a high-

er performance than block-based file systems. Howev-

er, NVMM provides high cost and small capacity (Ta-

ble 1). It is too expensive to use the NVMM file sys-

tem on a data center. Therefore, cross-media file sys-

tems are a better choice, which should consider the

performance, capacity and accessing mode of each

storage media. For cross-media file systems, we

should solve the data placement and the migration

problem.

 3 Reducing Software Overhead

NVMM is byte-addressable and provides persis-

tent storage, and we can directly access file data in it

by using load/store interfaces. Compared with block-

based file systems with the deep software stack,

NVMM file systems should reduce software overhead.

In this section, we first introduce traditional software

operations of block-based file systems. Then we intro-

duce several major optimizations to reduce software

overhead in NVMM file systems. Finally, we summa-

rize and discuss these technologies based on the per-

formance of the real hardware Optane PMM.

 3.1 Software Stack of Block-Based File

Systems

Fig.1(a) shows the traditional I/O architecture of

kernel-level block-based file systems, which have the

deep software stack. VFS caches file metadata. When

accessing a file, one first accesses the metadata cache

in VFS and then accesses data. If the accessing meta-

data is not found in VFS, one searches metadata in

page cache or block devices and then updates VFS.

Page cache caches all file data (including file metada-

ta and data), which can avoid accessing slow block

devices frequently⑥. If page cache does not contain

the accessing data, one should access data in slow

block devices. Since block devices only support read

or write operations in fixed-size block granularity, a

generic block layer is established below the file sys-

tems to convert data into blocks. Besides, the I/O

scheduler layer reorders and merges I/O operations to

reduce random I/O and improve spatial locality. [44]

shows the complicated IO stack can occupy almost

half of the whole execution time. NVMM is byte-ad-

dressable and provides access latency close to DRAM.

Therefore, the software operations of page cache, the

block layer and the I/O scheduler should be reconsid-

ered for NVMM file systems.

 3.2 Shortening I/O Stack

A number of studies shorten software stack to re-

duce software overhead. NVMM file systems, such as

BPFS[37], SCMFS[6], PMFS[5] and NOVA[18], remove

page cache, block layer (Fig.1(b)). Ext4⑦ and xfs⑧ al-

so use the direct access (DAX) mechanism to directly

access file data on NVMM. File data can be accessed

directly and quickly by using memory interfaces

(load/store).

The studies of [45, 46] argue that the metadata

cache in VFS is also unnecessary for NVMM file sys-

tems (Fig.1(c)). They shorten the metadata path by

bypassing VFS, which lets one directly access metada-

ta. They can improve the performance of metadata

write operations, such as creating or deleting a file.

 3.3 Building NVMM-Aware Cache

NVMM has a higher latency than DRAM (Table

1). Compared with caching data (page cache) and

metadata (VFS) in DRAM, accessing to NVMM di-

rectly reduces system performance[38]. For example,

PCM has the higher write latency than DRAM and

directly writing data to PCM is less performant than

writing data in DRAM. However, using DRAM to

cache data introduces double-copy overhead for all file

operations[38] when cache misses occur. Therefore, one

can build an NVMM-aware DRAM cache to improve

performance in NVMM file systems (Fig.1(e)).

HiNFS[38] builds an NVMM-aware (PCM) write

Ying Wang et al.: A Survey of Non-Volatile Main Memory File Systems 353

⑥File systems also support direct I/O, which bypasses page cache and directly accesses data on block devices.
⑦Corbet J. Supporting filesystems in persistent memory. https://lwn.net/Articles/610174/, Mar. 2022.
⑧Chinner D. xfs: Dax support. https://lwn.net/Articles/635514/, Mar. 2022.

https://lwn.net/Articles/610174/
https://lwn.net/Articles/635514/

buffer in DRAM to buffer the lazy-persistent file

writes. It persists the buffered data to NVMM lazily

to hide the long write latency of NVMM.

DirectFS[47] builds a small metadata cache in VFS

to optimize metadata performance, which can keep

original metadata read performance and optimize

metadata write performance. Compared with remov-

ing VFS cache directly[45, 46], DirectFS can avoid

harming metadata read performance.

 3.4 Using User-Level File Systems

Some studies[23, 46, 48–53] suggest using user-level in-

terfaces to improve the performance of NVMM file

systems. They execute file read/write operations at

user level and only use a kernel module to perform

privileged operations, such as hardware privilege

changes and memory mapping. These studies not on-

ly remove VFS and page cache, but further reduce

the overhead of system calls and kernel interaction

(Fig.1(d)).

 3.5 Optimizing File System Indexing

File systems use index structures to find data lo-

cations quickly. The index structures in file systems

can be divided into three categories. The first is the

file index, which is used to support namespace. We

can use it to find the target file. The second is the file

data block index, which is used to locate file data

block in a file. The last one manages free space in the

file systems. These index structures are important for

getting good file system performance. NVMM file sys-

tems can use efficient index structures to optimize file

operations. In addition, NVMM has a higher read la-

tency than DRAM, and one can build index struc-

tures in DRAM to accelerate data lookup.

 3.5.1 Using Efficient Index Structure

File Index. File index is used to look up the tar-

get file. In file systems, this lookup process involves

two index structures. One uses the file name to find

the file dentry in the directory index. The other uses

the inode number in the dentry to look up the file in-

ode.

Block-based file systems use B-tree[9] and Htree[7]

as the directory index. These tree structures are suit-

able for block devices but cannot utilize NVMM's

high performance fully. For example, B-tree has high

spatial locality, which reduces the seek operations of

block devices. However, NVMM does not require

seeking and supports byte-addressability. The advan-

tages of B-tree in block devices are gone, which intro-

duces a lot of consistency overhead[36, 54, 55] and re-

duces the performance[6, 56]. Aerie[52] and SoupFS[38]

use the hash table as the directory index, which can

take full advantage of byte-addressable NVMM.

Since the inode number is an integer and can be

allocated consecutive numbers, file systems can store

inodes in the inode table according to the inode num-

ber, such as ext4. By this way, file systems can calcu-

late the offset of the target inode by using the inode

number and then locate the inode directly. The inode

table provides high lookup performance, and NVMM

file systems can reuse it, such as PMFS[5].

File Data Block Index. File systems locate file da-

ta blocks by using the file data block index. We use

the indirect index block in ext3 as an example. As

shown in Fig.2(a), file systems read metadata from

the inode, and get the virtual address of indirect in-

dex block 1 (ind1, ① in Fig.2(a)). Then, file systems

transform the virtual address to the physical address

by using the page table to get indirect index block 1

(② in Fig.2(a)). After that, file systems read the indi-

rect index block 1 to get virtual address of the indi-

rect block 2 (③ in Fig.2(a)). The above process can

be repeated until the target block 1 is reached. Each

time a block is accessed, and it is necessary to look up

the file data block index structure and the page table.

NVMM file systems can directly use a high-perfor-

mance index structure to replace the file data block

index. For example, NOVA[18] uses the radix tree as

the file data block index structure.

In addition, NVMM has the same addressing

mode as DRAM, and file systems can remove the file

data block index to improve the performance.

SCMFS[6] pre-allocates a continuous large address

space (such as 10 GB) for each file to avoid using the

file data block index. In this way, SCMFS can direct-

ly access data block by using offset. As shown in

Fig.2(b), we can directly locate the virtual address of

block 1 by adding offset (4 KB) on the start virtual

address of file A. Then, it uses the page table to

translate the virtual address into a physical address.

The page table is accessed by hardware memory man-

agement unit (MMU), which has much higher perfor-

mance than software operations.

SIMFS[56] has a similar idea to SCMFS—building

a continuous virtual address space for each file. The

354 J. Comput. Sci. & Technol., Mar. 2023, Vol.38, No.2

difference is that it build continuous space by using a

file page table. Items in the file page table (PGD in

Fig.2(c)) record the physical address of the next page

table or target block. When a file is opened, SIMFS

directly inserts the file's page table into the process

page table. Since the file's page table occupies a con-

tiguous virtual space, SIMFS can directly access the

file data block by calculating the address offset.

Free Space Index. The free space index can be

subdivided according to the type of free space, such

as free data space and free inodes. Traditional block-

based and memory (such as ramfs) file systems have

provided a lot of index structures, which can provide

high performance. NVMM file systems can use these

index structures directly. For example, btrfs and NO-

VA[18, 39] use the red-black tree. This is because the

red-black tree can sort the free lists by addresses, al-

low for efficient merging, and provide O(logn) deallo-

cation.

 3.5.2 Index Structure Placement

Since NVMM has a higher read latency than

DRAM, building index structures in DRAM can pro-

vide higher read performance than NVMM. NOVA[18]

builds directory index and file data block index in

DRAM to perform index operations quickly. Strata[23]

builds file data block index in DRAM. SoupFS[57] and

NOVA[18] build free space index in DRAM. These op-

erations benefit from the low read latency of DRAM.

 3.6 Summary and Discussion

Table 2 classifies the optimization techniques of

reducing software overhead on NVMM file systems.

Now, we summarize and discuss them.

 3.6.1 I/O Stack

The software overhead caused by the deep stack

for block devices should be removed for NVMM file

systems. This is because NVMM is byte-addressable,

and these software operations are unnecessary and re-

duce performance. As shown in Table 2, most NVMM

file systems remove the block layer.

...

0 4 KB 16 KB8 KB
Virtual Address

Block 1Block 2Block 0

File 

Physical Address
Page Table

Block: Data BlcokInd: Indirect Index Block

NVMM

...

...

...

...

1

4

2

3

Page Table

PGD

PUD

Block 1

Ind1

Ind2

Inode

Virtual
Address

Physical Address

(b)(a)

(c)

Physical Address

File Data Block Index Page Table

PGD

PUD

PMD

PTE

Ind1

Ind2

Virtual
Address...

...

...

...

...

...

21

3 4

65

Inode

Block 1

Fig.2. File data block index structure of (a) ext3, (b) SCMFS, and (c) SIMFS.

Ying Wang et al.: A Survey of Non-Volatile Main Memory File Systems 355

 3.6.2 NVMM-Aware Cache

Some studies argue that traditional cache is re-

dundant and should be removed[5, 6, 37, 45, 57]. However,

DRAM cache can also optimize NVMM file system

performance. Fig.3 shows the bandwidth when per-

forming single random read/write operations for the

disk file system (ext4 with page cache) and the

NVMM file system (ext4-dax and NOVA[18] without

page cache) in Optane PMM. We get these results by

using fio⑨. Compared with ext4, ext4-dax and NO-

VA improve the write bandwidth by reducing page

cache. This is because Ext4 needs to write data in

both page cache and Optane PMM. Optane PMM

and DRAM have similar write latency (see Table 1).

However, Optane PMM shows 3x higher read latency

than DRAM. Removing page cache reduces the read

bandwidth. As shown in Fig.3, ext4 outperforms ext4-

dax and NOVA on read bandwidth by 70.2% and

76.2% respectively.

Therefore, NVMM file systems should build an

NVMM-aware DRAM cache to reduce the number of

NVMM accesses. If NVMM has long write latency

and low write bandwidth, building a write buffer for

asynchronous writes is better. For example, PCM has

a higher write latency than DRAM. HiNFS[38] builds a

write buffer to use non-fsync writes to PCM. Com-

pared with ext4-dax, HiNFS improves the system

throughput by up to 184%.

If NVMM has long read latency (Optante PMM),

building a read buffer for read-heavy workloads is

better. As shown in Fig.3, ext4 with page cache has

higher read bandwidth than ext4-dax and NOVA. For

mixed read and write workloads, we can build cache

according to the data characteristics. For example,

DirectFS[47] builds a small NVMM-aware metadata

cache to keep metadata read performance and opti-

mize write performance. Fig.4 shows the metadata la-

tency of DirectFS. Cold cache means that VFS does

Table 2. Optimization Techniques of Selected NVMM File Systems

Optimization Technique Technique Detail NVMM File System

Shortening I/O stack Removing page cache and
block layer

BPFS[37], SCMFS[6], SIMFS[56], FSMAC[58], NVMFS[59],
TridentFS[60], Shortcut-JFS[61], DenseFS[62], pNOVA[63],
EVFS[53], SPFS[46], PMFS[5], ext4-dax, xfs-dax, Aerie[52],
HiNFS[38], HMVFS[64], NOVA[18], NOVA-Fortis[39],
Strata[23], SoupFS[57], Ziggurat[28], SplitFS[50], ZoFS[48]

Bypassing VFS SPFS[46], ByVFS[45]

Building NVMM-aware cache – HiNFS[38], DirectFS[47]

Using user-level file systems – [49], EVFS[53], SPFS[46], Aerie[52], Strata[23], DevFS[51],
SplitFS[50], ZoFS[48]

Using efficient index structures Optimizing file index SoupFS[57], Aerie[52]

Optimizing file data block index SCMFS[6], SIMFS[56], NOVA[18]

Optimizing free space index NOVA[18], NOVA-Fortis[39]

Building index structures in DRAM – Strata[23], NOVA[18], NOVA-Fortis[39], SoupFS[57]

B
a
n
d
w

id
th

 (
G

B
/
s)

7

6

5

4

3

2

1

0
1 128164

(a)

Operation Block Size (KB)

1 128164

Operation Block Size (KB)

ext4

ext4-dax

NOVA

B
a
n
d
w

id
th

 (
G

B
/
s)

7

6

5

4

3

2

1

0

ext4

ext4-dax

NOVA

(b)
Fig.3. File system bandwidth when preforming random (a)
read and (b) write operations.

356 J. Comput. Sci. & Technol., Mar. 2023, Vol.38, No.2

⑨Fio-2.14. https://github.com/axboe/, Mar. 2022.

https://github.com/axboe/

not contain file metadata before accessing the file.

Warm cache represents that VFS contains file meta-

data before accessing the file. For reading (stat) in

cold cache and all writing operations (create, rename
and delete), DirectFS improves the metadata perfor-

mance by 48.1% on average compared with existing

NVMM file systems ext4-dax and NOVA. For meta-

data reading in warm cache, DirectFS can keep the

similar performance to existing NVMM file systems.

 3.6.3 User-Level File Systems

User-level file systems can reduce kernel interac-

tion and system call overhead. However, this results

in applications running in their separate address

spaces and introduces communication overhead when

multiple applications access a shared file concurrently.

Therefore, one can use the user-level file systems

when files are rarely accessed by multiple applica-

tions. Otherwise, we should build kernel-level NVMM

file systems. Kernel-level file systems can reduce the

communication overhead between processes.

 3.6.4 NVMM-Friendly Index

NVMM file systems should build efficient index

structures. SCMFS[6] and SIMFS[56] use a memory

management module to index file data blocks Howev-

er, they have some limitations. SCMFS limits the size

of each file. SIMFS needs to modify the page table

frequently, which is complex and difficult to use.

Therefore, we argue that using an efficient index

structure is better, such as radix tree. Radix tree⑩ is

suited for the file data block index because the key of

data block is block offset and is distributed densely.

Radix tree occupies a small space and provides high

performance for densely-distributed keys.

We suggest using a hash table[54, 55, 65] as the di-

rectory index. We can build a hash table for each di-

rectory or the entire file system shares a global hash

table (the key of hash table consists of the file's par-

ent directory inode number and the file name). This

is because the hash table provides high performance

for single key operations (open, remove and stat in file

systems). Besides, it is unnecessary to support range

query operations for directory indexes. File systems

can use readdir (command ls) to scan all data blocks

in the directory.

For other indexes in the NVMM file systems, such

as the inode table and free space index, we can direct-

ly use the index structures of traditional file systems

because these index structures can provide high per-

formance. However, existing file systems use different

index structures, for instance ext4[7] uses the inode ta-

ble and btrfs[9] uses B-tree to index inodes. We need

to know the characteristics of each index structure

and make an appropriate choice. For example, the in-

ode table can quickly locate the target inode by calcu-

lating the offset. But its size and storage location are

fixed, which limits the number of files in the file sys-

tem.

Based on the characteristics of Optane PMM,

building the index structure in DRAM is better than

in Optane PMM. This is because the read latency of

Optane PMM is 3x higher than that of DRAM, and

there are more lookup operations than update opera-

tions for index structures in file systems. More impor-

tantly, the operation granularity of Optane PMM is

256 B. Index structures often require modifying a

ext4-dax
NOVA
DirectFS

E
x
e
c
u
ti
o
n
 T

im
e
 (
m
s)

16

14

12

10

8

6

4

2

0

















(a)

ext4-dax
NOVA
DirectFS

E
x
e
c
u
ti
o
n
 T

im
e
 (
m
s)

16

14

12

10

8

6

4

2

0

















(b)
Fig.4. Latency of metadata operations. stat, create, rename and
delete use system calls and perform reading, creating, renaming
and deleting a file respectively. (a) Cold cache. (b) Warm
cache.

Ying Wang et al.: A Survey of Non-Volatile Main Memory File Systems 357

⑩Corbet. Trees i: Radix trees. https://lwn.net/Articles/175432/, Mar. 2022.

https://lwn.net/Articles/175432/

pointer (address, 8 B), which can also result in write

amplification. Building index structures in DRAM re-

quires the file system to support recovery after sys-

tem crashes. Since directory index and free space in-

dex can be recovered by scanning all the metadata of

the file system, they can be built in DRAM.

 4 Improving File System Scalability

With hardware supporting highly concurrent oper-

ations, such as multi-cores and NUMA architectures,

parallelizing I/O is a key technology to improve per-

formance[43]. As shown in Fig.5, the system has two

NUMA nodes, and each node contains DRAM,

NVMM, disk and CPU. Each CPU has eight CPU

cores. Multiple threads can concurrently access

DRAM, NVMM, and disk on different NUMAs using

different CPU cores. Besides, nearly all applications

need concurrent I/O operations[66], including mobile

database[42], desktop database[43], relational databa-

se⑪, and NoSQL databases RocksDB⑫ and Mon-

goDB⑬. These all require file systems to provide high

concurrent I/O support.

APP APP APP APP APP APP

9 10 11 12

13 14 15 16

1 2 3 4

5 6 7 8

APP

File System

CPU 0 CPU 1

NUMA Node 0 NUMA Node 1

DRAM NVMM DRAM NVMM

Disk Disk

Fig.5. NUMA architecture with two NUMA nodes. APP repre-
sents application.

Traditional file systems are designed for slow

block devices and use a deep software stack to oper-

ate files[19–22], limiting file system concurrency. Some

file systems improve scalability by using partition[19, 20]

or isolation[21, 22]. However, they are still limited by

the software stack[66]. Besides, some studies improve

concurrency by increasing additional software opera-

tions, such as data merging[23, 24] and garbage collec-

tion operations[20], but increase read and write laten-

cy. NVMM provides lower access latency than SSD

and disk (Table 1), and additional software opera-

tions will add NVMM file system latency.

In this section, we analyze the main factors affect-

ing concurrent operations and introduce the existing

techniques based on the NVMM file system. We then

summarize and discuss these techniques.

 4.1 VFS Lock

Existing NVMM file systems[5, 6, 18, 37–39, 48, 50] use

VFS to cache metadata. VFS uses read-write locks in

each directory, limiting only one writer or multiple

readers to run in a single directory. Fig.6 shows the

impact of VFS on metadata scalability. To fully ana-

lyze the performance, we show the throughput when

metadata is cached (create, stat) and when metadata

is not cached (stat_cold) respectively. For metadata

write operations (create), the read-write lock limits

the increase of throughput. For metadata read opera-

tions when metadata is cached (stat), VFS uses RCU-

walk⑭ to support concurrent reads when metadata is

cached, and it scales well with increasing threads.

However, when metadata is not cached (stat_cold),

the path lookup fails to scale due to the read-write

lock contention in VFS. Therefore, if we keep VFS on

NVMM file systems, we should improve the metada-

0

2

4

6

8

10

12

1 4 8 12 16 20 24

T
h
ro

u
g
h
p
u
t

(o
p
s/

s)



_

Number of Cores

106

Fig.6. Metadata scalability on ext4-dax. ops/s means the num-
ber of operations per second.

358 J. Comput. Sci. & Technol., Mar. 2023, Vol.38, No.2

⑪https://mariadb.org/, Mar. 2022.
⑫Facebook. Rocksdb. http://rocksdb.org/, Mar. 2022.
⑬https://www.mongodb.org/, Mar. 2022.
⑭Path walking and name lookup locking. https://www.infradead.org/~mchehab/kernel_docs/filesystems/path-walking.html,

Mar. 2023.

https://mariadb.org/
http://rocksdb.org/
https://www.mongodb.org/
https://www.infradead.org/~mchehab/kernel_docs/filesystems/path-walking.html
https://www.infradead.org/~mchehab/kernel_docs/filesystems/path-walking.html
https://www.infradead.org/~mchehab/kernel_docs/filesystems/path-walking.html

ta scalability.

DirectFS[47] co-designs the metadata between VFS

and a physical file system, using fine-grained flags and

atomic write to remove directory locks in VFS, im-

proving metadata scalability.

 4.2 Consistency-Induced Contention

File systems require to guarantee consistency (see

Section 5). Since the disk does not support concur-

rent access and has a long seek time, traditional file

systems are designed with space locality. For exam-

ple, ext4 and xfs only allow one thread to write jour-

nal, which causes multi-thread competition overhe-

ad[20].

Strata[23] and Aerie[52] create logs for each process,

which reduces contentions between processes. Howev-

er, they cannot solve the contention in threads with-

in one process, such as the RocksDB and MySQL

database running multiple threads in one process. Al-

so, when multiple processes access the same file, they

introduce a lot of inter-process communication over-

head to synchronize the logs.

NOVA[18], NOVA-Fortis[39] and DevFS[51] allocate

one log (journal) for each file. They prevent races be-

tween different files. To support operations on multi-

ple files, such as rename, NOVA uses global journal-

ing to support multiple file operations. To further re-

duce contention, NOVA allocates the global journal

to each CPU core, and the global journal of each

CPU core can record update information of all files.

 4.3 Space Allocation Contention

Providing high concurrency of space allocation is

important for file system scalability. Traditional disk-

based file systems only use one space allocator, and

all threads compete for the allocator. For example,

btrfs[9] uses a red-black tree as a space allocator. The

red-black tree only allows a single thread to modify

concurrently.

NOVA[18] pre-allocates free space to each CPU

core. When a thread allocates space, NOVA first allo-

cates space of the CPU core where the thread is run-

ning on. This makes the threads run on different CPU

cores conflict-free. Only when there is no enough

space on the current CPU core, NOVA acquires space

from other CPU cores. Compared with NOVA,

SoupFS[57] adds objects to each CPU core, including

dentries, inodes, B-tree nodes and hash table buckets.

ZoFS[48] pre-allocates free space to each thread, avoid-

ing conflicts between threads.

 4.4 File Lock

pNOVA[63] and Ziggurat[28] use a fine-grained ran-

ge lock for a file, avoid using mutex lock[5, 6, 18, 37–39]

and allow a file to be written simultaneously by mul-

tiple threads.

 4.5 Summary and Discussion

The factors limiting concurrent operations in

NVMM file systems can come from the file systems

themselves as well as other parts of the software

stack, such as VFS. In this subsection, we make some

suggestions for NVMM file systems. Table 3 shows

the optimization aspects of the existing NVMM file

systems for concurrent operations, including optimiz-

ing VFS lock and reducing consistency-induced con-

tention, space allocation contention and locking

range.

Table 3. Concurrency Techniques of Selected NVMM File
Systems

Different Contention NVMM File System

VFS lock DirectFS[47]

Consistency-induced
contention

NOVA[18], NOVA-Fortis[39], Strata[23],
DevFS[51], Aerie[52]

Space allocation
contention

NOVA[18], NOVA-Fortis[39], ZoFS[48]

File lock pNOVA[63], Ziggurat[28]

Firstly, removing the VFS lock is necessary. Di-

rectFS uses fine-grained flags and atomic writes to re-

move the directory lock in VFS. We use mdtest⑮, a

metadata benchmark, to show the metadata scalabili-

ty of DirectFS (see Fig.7). Since VFS locks the whole

directory, ext4-dax and NOVA fail to scale file create.

DirectFS removes the VFS locks and improves meta-

data scalability.

Secondly, it is important to allocate multiple re-

sources to reduce contentions in NVMM file systems,

including consistency and space allocation induced

contention. NOVA[18] allocates one log for each file,

and each thread can write log without contention.

Fig.8 shows the scalablity of NOVA and ext4-dax.

We can see that NOVA (NOVA_D) has high scalabil-

ity than ext4-dax (ext4-dax_D). Since NVMM has

low bandwidth, there is little difference in perfor-

Ying Wang et al.: A Survey of Non-Volatile Main Memory File Systems 359

⑮https://github.com/MDTEST-LANL/mdtest, Mar. 2022.

https://github.com/MDTEST-LANL/mdtest

mance between NOVA (NOVA_N) and ext4-dax

(ext4-dax_N) when being tested on NVMM.

Finally, using fine-grained locking and concurrent

index can improve file system concurrency.

Using Fine-Grained Locking. The key to using

fine-grained locking is to find contention operations

and only lock them. For example, when creating a

new file in directory A, the file system needs to allo-

cate inodes and dentries, and then update the meta-

data of directory A. Traditional file systems lock the

entire process. In fact, we only need to lock the pro-

cess of modifying metadata of directory A. This is be-

cause the operations of allocating dentries and inodes

do not interfere with one another. They can be exe-

cuted concurrently.

Using Concurrent Index. The index structures of

block-based file systems, such as B-trees and

Htrees[67], do not support concurrent operations and

have high consistency overhead on NVMM. We rec-

ommend considering memory index (hash table) and

some new index structures[54, 55, 65] for NVMM file sys-

tems. Fig.7 shows the scalability of DirectFS when us-

ing hash table (DirectFS), radix tree (DirectFS_r)

and B-tree (DirectFS_b) as the directory index. Since

radix tree and B-tree only allow one thread updating,

DirectFS_r and DirectFS_b cannot improve metada-

ta throughput when the number of threads is up to

12. DirectFS uses the chain hash table as the directo-

ry index, which supports high scalability.

For some index structures that only need to be ac-

cessed by a single thread, simple data structures are

better. For example, SoupFS[57] uses the linked list as

the free objects inode. This is because these free ob-

jects have the same size and there is no thread con-

tention. Linked list can efficiently support space allo-

cation and deallocation operations for a single thread.

 5 Guaranteeing Crash Consistency

File systems should remain consistent after sys-

tem crashes, which requires that a single operation,

such as open system call, is committed in all or none

fashion. However, a single file system operation usual-

ly involves multiple steps and updates multiple

places. For example, creating a file (open system call)

requires building new file metadata and updating par-

ent directory metadata atomically. Since the atomic

write granularity of storage devices is sector (SSD and

disk) or byte (NVMM), they cannot complete all the

updates in multiple positions atomically. File systems

require additional mechanisms to guarantee consisten-

cy.

NVMM is byte-addressable and supports direct

access by the CPU load/store instructions. However,

unanticipated cache line eviction may cause data to

be written out of order. This causes partial data loss

if the system crashes, resulting in an inconsistent file

system. We can use cache flush instructions (clflush,
clwb, clflushopt) and memory fence instructions

(sfence, mfence, lfence) to perform sequential data

write and ensure consistency on NVMM file systems.

However, these instructions suffer from long execu-

tion time and serialize memory operations, reducing

performance. Traditional consistency techniques are

based on block devices, which write data with block

granularity and result in write amplification. Write

amplification further increases the use of cache flush

and memory fence instructions, increasing the over-

head of maintaining consistency.

In this section, we introduce and analyze consis-

tency techniques, including copy-on-write, journaling,

log-structuring, soft updates and snapshot. Besides,

we give some suggestions on NVMM file systems.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Number of Cores

ext4-dax
NOVA
DirectFS_r
DirectFS_b
DirectFS

1 4 8 12 16 20 24

T
h
ro

u
g
h
p
u
t

(o
p
s/

s)

106

Fig.7. Metadata scalability of creating file.

0

2

4

6

8

10

12
NOVA_D
NOVA_N
ext4-dax_D
ext4-dax_N

Number of Threads

1 4 8 12 16 20 24

T
h
ro

u
g
h
p
u
t

(o
p
s/

s)

106

Fig.8. Impact of consistency scalability. N and D represent
running on NVMM and DRAM respectively.

360 J. Comput. Sci. & Technol., Mar. 2023, Vol.38, No.2

 5.1 Copy-on-Write

Copy-on-write (COW) copies the data before it is

modified[68], which allocates new space and writes new

data, and then atomically replaces the old data with

new data. After the system crashes, one can only see

old data or new data. However, COW can cause itera-

tive updates.

Fig.9(a) shows how COW works when updating

block 2 in file A. File A's metadata stores in the in-

ode table (InA in Fig.9(a)), and the inode uses indi-

rect index blocks (Inds) to index data blocks (same to

ext3 in Subsection 3.5.1). Block-based file systems

first allocate a new block 2* and write new data to it

(① in Fig.9(a)). Then one updates the pointer in indi-

rect index block 2 (Ind2 in Fig.9(a)) from block 2 to

block 2*. Although only updating several bytes,

block-based file systems need to allocate a new block

and rewrite the indirect index block 2 (② in

Fig.9(a)). After that, COW updates the pointer in in-

direct index block 1 (Ind1, ③ in Fig.9(a)). The above

process can be repeated until the inode block A is up-

dated. This process quadruples the amount of data

written in the file system. If a file contains more indi-

rect index blocks in the search path, the write ampli-

fication will be larger.

BPFS[37] incorporates atomic in-place updates

with COW to reduce write amplification. As shown in

Fig.9(b), since file systems only require updating a

pointer (8 B) in indirect index block 2 (Ind2 in

Fig.9(b)), BPFS can update the pointer in NVMM

atomically, avoiding iterative updates and reducing

write amplification. However, atomic update does not

support the operation of multiple data. For example,

if one operation rewrites eight blocks, BPFS should

update eight pointers in indirect index block 2 atomi-

cally. Since the atomic instructions do not support,

BPFS needs to COW the indirect index block 2.

...

...

2

1

3
In

Ind1

Ind2

Block 1 Block 2

1

3

2

4

...

...

...

...

In: Inode Block; Block: Data Blcok
Ind: Indirect Index Block

In In*

Ind1 Ind1*

Ind2 Ind2*

Block 1 Block 2 Block 2* 1

2

...

...

In

Ind1

Ind2

Block 1 Block 2 Block 2*

Old Pointer

New Pointer

1

...

...

3

2

In

In

Ind1

Ind2

Block 1 Block 2

Block 2

Old Data

New Data

Additional Data

(b)(a)

(c) (d)

Fig.9. Consistency technology of COW and journaling. Inode block (InA) stores file inodes; indirect index block (Ind) stores directo-
ry index; block stores file data; new data: new written data in file system; additional data: extra data caused by writing new data.
(a) Traditional COW technique. (b) NVMM COW technique. (c) Traditional journaling technique. (d) NVMM journaling technique.

Ying Wang et al.: A Survey of Non-Volatile Main Memory File Systems 361

NOVA[18] and PMFS[5] use COW to guarantee

crash consistency of file data. For metadata, they use

journaling and log-structuring (Subsections 5.2 and

5.3 show more details). This is because metadata up-

dates are usually several bytes and COW needs copy-

ing the entire data block, introducing a lot of extra

write data.

 5.2 Journaling

A journaling file system uses journals to guaran-

tee consistency[5]. For each operation, file systems first

store old data or new data in the journal and then

perform the operations. Once an improper system

shutdown occurs, file systems can be repaired by re-

playing the journal. As shown in Fig.9(c), when up-

dating data in block 2, block-based file systems first

write old block 2 and file metadata (InA) in journal

persistently (① in Fig.9(c)), and then update block 2

and file metadata (InA) in-place (② in Fig.9(c)).

Journaling writes data twice: one writes to the jour-

nal and the other updates in-place[5], which causes

write amplification. Besides, block-based file systems

record journal at the block size, which further increas-

es write amplification. Some file systems have re-

duced consistency guarantees, such as ext4 in the or-

dered or writeback mode, which only record metada-

ta in journal to reduce write amplification.

PMFS[5] uses fine-grained undo journaling to guar-

antee metadata consistency, which only records the

updated metadata. As shown in Fig.9(d), after rewrit-

ing block 2* by using COW (①), it only records the

updated metadata in journal and then updates the

pointer in-place (③). This technique takes advantage

of two consistent techniques and avoids unnecessary

writes.

 5.3 Log-Structuring

A log-structured file system organizes the entire

file system as a log. All file operations are sequential-

ly appended to the end of the log in the block size[25, 69].

After the system fails, the file system scans the log to

restore its consistency. To reduce the scan time of

system recovery, the file system sets checkpoints peri-

odically. All operations before one checkpoint are con-

sistent. Therefore, the file system only scans the writ-

ten data after the last checkpoint to recover the con-

sistency. Fig.10 shows the process that updates block

2 in file A. File systems firstly append new block 2*

in log (①). Then file systems update the pointer in

indirect index block 2 (Ind2 in Fig.10) by appending a

new indirect index block 2* in log (② in Fig.10). Af-

ter that, file systems update indirect index block 1 (③

in Fig.10) and inode block A (④ in Fig.10). The write

amplification is 4x. Although log-structuring gener-

ates similar write amplification to COW, it converts

all updates in file systems to sequential access, reduc-

ing seek operations in disk and improving throughput.

However, log-structuring scatters file data anywhere

and results in poor read performance. Besides, log-

structuring requires a large amount of contiguous free

space, which results in severe garbage collection (GC)

overhead[69].

1In Ind1 Ind2

Ind1* Ind*Ind2*

... ...

......

2 3 4

Block 1 Block 2 Block 2*

Fig.10. Consistency technique of log-structuring.

The byte-addressability of NVMM allows file sys-

tems to only record update data in log, which re-

duces the write amplification. Besides, it reduces the

reliance on locality for read operations. GC becomes a

major factor affecting performance. Strata[23] uses the

log-structuring technique to record all file writes.

Since Strata is a cross-media file system, it needs mi-

grate data to SSD and disk periodically. Strata incor-

porates GC into the migration process to reduce the

negative impact. NOVA[18] uses log-structuring to

record metadata. Since metadata is small, NOVA on-

ly needs to recycle a small amount of space when per-

forming GC. Besides, NOVA only provides 4 KB con-

tinuous space to record log. In this way, NOVA re-

claims space in 4 KB block size and can avoid recy-

cling the blocks that have a lot of valid data.

 5.4 Soft Updates

Soft updates⑯[70, 71] trace update dependencies to

provide the metadata consistency. Unlike the tech-

niques described above, soft updates record dependen-

362 J. Comput. Sci. & Technol., Mar. 2023, Vol.38, No.2

⑯Aurora V. Soft updates, hard problems. https://lwn.net/Articles/339337/, Mar. 2022.

https://lwn.net/Articles/339337/

cies in DRAM and then write data to storage media

in the background[57, 70, 71]. Therefore, it can achieve

similar performance to memory-based file systems,

such as tmpfs and ramfs.

However, performing soft updates on block de-

vices can lead to false sharing and complicated depen-

dencies. As shown in Fig.11(a), two threads perform

rename operations in directory A respectively. For re-

naming file B to file C, the file system needs to add

dentry of file C in block 2 before deleting the dentry

of file B in block 1. For renaming file G to file E, the

file system requires adding file E in block 1 before

deleting file G in block 2. These two operations can

run concurrently without interference, but result in

false sharing when operating the same blocks. Delay-

ing data updates on disk requires file systems to keep

track of these dependencies to guarantee sequential

writes for each operation. It is difficult to understand,

implement and maintain soft updates in the main-

stream file systems.

  ... ... 

Inode Block 

Rename

Rename

Block 1 Block 2

File Dentry

(a) (b)

  



Inode Block 

Rename
Rename

Hash Table

Fig.11. Technology of soft updates. (a) Traditional soft up-
dates. (b) Soft updates of SoupFS.

NVMM is byte-addressable and can remove false

sharing and simplify the complexity of soft updates.

SoupFS[57] redesigns the directory structure to isolate

file operations and reduce dependencies. As shown in

Fig.11(b), the dentry of each file can be stored and

updated separately. Besides, the hash table supports

simultaneous updating by multiple threads. There-

fore, the two rename operations can run without in-

terference. By using these techniques, SoupFS solves

the complicate dependency of soft updates, improves

file system performance and guarantees consistency.

 5.5 Snapshots

The snapshot records the state of the file system

at a specific time and provides strong consistency

guarantee. File systems can recover from snapshots

with various error types[64]. To minimize the over-

head of snapshot, file systems need to efficiently man-

age multiple version of snapshot and there is a large

amount of duplicate data between versions. The most

widely-used approach of snapshot is based on COW-

friendly B-tree[64], which uses hierarchical reference

count to record the usage of each block[68]. As shown

in Fig.12(a), when the file system needs to modify

block 1 in file C after the snapshot 2 is created, it

needs to allocate a new block to store new data of

block 1 and rebuilds the metadata of file C. Besides,

the file system requires modifying the reference count

of the related data block to support multiple snap-

shot version. In Fig.12(a), the reference counts of

block 2 and other data blocks (data in Fig.12(a)) are

updated. Although the hierarchical reference count

can postpone explicitly counting references, the num-

ber of reference counts that requires to be updated is

proportional to the fan-out of such a tree multiplied

[]

/







Snapshot 1 Snapshot 2

[1]

[1] [1]

[1]

[1]

[1]

[1]

[2] [2]

[2]

[2]

[2]

Block 1 Block 2

Data

Data

Data

New Data Reference Count

/   

Snapshot 1 Snapshot 2

[1]

[1]

[1] [1] [1]

[1]

[2]

[2]

Block 1 Block 2

NAT

Root

Ind1 Ind2

Data Other Pointed Data

Inode Block

Birth Snapshop ID, Deleted
Snapshot IDs

Block 1 Block 2

Snapshot Manifest

Current Running Snapshot
ID

Snapshot ID, File Offset

[1, 2)

[ )

[1,-) [2,-)

log
DRAM
NVMM

1, 0 1, 4K

 

(b)(a) (c)

Block 1

2, 0

Root

Ind1



Block 1

Block 1







/

Fig.12. Technologies of snapshots. (a) Snapshots based on COW friendly B-tree. (b) Snapshots of HMVFS. (c) Snapshots of NOVA-
Fortis.

Ying Wang et al.: A Survey of Non-Volatile Main Memory File Systems 363

by the height[72]. Besides, taking a global snapshot re-

quires updating data from the leaf level to the file

system root, including the height of the index tree in

a file and the height of the directory hierarchy, which

increases file I/O, wastes space and reduces file sys-

tem performance.

HMVFS[64] solves the hierarchy update problem

by building a node address tree (NAT) on NVMM.

NAT is used to index multi-version metadata blocks,

including the inode blocks, the indirect index block

and the direct index blocks. For simplicity, we only

show 2-level NAT and omit the indirect and direct in-

dex block in Fig.12(b). The data block is directly in-

dexed by an inode. Since one NAT internal node can

record 512 entries and one NAT leaf node records 256

entries (each entry can index 4 KB data block), the 4-

level NAT can support 64 PB file system data. When

creating a snapshot, HMVFS only requires rebuilding

six blocks (four NAT blocks, one metadata block, and

one data block) for a modified data block. Besides,

HMVFS reduces the scope of modification of refer-

ence counts. In Fig.12(b), HMVFS only modifies the

reference count of the block indexed by indirect block

1 (ind1 in Fig.12(b)), such as the inode block where C
is located. Since NVMM is byte-addressable, HMVFS

can update the reference count atomically and avoid

write amplification.

NOVA-Fortis[39] supports snapshots at file granu-

larity. To avoid write amplification, it uses the log-

structuring technique to store metadata and snap-

shot information. As shown in Fig.12(c), when modi-

fying block 1, NOVA-Fortis allocates a new data

block to write block 1 and records current snapshot

ID and file offset (2, 0) in the log. It does not need

other operations to support snapshots, avoiding write

amplification. Besides, NOVA-Fortis builds a snap-

shot manifest cache in DRAM to accelerate the file

access. The cache records a birth snapshot ID and a

death snapshot ID for each log entry. As shown in

Fig.12(c), log entry 1 belongs to snapshot 1, log en-

try 2 belongs to snapshot 2 to the latest snapshot and

log entry 3 belongs to snapshot 2 to the latest snap-

shot. When accessing a file, one can quickly locate the

snapshot data through cache.

 5.6 Summary and Discussion

The above studies optimize traditional crash con-

sistency techniques by reducing write amplification

and write dependencies. Table 4 classifies the NVMM

file systems according to their consistency techniques.

Among these studies, we can see that there is no one

technology that is suitable for all operations and file

systems tend to use different techniques to guarantee

crash consistency for data and metadata. For exam-

ple, metadata is often modified by small writes.

PMFS[5] uses journaling to guarantee metadata con-

sistency. However, using journaling in data updates

results in serious write amplification. Therefore,

PMFS suggests using COW for data consistency. In

this subsection, we summarize and discuss the use

cases of these crash consistency technologies.

COW is suitable for file data updates. File data is

usually updated at block granularity (e.g, 4 KB) and

a write operation introduces at most 8 190 B write

amplification (updating two bytes of data, and each

byte occupies a data block). File data is written in

large sizes frequently. The write amplification of 8 190

B data is acceptable. As shown in Table 4, there are

seven NVMM file systems that use COW to ensure

data crash consistency.

Log-structuring has similar write amplification to

COW but with GC overhead. Unlike disk devices, the

random read/write performance of NVMM is the

same as sequential read/write with large granularity.

As shown in Fig.13, Optane PMM shows similar per-

formance for both sequential and random operations

when performing large size operations (such as 4 KB).

Therefore, log-structuring is not recommended to

Table 4. Consistency Techniques of Selected NVMM File Systems

Consistency Technique Data Type NVMM File System

COW Metadata BPFS[37], FSMAC[58], SPFS[46], Aerie[52]

Data BPFS[37], SPFS[46], PMFS[5], NOVA[18], Ziggurat[28], HiNFS[38], SplitFS[50]

Journaling Metadata HeRMES[73], [49], PMFS[5], ext4-dax, xfs-dax, Aerie[52], NOVA[18], Ziggu-
rat[28], HiNFS[38], SplitFS[50]

Data TridentFS[60], Shortcut-JFS[61], [49]

Log-structuring Metadata HeRMES[73], pNOVA[63], NOVA[18], Strata[23], Ziggurat[28]

Data Strata[23]

Soft updates Metadata and data Conquest[74], SoupFS[57]

Snapshot Metadata and data HMVFS[64], NOVA-Fortis[39]

364 J. Comput. Sci. & Technol., Mar. 2023, Vol.38, No.2

guarantee file data consistency.

Journaling is better for metadata consistency. For

file metadata, it only updates several bytes or up to

hundreds of bytes. COW and log-structuring use

block updates and may cause 4 KB write amplifica-

tion. Although we can only record updated metadata

to reduce write amplification in COW and log-struc-

turing, different metadata operations result in differ-

ent update sizes. It is difficult to index this updated

metadata and increases lookup overhead. Therefore,

journaling is suitable for metadata consistency.

Soft updates can guarantee file system crash con-

sistency with low overhead. However, it may lose da-

ta after the system crashes. This is because it records

the data into DRAM synchronously and delays up-

dating the data to the storage media. Delayed up-

dates to storage media may cause new data not to

persist when the system crashes, resulting in data

loss. Therefore, soft updates are not suitable for high

reliable storage scenarios, such as data centers.

The snapshot provides a strong consistency guar-

antee. It records multi-version data and is used to

backup data. We can use the technique of HMVFS[64]

and NOVA-Fortis[39] to support snapshots. However,

writing all snapshots in NVMM increases costs. This

is because NVMM is expensive. Since old version

snapshots are not accessed frequently, we can mi-

grate old version snapshots into block devices to re-

duce cost.

 6 Protecting Data and NVMM Endurance

NVMM is attached on the memory bus, and

threads can access NVMM just like DRAM by using

CPU load/store instructions. This can cause other

stray writes[5] and produce data errors on NVMM file

systems. In addition, NVMM may suffer from media

errors, producing incorrect values. NVMM file sys-

tems need to avoid, detect and correct these errors.

Besides, NVMM has limited endurance and updating

some cells too frequently may cause wearing out. In

this section, we introduce techniques to solve data

protection issues, including software bugs and media

errors, as well as techniques to keep NVMM cells

wear evenly.

 6.1 Software Bugs

Since most NVMM file systems map NVMM into

the user or kernel address space, file data is vulnera-

ble to stray writes (software bugs). For example, us-

ing a store instruction to access an invalid pointer

may modify useful file data and cause permanent cor-

ruption. One possible solution is to mark all pages as

read-only and upgrade them to be writable when up-

dating data. However, changing the page tables to

toggle write permission may take TLB shutdown and

hurt performance. Some existing studies[5, 18, 39] lever-

age the specific CPU register to switch write permis-

sion, such as CR0.WP register in x86 architecture,

which avoids the TLB shutdown overhead.

ZoFS[48] maps part of NVMM into the user space

and data can be modified in the user space. It lever-

ages memory protection keys (MPKs)[75] to represent

the permission of one user space region. MPK adds a

new 32-bit register PKPU and every two bits repre-

sent the permission of one region. The PKPU register

is per-thread and it could prevent stray writes from

other concurrent threads.

 6.2 Media Errors

Like all storage media, NVMM suffers from me-

dia errors which may generate incorrect values. NO-

VA-Fortis[39] assumes memory systems take the re-

sponsibility to provide error-correcting codes (ECC)

and the memory controller corrects correctable errors

on NVMM. In addition, NOVA-Fortis keeps two

copies and adds CRC32 checksums to protect and

check metadata errors. For file data protection, NO-

VA-Fortis adopts the mechanism of RAID-4 parity

and checksum.

 6.3 NVMM Endurance

NVMM has the problem of limited endurance. Da-

64
 B

12
8 B

25
6 B

51
2 B 1 K

B
4 K

B
16

 K
B

64
 K

B

25
6 K

B

Block Size

Read Write
140

120

100

80

60

40

20

0

R
a
ti
o
 (

%
)

Fig.13. Ratio of random read/write latency to sequential
read/write latency respectively.

Ying Wang et al.: A Survey of Non-Volatile Main Memory File Systems 365

ta writing to NVMM contains data and metadata. As

for data, it is written in large blocks and may use

copy-on-write, which helps the data to be evenly dis-

tributed. However, metadata takes a small part space

and is updated frequently. Most of NVMM file sys-

tems[5, 18] store some metadata (superblocks, inodes,

etc.) in a fixed position. Due to the limited en-

durance of NVMM, this may result in metadata cor-

ruption. March[26] and LMWM[27] focus on wear-level-

ing of inodes. March collects writes into a marched

window and slides the window to spread the writes.

The exchanging of inodes is implemented by chang-

ing the mapping between logical inodes and physical

inode slots. LMWM finds that the internal of an in-

ode also has different updating frequencies. Most

NVMM file systems store an inode by two 64 B parts

and the update frequency of the first part is far more

than that of the second part. LMWM uses two 64 B

slots to store one inode and control wear-leveling be-

tween many 64 B slots, eliminating the unbalance in

the internal of one inode.

 6.4 Summary

It is necessary to protect data to provide highly

reliable file system even at the cost of hurting perfor-

mance. Using MPK in the user level and the write

mechanism in the supervisor mode is better to avoid

stray writes. For media errors in NVMM, the mecha-

nism used in DRAM such as checksum and ECC

could be learned and applied. Inodes are frequently

accessed and can cause wear-out easily. Designing file

systems should consider this point.

 7 Building Cross-Media File Systems

NVMM provides the lower latency than SSD and

disk but has smaller capacity higher cost (see Table

1). Storing data only in NVMM cannot build the file

system that is both cost-effective and large-capacity.

A cross-media file system is a good choice to leverage

the strengths of different storage mediums. We need

to consider how data is placed and migrated across

multiple storage mediums.

 7.1 Data Placement

In cross-media file systems, NVMM can play two

roles. One acts as a persistent cache, which stores the

latest data, and then this data is migrated to other

medium. The other uses NVMM to store part of data.

 7.1.1 NVMM as Persistent Cache

NVMFS[59] uses NVMM to cache recently ac-

cessed data. This technique absorbs small random

I/O on NVMM and then performs large sequential

writes on SSD. Besides, NVMFS reduces GC over-

head on SSD by grouping data with similar update

periods in NVMM and writing the data into the same

SSD blocks. AFCM[76] and PMW[77] use NVMM to

build synchronization cache to reduce the write-back

traffic to SSDs.

Strata[23] writes all data into NVMM and then mi-

grates the data to SSD and disk asynchronously. This

approach improves small write performance. In addi-

tion, migration operations can delete temporary

writes, reorganize and compact data for efficient

lookup, and batch data into large sequential opera-

tions. These operations are beneficial to SSD and

disk. However, it is not friendly to sequential write

operations. It brings a lot of data migration overhead

and block devices can support efficient sequential op-

erations. Directly writing this data to block devices is

better. Besides, Strata distributes metadata at each

storage level. This may cause that Strata needs to

find all of the storage devices while processing the file,

reducing file lookup performance.

 7.1.2 NVMM as Storage Medium

Most studies use NVMM to store the data that is

frequently accessed in the file system. They store meta-

data[58, 74, 78–80], small files[74] and hot data[23, 28, 59, 60]

on NVMM. We introduce two representative studies.

FSMAC[58] places metadata on NVMM to im-

prove performance. However, updating metadata on

NVMM is faster than updating data on block devices.

It may destroy the consistency between metadata and

data. For example, when writing new data in file A,

one requires updating metadata in NVMM and ap-

pending a new data block in SSD. After the system

crashes, the file A has a modified file size in NVMM

but the old file data in SSD. The file A is inconsis-

tent and cannot recover. Write ordering can solve the

problem, which writes file data into SSD before writ-

ing metadata. However, the speed mismatch between

NVMM and SSD causes the file system to wait for

the data to be persisted on SSD, reducing the perfor-

mance. FSMAC establishes multiple versions of meta-

data and uses transaction to manage different ver-

sions of metadata. Before updating metadata, FS-

MAC creates a backup of the original version of the

366 J. Comput. Sci. & Technol., Mar. 2023, Vol.38, No.2

metadata and starts a new transaction. The transac-

tion is committed when the new metadata and data

have been written to NVMM and SSD respectively.

The original version metadata is deleted only after

the transaction has been committed. If the system

crashes before the transaction commits, FSMAC re-

stores the original version metadata. Otherwise, FS-

MAC directly uses new metadata. However, FSMAC

cannot guarantee the data of a file operation is persis-

tent after the operation has returned to the applica-

tion (same to soft updates in Subsection 5.4), and it

only guarantees that data and metadata are consis-

tent.

Ziggurat[28] sends small, synchronous writes to

NVMM but asynchronous, larger writes to disk.

Smaller and synchronous writes use the low-latency

and byte-addressable NVMM, and they can be done

quickly. Asynchronous and large writes can be cached

in DRAM and then written back to disk in the back-

ground. This operation can reduce the write pressure

of NVMM and utilize the high performance of

DRAM.

 7.2 Data Migration

Building a cross-media file system should consider

data migration between different storage mediums.

Although we can run data migration in the back-

ground, migrating data slowly can stall foreground

operations. For example, the slow migration of data

causes that the NVMM space is full. The foreground

threads cannot obtain space from NVMM and can on-

ly wait. Besides, migration operations occupy device

bandwidth, resulting in system performance jitters.

We should consider these problems for cross-media

file systems.

Strata[23] migrates data from NVMM to SSD and

disk when the NVMM space is used beyond a thresh-

old (30% is proposed in Strata). When NVMM runs

out of space, the foreground threads must wait for the

data migration before allocating new space.

Ziggurat[28] migrates data from NVMM to disk ac-

cording to the utilization of NVMM. It implements a

dynamic threshold based on the overall read-write ra-

tio. If the write ratio is high, the threshold should be

lower; otherwise the threshold should be higher. In

addition, Ziggurat migrates data when it finds that it

is inappropriate to store the data on the current stor-

age medium. For example, Ziggurat migrates a file

from NVMM to disk when it finds that the file is

cold.

 7.3 Summary and Discussion

A cross-media file system should take full advan-

tage of the characteristics of each storage medium to

place data and reduce overhead of migrating data.

Table 5 shows the NVMM roles used by existing

cross-media file systems. We can see that most file

systems use NVMM as a storage medium. Now, we

summarize and discuss these techniques when NVMM

is used as the storage medium.

Table 5. Different NVMM Roles of NVMM File Systems

Role NVMM File System

Persistent cache NVMFS[59], Strata[23]

Storage medium FSMAC[58], Ziggurat[28], Conquest[74], [78], [79],
NVMFS[59], TridentFS[60], Strata[23]

 7.3.1 Data Placement

Small and synchronous writes, such as metadata

and log, require immediate persistence and should be

placed on NVMM. Hot data also should be placed on

NVMM except read-dominated and asynchronous

writes. Placing read-dominated data and asyn-

chronous write data on block devices and caching in

DRAM are better for NVMM file systems. This is be-

cause DRAM shows the lower read latency than

NVMM and is volatile. Besides, operating this data

on block devices can reduce the access pressure of

NVMM, improving performance. Cold data should be

migrated to low-cost block devices, such as disks.

Block devices offer higher capacity and lower cost

than NVMM (see Table 1).

We validate these strategies with the perfor-

mance of real hardware Optane PMM. Fig.14 shows

the normalized latency of Optane PMM and Optane

SSD against DRAM (more details of evaluation con-

figuration in Subsection 2.1). We evaluate Optane

PMM by mmapping a 300 GB NVMM file (ext4-dax

on Optane PMM) into the application address space

and then perform read/write operations within the

mmap address directly. For Optane SSD, we obtain

test results by directly reading and writing data on it.

We can see that the read and write latency of Op-

tane PMM is much lower than that of SSD. There-

fore, it is beneficial to putting data that requires im-

mediately persistence on NVMM, such as metadata

and log. For read latency, Optane PMM provides

about 3x latency than DRAM (Fig.14(a)). Therefore,

it is more suitable to cache the read-dominated data

in DRAM. As the number of threads increases, the la-

Ying Wang et al.: A Survey of Non-Volatile Main Memory File Systems 367

tency of Optane PMM, especially for write latency

(Fig.14(b)), increases compared with DRAM. There-

fore, putting all hot data in Optane PMM increases

accessing pressure and results in performance degra-

dation. We should place data and operations accord-

ing to the load capacity of devices. File systems can

use block devices and DRAM to reduce the access

pressure of Optane PMM.

 7.3.2 Data Migration

When migrating data from NVMM to low stor-

age tier on cross-media file systems, one should de-

cide the utilization of NVMM. A fixed utilization

threshold cannot be applied to all file system scenar-

ios. For example, a higher threshold is not suitable for

write-dominated workloads, because the space can be

used by intensive file writes, which causes the fore-

ground write threads to have no space available and

stalling. A lower threshold is not suitable for read-

dominated workloads because frequent migration op-

erations can cause file system performance jittery. Be-

sides, reads have to load more data blocks from block

devices, reducing read performance. Therefore, a dy-

namic threshold is better for cross-media file systems.

We should set a high threshold for read-dominate

workloads and a low threshold for write-dominate

workloads.

In addition, once the type of data access is deter-

mined, such as cold or hot data, we should migrate

the data to the appropriate storage medium for high

performance.

 8 Conclusions

NVMM provides low latency, byte addressing ca-

pability, and persistence, changing the storage hierar-

chy and providing opportunities to improve file sys-

tem performance. In this paper, we analyzed new

challenges for NVMM file systems, including software

overhead, scalability, consistency guaranteeing, data

correctness protection and cross-media management.

After analyzing the techniques of existing studies, we

provided a few suggestions based on real hardware

Optane PMM from the following five aspects.

Reducing Software Overhead. We suggested that

one should adopt various techniques to reduce soft-

ware overhead for building high-performance NVMM

file systems. These techniques mainly include shorten-

ing IO stack, building NVMM-aware cache, using us-

er-level file systems or kernel file systems in different

situations, and building NVMM-friendly index.

Improving File System Scalability. We suggested

improving scalability of VFS for the kernel-level

NVMM file system. Moreover, one should use fine-

grained locks and highly-concurrent index structures

in the NVMM file system.

Guaranteeing Crash Consistency. We suggested

that one should carefully choose crash consistency

techniques for different situations. For example, jour-

naling is suitable for guaranteeing metadata consis-

tency, and meanwhile copy-on-write works well for

guaranteeing crash consistency for file data updates.

Protecting Data and NVMM Endurance. We sug-

gested using the MPK technique and checksum to

protect data and endurance in NVMM file systems.

Building Cross-Media File Systems. We suggested

that one should take advantage of different storage

mediums when building cross-media file systems.

Specifically, careful data placement as well as data

migration should be conducted for achieving high per-

formance.

1 2 4

256 B_ 256 B_16 KB_ 16 KB_ 256 B_ 256 B_16 KB_ 16 KB_

6 8 10 12 14 16

Number of Threads

1 2 4 6 8 10 12 14 16

Number of Threads

(b)(a)

103

102

101

100

N
o
rm

a
li
z
e
d
 L

a
te

n
c
y

103

102

101

100

N
o
rm

a
li
z
e
d
 L

a
te

n
c
y

Fig.14. Normalized latency of Optane PMM and Optane SSD against DRAM. 256 B and 16 KB represent the access block size. A
and S represent Optane PMM and SSD respectively. (a) Read latency. (b) Write latency.

368 J. Comput. Sci. & Technol., Mar. 2023, Vol.38, No.2

References

 Akel A, Caulfield A M, Mollov T I, Gupta R K, Swanson

S. Onyx: A prototype phase change memory storage ar-

ray. In Proc. the 3rd USENIX Conference on Hot Topics

in Storage and File Systems, Jun. 2011. DOI:

10.5555/2002218.2002220

[1]

 Baek I G, Lee M S, Seo S, Lee M J, Seo D H, Suh D S,

Park J C, Park S O, Kim H S, Yoo I K, Chung U I,

Moon J T. Highly scalable nonvolatile resistive memory

using simple binary oxide driven by asymmetric unipolar

voltage pulses. In Proc. the 2004 IEEE International Elec-

tron Devices Meeting, Dec. 2004, pp.587–590. DOI: 10.

1109/IEDM.2004.1419228.

[2]

 Kawahara T. Scalable spin-transfer torque RAM technol-

ogy for normally-off computing. IEEE Design & Test of

Computers, 2011, 28(1): 52–63. DOI: 10.1109/MDT.2010.

97.

[3]

 Raoux S, Burr G W, Breitwisch M J, Rettner C T, Chen

Y C, Shelby R M, Salinga M, Krebs D, Chen S H, Lung

H L, Lam C H. Phase-change random access memory: A

scalable technology. IBM Journal of Research and Devel-

opment, 2008, 52(4/5): 465–479. DOI: 10.1147/rd.524.

0465.

[4]

 Dulloor S R, Kumar S, Keshavamurthy A, Lantz P, Red-

dy D, Sankaran R, Jackson J. System software for persis-

tent memory. In Proc. the 9th European Conference on

Computer Systems, Apr. 2014, Article No. 15. DOI:

10.1145/2592798.2592814.

[5]

 Wu X J, Reddy A L N. SCMFS: A file system for stor-

age class memory. In Proc. the 2011 International Confer-

ence for High Performance Computing, Networking, Stor-

age and Analysis, Nov. 2011, Article No. 39. DOI:

10.1145/2501620.2501621

[6]

 Mathur A, Cao M M, Bhattacharya S, Dilger A, Tomas

A, Vivier L. The new ext4 filesystem: Current status and

future plans. In Proc. the 2007 Linux Symposium, Jun.

2007, pp.21–34.

[7]

 Sweeney A, Doucette D, Hu W, Anderson C, Nishimoto

M, Peck G. Scalability in the XFS file system. In Proc.

the USENIX 1996 Annual Technical Conference, Jan.

1996. DOI: 10.5555/1268299.1268300.

[8]

 Rodeh O, Bacik J, Mason C. BTRFS: The Linux B-tree

filesystem. ACM Trans. Storage, 2013, 9(3): Article No. 9.

DOI: 10.1145/2501620.2501623.

[9]

 Lee C, Sim D, Hwang J Y, Cho S. F2FS: A new file sys-

tem for flash storage. In Proc. the 13th USENIX Confer-

ence on File and Storage Technologies, Feb. 2015, pp.273–
286. DOI: 10.5555/2750482.2750503.

[10]

 Campello D, Lopez H, Useche L, Koller R, Rangaswami

R. Non-blocking writes to files. In Proc. the 13th USENIX

Conference on File and Storage Technologies, Feb. 2015,

pp.151–165. DOI: 10.5555/2750482.2750494.

[11]

 Chidambaram V, Sharma T, Arpaci-Dusseau A C,

Arpaci-Dusseau R H. Consistency without ordering. In

Proc. the 10th USENIX Conference on File and Storage

Technologies, Feb. 2012. DOI: 10.5555/2208461.2208470.

[12]

 Jannen W, Yuan J, Zhan Y et al. BetrFS: A right-opti-[13]

mized write-optimized file system. In Proc. the 13th

USENIX Conference on File and Storage Technologies,

Feb. 2015, pp.301–315. DOI: 10.5555/2750482.2750505.

 Yuan J, Zhan Y, Jannen W, Pandey P, Akshintala A,

Chandnani K, Deo P, Kasheff Z, Walsh L, Bender M A,

Farach-Colton M, Johnson R, Kuszmaul B C, Porter D E.

Optimizing every operation in a write-optimized file sys-

tem. In Proc. the 14th USENIX Conference on File and

Storage Technologies, Feb. 2016. DOI: 10.5555/2930583.

2930584.

[14]

 Zhan Y, Conway A, Jiao Y Z, Knorr E, Bender M A,

Farach-Colton M, Jannen W, Johnson R, Porter D E,

Yuan J. The full path to full-path indexing. In Proc. the

16th USENIX Conference on File and Storage Technolo-

gies, Feb. 2018, pp.123–138. DOI: 10.5555/3189759.3189771.

[15]

 Izraelevitz J, Yang J, Zhang L, Kim J, Liu X, Memari-

pour A, Soh Y J, Wang Z X, Xu Y, Dulloor S R, Zhao J

S, Swanson S. Basic performance measurements of the In-

tel Optane DC persistent memory module. arXiv: 1903.

05714, 2019. https://arxiv.org/abs/1903.05714, Mar. 2023.

[16]

 Qureshi M K, Srinivasan V, Rivers J A. Scalable high

performance main memory system using phase-change

memory technology. In Proc. the 36th Annual Interna-

tional Symposium on Computer Architecture, Jun. 2009,

pp.24–33. DOI: 10.1145/1555754.1555760.

[17]

 Xu J, Swanson S. NOVA: A log-structured file system for

hybrid volatile/non-volatile main memories. In Proc. the

14th USENIX Conference on File and Storage Technolo-

gies, Feb. 2016, pp.323–338. DOI: 10.5555/2930583.2930608.

[18]

 Kang J B, Zhang B L, Wo T, Hu C M, Huai J P. Multi-

Lanes: Providing virtualized storage for OS-level virtual-

ization on many cores. In Proc. the 12th USENIX Confer-

ence on File and Storage Technologies, Feb. 2014, pp.317–
329. DOI: 10.1145/2801155.

[19]

 Kang J B, Zhang B L, Wo T, Yu W R, Du L, Ma S, Huai

J P. SpanFS: A scalable file system on fast storage de-

vices. In Proc. the USENIX 2015 Annual Technical Con-

ference, Jul. 2015, pp.249–261. DOI: 10.5555/2813767.

2813786.

[20]

 Lu L Y, Zhang Y P, Do T, Al-Kiswany S, Arpaci-Dusseau

A C, Arpaci-Dusseau R H. Physical disentanglement in a

container-based file system. In Proc. the 11th USENIX

Conference on Operating Systems Design and Implemen-

tation, Oct. 2014, pp.81–96. DOI: 10.5555/2685048.2685056.

[21]

 Psaroudakis I, Scheuer T, May N et al. Scaling up concur-

rent main-memory column-store scans: Towards adaptive

NUMA-aware data and task placement. Proceedings of

the VLDB Endowment, 2015, 8(12): 1442–1453. DOI: 10.

14778/2824032.2824043.

[22]

 Kwon Y, Fingler H, Hunt T, Peter S, Witchel E. Strata:

A cross media file system. In Proc. the 26th Symposium

on Operating Systems Principles, Oct. 2017, pp.460–477.
DOI: 10.1145/3132747.3132770.

[23]

 Bhat S S, Eqbal R, Clements A T, Kaashoek M F. Scal-

ing a file system to many cores using an operation log. In

Proc. the 26th Symposium on Operating Systems Princi-

ples, Oct. 2017, pp.69–86. DOI: 10.1145/3132747.3132779.

[24]

 Rosenblum M, Ousterhout J K. The design and imple-[25]

Ying Wang et al.: A Survey of Non-Volatile Main Memory File Systems 369

https://dl.acm.org/doi/10.5555/2002218.2002220
https://doi.org/10.1109/IEDM.2004.1419228
https://doi.org/10.1109/IEDM.2004.1419228
https://doi.org/10.1109/MDT.2010.97
https://doi.org/10.1109/MDT.2010.97
https://doi.org/10.1147/rd.524.0465
https://doi.org/10.1147/rd.524.0465
https://doi.org/10.1145/2592798.2592814
https://doi.org/10.1145/2501620.2501621
https://dl.acm.org/doi/10.5555/1268299.1268300
https://doi.org/10.1145/2501620.2501623
https://dl.acm.org/doi/10.5555/2750482.2750503
https://dl.acm.org/doi/10.5555/2750482.2750494
https://dl.acm.org/doi/10.5555/2208461.2208470
https://dl.acm.org/doi/10.5555/2208461.2208470
https://dl.acm.org/doi/10.5555/2208461.2208470
https://dl.acm.org/doi/10.5555/2750482.2750505
https://dl.acm.org/doi/10.5555/2930583.2930584
https://dl.acm.org/doi/10.5555/2930583.2930584
https://dl.acm.org/doi/10.5555/3189759.3189771
https://arxiv.org/abs/1903.05714
https://doi.org/10.1145/1555754.1555760
https://dl.acm.org/doi/10.5555/2930583.2930608
https://dl.acm.org/doi/10.1145/2801155
https://dl.acm.org/doi/10.5555/2813767.2813786
https://dl.acm.org/doi/10.5555/2813767.2813786
https://dl.acm.org/doi/10.5555/2685048.2685056
https://doi.org/10.14778/2824032.2824043
https://doi.org/10.14778/2824032.2824043
https://doi.org/10.1145/3132747.3132770
https://doi.org/10.1145/3132747.3132779

mentation of a log-structured file system. ACM Trans.

Computer Systems, 1992, 10(1): 26–52. DOI: 10.1145/

146941.146943.

 Chang H S, Chang Y H, Hsiu P C, Kuo T W, Li H P.

Marching-based wear-leveling for PCM-based storage sys-

tems. ACM Trans. Design Automation of Electronic Sys-

tems, 2015, 20(2): Article No. 25. DOI: 10.1145/2699831.

[26]

 Yang C S, Liu D, Zhang R Y, Chen X Z, Nie S, Wang F

S, Zhuge Q F, Sha E H M. Efficient multi-grained wear

leveling for inodes of persistent memory file systems. In

Proc. the 57th ACM/IEEE Design Automation Confer-

ence, Jul. 2020. DOI: 10.1109/DAC18072.2020.9218626.

[27]

 Zheng S A, Hoseinzadeh M, Swanson S. Ziggurat: A

tiered file system for non-volatile main memories and

disks. In Proc. the 17th USENIX Conference on File and

Storage Technologies, Feb. 2019, pp.207–219. DOI:

10.5555/3323298.3323318.

[28]

 Wu C W, Zhang G Y, Li K Q. Rethinking computer ar-

chitectures and software systems for phase-change memo-

ry. ACM Journal on Emerging Technologies in Comput-

ing Systems, 2016, 12(4): Article No. 33. DOI: 10.1145/

2893186.

[29]

 Chen A. A review of emerging non-volatile memory

(NVM) technologies and applications. Solid-State Elec-

tronics, 2016, 125: 25–38. DOI: 10.1016/j.sse.2016.07.006.

[30]

 Mittal S, Vetter J S. A survey of software techniques for

using non-volatile memories for storage and main memo-

ry systems. IEEE Trans. Parallel and Distributed Sys-

tems, 2016, 27(5): 1537–1550. DOI: 10.1109/TPDS.2015.

2442980.

[31]

 Puglia G O, Zorzo A F, De Rose C A F, Perez T, Miloji-

cic D. Non-volatile memory file systems: A survey. IEEE

Access, 2019, 7: 25836–25871. DOI: 10.1109/ACCESS.2019.

2899463.

[32]

 Lee B C, Ipek E, Mutlu O, Burger D. Architecting phase

change memory as a scalable dram alternative. In Proc.

the 36th Annual International Symposium on Computer

Architecture, Jun. 2009, pp.2–13. DOI: 10.1145/1555754.

1555758.

[33]

 Chang M F, Wu J J, Chien T F, Liu Y C, Yang T C,

Shen W C, King Y C, Lin C J, Lin K F, Chih Y D,

Natarajan S, Chang J. 19.4 embedded 1mb ReRAM in

28nm CMOS with 0.27-to-1v read using swing-sample-

and-couple sense amplifier and self-boost-write-termina-

tion scheme. In Proc. the 2014 IEEE International Solid-

State Circuits Conference Digest of Technical Papers,

Feb. 2014, pp.332–333. DOI: 10.1109/ISSCC.2014.6757457.

[34]

 Chen R H, Shao Z L, Liu D, Feng Z Y, Li T. Towards ef-

ficient NVDIMM-based heterogeneous storage hierarchy

management for big data workloads. In Proc. the 52nd

Annual IEEE/ACM International Symposium on Mi-

croarchitecture, Oct. 2019, pp.849–860. DOI: 10.1145/

3352460.3358266.

[35]

 Yang J, Wei Q S, Chen C, Wang C D, Yong K L, He B

S. NV-tree: Reducing consistency cost for NVM-based sin-

gle level systems. In Proc. the 13th USENIX Conference

on File and Storage Technologies, Feb. 2015, pp.167–181.
DOI: 10.5555/2750482.2750495.

[36]

 Condit J, Nightingale E B, Frost C, Ipek E, Lee B, Burg-

er D, Coetzee D. Better I/O through byte-addressable,

persistent memory. In Proc. the 22nd ACM SIGOPS

Symposium on Operating Systems Principles, Oct. 2009,

pp.133–146. DOI: 10.1145/1629575.1629589.

[37]

 Ou J X, Shu J W, Lu Y Y. A high performance file sys-

tem for non-volatile main memory. In Proc. the 11th Eu-

ropean Conference on Computer Systems, Apr. 2016, Ar-

ticle No. 12. DOI: 10.1145/2901318.2901324.

[38]

 Xu J, Zhang L, Memaripour A, Gangadharaiah A, Bo-

rase A, Da Silva T B, Swanson S, Rudoff A. NOVA-For-

tis: A fault-tolerant non-volatile main memory file system.

In Proc. the 26th Symposium on Operating Systems Prin-

ciples, Oct. 2017, pp.478–496. DOI: 10.1145/3132747.

3132761.

[39]

 Volos H, Magalhaes G, Cherkasova L, Li J. Quartz: A

lightweight performance emulator for persistent memory

software. In Proc. the 16th Annual Middleware Confer-

ence, Nov. 2015, pp.37–49. DOI: 10.1145/2814576.2814806.

[40]

 Yang J, Kim J, Hoseinzadeh M, Izraelevitz J, Swanson S.

An empirical guide to the behavior and use of scalable

persistent memory. In Proc. the 18th USENIX Confer-

ence on File and Storage Technologies, Feb. 2020,

pp.169–182. DOI: 10.5555/3386691.3386708.

[41]

 Jeong D, Lee Y, Kim J S. Boosting quasi-asynchronous

I/O for better responsiveness in mobile devices. In Proc.

the 13th USENIX Conference on File and Storage Tech-

nologies, Feb. 2015, pp.191–202. DOI: 10.5555/2750482.

2750497.

[42]

 Harter T, Dragga C, Vaughn M, Arpaci-Dusseau A C,

Arpaci-Dusseau R H. A file is not a file: Understanding

the I/O behavior of Apple desktop applications. In Proc.

the 23rd ACM Symposium on Operating Systems Princi-

ples, Oct. 2011, pp.71–83. DOI: 10.1145/2043556.2043564.

[43]

 Lee G, Shin S, Song W, Ham T J, Lee J W, Jeong J.

Asynchronous I/O stack: A low-latency kernel I/O stack

for ultra-low latency SSDs. In Proc. the USENIX 2019

Annual Technical Conference, Jul. 2019, pp.603–616.
DOI: 10.5555/3358807.3358858.

[44]

 Wang Y, Jiang D, Xiong J. Caching or not: Rethinking

virtual file system for non-volatile main memory. In Proc.

the 10th USENIX Workshop on Hot Topics in Storage

and File Systems, Jul. 2018.

[45]

 Zhou D, Pan W, Xie T et al. A file system bypassing

volatile main memory: Towards a single-level persistent

store. In Proc. the 15th ACM International Conference on

Computing Frontiers, May 2018, pp.97–104. DOI: 10.

1145/3203217.3203277.

[46]

 Wang Y, Jiang D J, Xiong J. Revisiting virtual file sys-

tem for metadata optimized non-volatile main memory

file system. In Proc. the 36th International Conference on

Massive Storage Systems and Technology, Oct. 2020.

[47]

 Dong M K, Bu H, Yi J F et al. Performance and protec-

tion in the ZoFS user-space NVM file system. In Proc. the

27th ACM Symposium on Operating Systems Principles,

Oct. 2019, pp.478–493. DOI: 10.1145/3341301.3359637.

[48]

 Sha E H M, Jia Y, Chen X Z, Zhuge Q F, Jiang W W,

Qin J J. The design and implementation of an efficient

[49]

370 J. Comput. Sci. & Technol., Mar. 2023, Vol.38, No.2

https://doi.org/10.1145/146941.146943
https://doi.org/10.1145/146941.146943
https://doi.org/10.1145/2699831
https://doi.org/10.1109/DAC18072.2020.9218626
https://doi.org/10.1109/DAC18072.2020.9218626
https://doi.org/10.1109/DAC18072.2020.9218626
https://dl.acm.org/doi/abs/10.5555/3323298.3323318
https://doi.org/10.1145/2893186
https://doi.org/10.1145/2893186
https://doi.org/10.1016/j.sse.2016.07.006
https://doi.org/10.1109/TPDS.2015.2442980
https://doi.org/10.1109/TPDS.2015.2442980
https://doi.org/10.1109/ACCESS.2019.2899463
https://doi.org/10.1109/ACCESS.2019.2899463
https://doi.org/10.1145/1555754.1555758
https://doi.org/10.1145/1555754.1555758
https://doi.org/10.1109/ISSCC.2014.6757457
https://doi.org/10.1145/3352460.3358266
https://doi.org/10.1145/3352460.3358266
https://dl.acm.org/doi/10.5555/2750482.2750495
https://doi.org/10.1145/1629575.1629589
https://doi.org/10.1145/2901318.2901324
https://doi.org/10.1145/3132747.3132761
https://doi.org/10.1145/3132747.3132761
https://doi.org/10.1145/2814576.2814806
https://dl.acm.org/doi/10.5555/3386691.3386708
https://dl.acm.org/doi/10.5555/2750482.2750497
https://dl.acm.org/doi/10.5555/2750482.2750497
https://doi.org/10.1145/2043556.2043564
https://doi.org/10.1145/2043556.2043564
https://doi.org/10.1145/2043556.2043564
https://dl.acm.org/doi/10.5555/3358807.3358858
https://doi.org/10.1145/3203217.3203277
https://doi.org/10.1145/3203217.3203277
https://doi.org/10.1145/3341301.3359637

user-space in-memory file system. In Proc. the 5th Non-

Volatile Memory Systems and Applications Symposium,

Aug. 2016. DOI: 10.1109/NVMSA.2016.7547176.

 Kadekodi R, Lee S K, Kashyap S, Kim T, Kolli A, Chi-

dambaram V. SplitFS: Reducing software overhead in file

systems for persistent memory. In Proc. the 27th ACM

Symposium on Operating Systems Principles, Oct. 2019,

pp.494–508. DOI: 10.1145/3341301.3359631.

[50]

 Kannan S, Arpaci-Dusseau A C, Arpaci-Dusseau R H,

Wang Y G, Xu J, Palani G. Designing a true direct-ac-

cess file system with DevFS. In Proc. the 16th USENIX

Conference on File and Storage Technologies, Feb. 2018,

pp.241–255. DOI: 10.5555/3189759.3189782.

[51]

 Volos H, Nalli S, Panneerselvam S et al. Aerie: Flexible

file-system interfaces to storage-class memory. In Proc.

the 9th European Conference on Computer Systems, Apr.

2014, Article No. 14. DOI: 10.1145/2592798.2592810.

[52]

 Yoshimura T, Chiba T, Horii H. EvFS: User-level, event-

driven file system for non-volatile memory. In Proc. the

11th USENIX Conference on Hot Topics in Storage and

File Systems, Jul. 2019. DOI: 10.5555/3357062.3357083.

[53]

 Chen S M, Jin Q. Persistent B+-trees in non-volatile main

memory. Proceedings of the VLDB Endowment, 2015,

8(7): 786–797. DOI: 10.14778/2752939.2752947.

[54]

 Oukid I, Lasperas J, Nica A, Willhalm T. FPTree: A hy-

brid SCM-DRAM persistent and concurrent B-tree for

storage class memory. In Proc. the 2016 International

Conference on Management of Data, Jun. 2016, pp.371–
386. DOI: 10.1145/2882903.2915251.

[55]

 Sha E H M, Chen X Z, Zhuge Q F, Shi L, Jiang W W. A

new design of in-memory file system based on file virtual

address framework. IEEE Trans. Computers, 2016,

65(10): 2959–2972. DOI: 10.1109/TC.2016.2516019.

[56]

 Dong M K, Chen H B. Soft updates made simple and fast

on non-volatile memory. In Proc. the USENIX 2017 An-

nual Technical Conference, Jul. 2017, pp.719–731. DOI:

10.5555/3154690.3154758.

[57]

 Chen J X, Wei Q S, Chen C, Wu L K. FSMAC: A file

system metadata accelerator with non-volatile memory. In

Proc. the 29th Symposium on Mass Storage Systems and

Technologies, May 2013. DOI: 10.1109/MSST.2013.

6558440.

[58]

 Qiu S, Reddy A L N. NVMFS: A hybrid file system for

improving random write in nand-flash SSD. In Proc. the

29th Symposium on Mass Storage Systems and Technolo-

gies, May 2013. DOI: 10.1109/MSST.2013.6558434.

[59]

 Huang T C, Chang D W. TridentFS: A hybrid file sys-

tem for non-volatile RAM, flash memory and magnetic

disk. Software Practice and Experience, 2016, 46(3):

291–318. DOI: 10.1002/spe.2299.

[60]

 Lee E, Yoo S, Jang J E, Bahn H. Shortcut-JFS: A write

efficient journaling file system for phase change memory.

In Proc. the 28th Symposium on Mass Storage Systems

and Technologies, Apr. 2012. DOI: 10.1109/MSST.2012.

6232378.

[61]

 Weiss Z, Arpaci-Dusseau A C, Arpaci-Dusseau R H.

DenseFS: A cache-compact filesystem. In Proc. the 10th

USENIX Conference on Hot Topics in Storage and File

[62]

Systems, Jul. 2018. DOI: 10.5555/3277332.3277334.

 Kim J H, Kim J, Kang H, Lee C G, Park S, Kim Y.

pNOVA: Optimizing shared file I/O operations of NVM

file system on manycore servers. In Proc. the 10th ACM

SIGOPS Asia-Pacific Workshop on Systems, Aug. 2019.

DOI: 10.1145/3343737.3343748.

[63]

 Zheng S A, Huang L P, Liu H, Wu L Z, Zha J. HMVFS:

A hybrid memory versioning file system. In Proc. the

32nd Symposium on Mass Storage Systems and Technolo-

gies, May 2016. DOI: 10.1109/MSST.2016.7897079.

[64]

 Lee S K, Lim K H, Song H, Nam B, Noh S H. WORT:

Write optimal radix tree for persistent memory storage

systems. In Proc. the 15th USENIX Conference on File

and Storage Technologies, Feb. 2017, pp.257–270. DOI: 10.

5555/3129633.3129657.

[65]

 Min C, Kashyap S, Maass S, Kang W, Kim T. Under-

standing manycore scalability of file systems. In Proc. the

USENIX 2016 Annual Technical Conference, Jun. 2016,

pp.71–85. DOI: 10.5555/3026959.3026967.

[66]

 Phillips D. A directory index for ext2. In Proc. the 5th

Annual Linux Showcase & Conference, Nov. 2001. DOI:

10.5555/1268488.1268508.

[67]

 Rodeh O. B-trees, shadowing, and clones. ACM Trans.

Storage, 2008, 3(4): Article No. 2. DOI: 10.1145/1326542.

1326544.

[68]

 Seltzer M, Bostic K, Mckusick M K, Staelin C. An imple-

mentation of a log-structured file system for UNIX. In

Proc. the USENIX Winter 1993 Conference Proceedings

on USENIX Winter 1993 Conference Proceedings, Jan.

1993. DOI: 10.5555/1267303.1267306.

[69]

 Ganger G R, McKusick M K, Soules C A N, Patt Y N.

Soft updates: A solution to the metadata update problem

in file systems. ACM Trans. Computer Systems, 2000,

18(2): 127–153. DOI: 10.1145/350853.350863.

[70]

 McKusick M K, Ganger G R. Soft updates: A technique

for eliminating most synchronous writes in the fast filesys-

tem. In Proc. the USENIX 1999 Annual Technical Con-

ference, Jun. 1999. DOI: 10.5555/1268708.1268732.

[71]

 Dragga C, Santry D J. GCTrees: Garbage collecting snap-

shots. ACM Trans. Storage, 2016, 12(1): Article No. 4.

DOI: 10.1145/2857056.

[72]

 Miller E L, Brandt S A, Long D D E. Hermes: High-per-

formance reliable MRAM-enabled storage. In Proc. the

8th Workshop on Hot Topics in Operating Systems, May

2001, pp.95–99. DOI: 10.1109/HOTOS.2001.990067.

[73]

 Wang A I A, Kuenning G, Reiher P, Popek G. The con-

quest file system: Better performance through a disk/per-

sistent-RAM hybrid design. ACM Trans. Storage, 2006,

2(3): 309–348. DOI: 10.1145/1168910.1168914.

[74]

 Park S, Lee S, Xu W, Moon H, Kim T. Libmpk: Soft-

ware abstraction for Intel memory protection keys (Intel

MPK). In Proc. the USENIX 2019 Annual Technical Con-

ference, Jul. 2019, pp.241–254. DOI: 10.5555/3358807.

3358829.

[75]

 Chen Y M, Lu Y Y, Chen P, Shu J W. Efficient and con-

sistent NVMM cache for SSD-based file system. IEEE

Trans. Computers, 2019, 68(8): 1147–1158. DOI: 10.1109/

TC.2018.2870137.

[76]

Ying Wang et al.: A Survey of Non-Volatile Main Memory File Systems 371

https://doi.org/10.1109/NVMSA.2016.7547176
https://doi.org/10.1145/3341301.3359631
https://dl.acm.org/doi/10.5555/3189759.3189782
https://doi.org/10.1145/2592798.2592810
https://dl.acm.org/doi/10.5555/3357062.3357083
https://dl.acm.org/doi/10.5555/3357062.3357083
https://dl.acm.org/doi/10.5555/3357062.3357083
https://doi.org/10.14778/2752939.2752947
https://doi.org/10.1145/2882903.2915251
https://doi.org/10.1109/TC.2016.2516019
https://dl.acm.org/doi/10.5555/3154690.3154758
https://doi.org/10.1109/MSST.2013.6558440
https://doi.org/10.1109/MSST.2013.6558440
https://doi.org/10.1109/MSST.2013.6558434
https://doi.org/10.1002/spe.2299
https://doi.org/10.1109/MSST.2012.6232378
https://doi.org/10.1109/MSST.2012.6232378
https://dl.acm.org/doi/10.5555/3277332.3277334
https://doi.org/10.1145/3343737.3343748
https://doi.org/10.1109/MSST.2016.7897079
https://dl.acm.org/doi/10.5555/3129633.3129657
https://dl.acm.org/doi/10.5555/3129633.3129657
https://dl.acm.org/doi/10.5555/3026959.3026967
https://dl.acm.org/doi/10.5555/3026959.3026967
https://dl.acm.org/doi/10.5555/3026959.3026967
https://dl.acm.org/doi/10.5555/1268488.1268508
https://doi.org/10.1145/1326542.1326544
https://doi.org/10.1145/1326542.1326544
https://dl.acm.org/doi/10.5555/1267303.1267306
https://doi.org/10.1145/350853.350863
https://dl.acm.org/doi/10.5555/1268708.1268732
https://dl.acm.org/doi/10.5555/1268708.1268732
https://dl.acm.org/doi/10.5555/1268708.1268732
https://doi.org/10.1145/2857056
https://doi.org/10.1109/HOTOS.2001.990067
https://doi.org/10.1145/1168910.1168914
https://dl.acm.org/doi/10.5555/3358807.3358829
https://dl.acm.org/doi/10.5555/3358807.3358829
https://doi.org/10.1109/TC.2018.2870137
https://doi.org/10.1109/TC.2018.2870137

 Yang C S, Zhuge Q F, Chen X Z, Sha E H M, Liu D,

Zhang R Y. Optimizing synchronization mechanism for

block-based file systems using persistent memory. Future

Generation Computer Systems, 2020, 111: 288–299. DOI:

10.1016/j.future.2020.04.024.

[77]

 Chen C, Yang J, Wei Q S, Wang C D, Xue M D. Opti-

mizing file systems with fine-grained metadata journaling

on byte-addressable NVM. ACM Trans. Storage, 2017,

13(2): Article No. 13. DOI: 10.1145/3060147.

[78]

 Chen C, Yang J, Wei Q S, Wang C D, Xue M D. Fine-

grained metadata journaling on NVM. In Proc. the 32nd

Symposium on Mass Storage Systems and Technologies,

May 2016. DOI: 10.1109/MSST.2016.7897077.

[79]

 Matsui C, Sun C, Takeuchi K. Design of hybrid SSDs

with storage class memory and NAND flash memory. Pro-

ceedings of the IEEE, 2017, 105(9): 1812–1821. DOI: 10.

1109/JPROC.2017.2716958.

[80]

Ying Wang received her B.E. de-

gree in software engineering from Uni-

versity of Zhengzhou, Zhengzhou, in

2015. She is currently an assistant pro-

fessor in Institute of Computing Tech-

nology, Chinese Academy of Sciences,

Beijing. Her research interests include

file and storage systems.

Wen-Qing Jia received his B.E. de-

gree in computing science and technol-

ogy from University of Chinese Acade-

my of Sciences, Beijing, in 2019. Now

he is a Ph.D. student of Institute of

Computing Technology, Chinese Aca-

demy of Sciences, Beijing. His resea-

rch interests are in file and storage systems.

De-Jun Jiang received his B.S. de-

gree in electronic engineering from

Beihang University, Beijing, in 2004,

M.S. degree in software engineering

from Tsinghua University, Beijing, in

2009, and his Ph.D. degree in comput-

er science from Vrije Universiteit, Am-

sterdam, in 2012. He is currently an associate professor

of Institute of Computing Technology, Chinese Acade-

my of Sciences, Beijing. His current research interests

include storage system and architecture, operating sys-

tem, and distributed system. He is a member of CCF,

ACM, and IEEE.

Jin Xiong received her B.S. degree

from Sichuan University, Chengdu, in

1990, her M.S. degree and Ph.D. de-

gree in computer science from Univer-

sity of Chinese Academy of Sciences,

Beijing, in 1993 and 2006, respective-

ly. She is currently a professor at In-

stitute of Computing Technology, Chinese Academy of

Sciences, Beijing. Her research interests include storage

systems and file systems. She is a senior member of CCF

and a member of ACM and IEEE.

372 J. Comput. Sci. & Technol., Mar. 2023, Vol.38, No.2

https://doi.org/10.1016/j.future.2020.04.024
https://doi.org/10.1145/3060147
https://doi.org/10.1109/MSST.2016.7897077
https://doi.org/10.1109/JPROC.2017.2716958
https://doi.org/10.1109/JPROC.2017.2716958

	1 Introduction
	2 Background
	2.1 Non-Volatile Main Memory
	2.2 File System
	2.3 Design Challenges of NVMM File Systems
	2.3.1 Performance
	2.3.2 Data Correctness
	2.3.3 Cost to Build

	3 Reducing Software Overhead
	3.1 Software Stack of Block-Based File Systems
	3.2 Shortening I/O Stack
	3.3 Building NVMM-Aware Cache
	3.4 Using User-Level File Systems
	3.5 Optimizing File System Indexing
	3.5.1 Using Efficient Index Structure
	3.5.2 Index Structure Placement

	3.6 Summary and Discussion
	3.6.1 I/O Stack
	3.6.2 NVMM-Aware Cache
	3.6.3 User-Level File Systems
	3.6.4 NVMM-Friendly Index

	4 Improving File System Scalability
	4.1 VFS Lock
	4.2 Consistency-Induced Contention
	4.3 Space Allocation Contention
	4.4 File Lock
	4.5 Summary and Discussion

	5 Guaranteeing Crash Consistency
	5.1 Copy-on-Write
	5.2 Journaling
	5.3 Log-Structuring
	5.4 Soft Updates
	5.5 Snapshots
	5.6 Summary and Discussion

	6 Protecting Data and NVMM Endurance
	6.1 Software Bugs
	6.2 Media Errors
	6.3 NVMM Endurance
	6.4 Summary

	7 Building Cross-Media File Systems
	7.1 Data Placement
	7.1.1 NVMM as Persistent Cache
	7.1.2 NVMM as Storage Medium

	7.2 Data Migration
	7.3 Summary and Discussion
	7.3.1 Data Placement
	7.3.2 Data Migration

	8 Conclusions
	References

