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Abstract    Local differential privacy (LDP) approaches to collecting sensitive information for frequent itemset mining

(FIM) can reliably guarantee privacy. Most current approaches to FIM under LDP add “padding and sampling” steps to

obtain frequent itemsets and their frequencies because each user transaction represents a set of items. The current state-of-

the-art approach, namely set-value itemset mining (SVSM), must balance variance and bias to achieve accurate results.

Thus, an unbiased FIM approach with lower variance is highly promising. To narrow this gap, we propose an Item-Level

LDP frequency oracle approach, named the Integrated-with-Hadamard-Transform-Based Frequency Oracle (IHFO). For

the first time, Hadamard encoding is introduced to a set of values to encode all items into a fixed vector, and perturbation

can be subsequently applied to the vector. An FIM approach, called optimized united itemset mining (O-UISM), is pro-

posed to combine the padding-and-sampling-based frequency oracle (PSFO) and the IHFO into a framework for acquiring

accurate frequent itemsets with their frequencies. Finally, we theoretically and experimentally demonstrate that O-UISM

significantly outperforms the extant approaches in finding frequent itemsets  and estimating their  frequencies  under the

same privacy guarantee.

Keywords    local differential privacy, frequent itemset mining, frequency oracle

 
 

1    Introduction

k

Frequent  itemset  mining  (FIM),  a  branch of  ma-

chine  learning  used  for  applications  such  as  weblog

mining and trend analysis,  has  recently  attracted in-

terest from many enterprises and researchers[1–3]. FIM

aims  to  identify  the  most  frequent  itemsets  and

their  frequencies.  The  discovery  of  frequent  itemsets

can  serve  valuable  economic  and  research  purposes,

e.g., mining association rules[4], predicting user behav-

ior[5],  and  finding  correlations[6].  However,  the  direct

publication of frequent itemsets incurs many risks, in-

cluding leaking user preferences or individual transac-

tions that include sensitive information. Therefore, to

obtain  statistical  information  while  protecting  user

privacy is an important research direction.

This paper reports on a study of methods for fre-

quent itemset mining (FIM) of transaction databases

while  guaranteeing  privacy.  Differential  privacy

(DP)[7, 8] is an appealing and strict protection technol-

ogy  that  can  guarantee  privacy  even  in  the  worst

case. DP has become the de facto standard notion of
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privacy in  research on private  data analysis.  A large

domain  and  heterogeneous  size  are  the  two  main

characteristics  in  FIM[9].  FIM  with  central  DP  is  a

mature  research  field[1, 10].  In  both  interactive  and

non-interactive  frameworks,  centralized  DP protocols

for FIM seek to balance utility and privacy. However,

DP  requires  a  central  trusted  authority,  which  may

leak private information. Protecting users' privacy re-

quires the data aggregator to be trustworthy, but da-

ta aggregators lack credibility in most real-time appli-

cations.  Consequently,  as  a  decentralized  technology,

local  differential  privacy  (LDP)  has  been  considered

for  FIM;  examples  include  LDPMiner[11],  PrivSet[3],

and set-value itemset mining (SVSM)[9].

Motivation  and  Challenges.  Our  main  motivation

is to obtain more accurate statistical results than the

state-of-the-art methods while guaranteeing the priva-

cy. It is challenging to achieve these goals.

Unbiased  and  Low  Variance.  Most  existing  LDP

approaches  have  an  evident  limitation  in  FIM  when

each user transaction has a set of items. LDPMiner[11]

dividing the privacy budget for two phases has a high

variance of results. PrivSet[9] perturbs items as a sub-

set but with a large domain. SVSM[3],  a state-of-the-

art  protocol,  should  balance  the  bias  and  variance.

Currently, it is still a challenging issue to obtain unbi-

ased  and  low-variance  frequencies  for  transactions

with  varied  lengths.  Thus,  in  this  study,  we  develop

an  unbiased  approach  with  low  variance  for  FIM

while protecting the privacy of items in each transac-

tion.

Contribution. Accuracy  and  privacy  have  always

been considered in the academy and real world. In the

FIM scenario in which a user has a set of items, the

privacy (user-level)  can be divided into sensitive  pri-

vacy and non-sensitive privacy, and then we can sac-

rifice  some  non-sensitive  privacy  to  obtain  accurate

results  while  guaranteeing  sensitive  privacy  (Item-

Level). It is considerable to sacrifice non-sensitive pri-

vacy of  the  user  level  to  define  the  Item-Level  LDP,

which can improve the accuracy of  the statistical  re-

sults.  Especially,  if  each  user  has  only  one  item,  the

protection  of  the  user  level  is  equal  to  that  of  the

Item-Level.

y li Ti

li

y

li

We split user-level privacy into two parts: the de-

tail of items  and the length  of transaction of .

For the particular case in which  is not sensitive and

all the items should be considered as a whole, we de-

fine  the  Item-Level  LDP  for  the  privacy  of  items 

(  = 1 is the traditional LDP case). We sacrifice non-

|I|

sensitive  privacy  for  more  accurate  results  in Fig.1.

This  paper  introduces  an  innovative  Frequency  Ora-

cle  (FO)  approach,  denoted  as  the  Integrated-with-

Hadamard-Transform-Based  Frequency  Oracle  (IH-

FO),  which  leverages  Hadamard  encoding  to  achieve

an unbiased and enhanced accuracy in frequency esti-

mation while ensuring item-level local differential pri-

vacy  (LDP).  This  approach  builds  upon  the  founda-

tional work in privacy-preserving frequency oracles as

delineated  by  Cormode et  al.[12].  Further  advancing

the  state  of  the  art,  Wang et  al.[3] contributed  addi-

tional FO methodologies, namely PSFO and PrivSet.

PSFO  is  designed  to  strike  a  balance  between  mini-

mizing variance and reducing bias, whereas PrivSet is

tailored  to  identify  frequent  itemsets  within  a  con-

strained error margin, particularly effective when the

itemset size  is small.
  

Unbiased

Variance

Sensitivity

Privacy

Non-Sensitivity

Privacy

Accuracy

Fig.1.   Innovations:  sacrificing  non-sensitive  privacy  for  more
accurate results.
 

l

Based on IHFO, this  paper presents  an approach

for  FIM  called  United  Itemset  Mining  (UISM).  Like

SVSM and LDPMiner, UISM divides the dataset into

two  parts:  one  to  identify  frequent  singleton  items

and the other to update the frequent itemsets and es-

timate their frequencies.  In both parts,  UISM adopts

IHFO  to  mine  frequent  items.  We  find  that  IHFO

performs  significantly  well  for  the  second  part  and

PSFO performs better than the proposed IHFO when

finding the rankings of singleton items. Therefore, we

propose  an  optimized  version  called  O-UISM,  which

combines the advantages of PSFO (  = 1) and IHFO.

O-UISM applies  PSFO to  search  for  frequent  single-

ton items in  the first  part,  and IHFO is  used to  ob-

tain  the  estimated  frequencies  of  frequent  itemsets.

Our  experimental  evaluation  demonstrates  the  effec-

tiveness  of  UISM  and  O-UISM. Table 1 presents  an

overview of FIM solutions.

In summary, the main contributions of this paper

are as follows.

● We  define  an  Item -Level  LDP  and  propose  a

Hadamard encoding based FO approach,  namely  IH-

FO,  under  the  Item-Level  LDP  framework.  The  IH-

FO  model  encodes  each  itemset  into  a  fixed  length

1404 J. Comput. Sci. & Technol., Nov. 2023, Vol.38, No.6



vector,  which  actually  achieves  the  goal  of  unbiased

FO estimating  with  lower  variance  and  reducing  the

computation complexity.

● We provide an unbiased FIM approach, namely

O-UISM. O-UISM combines  PSFO and IHFO into  a

framework  to  achieve  accuracy  frequent  itemsets  to-

gether with their frequencies.

● We theoretically prove the unbiasedness and the

lower  variance  of  our  protocols.  Numerical  experi-

ments demonstrate that O-UISM can obtain more ac-

curate frequent itemsets and frequencies with a lower

squared error.

Roadmap.  The  remainder  of  this  paper  is  orga-

nized as follows. We discuss related work and the pre-

liminary  of  this  work  in Section 2.  In Section 3,  we

definite  the  Item-Level  LDP  and  propose  our  ap-

proaches to address the problems. Then, we provide a

theoretical  analysis  of  privacy  and  accuracy  in Sec-

tion 4. The experimental results are presented in Sec-

tion 5. Finally, Section 6 concludes the paper. 

2    Related Work and Preliminary

In  this  section,  we  firstly  introduce  the  related

work, and then discuss the preliminary in this paper.

Table 2 summarizes the notations used in this paper. 

2.1    Related Work

Frequent  itemset  mining  (FIM)  is  a  well-studied

problem in data mining. The FIM problem is identify-

ing  the  frequent  set  of  items  that  appear  simultane-

ously  in  many users'  transactions  while  guaranteeing

privacy.  Many  protocols  address  this  problem in  the

central DP[1, 13] and LDP settings[3, 9, 11].

DP was first introduced by Dwork et al.[8] and is

currently the de facto standard of data privacy. Cen-

tralized DP has been the subject of numerous studies,

both  theoretical[14] and  practical[15, 16].  Without  a

trusted aggregator, LDP can protect user privacy dur-

ing  data  collection,  addressing  privacy  leakage  from

the root[12, 17–19] in many fields such as frequency ora-

cle[20, 21], mean value[20, 22], FIM[3, 11], key-value pair es-

timation[23, 24],  data  monitoring[25],  federated  learn-

ing[26–28] and so on.  Several  variants  of  LDP and the

corresponding mechanisms have been studied. Person-

alized  LDP  (PLDP)[29] divides  users  into  different

groups according to different privacy budgets; by con-

trast,  condensed  LDP[30],  utility-optimized  LDP[31],

and input discriminative LDP (IN-LDP)[32] group the

inputs  based  on  defined  rules  to  improve  transmis-

sion  accuracy.  When  the  transactions  have  a  set  of

items, user-level privacy needs to protect the transac-

tions as a whole, whereas item-level privacy needs to

protect the detailed items. The purpose of these defi-

nitions  is  to  weaken the notion for  the specialization

of LDP.

ε

Protecting  user  privacy  during  FIM  is  essential,

and the use of DP in FIM has previously been investi-

gated[1, 13].  In  both  interactive[1, 13] and  non-interac-

tive frameworks[33],  centralized DP protocols for FIM

seek to balance utility and privacy. Because data ag-

gregators  are  not  credible  in  most  real  applications,

protocols under local DP technologies are seldom ap-

plied  to  address  this  FIM  problem[3, 11].  Previously,

Evfimievski et  al.[34] considered  a  more  comfortable

setting in which each transaction is assumed to have

a fixed item length. However, this assumption cannot

be applied to transactions of varied lengths. Qin et al.
proposed  LDPMiner[11] to  find  frequent  singletons

while  satisfying -LDP  by  adopting “padding  and

sampling”. One natural LDP algorithm is for each us-

er to sample only one item and use known algorithms

to  send,  which  may  miss  the  information  of  most

items.  PrivSet[9] considers  items  as  a  whole,  but  the

 

Table  1.    Comparative Overview of FIM Solutions

FIM Method Identification Accuracy

l
l l

SVSM <PSFO (  = 1),
PSFO (  = adap )>[3]

General General

lPrivSet<PSFO (  = 1), PrivSet> General General

UISM<IHFO, IHFO> General Good

lO-UISM<PSFO (  = 1), IHFO> Good Good

Note:  Identification  refers  to  the  accuracy  rankings  of  the
frequent  items/itemsets,  and  accuracy  denotes  the  accuracy
frequencies of the frequent items/itemsets.

 

Table  2.    Notations

Notation Definition

ε Privacy budget

I Domain of items

Ψ Perturbation algorithm

n Number of users

v, x Singleton item

y Itemset

bi iEncoding vector of user 

Ti iTransaction of user 

Hr 2r

r
Hadamard matrices of order  for
every non-negative integer 

H(v) v HrColumn vector that item  maps to 

SI Set of frequent singleton items

CS Set of candidate frequent itemsets

FIS Set of frequent itemsets

w.p. With probability

Dan Zhao et al.: Hadamard Encoding Based Frequent Itemset Mining under Local Differential Privacy 1405



I l

generated output range is too large. Then, the severe

problem with  PrivSet  is  that  its  calculation  is  prone

to  overflow  when  the  parameters  and  are  large.

Furthermore, Wang et al.[3] proposed the state-of-the-

art  SVSM,  which  can  identify  both  singletons  and

itemsets. However, the frequency estimation of SVSM

is  biased.  Thus,  it  would  be  promising  and  desirable

for a new approach that guarantees unbiased estima-

tion and obtains more accurate frequencies under the

LDP framework. 

2.2    Definition
 

2.2.1    Problem Definition

n I

Γ(I)

I Γ(I) = {y|y ⊆ I, y ̸⊂ ∅}

Let  there  be  users  and the  domain  of  items .

Then, we obtain a set  consisting of all nonemp-

ty subsets of , i.e., .

k

x ∈ I

x fx := |{i|x ∈ Ti}|
y ∈ Γ(I)

fy := |{i|y ⊆ Ti}|

The aggregator aims to obtain the frequent items

(or  itemsets)  of  the  dataset  together  with  their  fre-

quencies.  The  frequent  items  (itemsets)  can  be  de-

fined  by  either  determining  the  top-  frequent  items

(itemsets)  or  finding  items  (itemsets)  whose  frequen-

cies  are  above  a  certain  threshold.  The  frequency  of

any  item  is  defined  as  the  number  of  transac-

tions  that  contain ,  i.e., .  Similarly,

the  frequency  of  any  itemset  is  defined  as

.

k

n Ti (1 ⩽ i ⩽ n)

V y ∈ V k

fy = |{i|1 ⩽ i ⩽ n, Ti ∈ V}|
k

Definition  1 (Top-  Frequent  Itemset  Mining).

Given  users  with  transaction   from
domain , a value  is a top-  frequent itemset if
the  frequency  is  ranked
among the top  frequencies of all possible itemsets. 

2.2.2    Local Differential Privacy

Ψ

ε

LDP is a local model of DP for collecting user da-

ta  without  a  credible  aggregator[11, 19, 35, 36].  An LDP

algorithm  ensures that the probability of one value

being sent to the aggregator approximates the proba-

bility of any other values being sent. The formal pri-

vacy requirement satisfies -LDP as follows.

ε

Ψ Dom(Ψ)

Ran(Ψ) t t′ t, t′ ∈ Dom(Ψ)

s s ∈ Ran(Ψ)

Ψ

Ψ ε

Definition  2 ( -Local  Differential  Privacy). Given
an  algorithm  with  a  domain  and  a  range

, for items  and  ( ), the same
output  ( ) is  transformed  through  algo-
rithm  while  satisfying  the  inequality (1),  and  we
deem that  satisfies -LDP[7]. 

P[Ψ(t) = s]

P[Ψ(t′) = s]
⩽ eε. (1)

εWe  can  adjust  the  privacy  budget  to  balance

data  availability  and  privacy.  Moreover,  LDP  can

provide a more robust privacy protection level than a

centralized framework because each user reports only

the perturbed data. 

2.2.3    Frequency Oracle[12]

The  purpose  of  collection  is  to  obtain  frequency

oracle (FO). FO is a core issue under the LDP frame-

work,  which  has  attracted  a  lot  of  theoretical  and

practical  attention.  FO  approaches  enable  to  esti-

mate  the  frequency  of  any  item/itemset  in  the  do-

main.  Wang et  al.[19] introduced  an  abstract  frame-

work of FO approaches, and showed that most previ-

ously proposed approaches can be placed within it. 

2.2.4    Hadamard Transform Response

(HTR)[17, 18, 37]

H

2r × 2r r

[row, col]

The  Hadamard  (discrete  Fourier)  transform,

known  as  the  Walsh-Fourier  transform,  is  described

by an orthogonal-binary matrix  with dimensions of

 (where  is  any  nonnegative  integer).  Its  or-

thogonality  has  the  natural  advantage  of  classifica-

tion  in  FO.  The  binarization  is  convenient  for  com-

puter calculations and transmission, and the entry in

 is 

H[row, col] = (−1)Count1(row&col),

row ∈ [0, 2r − 1], col ∈ [0, 2r − 1] Count1()

1

where  and 

counts the number of  in a binary integer. Moreover,

the fast generation of the Hadamard matrix designed

by the well-known Sylvester construction is as follows. 

Hr+1 =

(
Hr Hr

Hr −Hr

)
,

H0 = (1) r ⩾ 0where  and . 

2.3    Competitors

Ti i = 1, 2, . . . , n

vi = {x|x ∈ Ti, x ∈ I}

Existing FO algorithms,  such as  OLH (optimized

local hashing) and HTR, obtain their statistics in sit-

uations  where  each  user  transaction  has  only  one

item.  Qin et  al.[11] and  Wang et  al.[3] balanced  the

variance and bias to address the extension to each us-

er transaction  ( ) having a set of items

. However, SVSM works less effi-

ciently  under  such  conditions  when  the  lengths  of

transactions vary. In this case, it is challenging to de-

velop  an  approach  that  guarantees  an  unbiased  and

1406 J. Comput. Sci. & Technol., Nov. 2023, Vol.38, No.6



low-variance frequency estimation.

l

PSFO[3].  The  PSFO  approach  addresses  the  sce-

nario in which each transaction has a set of items de-

rived from “padding and sampling” and then applies

optimized  local  hashing  (OLH)  to  report  the  items.

Finally, the frequency estimation is multiplied by the

padding parameter  to obtain an accurate result. The

variance in PSFO is 

V ar(fx) = nl2 × 4eε

(eε − 1)2
.

l l

l

The choice of  is important when using PSFO. If  is

small,  there  is  less  variance  but  more  bias;  if  is

large, there is less bias but more variance.

ŝ

T ′
i

l T ′
i

Ti l − |Ti|
ŝ

PrivSet[9].  In  the  mechanism,  the  set-valued  data

is  sanitized  holistically  by  randomly  outputting  a

fixed-size  subset  of  items .  First,  each  user  uses

“padding” to  generate  according  to ,  where 

contains  the  original  and  ( )  padding  items.

Second, each user generates a perturbed subset  from

a  discrete  probability  distribution  of  all  candidate

itemsets whose weights follow (2): 

Weight(s) = exp(ε× u(T ′
i , ŝ)), (2)

u(T ′
i , ŝ) = [T ′

i ∩ ŝ ̸= ∅] T ′
i ∩ ŝ = ∅

u(T ′
i , ŝ) = 1

ŝ Weight(ŝ)/
∑

s∈S
Weight(s)

where .  If  then

 (otherwise  0).  Therefore,  the  probability

of each  is .

D

DA DB DC DA DB DC

l

DA l = 1

DC

l DB

SI

CI

l = 1 l

CI

l

CI k

SVSM. By  using  PSFO repeatedly,  SVSM is  the

state-of-the-art approach for solving FIM in the LDP

setting,  where  each  user  transaction  has  a  set  of

items.  SVSM  divides  a  database  into  three  parts

,  and , where ,  and  are applied to

obtain  frequent  single  items,  adaptive ,  and  a  final

frequent itemset, respectively. When we identify a fre-

quent  set  of  terms  in ,  a  small  does  not  af-

fect the ranking of items because the bias tends to be

in the same direction for all items. However, when we

need  to  obtain  the  frequencies  of  itemsets  in ,  an

adaptive  from  is  used  to  balance  the  bias  and

variance,  which  could  cause  bias  and  inaccurate  re-

sults.  All  steps  adopt  PSFO,  which  is  based  on  the

OLH algorithm. In the first part, SVSM finds the set

of frequent singleton items  to construct the candi-

date itemset  at the expense of frequency accuracy

by setting .  Then, the adaptive  is  required for

accurate  frequency  acquisition,  which  is  the  task  of

the  second  part.  Finally,  by  combining  and  the

adaptive , the frequent itemsets and their respective

frequencies  are  updated  in  the  third  part.  Note  that

 consists  of  the  top-  frequent  itemsets  obtained

SIthrough (3) based on , 

fy =
∏

x∈y,x∈SI

0.9× fx
maxx′∈SI fx′

, (3)

ywhere  denotes any itemset and the factor of  0.9 is

fixed in [3], which can lower the normalized estimates

for the most frequent item. 

3    Method for FIM

Our  work  is  on  frequency  estimation  and  means

estimation  for  FIM  with  LDP,  which  is  related  to

these  existing  methods[3, 9, 11],  as  we  must  handle  a

variable  transaction  length.  Moreover,  when  a  user

has  a  set  of  items,  it  can  be  treated  as  a  small

database,  which can view the problem from the user

level  and  item  level.  Inspired  by  the  analysis  of  the

user level and item level[38] in DP, although the above

LDP algorithms are user-level, they are different. For

example, these studies[3, 11, 34] randomly select an item

and  use  the  item-level  perturbation  algorithm,  and

PrivSet[9] perturbs a subset of items as a whole. This

raises  a  problem  that  if  each  local  user  protects  the

privacy for each item in his/her own small database,

the  privacy  for  all  items  as  a  whole  is  protected.

Therefore, this paper defines the Item-Level LDP and

proposes two methods to address the above problems.

l

l

In this section, we define the Item-Level LDP and

propose  a  baseline  approach  called  IHFO  to  handle

the fact that each transaction has a set of items. IH-

FO protects all items in each transaction while guar-

anteeing an unbiased and low-variance frequency esti-

mation. For frequent item/itemset mining (item min-

ing  and  itemset  mining  are  similar;  thus,  we  discuss

them together), we propose a general version, namely

UISM.  And  then,  we  suggest  an  optimal  version

called  O-UISM,  which  combines  PSFO  (  =  1)  and

IHFO into a framework to achieve accuracy frequent

itemsets together with their frequencies. The protocol

structure of UISM is given in Fig.2. In the framework,

the  dataset  is  divided in  two parts.  The first  part  is

applied  to  obtain  frequent  singleton  items,  and  the

second  part  is  applied  to  obtain  frequent  itemsets

with their frequencies. Both parts need to encode the

pre-processed  items,  and  then  report  to  the  aggrega-

tor with LDP perturbation. The aggregator sends the

decoded  results  of  the  first  part  to  the  second  part,

and decodes the collection of the second part to out-

put the frequent itemset with their frequencies. If the

protocol of the first part is replaced by PSFO (  = 1),

this framework is called O-UISM. 
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3.1    Definition of Item-Level

i Ti

|Ti| << |I| |Ti| > 0

|Ti|

ε

In  the  LDP  case,  the  definition  is  too  strict  to

guarantee the accuracy of the dataset for the user lev-

el.  Because user  has multiple items ,  one natural

user  level  algorithm  is  for  each  user  to  sample  only

one  item  and  use  known  algorithms  to  send,  which

may miss the information of most items. We consider

that if  and ,  the length of  transac-

tion  is not sensitive for the user, and each item in

the  transaction  is  sensitive.  Then,  the  items  in  the

transaction need to be protected more carefully than

the  number  of  items.  Inspired  from the  view  of  spe-

cialization of LDP[29–32], we develop a loose definition

of LDP, namely Item-Level -LDP 3, to design proto-

cols  that  offer  desirable  statistical  utility  while  pre-

serving privacy.

ε

Ψ Dom(Ψ)

Ran(Ψ) i i′

Ti T ′
i |Ti|, Ψ(Ti)

|T ′
i |, Ψ(T ′

i ) S

S ∈ Ran(Ψ) Ψ

Ψ ε

Definition  3 (Item-Level -Local  Differential  Pri-

vacy). Given an algorithm  with a domain 

and  a  range ,  any  two  users  and  with
transactions  and  report < > and
< > respectively.  If  the  same  output 
( ) is  transformed  through  algorithm 

while satisfying the inequality (4), we assume that the
algorithm  satisfies -LDP: 

P[Ψ(Ti) = S]

P[Ψ(T ′
i ) = S]

⩽ eε. (4)

|Ti| = 0

|Ti| = |I|

|Ti| << |I| |Ti| > 0

Note  that  inevitably,  some  private  data  is  re-

vealed.  For  example,  in  the  extreme case,  or

,  implying that the user has no item or pos-

sesses all items in the item domain, respectively. How-

ever,  and  are the majority of cases

|Ti|
ε

ε

in practice. To ensure broad applicability, a marginal-

ly relaxed interpretation of local differential privacy is

necessitated. This research endeavors to safeguard the

privacy of the user's transaction set , albeit not to

the  extent  of  the  stringent -LDP  threshold.  Conse-

quently, the privacy assurance of our proposed proto-

cols is positioned above the Item-Level -LDP. 

3.2    IHFO: Based Approach

ε

i

{b, e}
⊥

Traditional approaches[3, 9] use “padding and sam-

pling” to  protect  privacy  while  satisfying -LDP,

which discards most of the information in the transac-

tion.  IHFO  uses  the  Hadamard  transform  to  encode

all  items  in  each  transaction.  The  vectors  in  the

Hadamard  transform  matrix  are  orthogonal  to  each

other and binarized; therefore, regardless of the num-

ber of  items in the user transaction,  they can be en-

coded into a vector with a fixed length. Next, adding

LDP perturbations to this vector preserves the items

in  each  transaction,  thereby  allowing  datasets  with

varied transaction lengths to be handled. Finally, the

aggregator  collects  all  vectors  and  estimates  the  fre-

quencies  of  items.  The  entire  process  of  IHFO is  di-

vided  into  three  phases:  encoding,  perturbation,  and

decoding.  The  detailed  process  of  IHFO  is  shown  in

Algorithm 1 and the illustration of encoding and per-

turbation in IHFO is in Fig.3. For example, user  has

a transaction with items . After adding an extra

item , this transaction has three items (the length is

equal to 3). In the first phase, three items are encod-

ed  to  three  column  vectors  from  the  Hadamard  ma-

trix  (in  order  to  facilitate  understanding,  we  paint

them as row vectors). Then, the user sums these vec-

 

Aggregator

. . .

. . .

. . .

. . .

...

IHFO
Update

Encoding

Encoding

IHFO
Report Singleton

Item

Dataset

...

...
...

First
Part

Second
Part

Candidate Domain
Frequent

Items/Itemsets 

with Their
Frequencies

Fig.2.  Illustration of UISM.
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ki = 7

bi[7] = −3 bi[7]

zi[7] = −1 zi[ki] ∈ {1,−1}

tors  and  selects  one  index  with  its  value

.  After  perturbing  the  value  by  (5)  to

 ( ),  the  perturbed  tuple  (3,

<ki,

zi[ki]> |{b, c} ∪ {⊥}|,<ki, zi[ki]>

<7, –1>) should be sent to the aggregator where 

 satisfies  LDP  and  ( )

satisfies the Item-Level LDP.

Algorithm 1. Integrated-with-Hadamard-Transform-Based Frequency Oracle: IHFO

ε Hr 2r ⩾ |I|Require: the privacy budget ; Hadamard matrix  where 

f(v)Ensure: the estimated frequency ;
1: User Side:

ui Ti i = 1 n2: for each user  that has transaction  with a set of items,  to  do

⊥ Ti → T ′
i li = 0 ⊥3: 　  Add an extra item  to  with a Bernoulli(0.5) distribution   (if , item  is necessary);

T ′
i

4: 　  Encode  to vectors through the Hadamard matrix mapping;

bi5: 　  Sum the vectors to obtain the encoding vector ;

ki bi[ki]6: 　  Randomly select an index  to obtain the value ;

zi zi[j] = 0 j ̸= ki j ∈ [0, 2r)7: 　  Obtain the perturbed column vector  where  if  ( ) and

zi[ki] =

{
1, w.p.

1

eε + 1
+

bi[ki] + li
2li

eε − 1

eε + 1
,

−1, otherwise.
　　　　　　　

li, zi li = |T ′
i |8: 　  Send ( ) to the aggregator where ;

9: end for
10: Aggregator side:

ẑ ←
∑n

i=1
zi li11: The aggregator computes ;

v fv ←
eε + 1

eε − 1
ẑ ·H(v)T12: Obtain the frequency estimation of item : ;

f(v)13: return ;

 

{ }

Hadamard Encoding

Send (3, < 7, -1>)

1 -1 -1 -1 1 -1 1 -1

1 1 1 1 -1 -1 -1 -1

1 -1 -1 1 -1 1 1 -1

Transaction

Summation

3 -1 -1 1 -1 -1 1 -3

Random Index 

-3

Perturbation

-1

(length, <index , perturbed value>)

Sending

Add 
with Bernoulli(0.5)

Value of Index 

Perturbed Value

1 1 1 1 1 1 1 1

1 -1 1 -1 1 -1 1 -1

1 1 -1 -1 1 1 -1 -1

1 -1 -1 1 1 -1 -1 1

1 1 1 1 -1 -1 -1 -1

1 -1 1 -1 -1 1 -1 1

1 1 -1 -1 -1 -1 1 1

1 -1 -1 1 -1 1 1 -1

 

Mapping Hadamard Matrix H (=3) 

(b)(a)

Fig.3.  Illustration of encoding and perturbation in IHFO. (a) Process of IHFO. (b) Mapping Hadamard matrix.
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⊥
li = 0 ⊥

Hr r = ⌈log2 |I ∪ {⊥}|⌉
v, v ∈ I ∪ {⊥}
H(v) H

H Hr

i

bi =
∑

v∈Ti
H(v) li = |Ti|

Ti

⊥ ⊥

Encoding. First,  each transaction is added an ex-

tra  item  with  a  Bernoulli(0.5)  distribution  sepa-

rately (if , we also add ). Then, we encode all

items  in  the  user  transaction  with  a  Hadamard  ma-

trix ,  where .  We  assume  that

each item  is uniquely mapped to a col-

umn  vector  of  a  Hadamard  matrix  (unless

otherwise stated, all symbols  below represent ).

Then,  each  user  can  obtain  the  encoding  vector

,  and the number of  items  in

the  transaction  (  comprises  old  transactions  and

random ). The special item  is a perturbation that

renders  it  impossible  for  an  attacker  to  confirm how

many items are in each user transaction.

i ki

bi bi[ki]

Perturbation. User  randomly  selects  the -th

entry of  and perturbs  independently with the

following distribution: 

zi[ki] =

{
1, w.p.

1

eε + 1
+

bi[ki] + li
2li

eε − 1

eε + 1
,

−1, otherwise.
(5)

i zi[ki] li
ki bi zi[ki]

r + 1 r

ki ji ̸= ki z[ji] = 0

Finally, user  releases  and  to the aggrega-

tor.  As  is  the  position  of  vector ,  requires

 bits  for  communication,  where  bits  represent

the position of  (i.e., any position , ).

z =
∑n

i
zi li
v

Decoding. The aggregator collects all the noise in-

formation  to  obtain  a  vector  of  summation

. Then, the unbiased frequency estimation

of item  is given by 

fv =
eε + 1

eε − 1
(H(v)T · z).

(zi[ki], li)

zi[ki]

li

li 50%

(li + 1)

50% zi[ki] (zi[ki], li)

Each user sends  to the aggregator, where

 represents the value of items in the transaction

under  the  LDP  perturbation  and  represents  the

length  of  the  transaction.  We  consider  it  feasible  to

sacrifice  some  privacy  of  the  length  to  obtain  more

accurate  FO  (more  specifically,  the  user  reports  the

true length  with the probability of  and reports

the true length plus 1  with the probability of

).  Differently  expressed,  only  in 

satisfies  LDP  and  protects  the  privacy  of  the  items.

We also analyze the privacy protection in Section 4. 

3.3    UISM: A General Version

If  an  itemset  is  frequent,  then  each  item  in  the

itemset is also clearly frequent. However, given a par-

ticular dataset, we cannot intuitively determine which

itemsets  are  frequent.  Frequent  itemsets  cannot  be

|I| = 1 000

|Γ(I)| = 21 000

FS

FF

obtained directly because even if the domain of items

is not large (e.g., ), the number of possible

itemsets will  be ,  which is  disastrous for

the aggregator. Moreover, because most itemsets' fre-

quencies are low, the aggregator must first reduce the

domain of candidate itemsets. When the set of candi-

date itemsets is  small,  users will  send more available

data after the perturbation, which increases the accu-

racy of the frequency estimation. Thus, UISM divides

users into two groups: , which is applied to gener-

ate candidate itemsets by finding the frequent single-

ton  items,  and ,  which  is  applied  to  update  the

frequent itemsets and estimate their frequencies, i.e., 

Θ(FS, FF )→<FIS, fFIS> .

SI fSI

ΨIHFO

Step 1: Find Frequent Singleton Items. Candidate

itemsets  are  generated  based  on  frequent  singleton

items.  The  larger  the  number  of  accurate  singleton

items,  the  more  accurate  the  candidate  itemsets,

which is beneficial for obtaining frequent itemsets to-

gether with their frequencies in step 3. Thus, the fre-

quent singleton itemset  with noisy frequencies 

is obtained by  using 

FS<SI, fSI >:= ΨIHFO(I, ε).

Step 2: Generate  Candidate  Itemsets[3].  Because

each  item  in  a  frequent  itemset  is  frequent,  we  con-

struct a set according to the following formula: 

CS :=

{
y|y ⊆ SI, py =

∏
v∈y

0.9fSI
v

maxy∈SI fSI
y

, py ⩾ t

}
,

t |CS| = 2k

t px k

x

where  is chosen such that . To reduce the

calculation cost,  should take at least  under the -

th singleton item .

CS

T ′
i = {x|x ⊆ Ti, x ⊆ CS}

k

Step 3: Update  Frequent  Itemsets  and  Estimate
Their  Frequencies. After  the  domain  is  defined,

each user in the second part of the dataset constructs

their  transaction  (i.e., ).  The

aggregator receives information from users via the IH-

FO  algorithm.  After  the  correction,  the  aggregator

updates the top-  frequent itemsets and their respec-

tive frequencies as the released result. 

FF <FIS, fFIS>:= ΨIHFO(CS, ε).

The UISM protocol addresses the challenge of set-

valued  inputs  by  using  the  Hadamard  transform  re-

sponse FO approach to report after encoding all items

in  each  transaction.  This  protocol  can  guarantee  the

accuracy of the frequency estimation. 
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3.4    O-UISM: An Optimal Version

l

ΨPSFO (l=1)

SI

We  find  that  if  the  top-rank  frequent  singleton

items  are  more  precise,  the  frequent  itemsets  with

their  frequencies  are  more  accurately  obtained

through UISM. Moreover, the ranks of singleton items

are more important than the frequencies in step 1. As

described  previously,  in  SVSM,  PSFO (  =  1)  sacri-

fices  the  frequency  accuracy  to  obtain  a  good  rank.

Thus,  we  adapt  to  find  frequent  singleton

itemset , as shown in (6). 

FS <SI, fSI >:= ΨPSFO(I, ε, l = 1). (6)

By  combining  the  advantages  of  PSFO  (l =  1)  and

IHFO,  we  propose  O-UISM for  FIM.  Thus,  O-UISM

can more accurately obtain frequent itemsets and fre-

quencies with a lower squared error. Note that we can

apply any FO algorithm to replace PSFO (l = 1). 

4    Analysis
 

4.1    Privacy Guarantee

We protect privacy from three aspects.

1) Hadamard  Encoding  and  Sampling.  Hadamard

encoding  and  sampling  provide  some  privacy  protec-

tion  because  even  if  the  privacy  budget  is  large,  the

aggregator can obtain minimal information from each

sending value.

⊥ ⊥
|Ti|

|Ti| |Ti| − 1

2) Symbol .  We add  to provide some protec-

tion of . The aggregator needs to guess the length

of the transaction from  and .

ε3) -LDP. We protect the sending value under the

most rigorous standard of data privacy.

⊥Lemma  1. Special  item  protects  the  items  of
transaction.

⊥

|Ti|
|Ti| − 1 i ⊥

|Ti| = 0 ⊥

Proof. A special item  represents an extra item

added to each transaction from a Bernoulli(0.5) distri-

bution.  The  aggregator  cannot  then  distinguish  the

accuracy  length  of  the  transaction  between  and

 obtained  from  user .  Item ,  as  a  dummy

item,  is  applied  to  defend  the  attraction.  In  particu-

lar, if , we must add symbol  in this transac-

tion. □
zi εLemma  2. The  perturbation  value  satisfies -

LDP.

T1 T2 l1 l2
k RC

T1 T2

Proof. We  assume  that  two  users  have  transac-

tions  and  with  lengths  and ,  respectively.

Let  be  any  position  and  be  the  ratio  of  two

conditional probabilities with  and  transactions.

b1

b2 b1[k] = l1 b2[k] = −l2
The  sensitivity  is  maximized  when  is  maximum

and  is minimum (i.e., , and ): 

RCmax = max
P (z1[k] = 1|b1[k])
P (z2[k] = 1|b2[k])

=
P (z1[k] = 1|b1[k] = l1)

P (z2[k] = 1|b2[k] = −l2)

=

eε

eε + 1
1

eε + 1
= eε. 2

ε ε

Theorem 1. IHFO provides higher protection than
Item-Level -LDP  but  also  lower  protection  than -

LDP.

zi ε

ε

ε

ε

Proof. If  a  mechanism  satisfies  the  LDP,  it  pro-

vides  privacy  protection  at  a  high  level.  Lemma  2

proves  that  the  value  in  IHFO satisfies -LDP.  If

we  send  the  actual  length  of  the  transaction,  IHFO

satisfies Item-Level -LDP. However,  we also protect

the  length  of  transaction  in  Lemma  1.  Thus,  IHFO

provides  higher  protection  than  Item-Level -LDP

but also lower protection than rigorous -LDP. □ 

4.2    Accuracy Analysis

Here, we analyze the accuracy improvement of the

proposed  framework  by  evaluating  unbiased  estima-

tion in Theorem 2 and the error bound in Lemma 3.

Then,  we  compare  the  variance  between  IHFO  and

PSFO.  Finally,  we  analyze  the  communication  cost

and computational complexity of PSFO and IHFO.

fvTheorem  2. The  estimated  frequency  is  unbi-
ased.

ẑ

ẑ =
∑n

i
bi

v

Proof. We assume that  is the real summation of

the encoding bits, where . Then, the real fre-

quency of any item  is given by 

f̂v =
1

2r
H(v)T · ẑ =

1

2r
H(v)T ·

n∑
i

bi.

i

k bi 1/2r

k z

Considering that each user  randomly selects the

-th  entry  of  with  the  probability  of ,  the

mean  value  of  the -th  entry  in  can  thus  be  ex-

pressed as 

E(z[k]) =
1

2r
E
( n∑

i

zi[k] li
)

=
1

2r
eε − 1

eε + 1

n∑
i

bi[k].
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vHence, the mean frequency of item  is as follows. 

E(fv) = E
(eε + 1

eε − 1
(H(v)T · z)

)
=

eε + 1

eε − 1

( 2r−1∑
k=0

1

2r
eε − 1

eε + 1

n∑
i

bi[k] ·H(v)T[k]

)
=

1

2r
H(v)T ·

n∑
i

bi

= f̂v. 2

d = 2r

f̂v = (1/d)H(v)T
∑n

i=1
bi

fv = ((eε + 1)/(eε − 1))H(v)T ·
∑n

i=1
zili

1− β

Theorem  3 (Upper  Bound). Let . As  de-
scribed  previously,  and

. With  the  prob-
ability of at least , 

max |fv − f̂v| = O


√

n∑
i=1

l2i log (1/β)

nε

 .

fv

f̂v t̂i=
(1/d)(H(v)T ·bi) ti=((eε+1)/(eε−1))(H(v)T ·zili)

|fv − f̂v| ⩽ ((eε + 1)/(eε − 1)) li + 1

Proof. In the IHFO algorithm,  is the unbiased

counterpart  of  obtained  by  Theorem  2.  Let 

 and .

Thus, .  Then,  by

Bernstein's inequality, 

P[|fv − f̂v| > λ]

= P

[∣∣∣∣∣
n∑

i=1

(ti − t̂i)

∣∣∣∣∣ > nλ

]

⩽ 2exp

− n2λ2

2
n∑

i=1

V ar(ti) +
2

3
nλ

(
eε + 1

eε − 1
li + 1

)
.

(7)

k zi k ̸= ki zi[k] = 0For each position  in , if , then ;

the other case satisfies (5).

Thus, 

V ar(ti) =
(eε + 1)2

(eε − 1)2
l2iV ar(H(v)T · zi)

=
(eε + 1)2

(eε − 1)2
l2i − b2i [ki]

⩽ (eε + 1)2

(eε − 1)2
l2i

= O

(
l2i
ε2

)
. (8)

(eε + 1)/(eε − 1)× li + 1 =

O (li/ε)

Substituting  (8)  and 

 into inequality (7), we obtain 

P[|fv − f̂v| > λ]

⩽2 exp

− n2λ2

O

((
n∑

i=1

l2i

)/
ε2

)
+nλO

(
n∑

i=1

li

/
ε

)
.

By the union bound, there exists 

λ = O

√√√√ n∑
i=1

l2i log (1/β)
/

nε

 . 2

vVariance. The variance in the frequency of item 

in IHFO is denoted as 

V ar(fv) =
(eε + 1)2

(eε − 1)2

n∑
i

l2i −
n∑
i

(bi[ki])
2

⩽ (eε + 1)2

(eε − 1)2

n∑
i

l2i .

V arIHFO

V arPSFO ε < log
√
1440 ≈ 3.6

Theorem  4. The  mean  of  is  lower  than
that of  when  and 

σ >

√
160e2ε + (eε − 1)2(40eε − (eε + 1)2)− 4

√
10eε

40eε − (eε + 1)2
µ

X µ σ2for a distribution  with mean  and variance .

Proof. We should compare the variance of

   V arIHFO = ((eε + 1)2)/(eε − 1)2)
∑m

i=1
pi × l2i

and

                 V arPSFO = 4eε/((eε − 1)2)l2

l : inf
∑l

i=1
pi ⩾ 0.9 n

1− σ2/ω2 = 0.9

µ σ2

where  (we omit the same  for the

sake  of  calculation).  According  to  Chebyshev's  in-

equality  (9)  and  for  a  distribution

with mean  and , 

P{|X − µ| < ω} ⩾ 1− σ2

ω2
. (9)

ω ⩾
√
10σ l ⩾ ω + µWe obtain . Then  in PSFO. 

E(V arIHFO) =
(eε + 1)2

(eε − 1)2
(µ2 + σ2),

E(V arPSFO) =
4eε

(eε − 1)2
(µ+

√
10σ)2,

f(µ, σ, ε)

= E(V arPSFO)− E(V arIHFO)

=
(−(eε − 1)2µ2 + (40eε − (eε − 1)2)σ2 + 8

√
10eεµσ)

(eε − 1)2
.

(10)

ε < log
√
1440 ≈ 3.6From (10), if  and 
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σ>

√
160e2ε + (eε − 1)2(40eε − (eε + 1)2)− 4

√
10eε

40eε − (eε + 1)2
µ,

the variance of IHFO is lower than that of PSFO. □

ε ∈ [1, 2]

X (λ) ε ln 3

λ ⩽

We use  the  mean  of  variance  to  compare,  which

may  lose  efficacy.  Owing  to  padding  and  sampling,

PSFO must transmit a value unrelated to the trans-

action,  contributing little  to calculating the item fre-

quency. However, each value transferred through IH-

FO contributes part of the information on all items in

this transaction. For example, in the practical setting,

the  privacy  budget ,  and  the  dataset  con-

firms Poisson distribution . Thus, we set  = 

for  the  general  cases.  We  can  obtain  that  the  vari-

ance of IHFO is better when 31, which can be ap-

plied in most real FIM cases. 

4.3    Complexity Analysis

r + 1

1

O(n+ r × 2r)

O(2r × n)

The  Hadamard  transform approach  has  been  cit-

ed  in  many LDP papers[17, 18, 37] and is  variously  de-

scribed,  though  always  with  the  same  core  concept.

Every  user  value  is  mapped  to  a  column  in  the

Hadamard matrix and then sends a random entry to

the  aggregator  after  combining  with  the  LDP  noise.

Advantages exist on both the user side and the aggre-

gator side: at the user side, the HTR achieves a good

tradeoff  between  data  availability  and  communica-

tion cost since each user transmits only  bits (if a

random number is generated by the aggregator,  bit

is  sufficient).  The  computational  complexity  of  the

aggregator  in  reconstructing  the  FO is ,

versus  for  the  OLH,  since  the  aggregator

needs  to  sum  up  only  the  collected  information  and

then takes the linear product of the matrices.

O(log2

√
n+ log2 g) = O(max{log

√
n,

log g})
Ω(n

3

2 )
√
n

O(⌈log2 |I|⌉+ log2 li+

The communication costs of IHFO and PSFO are

related  to  different  parameters,  but  the  aggregator's

computational  complexity  is  lower  than  that  of  the

PSFO  approach  in Table 3.  For  PSFO,  each  user

should  transform 

 bits using the OLH algorithm. Then, the com-

putational complexity of the aggregator is (

hash  functions).  For  IHFO,  each  user  should  send

three  parameters:  the  location  of  the  sampling,  posi-

tive  and  negative  values,  and  transaction  length.

Thus, the communication cost is 

1) = O(log |I|)

Ω(n)

.  After  summing  all  vectors,  the  aggre-

gator  needs  only  to  calculate  the  inner  matrix  prod-

uct once to obtain the frequency estimation; thus, the

computational complexity is .

As  O-UISM  applies  IHFO  to  estimate  frequent

itemsets  with  their  frequencies,  it  also  achieves  the

goal  of  unbiased  estimating  with  lower  variance  and

reducing the computation complexity. 

5    Experimental Evaluation

In  this  section,  we  report  experiments  on  real

datasets to validate our analysis with different proto-

cols. 

5.1    Experimental Setup

Environment. All algorithms were implemented in

Python 3.7.3, and all experiments were conducted on

an  Intel  CoreTM i7-6700  3.40  GHz  PC  with  16  GB

RAM. We report the average results over 10 runs.

Datasets. We  ran  experiments  on  the  following

datasets.

● Online①. This dataset contains the merchant tr-

ansactions of 500 000 users with 2 603 categories.

● IBM②. This dataset was generated by the IBM

Synthetic Data Generation Code for Associations and

Sequential Patterns with 1.8 million transactions gen-

erated over 1 000 categories.  The average transaction

length is 5.

Metrics. This  study  aims  to  find  frequent  item-

sets  together  with  their  frequencies,  which  requires

different metrics to evaluate their utilities. We adopt

the normalized cumulative rank (NCR)[3], squared er-

ror  (SE)  and  Kullback-Leibler  divergence  (KLD)  to

assess  the  frequent  itemsets  and  frequencies,  respec-

tively. NCR is used to measure the accuracy ranks of

the  frequent  items/itemsets,  and  SE  and  KLD  are

used  to  measure  the  accuracy  frequencies  of  the  fre-

 

Table  3.    Communication and Computation Cost

FO
Method

Communication
(Each User)

Computation
(Aggregator)

PSFO O(max{log
√
n, log g}) Ω(n3/2)

IHFO O(log |I|) Ω(n)

Note:  Communication  cost  denotes  the  bits  in  the  collection
that each user should send to the aggregator; computation cost
denotes  the  computation  complexity  of  the  aggregator  in
correction.
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①http://fimi.uantwerpen.be/data/, Jan. 2021.
 

②https://github.com/zakimjz/IBMGenerator, Jan. 2021.
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https://github.com/zakimjz/IBMGenerator


quent items.

k

k

k − 1 k

k(k + 1)/2

1) Normalized Cumulative Rank (NCR). The qual-

ity function with the most  values ranked is  as fol-

lows:  the  highest  ranked  value  has  a  score  of ,  the

next  one  has  a  score  of ,  and  so  on.  The -th

value has a score of 1,  and all  the other values have

scores of 0. To normalize this into a value between 0

and 1, we divide the sum of scores by the maximum

possible score (i.e., ).

2) Squared  Error (SE).  We  measure  the  estima-

tion accuracy using the squared error. That is, 

V ar =
1

|FIS ∩RS|
∑

y∈FIS∩RS

(fFIS
y − fRS

y )2,

RS

fRS

y ∈ FIS ∩RS

where  is the real set of frequent itemsets with fre-

quencies .  Note  that  we  account  only  for  heavy

hitters that are successfully identified by the protocol

(i.e., ).  Thus,  lower  variance  means

more accurate estimation.

á3) Kullback-Leibler Divergence (KLD). Csisz rs f-

divergence  is  used  to  measure  whether  a  privacy

mechanism  is  an  information-theoretic  quantity,  and

the distributional difference is defined in (11)[39]. 

Df

(
Rest||Rreal

)
=

∫
f

(
dRreal

dRest

)
dRest, (11)

f(x) = x logxwhere .  To  express  divergence  more  ac-

curately, this paper detects data availability by (12). 

KLD =
1

2

(
Df

(
Rest||Rreal

)
+Df

(
Rreal||Rest

))
. (12)

50%
10%

CS 40%

η

η = 0.5

Parameter Settings. As described in [3], SVSM us-

es  of  all  users  to  find  frequent  singleton  items,

 to report the size of their itemsets that intersect

with ,  and  to  update  the  frequent  itemsets

and their frequencies. Thus, we divide users into two

parts,  where  is the percentage assigned in the first

part.  For fairness,  we set ,  which implies  that

half of the users report frequent singleton items, while

the other half update the estimated frequencies of the

candidate frequent itemsets.

Selected  Approaches  for  Evaluation  of  FO.  The

approaches used in the evaluation are as follows.

● Real-IHFO. The first phase returns the real FO,

and the second and third phases use IHFO.

● Real-PSFO. The first phase returns the real FO,

and the second and third phases use PSFO.

● Sample-IHFO.  The  first  phase  uses  sampling

(IFHO  without  perturbation),  and  the  second  and

third phases use IHFO.

● Sample-Sampling.  Both  the  first  and  second

phases use sampling to obtain FO. It denotes the up-

per bound of UISM.

Selected  Approaches  for  Evaluation  of  FIM.  The

approaches used in the evaluation are as follows.

● UIIM  and  UISM.  Both  the  first  and  second

phases use IHFO to obtain FO.

l L

● SVIM and SVSM[3]. The first phase uses PSFO

(OLH, l =  1),  and  the  second  and  third  phases  use

PSFO (OLH,  = adaptive ) to obtain FO.

● O-UIIM and O-UISM.  It  is  an  optimal  version

of  UISM.  The  first  phase  uses  PSFO (OLH, l =  1),

and the second phase uses IHFO to obtain FO.

● PrivSet.  The first phase uses PSFO (OLH, l =
1), and the second and third phases use Privset to ob-

tain FO. 

5.2    Evaluation of FO

In this subsection, we mainly compare the perfor-

mance for frequency oracle.

First, we compare Real-IHFO and Real-PSFO. In

Fig.4(a) and Fig.4(c), the NCR trendlines of Real-IH-

FO show a stable performance, with a small increase

as  the  privacy  budget  increases  in  Online  and  IBM.

The NCR trendlines of Real-PSFO increase rapidly as

the privacy budget increases and the results  are bet-

ter  than  those  of  Real-IHFO when  the  privacy  bud-

gets are large, but the exceeded point of IBM is larg-

er  than that  of  Online.  A higher  score  indicates  bet-

ter identification. In Fig.4(b) and Fig.4(d), the trend-

lines  of  Real-IHFO are  lower  than those  of  Real-PS-

FO.  A  lower  score  denotes  better  frequency  estima-

tion. These indicate that: 1) as privacy budgets grow,

the error caused by sampling in the IHFO algorithm

is greater than that caused by perturbation; 2) the in-

crease  of  the  data  size  has  a  greater  effect  on  IHFO

than on PSFO, since the amount of the IBM data is

greater  than  the  amount  of  the  online  data;  and  3)

IHFO has a lower variance of frequency estimation.

l

Second,  we  compare  Real-IHFO  and  Sample-IH-

FO.  The  SE trendlines  of  them are  close  in Fig.4(b)

and Fig.4(d).  However,  the  NCR  trendlines  of  Real-

IHFO are much higher than those of Sample-IHFO in

Fig.4(a)  and Fig.4(c).  These  indicate  that  it  is  more

useful in the first stage to obtain an accurate frequen-

cy  ranking  than  a  frequency  estimation.  Therefore,

choosing PSFO (  = 1) has advantages in O-UISM. In

addition, the NCR of Real-IHFO and Sample-Sample

shows that  even if  the  perturbed collection  is  adopt-

ed  in  the  second  stage,  the  result  reflects  an  advan-

tage when the privacy budget is slightly larger.
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Third,  we  compare  Sample-IHFO  and  Sample-

Sample. Fig.4(b)  and Fig.4(d)  show  that  the  trend-

lines of Sample-Sample are far lower than those of all

the other protocols regarding the squared error. They

are also the upper bound errors that can be attained

by  UISM. Fig.4(a)  shows  the  NCR  on  the  Online

dataset, Sample-Sample is always higher than that of

Sample-IHFO.  On  the  other  hand,  in Fig.4(c),  the

NCR on the IBM dataset is similar when the privacy

budget is  greater than 2.  These indicate that the in-

crease in the data size significantly affects IHFO.

In  summary,  this  experiment  shows  that  IHFO

has a lower variance of frequency estimation and the

dataset size has an obvious effect on IHFO. 

5.3    Evaluation of FIM

In this subsection, we mainly compare the perfor-

mance  between  our  approaches  and  the  state-of-the-

art protocol for frequent item/itemset mining.

k

ε

ε

k

ε

ε

ε k k

Singleton  Frequent  Items.  We  first  identify  the

frequent  singleton  items  in Fig.5 and Fig.6.  First,

Fig.5(a)  and Fig.6(a)  demonstrate  the  trendlines  of

NCR scores of all protocols when  = 64. The trend-

lines of O-UIIM are the highest in most privacy bud-

gets ,  and  the  score  of  SVIM is  the  highest  at  the

last .  A  higher  score  indicates  better  identification.

Figs.5(d) and 6(d) demonstrate the trendlines of NCR

scores of all protocols when  = 32. The trendlines of

O-UIIM  are  the  highest  in  most  privacy  budgets ,

and the  scores  of  PrivSet  are  the  highest  at  the  last

two .  These  results  suggest  that  O-UISM  performs

the  best  in  these  metrics.  Second, Figs.5(b), 5(e),

6(b),  and 6(e)  and Figs.5(c), 5(f), 6(c),  and 6(f)

demonstrate  the  trendlines  of  SE  and  KLD,  respec-

tively. The trendlines of UIIM and O-UIIM are lower

in most privacy budgets  when  = 64 and  = 32.

The  reason  for  SVIM performing  the  best  in  several

big privacy budgets is that the error caused by sam-

pling  in  the  IHFO  algorithm  is  greater  than  that
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Fig.4.  Performance under different protocols. (a) Online dataset, NCR (normalized cumulative rank), k = 64. (b) Online dataset,
squared error, k = 64. (c) IBM dataset, NCR, k = 64. (d) IBM dataset, squared error, k = 64.
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caused by perturbation. We combine SE and KLD for

analysis  because  the  frequency  (SE)  and  distribution

(KLD)  of  data  are  essential  data  availability  stan-

dards.  A lower  score  means  a  more  accurate  estima-

tion. These results indicate that the UIIM and O-UI-

IM  estimated  data  are  more  accurate.  Third,  NCR

and  SE  are  reviewed  together  in Figs.5(a)  and 6(a)

and Figs.5(b)  and 6(b),  respectively.  A  higher  NCR

and a lower SE imply that more items are identified

with  an  estimation  that  is  more  accurate.  Even
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Fig.5.  Singleton identification for the IBM dataset. (a) IBM dataset, NCR (normalized cumulative rank), k = 64. (b) IBM dataset,
SE (squared error), k = 64. (c) IBM dataset, KLD (Kullback-Leibler divergence), k = 64. (d) IBM dataset, NCR, k = 32. (e) IBM
dataset, SE, k = 32. (f) IBM dataset, KLD, k = 32.
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though the SE score of UIIM is lower than that of O-

UIIM,  O-UIIM  performs  better  because  its  NCR

trendlines are notably higher than those of UIIM.

Itemset  Mining.  We  evaluate  the  effectiveness  of

our protocols on frequent itemset mining. The results

k = 64 k = 32

are similar  to the results  of  frequent singleton items.

First, Figs.7(a)  and 8(a)  and Figs.7(d)  and 8(d)

demonstrate the trendlines of NCR scores of all proto-

cols when  and , respectively. The trend-

lines of O-UISM are the highest in most privacy bud-
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Fig.6.  Singleton identification for the Online dataset. (a) Online dataset, NCR, k = 64. (b) Online dataset, SE, k = 64. (c) Online
dataset, KLD, k = 64. (d) Online dataset, NCR, k = 32. (e) Online dataset, SE, k = 32. (f) Online dataset, KLD, k = 32.
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εgets .  A  higher  score  indicates  better  identification.

These  suggest  that  O-UISM  performs  the  best  in

these  metrics.  Second, Figs.7(b), 7(e), 8(b),  and 8(e)

and Figs.7(c), 7(f), 8(c),  and 8(f)  demonstrate  the

trendlines  of  SE  and  KLD,  respectively.  The  trend-

ε

lines of UIIM and O-UIIM are lower in most privacy

budgets .

ε > 1.75

ε

We  can  also  see  that  the  trendlines  of  O-UIIM

start and rise quickly and level off since . This

indicates  that  O-UISM  performs  the  best  when  is
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Fig.7.  Itemset mining results for the IBM dataset. (a) IBM dataset, NCR, k = 64. (b) IBM dataset, SE, k = 64. (c) IBM dataset,
KLD, k = 64. (d) IBM dataset, NCR, k = 32. (e) IBM dataset, SE, k = 32. (f) IBM dataset, KLD, k = 32.
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not large, and O-UISM cannot offset the error caused

by  the  Hadamard  encoding  and  sampling  with  in-

creasing  privacy  budget.  Moreover,  UISM  does  not

perform  as  well  as  O-UISM  in  NCR  under  different

privacy  budgets  but  performs  well  in  SE  and  KLD.

This indicates that the IHFO algorithm is good at up-

dating  frequent  itemsets  and their  corresponding fre-

quencies.

In summary, this experiment shows that O-UISM

performs the best in FIM.
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Fig.8.  Itemset mining results for the Online dataset. (a) Online dataset, NCR, k = 64. (b) Online dataset, SE, k = 64. (c) Online
dataset, KLD, k = 64. (d) Online dataset, NCR, k = 32. (e) Online dataset, SE, k = 32. (f) Online dataset, KLD, k = 32.
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η

η

η

η η = 0.5

Different . Fig.9 shows the impact of the dataset

division  which  means  the  aggregator  applies  the

percent  to  obtain  the  rank  of  the  items  in  the  first

part  of  the  dataset.  If  is  small,  fewer  data  in  the

first  part  are  applied  to  identify  frequent  singleton

items. If the amount of data in the second part is less,

the  squared  error  is  higher  under  the  same  privacy

budget.  Trendlines  of  NCR are  interwoven  to  differ-

ent .  We  consider  to  be  the  appropriate

choice.
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Fig.9.   (a)  NCR and (b) SE of  varying dataset  division  un-
der different . 

6    Conclusions

In this study, we investigated LDP (local differen-

tial  privacy)  approaches  for  FIM  (frequent  itemset

mining) when each user transaction has a set of items

whose  length  is  varied.  One  natural  LDP  algorithm

(e.g., SVSM) is for each user to sample only one item

and use a known algorithm to send, which should bal-

ance  the  bias  and  variance.  We  sacrificed  non-sensi-

tivity  privacy  to  develop  an  unbiased  approach  for

FIM  while  protecting  the  privacy  of  items  in  each

transaction. In most cases, our approach results in the

lowest variance, ensuring the most accurate outcome.

We  theoretically  and  experimentally  demonstrated

that  the  proposed  FIM  approach,  O-UISM,  signifi-

cantly  outperforms  the  extant  approaches  in  finding

frequent itemsets and estimating their frequencies un-

der the same privacy guarantee. 
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