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Abstract    Non-volatile  memories  (NVMs)  provide  lower  latency  and  higher  bandwidth  than  block  devices.  Besides,

NVMs are byte-addressable and provide persistence that can be used as memory-level storage devices (non-volatile main

memory, NVMM). These features change storage hierarchy and allow CPU to access persistent data using load/store in-

structions. Thus, we can directly build a file system on NVMM. However, traditional file systems are designed based on

slow block devices. They use a deep and complex software stack to optimize file system performance. This design results in

software overhead being the dominant factor affecting NVMM file  systems. Besides,  scalability,  crash consistency, data

protection, and cross-media storage should be reconsidered in NVMM file systems. We survey existing work on optimizing

NVMM file  systems.  First,  we  analyze  the  problems  when  directly  using  traditional  file  systems  on  NVMM,  including

heavy software overhead, limited scalability, inappropriate consistency guarantee techniques, etc. Second, we summarize

the technique of 30 typical NVMM file systems and analyze their advantages and disadvantages. Finally, we provide a few

suggestions for designing a high-performance NVMM file system based on real hardware Optane DC persistent memory

module. Specifically, we suggest applying various techniques to reduce software overheads, improving the scalability of vir-

tual file system (VFS), adopting highly-concurrent data structures (e.g., lock and index), using memory protection keys

(MPK) for data protection, and carefully designing data placement/migration for cross-media file system.

Keywords    non-volatile main memory (NVMM), file system, performance, scalability, crash consistency, data protec-

tion, crossmeida

 

 1    Introduction

Emerging non-volatile memory (NVM)[1–4] is byte-

addressable and non-volatile,  which can be used as a

memory-level storage device (non-volatile main mem-

ory, NVMM) to store file data. Compared with tradi-

tional block devices, such as solid state drives (SSDs)

and hard disk drives (HDDs), NVMM provides lower

latency and higher bandwidth. The performance bot-

tleneck  of  file  systems  is  no  longer  the  slow  storage

devices,  and  software  overhead  becomes  the  major

factor affecting the performance[5, 6]. This motivates a

number of research efforts to optimize or redesign file

systems for NVMM over the past decade.

However,  designing  a  high-performance  and  cost-

effective NVMM file system is non-trivial. Firstly, re-

ducing  software  overhead  is  important.  Traditional

block-based  file  systems  (such  as  ext3,  ext4[7],  xfs[8],

zfs①, btrfs[9], f2fs[10] and [11–15]) adopt a deep softw-

are stack to optimize the file I/O on block devices, in-
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cluding page cache, block layer and I/O scheduler lay-

er. This deep software stack provides caching and I/O

scheduling  to  reduce  data  operations  on  slow  disks

and  accelerate  file  accessing.  However,  NVMM  is

byte-addressable  and  provides  lower  access  latency

than  block  devices.  The  deep  software  stack  can  re-

duce the performance of NVMM file systems. Remov-

ing these software stacks directly, such as page cache,

can  improve  the  performance,  but  will  reduce  read

performance. This is because the read latency of real

NVMM hardware—Intel Optane DC persistent mem-

ory  module  (Optane  PMM)② is  longer  than  that  of

DRAM (dynamic random access memory). Therefore,

re-architecting  an  NVMM  aware  software  stack  is

crucial  to  NVMM  file  systems.  Besides,  existing  in-

dex  structures  in  traditional  file  systems,  such  as  B-

tree for the index file data block, are designed based

on  block  devices  and  cannot  take  the  advantage  of

NVMM being byte-addressable.  Therefore,  we should

consider the problems above to reduce software over-

heads of NVMM file systems.

Secondly, the increasing number of CPU cores al-

lows multiple threads to access file systems simultane-

ously  and  NVMM  supports  high  concurrent  acces-

ses[16–18]. Therefore, the NVMM file system should su-

pport high concurrent operations. However, the tradi-

tional block-based file systems are designed based on

deep  software  stacks,  such  as  VFS  and  page

cache[19–22], which limits the concurrency of the file sy-

stem.  Some  studies  improve  concurrency  by  using

partition or  storing data in  memory temporarily  and

then migrating to storage device. These studies bring

additional  software  operations,  such  as  data  merg-

ing[23, 24] and garbage collection[20], which increase the

latency  on  NVMM  file  systems.  Therefore,  NVMM

file  systems should be reconsidered to improve scala-

bility and avoid long latency.

Thirdly,  guaranteeing  crash  consistency  is  a  fun-

damental  requirement  for  file  systems.  Modern  CPU

and memory systems may reorder data store instruc-

tions to memory, which may result in crash inconsis-

tency[18]. However, flushing data from the CPU cache

to NVMM sequentially harms the performance[12]. Be-

sides, traditional crash consistency techniques, such as

copy-on-write  and log-structuring[25],  are  designed for

block devices that write the data at block granularity,

which  results  in  write  amplification  on  NVMM  file

systems,  and  increases  the  amount  of  the  data  that

needs to be written and further reduces performance.

How  to  guarantee  consistency  and  reduce  the  over-

head  of  guaranteeing  consistency  is  an  issue  that

NVMM file systems need to consider.

Fourthly,  data  protection  and  NVMM endurance

are needed for NVMM file systems. Since NVMM can

be directly attached on the memory bus, threads can

access  NVMM  as  regular  memory.  Some  bugs  from

unrelated  threads  may  generate  stray  writes  and  re-

sult  in  data  errors  on  NVMM  file  systems.  Besides,

media errors from NVMM can cause incorrect values.

NVMM  file  systems  need  techniques  to  avoid  errors

and to detect and correct errors after they occur. Ex-

isting  studies  provide  software  (e.g.,  error-correction

codes,  checksum)  and  hardware  (e.g.,  Intel  memory

protection  keys)  techniques  to  solve  these  problems.

However,  these  techniques  may  degrade  system  per-

formance  or  require  hardware  support.  Choosing  an

efficient and appropriate write protection technique is

important  for  NVMM file  systems.  Besides,  NVMMs

have  limited  endurance[17] and  some  cells  may  wear

out faster than others. In NVMM file systems, differ-

ent  data  has  different  update  frequencies.  Updating

some cells or blocks frequently may cause permanent

loss of data or even file corruption. Some studies[26, 27]

focus on metadata of file systems, which are often up-

dated in the fixed location. How to guarantee NVMM

cells to be evenly worn is an issue that should be con-

sidered when designing NVMM file systems.

Finally, NVMM is more expensive than block de-

vices[23, 28].  Building  file  systems  only  on  NVMM  is

too  expensive  especially  for  a  data  center.  Consider-

ing  the  cost,  capacity,  performance  and  accessing

mode of different storage media and building a cross-

media  file  system  are  more  desirable.  How  to  place

data  and  perform  data  migration  on  NVMM  and

block  devices  (SSD and  disk)  to  build  a  high-perfor-

mance, cost-effective file system is a challenging issue.

There have been already a few surveys that sum-

marize the impacts of NVMM on storage systems. Wu

et al.[29] focused on Phase Change Memory (PCM) as

NVMM, explored the challenges of adopting PCM as

storage and main memory, and summarized and clas-

sified  existing  solutions.  Chen[30] summarized  device-

level  optimization techniques for  NVMM. Mittal  and

Vetter[31] focused  on  using  software  and  system-level
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techniques to exploit the advantages and mitigate the

disadvantages  of  NVMMs.  However,  these  researches

are based on assumptions about NVMM performance,

which  are  different  in  certain  aspects  with  the  real

NVMMs.

To reveal the performance of previous NVMM file

systems on the real  hardware Optane PMM, we sur-

vey  the  techniques  of  NVMM  file  systems  and  ana-

lyze their advantages and disadvantages in this paper.

Izraelevitz et al.[16] tested the performance of Optane

PMM  and  summarized  the  device  characteristics,

which provide us suggestions for designing NVMM file

systems.  Puglia et  al.[32] derived  the  main  concerns

and  challenges  currently  being  studied  and  discussed

in the academia and industry for NVMM file systems,

as well as the trends and solutions being proposed to

address  them.  However,  they  focused  on  theoretical

contents  rather  than  experimental  results  and  tech-

niques.  We  make  a  deeper  introduction  to  the  soft-

ware techniques of NVMM file systems, analyze these

techniques  based  on  the  performance  of  real  hard-

ware Optane PMM, and provide some suggestions.

In  this  paper,  we  survey  30  NVMM  file  systems

and focus  on the  main problems on them.  The main

contributions of the paper are as follows.

1) We summarize the challenging issues of NVMM

file systems and survey existing techniques, including

reducing  software  overhead,  improving  concurrency,

guaranteeing  crash  consistency,  protecting  file  data,

and  building  cost-effective  cross-media  NVMM  file

systems.  Besides,  we  summarize  the  advantages  and

limitations of existing techniques.

2)  We  propose  possible  optimizations  and  re-

search  directions  of  NVMM  file  systems  with  real

hardware NVMM.

The  remainder  of  this  paper  is  organized  as  fol-

lows. Section 2 presents the characteristics of NVMM

and introduces file systems. Sections 3–6 survey the te-

chniques to reduce software overhead, improve scala-

bility, guarantee consistency, and protect data respec-

tively.  We  discuss  building  a  cross-media  file  system

to reduce cost in Section 7. Finally, we conclude this

paper in Section 8.

 2    Background

 2.1    Non-Volatile Main Memory

The  emerging  non-volatile  memory  (NVM)  pro-

vides low latency and persistent storage, which can be

used as a storage device to improve file system perfor-

mance. The existing NVM devices include ReRAM[2],

STT-RAM[3],  Phase  Change  Memory  (PCM)[1, 4] and

3D  Xpoint③.  Although  these  devices  use  different

techniques,  they  have  the  following  advantages:  pro-

viding access latency close to DRAM, and supporting

high concurrent accesses and persistent storage.

Currently, there are two ways to use NVM. One is

for  external  memory-level  storage  devices,  providing

block access interfaces and connecting to the mother-

board  by  using  PCIe  bus  (such  as  Optane  DC SSD,

Optane  SSD).  The  other  is  for  memory-level  storage

devices (NVMM), connecting to the memory bus and

providing load/store interfaces.

Table 1 shows the read and write (R/W) latency,

R/W bandwidth, capacity and price of DRAM, NVM-

M (PCM, Optane PMM), SSD, and disk[5, 16, 28, 33–36]

and  the  data  is  from Intel's  website④ and  jd.com in

July  2019.  PCM is  used  as  the  basic  device  for  aca-

demic research because of its high density, high scala-

bility  and  mature  techniques.  PCM has  similar  read

latency,  3x– 5x  write  latency  and  1/8  bandwidth  of

DRAM. A lot of researches[6, 18, 37–39] have considered

Table  1.   Comparison of NVM Technologies with DRAM, SSD and Disk

Memory R/W Latency R/W Bandwidth (GB/s) Volatility Product Capacity Price (＄/GB)

DRAM 60 ns/60 ns 20 Yes 64 GB 4.49

PCM 50 ns–70 ns/150 ns–1 000 ns 7.8 No – –

Optane DC PMM 305 ns/81 ns 6–7/2–3 No 512 GB 5.34

Optane DC SSD µ µ10 s/10 s 2–3 No 1.5 TB 1.28

NVMe SSD µ µ120 s/30 s 2/0.5 No 8 TB 0.21

Disk 5 ms/5 ms 0.1 No 16 TB 0.03

Note: – means there is no data.
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optimizing the file systems on PCM. However, due to

lacking  real  PCM products,  the  existing  work  evalu-

ates  the  performance  using  an  emulator[18, 23, 40].  Re-

cently, Intel has provided the real NVMM device Op-

taneTM DC  Persistent  Memory  Module  (Optane

PMM) based on 3D XPoint that can be used for file

systems  evaluations  and  replace  the  emulator.  The

performance of  Optane PMM in Table 1 comes from

experiments and existing work[16, 41]. We can see that

Optane PMM shows 3x slower read latency and simi-

lar  write  latency  to  DRAM.  Besides,  its  read  and

write  bandwidth  are  about  1/3  and  1/8  of  those  of

DRAM  respectively.  The  performance  change  from

PCM to Optane PMM motivates us to reconsider the

design of NVMM file systems.

In Table 1, we can see that NVMM provides low-

er  latency than SSD and disk.  Besides,  it  provides  a

larger  capacity  than  DRAM and  is  non-volatile.  We

can build a file system on NVMM to improve perfor-

mance. However, NVMM is more expensive than SSD

and disk, and we should build a cross-media file sys-

tem on multiple storage media to reduce cost. In this

paper,  we  only  focus  on  file  systems  on  NVMM,

which can be used as memory and provide load/store

interfaces.

To  show  the  performance  of  Optane  PMM  and

obtain  some  conclusions,  we  run  some  experiments

and show results in this paper. We conduct all experi-

ments on a server equipped with two sockets (NUMA

nodes).  Each  socket  contains  one  Intel  Xeon  Gold

6271 CPU, 128 GB DRAM and two 256 GB Optane

PMMs. Each CPU has 24 cores and a shared 3.3 MB

last level cache (LLC). All experiments are running in

Centos 7.4.1708 with Linux kernel 4.18.8. We run all

evaluations in NUMA node 0 to exclude the impact of

NUMA architecture. We set Optane PMM in App Di-

rect  Mode[16],  which  is  directly  exposed  to  the  CPU

and operating system.

 2.2    File System

The file system divides the data into file data and

metadata.  The  application  data  is  stored  in  the  file

data.  The  file  system is  not  aware  of  the  content  of

file data and only treats the file data as byte streams.

Applications  use  write  interface  to  store  data  and

read interface to read data. Metadata records the file

system and file  information to support file  data read

and write operations.

File  system  metadata  is  mainly  divided  into  two

categories.  One  is  the  file  system  metadata,  which

records the global information of the file system, such

as storage space and namespace. For example, we can

use the namespace to find the target file. The other is

file  metadata⑤,  which  records  the  attribute  informa-

tion and data location of each file. When accessing a

file,  the file  system finds the target  file  by using the

namespace,  and  locates  the  file  data  block  by  using

file metadata.

Taking  writing  a  file  on  ext4  as  an  example,  the

application  needs  to  execute  at  least  three  system

calls: open, write and close. The open operation finds

the target file, checks the write permission and marks

the file accessing. The write operation locates the tar-

get file  data block,  and then writes the data.  In this

process,  the file  system may need metadata informa-

tion to allocate new space to write data. Finally, the

application uses close to stop the file operations, and

the  file  system  can  recycle  the  file  cache  in  DRAM.

During the entire operation, the file system needs ac-

cess data and metadata in storage devices.

The  existing  studies  optimize  these  operations  to

improve  performance.  The  file  system  calls  (such  as

open and close) are handled in the virtual file system

(VFS, as shown in Fig.1(a)). Since the block device is

not  byte-addressable  and  metadata  is  usually  updat-

ed by several or tens of bytes, VFS caches file system

metadata in DRAM to accelerate the file lookup. Be-

cause the disk provides high access latency, the block-

based file  system builds  page  cache  in  DRAM to re-

duce data operations on disk. Besides, file systems use

the block layer  to  support  block devices  and use  the

I/O scheduler layer to reorder requests to reduce long

disk seek time.

 2.3    Design Challenges of NVMM File

Systems

We  introduce  the  challenges  of  file  systems  on

NVMM, including  performance,  data  correctness  and

cost.

 2.3.1    Performance

File  systems should provide low latency.  This  in-

cludes  avoiding  additional  software  operations,  opti-
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mizing file system index structures and using DRAM

cache.  How  to  design  software  operations  to  obtain

low latency for NVMM file systems is a challenge.

Besides,  file  systems  should  support  high  concur-

rency. With the development of multicore,  paralleliz-

ing I/O operations is a key technique to improve stor-

age  performance.  Nearly  all  applications  implement

concurrent  I/O  operations,  including  mobile[42] and

desktop[43].  NVMM  supports  concurrency  accessing,

and  requires  file  systems  to  avoid  contention  across

the  entire  I/O  path  and  support  highly  concurrent

operations.

 2.3.2    Data Correctness

File systems should guarantee the crash consisten-

cy and correctness of file data. Crash inconsistency is

caused  by  performing  incomplete  write  operations.

For  example,  a  file  write  operation  needs  to  update

file  data and metadata.  The system may crash when

the  data  has  been  updated  but  the  metadata  is  not

updated. When one file system is remounted, only up-

dating the data causes the file system being inconsis-

tent.  File systems need to guarantee crash consisten-

cy with minimal overhead.
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In addition, file systems need to protect the data

on  NVMM. This  is  because  stray  writes  and  storage

media errors  can cause changes to the data that has

been  written  to  the  file  system.  File  systems  should

provide  data  protection  techniques  to  avoid,  detect

and correct these data errors.

 2.3.3    Cost to Build

Building  file  systems  should  also  consider  cost.

NVMM  provides  high  performance  and  is  byte-ad-

dressable, building file systems only on it has a high-

er performance than block-based file systems. Howev-

er, NVMM provides high cost and small capacity (Ta-

ble 1). It is too expensive to use the NVMM file sys-

tem on a data center. Therefore, cross-media file sys-

tems  are  a  better  choice,  which  should  consider  the

performance,  capacity  and  accessing  mode  of  each

storage  media.  For  cross-media  file  systems,  we

should  solve  the  data  placement  and  the  migration

problem.

 3    Reducing Software Overhead

NVMM  is  byte-addressable  and  provides  persis-

tent storage, and we can directly access file data in it

by using load/store interfaces. Compared with block-

based  file  systems  with  the  deep  software  stack,

NVMM file systems should reduce software overhead.

In this section, we first introduce traditional software

operations of block-based file systems. Then we intro-

duce  several  major  optimizations  to  reduce  software

overhead in NVMM file systems. Finally, we summa-

rize  and discuss  these  technologies  based on the per-

formance of the real hardware Optane PMM.

 3.1    Software Stack of Block-Based File

Systems

Fig.1(a) shows the traditional I/O architecture of

kernel-level  block-based  file  systems,  which  have  the

deep software stack. VFS caches file metadata. When

accessing a file, one first accesses the metadata cache

in VFS and then accesses data. If the accessing meta-

data  is  not  found  in  VFS,  one  searches  metadata  in

page  cache  or  block  devices  and  then  updates  VFS.

Page cache caches all file data (including file metada-

ta  and  data),  which  can  avoid  accessing  slow  block

devices  frequently⑥.  If  page  cache  does  not  contain

the  accessing  data,  one  should  access  data  in  slow

block  devices.  Since  block  devices  only  support  read

or  write  operations  in  fixed-size  block  granularity,  a

generic  block  layer  is  established  below  the  file  sys-

tems  to  convert  data  into  blocks.  Besides,  the  I/O

scheduler layer reorders and merges I/O operations to

reduce random I/O and improve spatial locality. [44]

shows  the  complicated  IO  stack  can  occupy  almost

half  of  the whole execution time.  NVMM is  byte-ad-

dressable and provides access latency close to DRAM.

Therefore, the software operations of page cache, the

block layer and the I/O scheduler should be reconsid-

ered for NVMM file systems.

 3.2    Shortening I/O Stack

A number of studies shorten software stack to re-

duce software overhead. NVMM file systems, such as

BPFS[37],  SCMFS[6],  PMFS[5] and  NOVA[18],  remove

page cache, block layer (Fig.1(b)). Ext4⑦ and xfs⑧ al-

so use the direct access (DAX) mechanism to directly

access file data on NVMM. File data can be accessed

directly  and  quickly  by  using  memory  interfaces

(load/store).

The  studies  of  [45, 46]  argue  that  the  metadata

cache in VFS is also unnecessary for NVMM file sys-

tems  (Fig.1(c)).  They  shorten  the  metadata  path  by

bypassing VFS, which lets one directly access metada-

ta.  They  can  improve  the  performance  of  metadata

write operations, such as creating or deleting a file.

 3.3    Building NVMM-Aware Cache

NVMM has a higher latency than DRAM (Table

1).  Compared  with  caching  data  (page  cache)  and

metadata  (VFS)  in  DRAM,  accessing  to  NVMM di-

rectly  reduces  system  performance[38].  For  example,

PCM has  the  higher  write  latency  than  DRAM and

directly writing data to PCM is less performant than

writing  data  in  DRAM.  However,  using  DRAM  to

cache data introduces double-copy overhead for all file

operations[38] when cache misses occur. Therefore, one

can build an NVMM-aware DRAM cache to improve

performance in NVMM file systems (Fig.1(e)).

HiNFS[38] builds  an  NVMM-aware  (PCM)  write
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buffer  in  DRAM  to  buffer  the  lazy-persistent  file

writes.  It  persists  the buffered data to NVMM lazily

to hide the long write latency of NVMM.

DirectFS[47] builds a small metadata cache in VFS

to  optimize  metadata  performance,  which  can  keep

original  metadata  read  performance  and  optimize

metadata  write  performance.  Compared  with  remov-

ing  VFS  cache  directly[45, 46],  DirectFS  can  avoid

harming metadata read performance.

 3.4    Using User-Level File Systems

Some studies[23, 46, 48–53] suggest using user-level in-

terfaces  to  improve  the  performance  of  NVMM  file

systems.  They  execute  file  read/write  operations  at

user  level  and  only  use  a  kernel  module  to  perform

privileged  operations,  such  as  hardware  privilege

changes and memory mapping. These studies not on-

ly  remove  VFS  and  page  cache,  but  further  reduce

the  overhead  of  system  calls  and  kernel  interaction

(Fig.1(d)).

 3.5    Optimizing File System Indexing

File systems use index structures to find data lo-

cations  quickly.  The  index  structures  in  file  systems

can  be  divided  into  three  categories.  The  first  is  the

file  index,  which  is  used  to  support  namespace.  We

can use it to find the target file. The second is the file

data  block  index,  which  is  used  to  locate  file  data

block in a file. The last one manages free space in the

file systems. These index structures are important for

getting good file system performance. NVMM file sys-

tems can use efficient index structures to optimize file

operations. In addition, NVMM has a higher read la-

tency  than  DRAM,  and  one  can  build  index  struc-

tures in DRAM to accelerate data lookup.

 3.5.1    Using Efficient Index Structure

File  Index.  File  index is  used to  look up the tar-

get  file.  In  file  systems,  this  lookup  process  involves

two index  structures.  One  uses  the  file  name to  find

the file dentry in the directory index. The other uses

the inode number in the dentry to look up the file in-

ode.

Block-based  file  systems  use  B-tree[9] and Htree[7]

as the directory index. These tree structures are suit-

able  for  block  devices  but  cannot  utilize  NVMM's

high performance fully. For example, B-tree has high

spatial  locality,  which  reduces  the  seek  operations  of

block  devices.  However,  NVMM  does  not  require

seeking and supports byte-addressability. The advan-

tages of B-tree in block devices are gone, which intro-

duces  a  lot  of  consistency  overhead[36, 54, 55] and  re-

duces  the  performance[6, 56].  Aerie[52] and  SoupFS[38]

use the hash table  as  the directory index,  which can

take full advantage of byte-addressable NVMM.

Since  the  inode  number  is  an  integer  and can be

allocated consecutive  numbers,  file  systems can store

inodes in the inode table according to the inode num-

ber, such as ext4. By this way, file systems can calcu-

late the offset of the target inode by using the inode

number and then locate the inode directly. The inode

table  provides  high lookup performance,  and NVMM

file systems can reuse it, such as PMFS[5].

File Data Block Index. File systems locate file da-

ta blocks  by using the file  data block index.  We use

the  indirect  index  block  in  ext3  as  an  example.  As

shown  in Fig.2(a),  file  systems  read  metadata  from

the  inode,  and get  the  virtual  address  of  indirect  in-

dex block 1 (ind1, ① in Fig.2(a)). Then, file systems

transform the virtual address to the physical address

by using the page table to get indirect index block 1

(② in Fig.2(a)). After that, file systems read the indi-

rect  index block 1 to get  virtual  address  of  the indi-

rect  block  2  (③ in  Fig.2(a)).  The  above  process  can

be repeated until the target block 1 is reached. Each

time a block is accessed, and it is necessary to look up

the file data block index structure and the page table.

NVMM  file  systems  can  directly  use  a  high-perfor-

mance  index  structure  to  replace  the  file  data  block

index.  For  example,  NOVA[18] uses  the  radix  tree  as

the file data block index structure.

In  addition,  NVMM  has  the  same  addressing

mode as DRAM, and file systems can remove the file

data  block  index  to  improve  the  performance.

SCMFS[6] pre-allocates  a  continuous  large  address

space (such as 10 GB) for each file to avoid using the

file data block index. In this way, SCMFS can direct-

ly  access  data  block  by  using  offset.  As  shown  in

Fig.2(b), we can directly locate the virtual address of

block 1  by adding offset  (4  KB) on the  start  virtual

address  of  file A.  Then,  it  uses  the  page  table  to

translate  the  virtual  address  into  a  physical  address.

The page table is accessed by hardware memory man-

agement unit (MMU), which has much higher perfor-

mance than software operations.

SIMFS[56] has a similar idea to SCMFS—building

a  continuous  virtual  address  space  for  each  file.  The
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difference is that it build continuous space by using a

file  page  table.  Items in  the  file  page  table  (PGD in

Fig.2(c)) record the physical address of the next page

table  or  target  block.  When  a  file  is  opened,  SIMFS

directly  inserts  the  file's  page  table  into  the  process

page table. Since the file's page table occupies a con-

tiguous  virtual  space,  SIMFS  can  directly  access  the

file data block by calculating the address offset.

Free  Space  Index. The  free  space  index  can  be

subdivided  according  to  the  type  of  free  space,  such

as free data space and free inodes. Traditional block-

based and memory (such as ramfs) file  systems have

provided a lot of index structures, which can provide

high  performance.  NVMM file  systems  can  use  these

index structures directly. For example, btrfs and NO-

VA[18, 39] use  the  red-black  tree.  This  is  because  the

red-black tree can sort the free lists by addresses, al-

low for efficient merging, and provide O(logn) deallo-

cation.

 3.5.2    Index Structure Placement

Since  NVMM  has  a  higher  read  latency  than

DRAM, building index structures in DRAM can pro-

vide higher read performance than NVMM. NOVA[18]

builds  directory  index  and  file  data  block  index  in

DRAM to perform index operations quickly. Strata[23]

builds file data block index in DRAM. SoupFS[57] and

NOVA[18] build free space index in DRAM. These op-

erations benefit from the low read latency of DRAM.

 3.6    Summary and Discussion

Table 2 classifies  the  optimization  techniques  of

reducing  software  overhead  on  NVMM  file  systems.

Now, we summarize and discuss them.

 3.6.1    I/O Stack

The  software  overhead  caused  by  the  deep  stack

for  block  devices  should  be  removed  for  NVMM file

systems.  This  is  because  NVMM is  byte-addressable,

and these software operations are unnecessary and re-

duce performance. As shown in Table 2, most NVMM

file systems remove the block layer.
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Fig.2.  File data block index structure of (a) ext3, (b) SCMFS, and (c) SIMFS.
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 3.6.2    NVMM-Aware Cache

Some  studies  argue  that  traditional  cache  is  re-

dundant and should be removed[5, 6, 37, 45, 57]. However,

DRAM  cache  can  also  optimize  NVMM  file  system

performance. Fig.3 shows  the  bandwidth  when  per-

forming  single  random  read/write  operations  for  the

disk  file  system  (ext4  with  page  cache)  and  the

NVMM file  system  (ext4-dax  and  NOVA[18] without

page cache) in Optane PMM. We get these results by

using  fio⑨.  Compared  with  ext4,  ext4-dax  and  NO-

VA  improve  the  write  bandwidth  by  reducing  page

cache.  This  is  because  Ext4  needs  to  write  data  in

both  page  cache  and  Optane  PMM.  Optane  PMM

and DRAM have similar write latency (see Table 1).

However, Optane PMM shows 3x higher read latency

than DRAM. Removing page  cache  reduces  the  read

bandwidth. As shown in Fig.3, ext4 outperforms ext4-

dax  and  NOVA  on  read  bandwidth  by  70.2%  and

76.2% respectively.

Therefore,  NVMM  file  systems  should  build  an

NVMM-aware DRAM cache to reduce the number of

NVMM  accesses.  If  NVMM  has  long  write  latency

and low write  bandwidth,  building a write  buffer  for

asynchronous writes is better. For example, PCM has

a higher write latency than DRAM. HiNFS[38] builds a

write  buffer  to  use  non-fsync  writes  to  PCM.  Com-

pared  with  ext4-dax,  HiNFS  improves  the  system

throughput by up to 184%.

If NVMM has long read latency (Optante PMM),

building  a  read  buffer  for  read-heavy  workloads  is

better.  As  shown in Fig.3,  ext4  with  page  cache  has

higher read bandwidth than ext4-dax and NOVA. For

mixed read and write  workloads,  we can build  cache

according  to  the  data  characteristics.  For  example,

DirectFS[47] builds  a  small  NVMM-aware  metadata

cache  to  keep  metadata  read  performance  and  opti-

mize write performance. Fig.4 shows the metadata la-

tency  of  DirectFS.  Cold  cache  means  that  VFS does

Table  2.   Optimization Techniques of Selected NVMM File Systems

Optimization Technique Technique Detail NVMM File System

Shortening I/O stack Removing page cache and
block layer

BPFS[37], SCMFS[6], SIMFS[56], FSMAC[58], NVMFS[59],
TridentFS[60], Shortcut-JFS[61], DenseFS[62], pNOVA[63],
EVFS[53], SPFS[46], PMFS[5], ext4-dax, xfs-dax, Aerie[52],
HiNFS[38], HMVFS[64], NOVA[18], NOVA-Fortis[39],
Strata[23], SoupFS[57], Ziggurat[28], SplitFS[50], ZoFS[48]

Bypassing VFS SPFS[46], ByVFS[45]

Building NVMM-aware cache – HiNFS[38], DirectFS[47]

Using user-level file systems – [49], EVFS[53], SPFS[46], Aerie[52], Strata[23], DevFS[51],
SplitFS[50], ZoFS[48]

Using efficient index structures Optimizing file index SoupFS[57], Aerie[52]

Optimizing file data block index SCMFS[6], SIMFS[56], NOVA[18]

Optimizing free space index NOVA[18], NOVA-Fortis[39]

Building index structures in DRAM – Strata[23], NOVA[18], NOVA-Fortis[39], SoupFS[57]
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Fig.3.   File  system  bandwidth  when  preforming  random  (a)
read and (b) write operations.
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not  contain  file  metadata  before  accessing  the  file.

Warm cache represents  that  VFS contains  file  meta-

data  before  accessing  the  file.  For  reading  (stat)  in

cold cache and all writing operations (create, rename
and delete),  DirectFS  improves  the  metadata  perfor-

mance  by  48.1%  on  average  compared  with  existing

NVMM file  systems ext4-dax and NOVA. For meta-

data  reading  in  warm  cache,  DirectFS  can  keep  the

similar performance to existing NVMM file systems.

 3.6.3    User-Level File Systems

User-level  file  systems  can  reduce  kernel  interac-

tion  and  system  call  overhead.  However,  this  results

in  applications  running  in  their  separate  address

spaces and introduces communication overhead when

multiple applications access a shared file concurrently.

Therefore,  one  can  use  the  user-level  file  systems

when  files  are  rarely  accessed  by  multiple  applica-

tions. Otherwise, we should build kernel-level NVMM

file  systems.  Kernel-level  file  systems  can  reduce  the

communication overhead between processes.

 3.6.4    NVMM-Friendly Index

NVMM  file  systems  should  build  efficient  index

structures.  SCMFS[6] and  SIMFS[56] use  a  memory

management module to index file data blocks Howev-

er, they have some limitations. SCMFS limits the size

of  each  file.  SIMFS  needs  to  modify  the  page  table

frequently,  which  is  complex  and  difficult  to  use.

Therefore,  we  argue  that  using  an  efficient  index

structure is better, such as radix tree. Radix tree⑩ is

suited for the file data block index because the key of

data  block  is  block  offset  and  is  distributed  densely.

Radix  tree  occupies  a  small  space  and  provides  high

performance for densely-distributed keys.

We suggest  using  a  hash  table[54, 55, 65] as  the  di-

rectory index. We can build a hash table for each di-

rectory or the entire file  system shares a global hash

table (the key of hash table consists of the file's par-

ent  directory  inode  number  and the  file  name).  This

is  because  the  hash  table  provides  high  performance

for single key operations (open, remove and stat in file

systems).  Besides,  it  is  unnecessary  to  support  range

query  operations  for  directory  indexes.  File  systems

can use readdir (command ls) to scan all data blocks

in the directory.

For other indexes in the NVMM file systems, such

as the inode table and free space index, we can direct-

ly use the index structures of traditional file  systems

because  these  index  structures  can  provide  high  per-

formance. However, existing file systems use different

index structures, for instance ext4[7] uses the inode ta-

ble  and btrfs[9] uses  B-tree to index inodes.  We need

to  know  the  characteristics  of  each  index  structure

and make an appropriate choice. For example, the in-

ode table can quickly locate the target inode by calcu-

lating the offset. But its size and storage location are

fixed, which limits the number of files in the file sys-

tem.

Based  on  the  characteristics  of  Optane  PMM,

building the index structure in DRAM is better than

in Optane PMM. This is because the read latency of

Optane PMM is  3x higher  than that of  DRAM, and

there are more lookup operations than update opera-

tions for index structures in file systems. More impor-

tantly,  the  operation  granularity  of  Optane  PMM is

256  B.  Index  structures  often  require  modifying  a
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Fig.4.  Latency of metadata operations. stat, create, rename and
delete use system calls and perform reading, creating, renaming
and  deleting  a  file  respectively.  (a)  Cold  cache.  (b)  Warm
cache.
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pointer (address, 8 B), which can also result in write

amplification. Building index structures in DRAM re-

quires  the  file  system  to  support  recovery  after  sys-

tem crashes.  Since directory index and free space in-

dex can be recovered by scanning all the metadata of

the file system, they can be built in DRAM.

 4    Improving File System Scalability

With hardware supporting highly concurrent oper-

ations,  such as multi-cores and NUMA architectures,

parallelizing I/O is a key technology to improve per-

formance[43].  As  shown  in Fig.5,  the  system  has  two

NUMA  nodes,  and  each  node  contains  DRAM,

NVMM,  disk  and  CPU.  Each  CPU  has  eight  CPU

cores.  Multiple  threads  can  concurrently  access

DRAM, NVMM, and disk on different NUMAs using

different  CPU  cores.  Besides,  nearly  all  applications

need  concurrent  I/O  operations[66],  including  mobile

database[42],  desktop  database[43],  relational  databa-

se⑪,  and  NoSQL  databases  RocksDB⑫ and  Mon-

goDB⑬. These all require file systems to provide high

concurrent I/O support.
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Fig.5.  NUMA architecture with two NUMA nodes. APP repre-
sents application.
 

Traditional  file  systems  are  designed  for  slow

block devices and use a deep software stack to oper-

ate  files[19–22],  limiting  file  system concurrency.  Some

file systems improve scalability by using partition[19, 20]

or  isolation[21, 22].  However,  they  are  still  limited  by

the  software  stack[66].  Besides,  some  studies  improve

concurrency  by  increasing  additional  software  opera-

tions,  such as  data  merging[23, 24] and garbage  collec-

tion operations[20],  but increase read and write  laten-

cy.  NVMM  provides  lower  access  latency  than  SSD

and  disk  (Table 1),  and  additional  software  opera-

tions will add NVMM file system latency.

In this section, we analyze the main factors affect-

ing  concurrent  operations  and  introduce  the  existing

techniques based on the NVMM file system. We then

summarize and discuss these techniques.

 4.1    VFS Lock

Existing NVMM file systems[5, 6, 18, 37–39, 48, 50] use

VFS to cache metadata. VFS uses read-write locks in

each  directory,  limiting  only  one  writer  or  multiple

readers  to  run  in  a  single  directory. Fig.6 shows  the

impact of VFS on metadata scalability. To fully ana-

lyze  the  performance,  we  show the  throughput  when

metadata is cached (create, stat) and when metadata

is  not  cached  (stat_cold)  respectively.  For  metadata

write  operations  (create),  the  read-write  lock  limits

the increase of throughput. For metadata read opera-

tions when metadata is cached (stat), VFS uses RCU-

walk⑭ to support concurrent reads when metadata is

cached,  and  it  scales  well  with  increasing  threads.

However,  when  metadata  is  not  cached  (stat_cold),

the  path  lookup  fails  to  scale  due  to  the  read-write

lock contention in VFS. Therefore, if we keep VFS on

NVMM file  systems,  we should improve the metada-
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Fig.6.  Metadata scalability on ext4-dax. ops/s means the num-
ber of operations per second.
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ta scalability.

DirectFS[47] co-designs the metadata between VFS

and a physical file system, using fine-grained flags and

atomic  write  to  remove  directory  locks  in  VFS,  im-

proving metadata scalability.

 4.2    Consistency-Induced Contention

File systems require to guarantee consistency (see

Section 5).  Since  the  disk  does  not  support  concur-

rent  access  and has  a  long  seek  time,  traditional  file

systems  are  designed  with  space  locality.  For  exam-

ple, ext4 and xfs only allow one thread to write jour-

nal,  which  causes  multi-thread  competition  overhe-

ad[20].

Strata[23] and Aerie[52] create logs for each process,

which reduces contentions between processes. Howev-

er, they cannot solve the contention in threads with-

in  one  process,  such  as  the  RocksDB  and  MySQL

database running multiple threads in one process. Al-

so, when multiple processes access the same file, they

introduce  a  lot  of  inter-process  communication  over-

head to synchronize the logs.

NOVA[18],  NOVA-Fortis[39] and  DevFS[51] allocate

one log (journal) for each file. They prevent races be-

tween different files. To support operations on multi-

ple files, such as rename,  NOVA uses global journal-

ing to support multiple file operations. To further re-

duce  contention,  NOVA  allocates  the  global  journal

to  each  CPU  core,  and  the  global  journal  of  each

CPU core can record update information of all files.

 4.3    Space Allocation Contention

Providing  high  concurrency  of  space  allocation  is

important for file system scalability. Traditional disk-

based  file  systems  only  use  one  space  allocator,  and

all  threads  compete  for  the  allocator.  For  example,

btrfs[9] uses a red-black tree as a space allocator. The

red-black  tree  only  allows  a  single  thread  to  modify

concurrently.

NOVA[18] pre-allocates  free  space  to  each  CPU

core. When a thread allocates space, NOVA first allo-

cates space of the CPU core where the thread is run-

ning on. This makes the threads run on different CPU

cores  conflict-free.  Only  when  there  is  no  enough

space on the current CPU core, NOVA acquires space

from  other  CPU  cores.  Compared  with  NOVA,

SoupFS[57] adds  objects  to  each  CPU core,  including

dentries, inodes, B-tree nodes and hash table buckets.

ZoFS[48] pre-allocates free space to each thread, avoid-

ing conflicts between threads.

 4.4    File Lock

pNOVA[63] and Ziggurat[28] use a fine-grained ran-

ge  lock for  a  file,  avoid  using mutex lock[5, 6, 18, 37–39]

and allow a file to be written simultaneously by mul-

tiple threads.

 4.5    Summary and Discussion

The  factors  limiting  concurrent  operations  in

NVMM  file  systems  can  come  from  the  file  systems

themselves  as  well  as  other  parts  of  the  software

stack, such as VFS. In this subsection, we make some

suggestions  for  NVMM  file  systems. Table 3 shows

the  optimization  aspects  of  the  existing  NVMM  file

systems for  concurrent  operations,  including optimiz-

ing  VFS  lock  and  reducing  consistency-induced  con-

tention,  space  allocation  contention  and  locking

range.

  
Table   3.   Concurrency  Techniques  of  Selected  NVMM  File
Systems

Different Contention NVMM File System

VFS lock DirectFS[47]

Consistency-induced
contention

NOVA[18], NOVA-Fortis[39], Strata[23],
DevFS[51], Aerie[52]

Space allocation
contention

NOVA[18], NOVA-Fortis[39], ZoFS[48]

File lock pNOVA[63], Ziggurat[28]

 

Firstly,  removing  the  VFS  lock  is  necessary.  Di-

rectFS uses fine-grained flags and atomic writes to re-

move  the  directory  lock  in  VFS.  We use  mdtest⑮,  a

metadata benchmark, to show the metadata scalabili-

ty of DirectFS (see Fig.7). Since VFS locks the whole

directory, ext4-dax and NOVA fail to scale file create.

DirectFS removes the VFS locks and improves meta-

data scalability.

Secondly,  it  is  important  to  allocate  multiple  re-

sources to reduce contentions in NVMM file systems,

including  consistency  and  space  allocation  induced

contention.  NOVA[18] allocates  one  log  for  each  file,

and  each  thread  can  write  log  without  contention.

Fig.8 shows  the  scalablity  of  NOVA  and  ext4-dax.

We can see that NOVA (NOVA_D) has high scalabil-

ity  than  ext4-dax  (ext4-dax_D).  Since  NVMM  has

low  bandwidth,  there  is  little  difference  in  perfor-
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mance  between  NOVA  (NOVA_N)  and  ext4-dax

(ext4-dax_N) when being tested on NVMM.

Finally, using fine-grained locking and concurrent

index can improve file system concurrency.

Using  Fine-Grained  Locking. The  key  to  using

fine-grained  locking  is  to  find  contention  operations

and  only  lock  them.  For  example,  when  creating  a

new file in directory A,  the file system needs to allo-

cate  inodes  and dentries,  and then update  the meta-

data of directory A.  Traditional file systems lock the

entire process. In fact, we only need to lock the pro-

cess of modifying metadata of directory A. This is be-

cause the operations of allocating dentries and inodes

do  not  interfere  with  one  another.  They  can  be  exe-

cuted concurrently.

Using  Concurrent  Index. The  index  structures  of

block-based  file  systems,  such  as  B-trees  and

Htrees[67],  do  not  support  concurrent  operations  and

have  high  consistency  overhead  on  NVMM.  We  rec-

ommend  considering  memory  index  (hash  table)  and

some new index structures[54, 55, 65] for NVMM file sys-

tems. Fig.7 shows the scalability of DirectFS when us-

ing  hash  table  (DirectFS),  radix  tree  (DirectFS_r)

and B-tree (DirectFS_b) as the directory index. Since

radix tree and B-tree only allow one thread updating,

DirectFS_r  and  DirectFS_b  cannot  improve  metada-

ta  throughput  when  the  number  of  threads  is  up  to

12. DirectFS uses the chain hash table as the directo-

ry index, which supports high scalability.

For some index structures that only need to be ac-

cessed  by a  single  thread,  simple  data  structures  are

better. For example, SoupFS[57] uses the linked list as

the  free  objects  inode.  This  is  because  these  free  ob-

jects  have the  same size  and there  is  no thread con-

tention. Linked list can efficiently support space allo-

cation and deallocation operations for a single thread.

 5    Guaranteeing Crash Consistency

File  systems  should  remain  consistent  after  sys-

tem  crashes,  which  requires  that  a  single  operation,

such as open system call, is committed in all or none

fashion. However, a single file system operation usual-

ly  involves  multiple  steps  and  updates  multiple

places. For example, creating a file (open system call)

requires building new file metadata and updating par-

ent  directory  metadata  atomically.  Since  the  atomic

write granularity of storage devices is sector (SSD and

disk) or byte (NVMM), they cannot complete all the

updates in multiple positions atomically. File systems

require additional mechanisms to guarantee consisten-

cy.

NVMM  is  byte-addressable  and  supports  direct

access  by the  CPU load/store  instructions.  However,

unanticipated  cache  line  eviction  may  cause  data  to

be written out of order. This causes partial data loss

if the system crashes, resulting in an inconsistent file

system.  We can  use  cache  flush  instructions  (clflush,
clwb,  clflushopt)  and  memory  fence  instructions

(sfence, mfence, lfence)  to  perform  sequential  data

write and ensure consistency on NVMM file systems.

However,  these  instructions  suffer  from  long  execu-

tion  time  and  serialize  memory  operations,  reducing

performance.  Traditional  consistency  techniques  are

based  on  block  devices,  which  write  data  with  block

granularity  and  result  in  write  amplification.  Write

amplification  further  increases  the  use  of  cache  flush

and  memory  fence  instructions,  increasing  the  over-

head of maintaining consistency.

In  this  section,  we  introduce  and  analyze  consis-

tency techniques, including copy-on-write, journaling,

log-structuring,  soft  updates  and  snapshot.  Besides,

we give some suggestions on NVMM file systems.
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Fig.7.  Metadata scalability of creating file.
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Fig.8.   Impact  of  consistency  scalability.  N  and  D  represent
running on NVMM and DRAM respectively.
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 5.1    Copy-on-Write

Copy-on-write (COW) copies the data before it is

modified[68], which allocates new space and writes new

data,  and then atomically replaces the old data with

new data. After the system crashes, one can only see

old data or new data. However, COW can cause itera-

tive updates.

Fig.9(a)  shows  how  COW  works  when  updating

block 2 in file A.  File A's  metadata stores in the in-

ode table  (InA in Fig.9(a)),  and the  inode uses  indi-

rect index blocks (Inds) to index data blocks (same to

ext3  in Subsection 3.5.1).  Block-based  file  systems

first allocate a new block 2* and write new data to it

(① in Fig.9(a)). Then one updates the pointer in indi-

rect index block 2 (Ind2 in Fig.9(a)) from block 2 to

block  2*.  Although  only  updating  several  bytes,

block-based file systems need to allocate a new block

and  rewrite  the  indirect  index  block  2  (② in

Fig.9(a)). After that, COW updates the pointer in in-

direct index block 1 (Ind1, ③ in Fig.9(a)). The above

process can be repeated until the inode block A is up-

dated.  This  process  quadruples  the  amount  of  data

written in the file system. If a file contains more indi-

rect index blocks in the search path, the write ampli-

fication will be larger.

BPFS[37] incorporates  atomic  in-place  updates

with COW to reduce write amplification. As shown in

Fig.9(b),  since  file  systems  only  require  updating  a

pointer  (8  B)  in  indirect  index  block  2  (Ind2  in

Fig.9(b)),  BPFS  can  update  the  pointer  in  NVMM

atomically,  avoiding  iterative  updates  and  reducing

write amplification. However, atomic update does not

support the operation of multiple data. For example,

if  one  operation  rewrites  eight  blocks,  BPFS  should

update eight pointers in indirect index block 2 atomi-

cally.  Since  the  atomic  instructions  do  not  support,

BPFS needs to COW the indirect index block 2.
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NOVA[18] and  PMFS[5] use  COW  to  guarantee

crash consistency of file data. For metadata, they use

journaling  and  log-structuring  (Subsections 5.2 and

5.3 show more details). This is because metadata up-

dates are usually several bytes and COW needs copy-

ing  the  entire  data  block,  introducing  a  lot  of  extra

write data.

 5.2    Journaling

A journaling  file  system uses  journals  to  guaran-

tee consistency[5]. For each operation, file systems first

store  old  data  or  new  data  in  the  journal  and  then

perform  the  operations.  Once  an  improper  system

shutdown occurs,  file  systems can be  repaired  by  re-

playing  the  journal.  As  shown  in Fig.9(c),  when  up-

dating  data  in  block  2,  block-based  file  systems  first

write  old  block  2  and file  metadata  (InA)  in  journal

persistently (① in Fig.9(c)), and then update block 2

and  file  metadata  (InA)  in-place  (② in  Fig.9(c)).

Journaling  writes  data  twice:  one  writes  to  the  jour-

nal  and  the  other  updates  in-place[5],  which  causes

write  amplification.  Besides,  block-based  file  systems

record journal at the block size, which further increas-

es  write  amplification.  Some  file  systems  have  re-

duced consistency guarantees, such as ext4 in the or-

dered or writeback mode, which only record metada-

ta in journal to reduce write amplification.

PMFS[5] uses fine-grained undo journaling to guar-

antee  metadata  consistency,  which  only  records  the

updated metadata. As shown in Fig.9(d), after rewrit-

ing block 2* by using COW (①), it only records the

updated  metadata  in  journal  and  then  updates  the

pointer in-place (③). This technique takes advantage

of  two  consistent  techniques  and  avoids  unnecessary

writes.

 5.3    Log-Structuring

A  log-structured  file  system  organizes  the  entire

file system as a log. All file operations are sequential-

ly appended to the end of the log in the block size[25, 69].

After the system fails, the file system scans the log to

restore  its  consistency.  To  reduce  the  scan  time  of

system recovery, the file system sets checkpoints peri-

odically. All operations before one checkpoint are con-

sistent. Therefore, the file system only scans the writ-

ten data after the last checkpoint to recover the con-

sistency. Fig.10 shows the process that updates block

2 in file A.  File  systems firstly append new block 2*

in  log  (①).  Then  file  systems  update  the  pointer  in

indirect index block 2 (Ind2 in Fig.10) by appending a

new indirect index block 2* in log (② in Fig.10). Af-

ter that, file systems update indirect index block 1 (③

in Fig.10) and inode block A (④ in Fig.10). The write

amplification  is  4x.  Although  log-structuring  gener-

ates  similar  write  amplification  to  COW,  it  converts

all updates in file systems to sequential access, reduc-

ing seek operations in disk and improving throughput.

However,  log-structuring  scatters  file  data  anywhere

and  results  in  poor  read  performance.  Besides,  log-

structuring requires a large amount of contiguous free

space, which results in severe garbage collection (GC)

overhead[69].
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Fig.10.  Consistency technique of log-structuring.

 
The byte-addressability of NVMM allows file sys-

tems  to  only  record  update  data  in  log,  which  re-

duces  the write  amplification.  Besides,  it  reduces  the

reliance on locality for read operations. GC becomes a

major factor affecting performance. Strata[23] uses the

log-structuring  technique  to  record  all  file  writes.

Since Strata is a cross-media file system, it needs mi-

grate data to SSD and disk periodically. Strata incor-

porates  GC into  the  migration process  to  reduce  the

negative  impact.  NOVA[18] uses  log-structuring  to

record metadata. Since metadata is small, NOVA on-

ly needs to recycle a small amount of space when per-

forming GC. Besides, NOVA only provides 4 KB con-

tinuous  space  to  record  log.  In  this  way,  NOVA re-

claims space  in  4  KB block size  and can avoid  recy-

cling the blocks that have a lot of valid data.

 5.4    Soft Updates

Soft  updates⑯[70, 71] trace  update  dependencies  to

provide  the  metadata  consistency.  Unlike  the  tech-

niques described above, soft updates record dependen-
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cies  in DRAM and then write data to storage media

in  the  background[57, 70, 71].  Therefore,  it  can  achieve

similar  performance  to  memory-based  file  systems,

such as tmpfs and ramfs.

However,  performing  soft  updates  on  block  de-

vices can lead to false sharing and complicated depen-

dencies.  As  shown in Fig.11(a),  two  threads  perform

rename operations in directory A respectively. For re-

naming file B to file C,  the file  system needs to add

dentry of file C in block 2 before deleting the dentry

of file B in block 1. For renaming file G to file E, the

file  system  requires  adding  file E in  block  1  before

deleting  file G in  block  2.  These  two  operations  can

run  concurrently  without  interference,  but  result  in

false sharing when operating the same blocks. Delay-

ing data updates on disk requires file systems to keep

track  of  these  dependencies  to  guarantee  sequential

writes for each operation. It is difficult to understand,

implement  and  maintain  soft  updates  in  the  main-

stream file systems.
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Fig.11.   Technology  of  soft  updates.  (a)  Traditional  soft  up-
dates. (b) Soft updates of SoupFS.

 

NVMM is  byte-addressable  and  can  remove  false

sharing  and  simplify  the  complexity  of  soft  updates.

SoupFS[57] redesigns the directory structure to isolate

file operations and reduce dependencies. As shown in

Fig.11(b),  the  dentry  of  each  file  can  be  stored  and

updated  separately.  Besides,  the  hash  table  supports

simultaneous  updating  by  multiple  threads.  There-

fore,  the  two  rename  operations  can  run  without  in-

terference.  By  using  these  techniques,  SoupFS  solves

the  complicate  dependency  of  soft  updates,  improves

file system performance and guarantees consistency.

 5.5    Snapshots

The snapshot  records  the  state  of  the  file  system

at  a  specific  time  and  provides  strong  consistency

guarantee.  File  systems  can  recover  from  snapshots

with  various  error  types[64].  To  minimize  the  over-

head of snapshot, file systems need to efficiently man-

age multiple version of  snapshot and there is  a large

amount of duplicate data between versions. The most

widely-used approach of  snapshot is  based on COW-

friendly  B-tree[64],  which  uses  hierarchical  reference

count to record the usage of each block[68]. As shown

in Fig.12(a),  when  the  file  system  needs  to  modify

block  1  in  file C after  the  snapshot  2  is  created,  it

needs  to  allocate  a  new  block  to  store  new  data  of

block 1 and rebuilds the metadata of file C.  Besides,

the file system requires modifying the reference count

of  the  related  data  block  to  support  multiple  snap-

shot  version.  In Fig.12(a),  the  reference  counts  of

block 2 and other data blocks (data in Fig.12(a)) are

updated.  Although  the  hierarchical  reference  count

can postpone explicitly counting references, the num-

ber of reference counts that requires to be updated is

proportional  to  the  fan-out  of  such  a  tree  multiplied
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Fig.12.  Technologies of snapshots. (a) Snapshots based on COW friendly B-tree. (b) Snapshots of HMVFS. (c) Snapshots of NOVA-
Fortis.
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by the height[72]. Besides, taking a global snapshot re-

quires  updating  data  from  the  leaf  level  to  the  file

system root, including the height of the index tree in

a file and the height of the directory hierarchy, which

increases  file  I/O,  wastes  space  and  reduces  file  sys-

tem performance.

HMVFS[64] solves  the  hierarchy  update  problem

by  building  a  node  address  tree  (NAT)  on  NVMM.

NAT is used to index multi-version metadata blocks,

including  the  inode  blocks,  the  indirect  index  block

and  the  direct  index  blocks.  For  simplicity,  we  only

show 2-level NAT and omit the indirect and direct in-

dex block in Fig.12(b). The data block is directly in-

dexed by an inode. Since one NAT internal node can

record 512 entries and one NAT leaf node records 256

entries (each entry can index 4 KB data block), the 4-

level NAT can support 64 PB file system data. When

creating a snapshot, HMVFS only requires rebuilding

six blocks (four NAT blocks, one metadata block, and

one  data  block)  for  a  modified  data  block.  Besides,

HMVFS  reduces  the  scope  of  modification  of  refer-

ence  counts.  In Fig.12(b),  HMVFS only  modifies  the

reference count of the block indexed by indirect block

1 (ind1 in Fig.12(b)), such as the inode block where C
is located. Since NVMM is byte-addressable, HMVFS

can update  the  reference  count  atomically  and avoid

write amplification.

NOVA-Fortis[39] supports  snapshots  at  file  granu-

larity.  To  avoid  write  amplification,  it  uses  the  log-

structuring  technique  to  store  metadata  and  snap-

shot information. As shown in Fig.12(c), when modi-

fying  block  1,  NOVA-Fortis  allocates  a  new  data

block  to  write  block  1  and  records  current  snapshot

ID and  file  offset  (2,  0)  in  the  log.  It  does  not  need

other operations to support snapshots, avoiding write

amplification.  Besides,  NOVA-Fortis  builds  a  snap-

shot  manifest  cache  in  DRAM  to  accelerate  the  file

access.  The cache records a birth snapshot ID and a

death  snapshot  ID  for  each  log  entry.  As  shown  in

Fig.12(c),  log  entry  1  belongs  to  snapshot  1,  log  en-

try 2 belongs to snapshot 2 to the latest snapshot and

log entry 3 belongs to snapshot 2 to the latest snap-

shot. When accessing a file, one can quickly locate the

snapshot data through cache.

 5.6    Summary and Discussion

The above studies optimize traditional crash con-

sistency  techniques  by  reducing  write  amplification

and write dependencies. Table 4 classifies the NVMM

file systems according to their consistency techniques.

Among these studies, we can see that there is no one

technology that  is  suitable  for  all  operations  and file

systems tend to use different techniques to guarantee

crash  consistency  for  data  and  metadata.  For  exam-

ple,  metadata  is  often  modified  by  small  writes.

PMFS[5] uses  journaling  to  guarantee  metadata  con-

sistency.  However,  using  journaling  in  data  updates

results  in  serious  write  amplification.  Therefore,

PMFS  suggests  using  COW for  data  consistency.  In

this  subsection,  we  summarize  and  discuss  the  use

cases of these crash consistency technologies.

COW is suitable for file data updates. File data is

usually updated at block granularity (e.g, 4 KB) and

a  write  operation  introduces  at  most 8 190 B  write

amplification  (updating  two  bytes  of  data,  and  each

byte  occupies  a  data  block).  File  data  is  written  in

large sizes frequently. The write amplification of 8 190

B data is acceptable. As shown in Table 4, there are

seven  NVMM  file  systems  that  use  COW  to  ensure

data crash consistency.

Log-structuring  has  similar  write  amplification  to

COW but with GC overhead. Unlike disk devices, the

random  read/write  performance  of  NVMM  is  the

same as sequential  read/write with large granularity.

As shown in Fig.13, Optane PMM shows similar per-

formance  for  both  sequential  and  random operations

when performing large size operations (such as 4 KB).

Therefore,  log-structuring  is  not  recommended  to

Table  4.   Consistency Techniques of Selected NVMM File Systems

Consistency Technique Data Type NVMM File System

COW Metadata BPFS[37], FSMAC[58], SPFS[46], Aerie[52]

Data BPFS[37], SPFS[46], PMFS[5], NOVA[18], Ziggurat[28], HiNFS[38], SplitFS[50]

Journaling Metadata HeRMES[73], [49], PMFS[5], ext4-dax, xfs-dax, Aerie[52], NOVA[18], Ziggu-
rat[28], HiNFS[38], SplitFS[50]

Data TridentFS[60], Shortcut-JFS[61], [49]

Log-structuring Metadata HeRMES[73], pNOVA[63], NOVA[18], Strata[23], Ziggurat[28]

Data Strata[23]

Soft updates Metadata and data Conquest[74], SoupFS[57]

Snapshot Metadata and data HMVFS[64], NOVA-Fortis[39]
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guarantee file data consistency.

Journaling is better for metadata consistency. For

file  metadata,  it  only  updates  several  bytes  or  up to

hundreds  of  bytes.  COW  and  log-structuring  use

block  updates  and  may  cause  4  KB  write  amplifica-

tion. Although we can only record updated metadata

to reduce write  amplification in  COW and log-struc-

turing,  different  metadata  operations  result  in  differ-

ent  update  sizes.  It  is  difficult  to  index this  updated

metadata  and  increases  lookup  overhead.  Therefore,

journaling is suitable for metadata consistency.

Soft updates can guarantee file system crash con-

sistency with low overhead. However, it may lose da-

ta after the system crashes. This is because it records

the  data  into  DRAM  synchronously  and  delays  up-

dating  the  data  to  the  storage  media.  Delayed  up-

dates  to  storage  media  may  cause  new  data  not  to

persist  when  the  system  crashes,  resulting  in  data

loss. Therefore, soft updates are not suitable for high

reliable storage scenarios, such as data centers.

The snapshot provides a strong consistency guar-

antee.  It  records  multi-version  data  and  is  used  to

backup data. We can use the technique of HMVFS[64]

and  NOVA-Fortis[39] to  support  snapshots.  However,

writing all  snapshots  in NVMM increases  costs.  This

is  because  NVMM  is  expensive.  Since  old  version

snapshots  are  not  accessed  frequently,  we  can  mi-

grate  old  version  snapshots  into  block  devices  to  re-

duce cost.

 6    Protecting Data and NVMM Endurance

NVMM  is  attached  on  the  memory  bus,  and

threads can access NVMM just like DRAM by using

CPU  load/store  instructions.  This  can  cause  other

stray writes[5] and produce data errors on NVMM file

systems.  In  addition,  NVMM may suffer  from media

errors,  producing  incorrect  values.  NVMM  file  sys-

tems  need  to  avoid,  detect  and  correct  these  errors.

Besides,  NVMM has limited endurance and updating

some  cells  too  frequently  may  cause  wearing  out.  In

this  section,  we  introduce  techniques  to  solve  data

protection  issues,  including  software  bugs  and  media

errors,  as  well  as  techniques  to  keep  NVMM  cells

wear evenly.

 6.1    Software Bugs

Since most NVMM file systems map NVMM into

the user or kernel address space, file data is vulnera-

ble to stray writes (software bugs).  For example,  us-

ing  a  store  instruction  to  access  an  invalid  pointer

may modify useful file data and cause permanent cor-

ruption. One possible solution is to mark all pages as

read-only and upgrade them to be writable when up-

dating  data.  However,  changing  the  page  tables  to

toggle write permission may take TLB shutdown and

hurt performance. Some existing studies[5, 18, 39] lever-

age the specific CPU register to switch write permis-

sion,  such  as  CR0.WP  register  in  x86  architecture,

which avoids the TLB shutdown overhead.

ZoFS[48] maps part of NVMM into the user space

and data can be modified in the user space. It lever-

ages memory protection keys (MPKs)[75] to represent

the permission of one user space region. MPK adds a

new 32-bit  register  PKPU and  every  two  bits  repre-

sent the permission of one region. The PKPU register

is  per-thread  and  it  could  prevent  stray  writes  from

other concurrent threads.

 6.2    Media Errors

Like  all  storage  media,  NVMM  suffers  from  me-

dia  errors  which  may  generate  incorrect  values.  NO-

VA-Fortis[39] assumes  memory  systems  take  the  re-

sponsibility  to  provide  error-correcting  codes  (ECC)

and the memory controller corrects correctable errors

on  NVMM.  In  addition,  NOVA-Fortis  keeps  two

copies  and  adds  CRC32  checksums  to  protect  and

check  metadata  errors.  For  file  data  protection,  NO-

VA-Fortis  adopts  the  mechanism  of  RAID-4  parity

and checksum.

 6.3    NVMM Endurance

NVMM has the problem of limited endurance. Da-
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Fig.13.   Ratio  of  random  read/write  latency  to  sequential
read/write latency respectively.
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ta writing to NVMM contains data and metadata. As

for  data,  it  is  written  in  large  blocks  and  may  use

copy-on-write, which helps the data to be evenly dis-

tributed. However, metadata takes a small part space

and  is  updated  frequently.  Most  of  NVMM  file  sys-

tems[5, 18] store  some  metadata  (superblocks,  inodes,

etc.)  in  a  fixed  position.  Due  to  the  limited  en-

durance of NVMM, this may result in metadata cor-

ruption. March[26] and LMWM[27] focus on wear-level-

ing  of  inodes.  March  collects  writes  into  a  marched

window  and  slides  the  window  to  spread  the  writes.

The  exchanging  of  inodes  is  implemented  by  chang-

ing  the  mapping between logical  inodes  and physical

inode  slots.  LMWM finds  that  the  internal  of  an  in-

ode  also  has  different  updating  frequencies.  Most

NVMM file systems store an inode by two 64 B parts

and the update frequency of the first part is far more

than that of the second part. LMWM uses two 64 B

slots to store one inode and control wear-leveling be-

tween many 64 B slots,  eliminating the unbalance in

the internal of one inode.

 6.4    Summary

It  is  necessary  to  protect  data  to  provide  highly

reliable file system even at the cost of hurting perfor-

mance.  Using  MPK  in  the  user  level  and  the  write

mechanism in the supervisor mode is  better to avoid

stray writes. For media errors in NVMM, the mecha-

nism  used  in  DRAM  such  as  checksum  and  ECC

could  be  learned  and  applied.  Inodes  are  frequently

accessed and can cause wear-out easily. Designing file

systems should consider this point.

 7    Building Cross-Media File Systems

NVMM provides the lower latency than SSD and

disk  but  has  smaller  capacity  higher  cost  (see Table

1). Storing data only in NVMM cannot build the file

system that  is  both  cost-effective  and  large-capacity.

A cross-media file system is a good choice to leverage

the  strengths  of  different  storage  mediums.  We need

to  consider  how  data  is  placed  and  migrated  across

multiple storage mediums.

 7.1    Data Placement

In cross-media file systems, NVMM can play two

roles. One acts as a persistent cache, which stores the

latest  data,  and  then  this  data  is  migrated  to  other

medium. The other uses NVMM to store part of data.

 7.1.1    NVMM as Persistent Cache

NVMFS[59] uses  NVMM  to  cache  recently  ac-

cessed  data.  This  technique  absorbs  small  random

I/O  on  NVMM  and  then  performs  large  sequential

writes  on  SSD.  Besides,  NVMFS  reduces  GC  over-

head  on  SSD  by  grouping  data  with  similar  update

periods in NVMM and writing the data into the same

SSD  blocks.  AFCM[76] and  PMW[77] use  NVMM  to

build  synchronization cache  to  reduce  the  write-back

traffic to SSDs.

Strata[23] writes all data into NVMM and then mi-

grates the data to SSD and disk asynchronously. This

approach improves small  write  performance.  In addi-

tion,  migration  operations  can  delete  temporary

writes,  reorganize  and  compact  data  for  efficient

lookup,  and  batch  data  into  large  sequential  opera-

tions.  These  operations  are  beneficial  to  SSD  and

disk.  However,  it  is  not  friendly  to  sequential  write

operations. It brings a lot of data migration overhead

and block devices can support efficient sequential op-

erations. Directly writing this data to block devices is

better.  Besides,  Strata  distributes  metadata  at  each

storage  level.  This  may  cause  that  Strata  needs  to

find all of the storage devices while processing the file,

reducing file lookup performance.

 7.1.2    NVMM as Storage Medium

Most studies use NVMM to store the data that is

frequently accessed in the file system. They store meta-

data[58, 74, 78–80],  small  files[74] and hot  data[23, 28, 59, 60]

on NVMM. We introduce two representative studies.

FSMAC[58] places  metadata  on  NVMM  to  im-

prove  performance.  However,  updating  metadata  on

NVMM is faster than updating data on block devices.

It may destroy the consistency between metadata and

data.  For  example,  when writing new data in  file A,

one  requires  updating  metadata  in  NVMM  and  ap-

pending  a  new  data  block  in  SSD.  After  the  system

crashes, the file A has a modified file size in NVMM

but  the  old  file  data  in  SSD.  The  file A is  inconsis-

tent and cannot recover. Write ordering can solve the

problem, which writes file data into SSD before writ-

ing metadata. However, the speed mismatch between

NVMM  and  SSD  causes  the  file  system  to  wait  for

the data to be persisted on SSD, reducing the perfor-

mance. FSMAC establishes multiple versions of meta-

data  and  uses  transaction  to  manage  different  ver-

sions  of  metadata.  Before  updating  metadata,  FS-

MAC creates  a  backup of  the  original  version of  the
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metadata and starts a new transaction.  The transac-

tion  is  committed  when  the  new  metadata  and  data

have  been  written  to  NVMM  and  SSD  respectively.

The  original  version  metadata  is  deleted  only  after

the  transaction  has  been  committed.  If  the  system

crashes  before  the  transaction  commits,  FSMAC  re-

stores  the  original  version  metadata.  Otherwise,  FS-

MAC directly uses new metadata.  However,  FSMAC

cannot guarantee the data of a file operation is persis-

tent  after  the  operation  has  returned  to  the  applica-

tion  (same to  soft  updates  in Subsection 5.4),  and it

only  guarantees  that  data  and  metadata  are  consis-

tent.

Ziggurat[28] sends  small,  synchronous  writes  to

NVMM  but  asynchronous,  larger  writes  to  disk.

Smaller  and  synchronous  writes  use  the  low-latency

and  byte-addressable  NVMM,  and  they  can  be  done

quickly. Asynchronous and large writes can be cached

in DRAM and then written back to disk in the back-

ground. This operation can reduce the write pressure

of  NVMM  and  utilize  the  high  performance  of

DRAM.

 7.2    Data Migration

Building a cross-media file system should consider

data  migration  between  different  storage  mediums.

Although  we  can  run  data  migration  in  the  back-

ground,  migrating  data  slowly  can  stall  foreground

operations.  For  example,  the  slow  migration  of  data

causes that the NVMM space is full.  The foreground

threads cannot obtain space from NVMM and can on-

ly  wait.  Besides,  migration  operations  occupy  device

bandwidth,  resulting  in  system  performance  jitters.

We  should  consider  these  problems  for  cross-media

file systems.

Strata[23] migrates data from NVMM to SSD and

disk when the NVMM space is used beyond a thresh-

old  (30% is  proposed  in  Strata).  When  NVMM runs

out of space, the foreground threads must wait for the

data migration before allocating new space.

Ziggurat[28] migrates data from NVMM to disk ac-

cording to the utilization of NVMM. It implements a

dynamic threshold based on the overall read-write ra-

tio. If the write ratio is high, the threshold should be

lower;  otherwise  the  threshold  should  be  higher.  In

addition, Ziggurat migrates data when it finds that it

is inappropriate to store the data on the current stor-

age  medium.  For  example,  Ziggurat  migrates  a  file

from  NVMM  to  disk  when  it  finds  that  the  file  is

cold.

 7.3    Summary and Discussion

A cross-media file  system should take full  advan-

tage of the characteristics of each storage medium to

place  data  and  reduce  overhead  of  migrating  data.

Table 5 shows  the  NVMM  roles  used  by  existing

cross-media  file  systems.  We  can  see  that  most  file

systems  use  NVMM  as  a  storage  medium.  Now,  we

summarize and discuss these techniques when NVMM

is used as the storage medium.
  

Table  5.   Different NVMM Roles of NVMM File Systems

Role NVMM File System

Persistent cache NVMFS[59], Strata[23]

Storage medium FSMAC[58], Ziggurat[28], Conquest[74], [78], [79],
NVMFS[59], TridentFS[60], Strata[23]

 7.3.1    Data Placement

Small  and  synchronous  writes,  such  as  metadata

and log, require immediate persistence and should be

placed on NVMM. Hot data also should be placed on

NVMM  except  read-dominated  and  asynchronous

writes.  Placing  read-dominated  data  and  asyn-

chronous  write  data  on block  devices  and caching  in

DRAM are better for NVMM file systems. This is be-

cause  DRAM  shows  the  lower  read  latency  than

NVMM  and  is  volatile.  Besides,  operating  this  data

on  block  devices  can  reduce  the  access  pressure  of

NVMM, improving performance. Cold data should be

migrated  to  low-cost  block  devices,  such  as  disks.

Block  devices  offer  higher  capacity  and  lower  cost

than NVMM (see Table 1).

We  validate  these  strategies  with  the  perfor-

mance  of  real  hardware  Optane  PMM. Fig.14 shows

the  normalized  latency  of  Optane  PMM and Optane

SSD against  DRAM (more  details  of  evaluation con-

figuration  in Subsection 2.1).  We  evaluate  Optane

PMM by mmapping a 300 GB NVMM file (ext4-dax

on Optane  PMM) into  the  application  address  space

and  then  perform  read/write  operations  within  the

mmap  address  directly.  For  Optane  SSD,  we  obtain

test results by directly reading and writing data on it.

We  can  see  that  the  read  and  write  latency  of  Op-

tane  PMM is  much  lower  than  that  of  SSD.  There-

fore, it is beneficial to putting data that requires im-

mediately  persistence  on  NVMM,  such  as  metadata

and  log.  For  read  latency,  Optane  PMM  provides

about 3x latency than DRAM (Fig.14(a)). Therefore,

it  is  more suitable to cache the read-dominated data

in DRAM. As the number of threads increases, the la-
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tency  of  Optane  PMM,  especially  for  write  latency

(Fig.14(b)),  increases  compared  with  DRAM.  There-

fore,  putting  all  hot  data  in  Optane  PMM increases

accessing  pressure  and  results  in  performance  degra-

dation. We should place data and operations accord-

ing  to  the  load capacity  of  devices.  File  systems can

use  block  devices  and  DRAM  to  reduce  the  access

pressure of Optane PMM.

 7.3.2    Data Migration

When  migrating  data  from  NVMM  to  low  stor-

age  tier  on  cross-media  file  systems,  one  should  de-

cide  the  utilization  of  NVMM.  A  fixed  utilization

threshold cannot be applied to all file system scenar-

ios. For example, a higher threshold is not suitable for

write-dominated workloads, because the space can be

used  by  intensive  file  writes,  which  causes  the  fore-

ground write  threads to  have no space available  and

stalling.  A  lower  threshold  is  not  suitable  for  read-

dominated  workloads  because  frequent  migration  op-

erations can cause file system performance jittery. Be-

sides, reads have to load more data blocks from block

devices,  reducing  read  performance.  Therefore,  a  dy-

namic threshold is better for cross-media file systems.

We  should  set  a  high  threshold  for  read-dominate

workloads  and  a  low  threshold  for  write-dominate

workloads.

In addition, once the type of data access is deter-

mined,  such  as  cold  or  hot  data,  we  should  migrate

the data to the appropriate storage medium for high

performance.

 8    Conclusions

NVMM provides low latency, byte addressing ca-

pability, and persistence, changing the storage hierar-

chy  and  providing  opportunities  to  improve  file  sys-

tem  performance.  In  this  paper,  we  analyzed  new

challenges for NVMM file systems, including software

overhead,  scalability,  consistency  guaranteeing,  data

correctness  protection  and  cross-media  management.

After analyzing the techniques of existing studies, we

provided  a  few  suggestions  based  on  real  hardware

Optane PMM from the following five aspects.

Reducing  Software  Overhead.  We  suggested  that

one  should  adopt  various  techniques  to  reduce  soft-

ware overhead for  building high-performance NVMM

file systems. These techniques mainly include shorten-

ing IO stack, building NVMM-aware cache, using us-

er-level file systems or kernel file systems in different

situations, and building NVMM-friendly index.

Improving  File  System  Scalability.  We  suggested

improving  scalability  of  VFS  for  the  kernel-level

NVMM  file  system.  Moreover,  one  should  use  fine-

grained  locks  and  highly-concurrent  index  structures

in the NVMM file system.

Guaranteeing  Crash  Consistency.  We  suggested

that  one  should  carefully  choose  crash  consistency

techniques for different situations. For example, jour-

naling  is  suitable  for  guaranteeing  metadata  consis-

tency,  and  meanwhile  copy-on-write  works  well  for

guaranteeing crash consistency for file data updates.

Protecting Data and NVMM Endurance. We sug-

gested  using  the  MPK  technique  and  checksum  to

protect data and endurance in NVMM file systems.

Building Cross-Media File Systems. We suggested

that  one  should  take  advantage  of  different  storage

mediums  when  building  cross-media  file  systems.

Specifically,  careful  data  placement  as  well  as  data

migration should be conducted for achieving high per-

formance.
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Fig.14.  Normalized latency of Optane PMM and Optane SSD against DRAM. 256 B and 16 KB represent the access block size. A
and S represent Optane PMM and SSD respectively. (a) Read latency. (b) Write latency.
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