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Abstract    Network embedding, as an approach to learning low-dimensional representations of nodes, has been proved

extremely useful in many applications, e.g., node classification and link prediction. Unfortunately, existing network embed-

ding models are vulnerable to random or adversarial perturbations, which may degrade the performance of network em-

bedding when being applied to downstream tasks. To achieve robust network embedding, researchers introduce adversari-

al training to regularize the embedding learning process by training on a mixture of adversarial examples and original ex-

amples. However, existing methods generate adversarial examples heuristically, failing to guarantee the imperceptibility of

generated adversarial examples, and thus limit the power of adversarial training. In this paper, we propose a novel method

Identity-Preserving Adversarial Training (IPAT) for network embedding, which generates imperceptible adversarial exam-

ples with explicit identity-preserving regularization. We formalize such identity-preserving regularization as a multi-class

classification problem where each node represents a class, and we encourage each adversarial example to be discriminated

as  the  class  of  its  original  node.  Extensive  experimental  results  on  real-world  datasets  demonstrate  that  our  proposed

IPAT method significantly improves the robustness of network embedding models and the generalization of the learned

node representations on various downstream tasks.

Keywords    network embedding, identity-preserving, adversarial training, adversarial the example

  

1    Introduction

Network embedding aims to learn low-dimension-

al  representation  for  each  node,  preserving  the  net-

work  structure  or  node  attributes[1, 2].  The  learned

representations can benefit various downstream tasks,

e.g., node classification[1, 3, 4] and link prediction[5]. De-

spite  their  great  success,  some  researchers  find  that

existing network embedding models are vulnerable to

random or adversarial perturbations[6], which may de-

grade  the  performance  of  network  embedding  when

being applied to downstream tasks. Then, how to de-

sign  a  robust  network  embedding  model  becomes  a

crucial problem.

A robust  network  embedding  model  is  desired  to

capture  the  intrinsic  structural  regularities  or  node

properties of the network, thus being capable of filter-

ing  out  potential  noise  and  generating  stable  node

embedding. As illustrated in Fig.1, for a graph and its
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perturbed  counterpart,  a  robust  network  embedding

model  should  obtain  similar  node  embedding  for  the

same  node,  thus  anticipating  that  each  node  and  its

perturbed counter-part have consistent labels in vari-

ous downstream tasks.

Recently,  adversarial  training  is  leveraged  as  an

effective  approach  to  achieving  robust  network  em-

bedding  and  improving  the  generalization  of  learned

representations on downstream tasks[6, 7].  Specifically,

adversarial training for network embedding consists of

two  iterative  steps.  First,  a  raw  network  embedding

model  is  trained  based  on  the  original  graph.  Next,

adversarial examples are generated via adding pertur-

bation to nodes' representations obtained by the raw

network  embedding  model,  and  these  adversarial  ex-

amples are used to improve the robustness of the net-

work embedding model.

L2

L2

For  adversarial  training,  one  key  is  to  generate

imperceptible  adversarial  examples  according  to  cer-

tain criteria[8], e.g., -norm for image data[9]. Never-

theless,  when  applying  adversarial  training  to  net-

work  embedding,  we  still  lack  guidelines  or  guaran-

tees  to  craft  imperceptible  adversarial  examples.  Ex-

isting  methods  generate  adversarial  examples  via

heuristically  exerting -norm  to  constrain  their  di-

vergence  from  node  representations  in  the  latent

space.  However,  such  heuristic  constraints  cannot

guarantee  the  imperceptibility  of  adversarial  exam-

ples in the latent space, limiting the power of adver-

sarial training. For network embedding, it is a partic-

ularly  challenging  problem  to  generate  imperceptible

adversarial examples in the latent space.

In this  paper,  we propose  the Identity-Preserving

Adversarial  Training  (IPAT)  method  with  identity-

preserving regularization to explicitly preserve the im-

perceptibility  of  adversarial  examples.  IPAT  regards

each node as a class consisting of itself and its adver-

sarial examples, and for each node, IPAT encourages

the generated adversarial examples to be classified in-

to the same class together with the node itself. In oth-

er  words,  adversarial  examples  preserve  the  identity

of  the  original  node.  As  depicted  in Fig.2(b),  our

method  explicitly  constrains  each  adversarial  exam-

ple  inside  the  identity  region  of  the  original  node,

thus  achieving  the  desired  imperceptibility  of  adver-

sarial  examples.  In  contrast,  existing  methods  may

generate adversarial examples outside the identity re-

gion,  resulting  in  inconsistent  identity  between  the

adversarial  example  and  its  original  node  (shown  in

Fig.2(a)).  In  brief,  our  identity-preserving  regulariza-

tion guarantees the imperceptibility of adversarial ex-

amples, thus achieving robust network embedding.
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Fig.2.   Comparison  of  (a)  adversarial  examples  with  heuristic
L2-norm constraint and (b) adversarial examples with identity-
preserving  regularization.  The  triangles  represent  the  original
nodes and the squares are adversarial examples. The lines rep-
resent the boundaries of node identity.
 

Our  identity-preserving  adversarial  training  is  a

general method, which can be applied to existing net-

work  embedding  methods  to  improve  their  perfor-

mance.  Applying  our  IPAT  to  a  representative  net-

work  embedding  method  GAE[10],  extensive  experi-

mental  results  on  real-world  datasets  demonstrate

that  our  method  significantly  improves  the  perfor-

mance of network embedding on various downstream

tasks.  Moreover,  we also  attach our  identity-preserv-

ing adversarial training on DGI[11] to further show the

generality of our method.

The  main  contributions  are  summarized  as  fol-

lows.

● We propose a novel identity-preserving adversa-
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Fig.1.  Robust network embedding.

178 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1



rial  training method for network embedding,  guaran-

teeing  the  imperceptibility  of  adversarial  examples

and achieving robust network embedding.

● Our  method  is  applicable  to  enhance  existing

network embedding methods as a flexible module.

● Extensive  experiments  are  conducted  to  evalu-

ate  the  effectiveness  of  our  method.  Besides  the

benchmark datasets, we construct a new dataset with

various  downstream  tasks  to  comprehensively  evalu-

ate the effectiveness of node representation. 

2    Problem Formulation

In this section, we give the problem formulation of

network  embedding  and  adversarial  training  for  net-

work embedding. 

2.1    Network Embedding

G = (V,A,X)

V = {vi}N
i=1 A ∈ RN×N

X ∈ RN×F

H ∈ RN×D

D << F

Network embedding aims to embed each node in-

to  a  low-dimensional  space,  preserving  the  network

structure  or  node  attributes.  Given  a  network  (also

known  as  graph) ,  with  node  set

,  adjacency  matrix ,  and  at-

tribute  matrix ,  network  embedding  aims

to  map  nodes  into  low-dimensional  node  representa-

tion matrix , where N denotes the number

of nodes, F is the dimension of node attributes, and D
is the dimension of node representations ( ).

H

L(G|H ;Θ)

Θ

Existing  methods  learn  node  representations 

by solving a pretext task[1], e.g., structure reconstruc-

tion[12, 13] or node attributes prediction[14, 15]. For sim-

plicity, the pretext task in network embedding is gen-

erally formulated as an objective function ,

where  represents  all  the  learnable  parameters  in

network  embedding.  Despite  the  empirical  success  of

network  embedding,  existing  network  embedding

methods are vulnerable to random or adversarial per-

turbations[6, 7]. 

2.2    Adversarial Training for Network

Embedding

L(G|H ;Θ)

Adversarial  training  is  newly  leveraged  to  im-

prove  the  robustness  of  network  embedding  models

against  adversarial  random  or  adversarial  perturba-

tions[6].  Specifically,  adversarial  training  for  network

embedding consists of two iterative steps. First, a net-

work  embedding  model  is  trained  by  minimizing  the

objective  function  of  the  pretext  task .

Then,  adversarial  training  for  network  embedding

generates  adversarial  examples  for  each  node  by

adding  adversarial  perturbations  on  node  representa-

tion to maximize the loss function of network embed-

ding,  and  use  the  obtained  adversarial  examples  to

train the network embedding model.  The loss on the

adversarial  examples  can  be  considered  as  a  regular-

ization term in the embedding learning process[6].  To

sum up, adversarial training for network embedding is

formulated as: 

min
Θ

L(G|H ;Θ) + λ

N∑
i=1

L(G|h′
i = hi + δadv

i ;Θ),

s.t. ∀vi ∈ V, δadv
i = argmax

δi,∥δi∥2⩽r

L(G|h′
i = hi + δi;Θ),

(1)

L(G|h′
i = hi + δadv

i ;Θ)

vi

hi vi
H

δadv
i vi

δadv
i

vi

where  is  the  network  embed-

ding  loss  on  adversarial  examples  of  node , λ is  a

hyperparameter to control the importance of the reg-

ularization  term,  is  the  representation  of  node 

(the i-th row of node representation matrix ),  and

 represents  the  optimal  perturbation  on  node .

(1) indicates that the adversarial perturbation  of

each node  is obtained by maximizing the loss func-

tion, and r is the L2-norm constraint.

However,  heuristical L2-norm  constraint  in  exist-

ing methods is hard to guarantee the imperceptibility

of  adversarial  examples,  thus  limiting  the  power  of

adversarial  training.  To  solve  this  problem,  we  pro-

pose  an  identity-preserving  adversarial  training

method  which  adopts  explicit  regularization  to  guar-

antee the imperceptibility of adversarial examples, an-

ticipating to achieve robust network embedding. 

3    Model

In this section, we firstly introduce an overview of

our  IPAT method.  Then  we  present  the  detailed  in-

formation of each component of our IPAT method. 

3.1    Overview

Adversarial training for network embedding lever-

ages the generated adversarial examples to retrain the

network embedding model, anticipating to improve its

robustness. An important premise behind the success

of  adversarial  training  is  that  adversarial  examples

should be  imperceptible[8],  however,  which is  hard to

be  achieved  by  existing  methods.  In  this  paper,  we

propose  an  identity-preserving  adversarial  training

method IPAT to explicitly guarantee the impercepti-
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bility of adversarial examples. Formally, IPAT works

as: 

min
Θ

L(G|H ;Θ) + λid

N∑
i=1

L(G|h′
i = hi + δadv

i ;Θ), (2)
 

s.t. ∀vi ∈ V,

δadv
i = argmax

δi, ∥δi∥2 ⩽ ri, fid(hi + δi) = fid(hi)
L(G|h′

i = hi + δi;Θ),

(3)

λid

L(G|h′
i = hi + δadv

i ;Θ)

h′
i

δadv
i hi

δadv
i

L2

fid(hi + δi) =

fid(hi)

where  is  a  hyperparameter  to  control  the  impor-

tance of network embedding loss on adversarial exam-

ples .  These  equations  indicate

the two iterative steps in adversarial training. Specifi-

cally, (3) indicates the first step that IPAT generates

the  adversarial  examples  by  adding  optimal  per-

turbation  to  the  original  representations ,

where  the  optimal  perturbation  is  learned  by

maximizing  the  loss  function  of  network  embedding.

Instead of  only  leveraging the -norm constraint  as

existing methods (shown in (1)), we propose addition-

al  identity-preserving  regularization 

 to guarantee the imperceptibility of adversari-

al  examples  (shown as  the bottom left  in Fig.3).  Af-

ter  obtaining  the  generated  adversarial  examples,

IPAT leverages a mixture of adversarial examples and

original  examples  to  train  the  network  embedding

model  (shown in (2)),  thus improving the robustness

of model.

Note  that  our  identity-preserving  adversarial

training is a general method, which can be applied to

enhance existing network embedding methods (shown

as the basic model in the top half of Fig.3). 

3.2    Identity-Preserving Adversarial Examples

In this subsection, we detailedly introduce how we

generate  the  identity-preserving  imperceptible  adver-

sarial examples according to (3). 

3.2.1    Adversarial Examples with Maximum Loss

h′
i vi

δi hi

max
δi

L(G|h′
i = hi + δi;Θ)

δadv
i vi

Generally  speaking,  adversarial  examples  are  ex-

amples  that  significantly  degrade  the  performance  of

network embedding  models.  Taking  the  loss  function

of  the  network  embedding  model  as  the  indicator  of

the performance, we first generate the adversarial ex-

ample  for  each  node  via  adding  an  adversarial

perturbation  to the original representation  and

maximizing the loss, i.e.,  as

shown in (3). We adopt the widely used fast gradient

descent  method[6, 16] to  obtain  the  optimal  perturba-

tion  of node  as follows:
 

δadv
i = ri ·

di

∥di∥2

,

di = ∇hi
L(G|hi;Θ)

hi vi ri

where  is  the gradient of the net-

work embedding loss function with respect to the rep-

resentation  of  node ,  and  is  the  norm  con-
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Fig.3.  Overall framework of network embedding with the proposed IPAT method.
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straint  of  adversarial  perturbation.  Accordingly,  the

generated adversarial example is denoted as: 

h′
i = hi + δadv

i = hi + ri ·
di

∥di∥2

. (4)

ri vi

Existing  methods[6] heuristically  adopt  a  pre-de-

fined norm constraint r for all nodes when generating

adversarial examples, which is hard to achieve the im-

perceptibility  of  adversarial  examples.  Different  from

existing  methods,  in  this  paper,  we  propose  novel

identity-preserving regularization to learn a node-spe-

cific norm constraint  for each node  to guarantee

the imperceptibility of adversarial examples. 

3.2.2    Identity-Preserving Regularization

To  guarantee  the  imperceptibility  of  adversarial

examples, we propose a novel perspective that an im-

perceptible  adversarial  example  should  retain  the

same  identity  with  its  original  node,  and  propose

identity-preserving  regularization  to  achieve  such  a

constraint. Specifically, we formalize identity-preserv-

ing regularization as a multi-class classification prob-

lem and treat the identity of each node as a class la-

bel. Then we encourage each generated adversarial ex-

ample to be classified into the same class as its origi-

nal node (bottom left in Fig.3).

Unfortunately, due to the huge label space of node

identities,  exactly  calculating the probability  that  an

adversarial example belongs to each class is costly. To

tackle this challenge, we utilize the negative sampling

to  efficiently  approximate  the  probability.  Specifical-

ly, we implement identity-preserving regularization by

distinguishing the pair of representations of an adver-

sarial  example  and  its  original  node  representation

(positive pairs) from the pair of representations of an

adversarial  example  and  the  representation  of  other

nodes  (negative  pairs).  The  objective  function  is  for-

malized as follows: 

Lid =
N∑
i=1

logσ(h′T
i hi)+

K∑
k=1

Evk∼p(v) logσ(−h′T
i hk), (5)

h′
i

vi hi

vi

p(v) = 1/N hk

vk σ

where  denotes the representation of the adversari-

al example of node , and  is the original represen-

tation of  node .  For each node,  we uniformly sam-

ple K other  nodes  in  the  graph  to  build  negative

pairs,  where the probability of a node being sampled

is ,  and  is  the  representation  of  the

sampled node .  is the sigmoid activation function.

Substituting  (4)  into  (5),  we  get  the  following  loss

function of identity-preserving regularization: 

Lid =
N∑
i=1

logσ

(
hT

i hi + ri

(
di

∥di∥

)T

hi

)
+

K∑
k=1

Evk∼p(v) logσ

(
−hT

i hk − ri

(
di

∥di∥

)T

hk

)
. (6)

ri

To achieve the above loss function, we parameter-

ize  the  norm  constraint  as  a  learnable  and  node

specific  variable  rather  than a  heuristical  pre-defined

constant  as  existing  methods.  The  formula  is  as  fol-

lows: 

ri = fr(hi;Θr),

fr
Θr

Θr

ri
Lid(H ;Θr)

where  is a two-layer perceptron with the standard

“ReLU” as an activation function, and  are all pa-

rameters  including  weight  matrixes  and bias  vectors.

That is to say, we can optimize the parameters  to

find the optimal norm constraint  for each node to

minimize (6); thus we rewrite (6) as .

Θr = 0

ri = 0

Lid(H ;Θr)

ri

Ln(H ;Θr) = −
∑

i∈N
r2i

Note  that, ,  i.e.,  the  generated adversarial

example  is  equal  to  its  original  node  representation

with , is a trivial solution to minimize identity-

preserving  regularization ,  which  cannot

bring  any  new  information  beneficial  to  the  training

of the network embedding model. To avoid such triv-

ial  solutions,  we encourage the norm constraint  of

each node to be as large as possible, which is formal-

ized as .

To  sum  up,  the  overall  loss  of  our  identity-pre-

serving regularization is: 

Lipr(H ;Θr) = Lid(H ;Θr) + λnLn(H ;Θr),

λn Lnwhere  controls the importance of loss .

Through optimizing the above identity-preserving

regularization, i.e., 

Θopt
r = argmin

Θr

Lipr(H ;Θr),

ropti

ropti = fr(hi;Θ
opt
r )

vi

we  obtain  the  optimal  norm  constraint  for  each

node,  i.e., .  Accordingly,  the  finally

generated identity-preserving adversarial examples for

each node  are: 

h′
i = hi + fr(hi;Θ

opt
r ) · di

∥di∥2

,

di = ∇hi
L(G|hi;Θ)

Θopt
r

where  is  the gradient of the net-

work embedding loss, and  is the optimal parame-

ters  with  respect  to  our  proposed  identity-preserving

regularization.  Note  that,  the  generated  adversarial

examples can significantly degrade the performance of
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the  network  embedding  model  while  preserving  the

important  premise  of  imperceptibility  from  the  per-

spective of identity-preserving.

After generating the identity-preserving adversari-

al examples, we add them back to retrain the model,

thus improving the robustness of the network embed-

ding model.  The above two steps are iteratively con-

ducted until convergence. 

3.3    Training Algorithm and Time Complexity

In  this  subsection,  we  give  the  entire  adversarial

training procedure of our proposed IPAT method for

network  embedding  (Algorithm 1)  and  provide  an

analysis of its time complexity.

Algorithm 1. Identity-Preserving  Adversarial  Training
Algorithm

(A,X)Input: graph , max epochs E, hyperparameters of
basic model

HOutput: embedding matrix 

Θ
Θr

1: Initialize network embedding model parameters 
    and identity-preserving parameters ;
2: for i = 1 to E do

di = ∇hi
L(G|hi;Θ) vi3:       for each node ;

Θopt
r = argmin

Θr

Lipr(H ;Θr)4:      ;

ri = fr(hi;Θ
opt
r ) vi5:       for each node ;

h′
i = hi + ri · di

∥di∥2
vi6:       for each node ;

Θ

L(G|H ;Θ) + λ
∑N

i=1
L(G|h′

i =

hi + ri · di

∥di∥2
;Θ)

7:     Update network embedding model parameters 
        with the generated adversarial examples according

        to minimizing 

         ;

8: end for

H9: return ;

Θ Θr

di = ∇hi
L(G|hi;Θ)

Θopt
r

Lipr(H ;Θr)

ri = fr(hi;Θ
opt
r )

In  line  1,  we  initialize  network  embedding  model

parameters  and identity-preserving parameters .

For each epoch, we first generate the identity-preserv-

ing adversarial examples through steps from line 3 to

line 6, and then leverage them to update the parame-

ters  of  network  embedding  in  line  7.  For  generating

the  identity-preserving  adversarial  examples,  we  first

calculate the gradient of the network embedding loss

 for  each node to ensure that the

generated  adversarial  examples  maximize  the  loss

function of network embedding in line 3. Then we ob-

tain  the  optimized  by  minimizing  identity-pre-

serving  regularization ,  which  is  used  to

guarantee  the  imperceptibility  of  adversarial  exam-

ples  in  line  4.  Line  5  shows that  we obtain the  suit-

able  norm  constraint  for  each  node

Θopt
r

h′
i = hi + ri · (di/∥di∥2)

vi
Θ

according to the optimized .  Then the adversari-

al examples  are generated for

each node  in line 6.  Finally,  all  the parameters  of

the network embedding model  are updated by min-

imizing  the  loss  function  (2)  with  the  generated  ad-

versarial examples as shown in line 7. After E rounds

of iterations, we output the final node representation

matrix H.

O(NKD2)

Θr

O(NKD2)

Compared  with  the  baseline  AdvT,  our  method

only introduces an extra time cost in line 4. The time

complexity of calculating (5) is , where N is

the number of nodes, K is the number of negative ex-

amples  used  in  (5),  and D is  the  dimension  of  node

representations.  At  the  same  time,  we  only  update

the parameters  once according to the gradients in

each  iteration,  where  the  time  complexity  is  also

.  Therefore,  the  newly  increased  computa-

tional time of our IPAT method is linearly related to

the number of nodes. 

4    Experiments

In this section, we conduct various experiments to

demonstrate  the  effectiveness  of  our  proposed  identi-

ty-preserving adversarial training for network embed-

ding. 

4.1    Experimental Setup

We  first  introduce  the  setup  of  experiments  in-

cluding  datasets,  baselines,  and  implementation  de-

tails of our IPAT method. 

4.1.1    Benchmark Datasets

We  conduct  experiments  on  four  widely  used

benchmark datasets. The statistics of all the datasets

is  collected  in Table 1.  The  benchmark  datasets  in-

clude three citation networks[11, 17, 18], i.e., Cora, Cite-

seer, and Pubmed, where nodes are articles and edges

indicate  citations  between  articles,  and  a  web  net-

work Wiki[6, 19], where nodes are web pages and edges

represent the hyperlinks between web pages. 

 

Table  1.    Datasets Description

Dataset #Nodes #Edges #Labels

Cora[11, 17, 18] 2 708 5 429 7

Citeseer[11, 17, 18] 3 327 4 732 6

Pubmed[11, 17, 18] 19 717 44 338 3

Wiki[6, 19] 2 405 17 981 17

Note: #: number of.
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4.1.2    Baselines

We  compare  our  method  with  six  representative

network  embedding  methods,  i.e.,  SVD[20],

DeepWalk[5],  DANE[15],  DGI[11],  GraphCL[21],  and

GAE[10],  and  two  adversarial  learning  regularization

methods, i.e., ARGE[22] and AdvT-GAE[6], designed to

improve  the  robustness  of  the  network  embedding

model.  The  descriptions  of  the  baselines  are  as  fol-

lows.

● SVD [20] learns  node  representations  by  decom-

posing  the  node  attribute  matrix.  We reduce  the  di-

mension  of  node  attributes  to  200  via  singular  value

decomposition (SVD), following the settings in [23].

● DeepWalk [5] aims to learn node representations

that preserve the cooccurrence in random walks.

● DANE[15] learns node representations by two in-

dependent  auto-encoders  to  model  attributes  and

structure information, respectively.

● DGI [11] learns node representations through the

pretext  task  of  maximizing  mutual  information  be-

tween patch representations and corresponding graph

representations.

● GraphCL[21] learns node representations by max-

imizing mutual information between the hidden repre-

sentations of two augmentations of the origin graph.

● GAE [10] gets node representations by the graph

convolution layer  and utilizes  network reconstruction

as the pretext task.

● ARGE [22] adds  adversarially  regularization  on

GAE, which improves the robustness of GAE by im-

posing a prior distribution on node representations.

● AdvT-GAE[6] represents adversarial training for

GAE,  which  is  the  current  strongest  baseline  to  im-

prove the robustness of the network embedding mod-

el.  We follow the  settings  of  AdvT[6] to  build  adver-

sarial examples. 

4.1.3    Implementation Details

In this paper, both IPAT and the two adversarial

learning  regularization  baselines  adopt  the  same  ba-

sic  model  (GAE)  for  a  fair  comparison.  We  denote

our  identity-preserving  adversarial  training  for  GAE

as IPAT-GAE.

To  better  reproduce  the  experimental  results,  we

specify  the  model  architecture  and  loss  function  of

GAE,  and  give  the  parameter  settings  of  our  IPAT-

H

L(G|H ;Θ)

GAE.  GAE  stacks  two  layers  of  GCN[17] as  the  en-

coder  to  get  the  node representations .  GAE aims

to  learn  node  representation  by  reconstructing  the

network  structure,  and  the  loss  function 

is formalized as: 

L(G|H ;Θ) =
∑
i∈N

∑
j∈N

aij log(σ(hih
T
j ))+

(1− aij) log(1− σ(hih
T
j )),

aij = 1 vi
vj aij = 0∑

i∈N
L(G|h′

i = hi + δadv
i ;Θ)

where , if there is an edge between node  and

node ; otherwise . After getting the adversar-

ial  examples,  we  add  them  back  to  train  GAE,  and

thus  in  (2)  is  formalized

as:  ∑
i∈N

L(G|h′
i = hi + δadv

i ;Θ)

=
∑
i∈N

∑
j∈N

aij log(σ((hi + δadv
i )hT

j ))+

(1− aij) log(1− σ((hi + δadv
i )hT

j )). (7)

K = 5

λid = 1 λn = 1

L(G|h′
i = hi + δadv

i ;Θ) Ln(H ;Θr)

We  set  the  number  of  hidden  units  of  GCN  in  our

method  IPAT  to  be  256  and  128,  the  dropout  ratio

equals  0.5,  and the  negative  number .  For  the

sake  of  efficiency,  we  combine  all  the  loss  functions

together  and  update  the  parameters  simultaneously,

with ,  as  the  weights  of

 and ,  respectively.

We implement our method in Tensorflow2.3[24]. More-

over, we release all the datasets mentioned in this pa-

per and the source code of our method①, and we also

upload a Douban dataset on ScienceDB②. 

4.2    Link Prediction

We  include  link  prediction  as  one  of  the  down-

stream  tasks  to  evaluate  the  generalization  of  the

learned node representations. We set the edges in the

network  as  positive  instances  and  split  them accord-

ing to the ratio of 85%, 5%, and 10% for training, val-

idation, and test, respectively. Moreover, we learn the

node representations only with the edges in the train-

ing  set.  In  the  test  phase,  we  randomly  select  some

unconnected  node  pairs  as  negative  samples  to  keep

the ratio of positive samples and negative samples as

1 : 1. We calculate the link probability via the inner

product of node embedding on the test data. Follow-

ing  [10],  we  adopt  area  under  the  curve  (AUC)  and
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average precision (AP) as the evaluation metrics.

The  experimental  results  of  link  prediction  are

summarized  in Table 2,  where  the  best  results  are

bolded,  and  the  second  best  results  are  underlined.

We  observe  that  adversarial  learning  regularization

baselines  ARGE,  AdvT-GAE,  and  our  IPAT-GAE

are  consistently  better  than  GAE,  which  shows  that

the  generalization  of  node  representation  on  down-

stream tasks can be improved by adversarial training

for network embedding. Note that IPAT-GAE is con-

sistently  better  than  ARGE  and  AdvT-GAE  in  all

three  datasets.  Specifically,  IPAT-GAE  achieves

4.95%,  4.82%,  1.07%,  and  2.35%  improvement  over

AdvT-GAE on AUC in Cora, Citeseer, Pubmed, and

Wiki,  respectively.  The  results  show  that  our  IPAT

method can further  improve the robustness  and gen-

eralization  of  node  embeddings  by  guaranteeing  the

imperceptibility of adversarial examples. 

4.3    Node Classification

In  this  subsection,  we  conduct  experiments  on

node classification to demonstrate the effectiveness of

IPAT. After learning the embedding for each node, an

SVM[25] with a linear kernel is used to classify nodes.

We use  the SVM package provided by scikit-learn[26]

with  default  parameters.  Moreover,  we  repeat  this

process  10  times  and  show  the  mean  results.  In  this

subsection,  we  conduct  node  classification  tasks  with

two  different  strategies  of  data  partitioning  to  com-

prehensively verify the effectiveness of our method. 

4.3.1    Node  Classification  with  Different  Label

Ratios

Following  the  settings  in  [15, 23],  we  randomly

sample a certain number of nodes with labels as train-

ing data and the rest as the test.  Moreover,  the test

data ratios vary in {10%, 30%, 50%}.

Table 3 shows  that  ARGE,  AdvT-GAE,  and

IPAT-GAE significantly improve the accuracy of the

node  classification  task  on  Cora,  Citeseer,  and

Pubmed  compared  with  GAE.  These  results  demon-

strate  that  adversarial  training  for  network  embed-

ding  also  improves  the  generalization  ability  of  node

representations on the node classification task. In ad-

dition,  IPAT-GAE  consistently  outperforms  AdvT-

GAE on the four datasets, suggesting that our IPAT

method further improves the generalization ability of

node  representations  by  generating  identity-preserv-

ing adversarial examples. 

 

Table  2.    Comparison on AUC(%) and AP(%) of Link Prediction Task

Method Cora Citeseer Pubmed Wiki

AUC AP AUC AP AUC AP AUC AP

SVD[20] 79.10 82.46 85.82 88.76 85.98 87.60 83.70 87.98

DeepWalk[5] 80.53 82.79 73.22 76.21 76.88 74.73 81.27 82.39

DANE[15] 88.19 89.56 84.93 84.68 87.76 89.69 91.01 92.45

DGI[11] 78.53 80.50 81.31 82.50 81.66 83.13 78.18 79.30

GraphCL[21] 82.35 83.51 83.72 85.63 88.37 89.02 83.52 85.01

GAE[10] 91.47 92.37 90.52 91.59 95.93 96.25 91.81 92.91

ARGE[22] 92.40 93.20 91.96 92.97 96.80 97.10 92.90 93.80

AdvT-GAE[6] 91.73 92.74 91.47 92.72 96.05 96.42 91.89 92.61

IPAT-GAE 96.68 97.36 96.29 96.42 97.12 97.33 94.24 95.10

 

Table  3.    Comparison on Micro-F1 (%) of Node Classification with Different Label Ratios on Four Benchmark Datasets

Method Cora Citeseer Pubmed Wiki

10% 30% 50% 10% 30% 50% 10% 30% 50% 10% 30% 50%

SVD[20] 47.44 66.70 68.55 61.14 66.95 69.39 64.93 78.05 81.12 65.32 75.59 77.61

DeepWalk[5] 76.53 79.86 81.33 50.15 56.24 56.83 79.87 80.99 81.35 57.95 65.34 67.15

DANE[15] 78.01 81.86 82.50 63.64 68.69 72.30 84.28 85.44 86.56 72.98 77.26 78.30

DGI[11] 82.53 84.35 84.77 66.39 69.37 71.53 84.73 85.36 85.78 70.58 71.86 73.17

GraphCL[21] 81.87 83.76 84.05 64.72 67.18 69.01 82.00 82.83 83.17 68.43 70.31 71.65

GAE[10] 80.39 82.22 82.35 60.52 60.59 62.00 83.91 84.38 84.33 68.82 70.60 72.48

ARGE[22] 81.32 84.87 85.92 63.27 65.26 66.73 84.02 85.64 86.17 70.92 72.56 74.31

AdvT-GAE[6] 82.31 85.70 86.79 67.91 71.91 73.46 85.28 86.21 86.52 72.15 74.21 76.51

IPAT-GAE 84.85 86.72 87.92 70.65 73.57 75.05 85.36 86.42 86.73 73.54 76.71 78.68
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4.3.2    Node Classification with Extremely

Limited Labels

In  practice,  graph  data  is  often  profoundly  lack-

ing in labels. To illustrate the effectiveness of the rep-

resentations  learned  by  IPAT-GAE  in  this  scenario,

we  also  conduct  the  downstream  node  classification

tasks with extremely limited labels. Following the da-

ta partition as [17, 18, 27], each class only has 20 la-

beled data in the training stage in this task.

As shown in Table 4, IPAT-GAE consistently gets

higher  accuracy  than  GAE,  ARGE,  and  AdvT-GAE

on  all  the  datasets.  Specially,  IPAT-GAE  achieves

2.22%,  2.74%,  and  4.72%  over  AdvT-GAE  in  Cora,

Citeseer,  and  Pubmed,  respectively.  Such  significant

improvement reflects that IPAT greatly improves the

generalization  of  learned  node  representations  in

downstream tasks even with limited labels.
  
Table  4.    Comparison on Accuracy(%) of the Node Classifica-
tion Task with Extremely Limited Labels

Method Cora Citeseer Pubmed

SVD[20] 55.10 46.50 71.40

DeepWalk[5] 67.20 43.20 65.30

DANE[15] 78.20 63.70 75.80

DGI[11] 82.30 71.80 76.80

GraphCL[21] 81.76 71.22 76.15

GAE[10] 80.20 65.80 72.10

ARGAE[22] 80.80 66.80 72.20

AdvT-GAE[6] 81.30 69.82 73.40

IPAT-GAE 83.52 72.56 78.12
 

4.4    Node Classification on a Large Dataset

In this subsection, we conduct the node classifica-

tion task on a widely used large dataset ogbn-arxiv③

with 169 343 nodes and 1 166 243 edges[28]. Each node

in  ogbn-arxiv  is  a  paper  and  each  edge  represents  a

citation between papers. We follow the data partition

as [28], i.e., leveraging papers published until 2017 as

the training set, those published in 2018 as the valida-

tion  set,  and  those  published  since  2019  as  the  test

set.

As  shown  in Table 5,  our  IPAT-GAE  is  better

than GAE, ARGE, and AdvT-GAE on the ogbn-arx-

iv dataset. Our IPAT-GAE achieves 0.52% and 0.62%

over  AdvT-GAE in  validation  and  test,  respectively.

The results show that our IPAT improves the gener-

alization of learned node representations on the ogbn-

arxiv dataset.
  
Table  5.    Comparison on Accuracy (%) of the Node Classifi-
cation Task on Dataset ogbn-arxiv

Method Validation Test

SVD[20] 52.65 50.20

DeepWalk[5] 64.29 63.14

DANE[15] 65.35 65.07

DGI[11] 71.07 70.34

GraphCL[21] OOM OOM

GAE[10] 67.46 66.32

ARGAE[22] 67.92 66.58

AdvT-GAE[6] 67.97 67.02

IPAT-GAE 68.49 67.64

Note: OOM: out of memory.
 

4.5    Multiple Downstream Tasks

Considering  the  benchmark  datasets  only  have

one  node  classification  downstream  task,  we  con-

struct  a  new  dataset  Douban④ with  multiple  down-

stream tasks to better verify the generalization abili-

ty of node representations on multiple tasks. 

4.5.1    Dataset

Our new network dataset is crawled from Douban

Movies⑤,  which  is  a  website  providing  users  com-

ments  on  movies.  Each  node  in  the  network  repre-

sents  a  movie,  and  each  edge  represents  that  the

movies on both ends of it are co-preferenced by audi-

ences,  which  is  provided  by  Douban.  The  network

contains 31 761 nodes and 179 924 edges. We use the

movie  profiles  to  form  the  attributes  of  the  node.

Firstly, we use ``jieba"⑥, a widely used Chinese word

segmentation tool,  to  segment  movie  profiles  and fil-

ter  common  stop  words  and  words  that  appear  less

than three times in the corpus. Then, we build a TF-

IDF vector for each movie using scikit-learn[26] and re-

duce the dimension to 500 via SVD[20].

We build three downstream tasks for this Douban

dataset,  including  movie  genres  prediction,  rating

score level prediction, and popularity level prediction.

Genre predicting task is a multi-classification task, we

directly  use  the  genres  of  the  movie  provided  by

Douban as the label, and each movie has at least one

genre.
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To build  the  label  of  the  rating  score  prediction,

we rank movies by rating scores, and divide them in-

to  10  classes  of  the  same size.  Similarly,  we  rank all

the  movies  according  to  the  number  of  comments,

and  divide  them  into  three  classes  of  the  same  size.

For each task, we randomly sample 70% nodes as the

training set, 10% as the validation set, and the rest as

the test set. 

4.5.2    Experiments on Douban

We compare  our  IPAT-GAE  with  the  basic  net-

work  embedding  model  GAE[10] and  two  adversarial

learning regularization methods, ARGE[22] and AdvT-

GAE[6],  to  focus  on  verifying  the  improvements  that

our  IPAT  method  brings  to  the  network  embedding

model. We also introduce a supervised GCN model as

a baseline to show a possible upper bound on the re-

sults  of  these  tasks.  The  supervised  GCN model  has

the same hidden units as IPAT-GAE.

As  shown  in Table 6,  IPAT-GAE  is  consistently

better  than  other  unsupervised  node  representation

learning baselines on all the tasks, and gets compara-

ble  results  with  the  supervised  GCN  model,  which

demonstrates  that  our  IPAT  method  improves  the

generalization  of  the  learned node  representations  on

different downstream tasks. 

4.6    Adversarial Examples Visualization

To intuitively evaluate the imperceptibility of ad-

versarial examples, we visualize the representations of

the adversarial examples. Firstly, we randomly choose

five nodes (the squares in Fig.4), and obtain their ad-

versarial  examples  (the  triangles  in Fig.4).  Then,  we

transfer  their  representations  into  two 2D spaces  us-

ing  t-SNE[29],  and  different  colors  represent  different

nodes. The results of AdvT-GAE and IPAT-GAE on

Cora are shown in Fig.4(a) and Fig.4(b), respectively.

In Fig.4(a), we find that the distance of an adver-

sarial  example  from its  corresponding node is  signifi-

cantly  greater  than  its  distance  from  some  other

nodes on the graph, e.g., the distance of the red trian-

gle  to  the  red  square  is  significantly  larger  than  its

distance  to  the  blue  square.  This  phenomenon  re-

flects that the adversarial examples learned by AdvT-

GAE are  not  imperceptible,  and adding  these  adver-

sarial  examples  to  retrain  the  network  embedding

may hurt its performance. While in Fig.4(b), the ad-

versarial examples generated by IPAT-GAE are clos-

er to their original nodes than to other nodes on the

graph. The results show that our IPAT with explicit

identity-preserving  regularization  better  guarantees

the  imperceptibility  of  generated  adversarial  exam-

ples. 

4.7    Robustness of Network Embedding

Model

In this subsection, we set up an experiment to ex-

amine  the  robustness  of  network  embedding  models

against randomly adding noisy edges. Firstly, we ran-

domly link some unconnected node pairs as the noisy

edges. Specifically, the number of noisy edges is r% of

existing  edges,  and r%  varies  from  10%  to  100%.

Then  we  learn  the  node  representations  from  these

noisy graphs.  Lastly,  we evaluate the effectiveness of

the learned node representations on the above down-

stream  tasks.  We  show  the  results  of  the  task  men-

tioned  in Subsection 4.3.2 on  the  Cora  and  Citeseer

datasets as examples.

We notice that IPAT-GAE shows larger improve-

ments than GAE as the noise edge increases on Cora

(Fig.5) and Citeseer (Fig.6), which demonstrates that

our IPAT method improves the robustness of the net-

work  embedding  model. Fig.5 and Fig.6 show  that

our IPAT-GAE consistently outperforms AdvT-GAE.

Such a phenomenon proves that maintaining the im-

perceptibility  of  adversarial  examples  in  adversarial

training is critical for improving the robustness of net-

work embedding model. 

4.8    Ablation Study

In this subsection, we evaluate the effectiveness of

components  in  our  IPAT  method  through  ablation
 

Table  6.    Comparison on Accuracy (%) of Three Downstream Tasks on Our Douban Dataset

Method Description Method Movie Genre Rating Score Level Popularity Level

Supervised GCN[17] 73.94± 0.3 33.83± 0.6 67.66± 0.5

Unsupervised GAE[10] 66.76± 0.4 21.90± 0.4 57.12± 0.4

ARGE[22] 67.36± 0.3 22.27± 0.4 58.32± 0.3

AdvT-GAE[6] 69.29± 0.3 24.14± 0.2 59.87± 0.2

IPAT-GAE 72.07± 0.3 33.14± 0.5 67.22± 0.4

Note: The optimal results are in bold.
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studies.

L(G|h′
i = hi + δadv

i ;Θ)

L(G|h′
i = hi + δadv

i ;Θ)

 encourages  IPAT to  lever-

age  the  generated  identity-preserving  adversarial  ex-

amples  to  retrain  GAE.  As  shown  in Table 7,  with-

out  identity-preserving  regularization  (IPAT-GAE

w/o  in Table 7)  the  results

drop  obviously,  and  become  only  comparable  to  the

results  of  our  basic  model  GAE, which demonstrates

that  adding  the  generated  identity-preserving  adver-

sarial examples to retrain the network embedding, im-

proves the performance of the learned node represen-

tations.

Lid(H ;Θr)

Lid(H ;Θr)

Lid(H ;Θr)

Identity-preserving  regularization  loss 

encourages  the  adversarial  examples  to  be  classified

into the same identity categories as their origin node

examples,  which  encourages  adversarial  examples  to

be imperceptible. To verify the effectiveness of identi-

ty-preserving  regularization  loss ,  we  re-

move this loss (as IPAT-GAE w/o  in Ta-

ble 7) and compare it with IPAT-GAE. As shown in

Table 7,  without  identity-preserving  regularization,

the  performance  of  the  learned  node  representations

drops obviously,  which demonstrates that our identi-

ty-preserving  regularization  is  crucial  to  improving

the effectiveness of adversarial training.

Ln(H ;Θr)

ri = 0

Ln Ln(H ;Θr)

Ln(H ;Θr)

 prevents the model from converging to

a  trivial  solution .  To  test  its  effectiveness,  we

remove  (IPAT-GAE  w/o  in Table 7)

and  compare  it  with  IPAT-GAE.  We  find  that  re-

moving  this  loss  degrades  the  performance  of  node

embeddings,  which  demonstrates  the  effectiveness  of

our .
 

4.9    Hyperparameter Analysis

In  this  subsection,  we  evaluate  the  hyperparame-

ters of our model.
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Fig.4.  2D visualization of five randomly chosen nodes and their
adversarial  examples.  (a)  Adversarial  examples  generated  by
AdvT-GAE.  (b)  Adversarial  examples  generated  by  IPAT-
GAE.
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Fig.5.  Robustness of the network embedding against randomly
adding noisy edges on Cora.
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Fig.6.  Robustness of the network embedding against randomly
adding noisy edges on Citeseer.

 

Table  7.    Ablation Study: Comparing the Accuracy (%) of Node Classification Task in IPAT

Method Cora Citeseer Pubmed

GAE[10] 80.20± 0.4 65.80± 1.5 72.10± 0.5

IPAT-GAE 83.56± 0.2 72.56± 0.4 78.10± 0.5

L(G|h′
i = hi + δadvi ;Θ)IPAT-GAE w/o 80.26± 0.3 66.82± 0.4 73.19± 0.5

Lid(H;Θr)IPAT-GAE w/o 79.38± 0.4 68.63± 0.5 71.09± 0.6

Ln(H;Θr)IPAT-GAE w/o 83.17± 0.2 71.69± 0.5 77.55± 0.4

Note: The optimal results are in bold.
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λid

L(G|h′
i = hi + δadv

i ;Θ)

λid

λid

We first investigate the influence of weight  of

adversarial  training  loss ,  and

the results are shown in Fig.7. We find that the per-

formance  on  the  downstream  task  is  better  as  the

weight  increases  at  first,  suggesting  that  adding

our  identity-preserving  adversarial  examples  to  re-

train the network embedding model helps improve the

robustness of the network embedding model, thus im-

proving  the  generalization  of  node  representations.

Moreover, as  becomes larger, the adversarial sam-

ple plays a larger weight than the original sample, re-

sulting in a decrease in the performance on the down-

stream  task,  which  shows  that  the  most  reasonable

approach  is  to  treat  the  adversarial  sample  and  the

original sample equally.
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Fig.7.   Impact  of  weight  of  adversarial  training  loss

 on node classification.
 

λn

Ln(H ;Θr)

K = 5

K = 5

For  a  comprehensive  analysis  of  our  proposed

identity-preserving  regularization  loss,  we  evaluate

the  influence  of  two hyperparameters  of  it,  including

the  number  of  negative  samples K and weight  of

. Fig.8(a)  illustrates  how K affects  the

node classification performances, where K varies from

1  to  20,  and  the  corresponding  micro-F1  values  are

plotted. We find that with the increment of negative

examples,  the  result  increases  first,  and  then  stabi-

lizes around . Therefore, for a new dataset, the

optimal solution can be found around .

λn

λn

The  impact  of  is  found  in Fig.8(b).  We  find

too  large  weight  of  will  decrease  the  performance

of our model. The reason can be that too large r caus-

es  the  generated  adversarial  examples  to  be  too  far

from the original  samples,  violating the premise  that

the adversarial examples should be imperceptible, re-

sulting in hurting the model performance. 

4.10    Flexibility of Identity-Preserving

Adversarial Training

To verify the flexibility of our identity-preserving

adversarial  training,  we  also  take  DGI  a  recently

state-of-the-art node representation method as the ba-

sic  model.  IPAT-DGI  denotes  adding  our  identity-

preserving  adversarial  training  method  on  DGI.  Ad-

vT-DGI  represents  adding  AdvT  regularization[6] on

the DGI model as the baseline. We keep the same ar-

chitecture and hyper-parameters of DGI as in [11].

The  results  on  node  classification  tasks  with  ex-

tremity-limited  labels  are  shown  in Table 8.  IPAT-

DGI outperforms DGI and AdvT-DGI, which demon-

strates the flexibility of our identity-preserving adver-

sarial training method.

 
 

Table   8.      Comparing  the  Accuracy  (%)  of  Node  Classifica-
tion Task using DGI as the Basic Model

Method Cora Citeseer Pubmed

DGI[11] 82.3± 0.6 71.80± 0.7 76.8± 0.6

AdvT-DGI 83.0± 0.6 70.22± 1.0 75.3± 0.2

IPAT-DGI 83.7± 0.2 72.60± 0.4 77.6± 0.5
 

5    Related Work

In this section, we briefly review the related work

on network embedding and adversarial training. 
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Fig.8.  Impact of identity-preserving regularization loss. (a) Im-
pact  of  the  number of  negative  samples K in  identity-preserv-
ing  loss .  (b)  Impact  of  weight  of  loss

 on node classification.
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5.1    Network Embedding

Most  conventional  network  embedding  methods

learn  node  representations  by  encouraging  them  to

preserve  structure  proximity[12, 13, 15, 30],  and  various

other properties such as node attributes[4, 14].  GAE[10]

keeps  the “first-order” proximity  by  reconstructing

the  network  structure  using  hidden  representations

encoded by GCN. GPT-GNN[4] learns node represen-

tations by predicting masked node attributes. Recent-

ly, learning graph representations under a contrastive

framework[31] has  drawn  intensive  attention[21, 32, 33].

DGI[11] learns  node  representation  by  contrasting  lo-

cal node representations with global graph representa-

tions.  CMVG[33] expands  this  idea  and  learns  node

representations  and  graph  representations  by  con-

trasting multi-structural views of graphs.

However, previous methods are vulnerable to ran-

dom  or  adversarial  perturbations[6, 7].  To  overcome

the  above  issues,  existing  methods  introduce  either

generative  adversarial  networks  (GANs)[34, 35] or  ad-

versarial  training  to  regularize  the  embedding  learn-

ing  process[6].  The  former  methods,  e.g.,  ANE[7],

ARGE[22],  and NetRA[36],  try to improve the general-

ization  ability  via  generative  adversarial  networks

(GANs) based regularization. 

5.2    Adversarial Training

Adversarial  training  aims  to  find  worst-case  per-

turbations that maximize the current model loss, and

encourages  the  model  to  correctly  classify  both  un-

modified  examples  and  adversarial  examples.  Such  a

paradigm  improves  the  robustness  of  the  model  and

achieves  better  generalization  performance  on  learn-

ing  tasks.  Moreover,  such  a  paradigm  has  achieved

success in many different scenarios, e.g., computer vi-

sion[37],  natural  language  processing[38],  and  recom-

mendation[22].

Recently, some studies have explored to apply ad-

versarial  training  on  graph data[39, 40].  Different  from

conventional  adversarial  training  methods,  which

treat each example as independent of others, some ad-

versarial  training  methods  on  graph  data  leverage

neighboring nodes to model the impact[39, 40].  Howev-

er,  these  methods  rely  on  supervised  labels  and  can-

not be directly used for network embedding.

To solve this problem, Dai et al.[6] adapted the ad-

versarial  training  (AdvT)[9, 16] for  unsupervised  node

representation learning to improve robustness of  net-

work  embedding  and  achieve  better  generalization

performance.  They  proposed  an  adversarial  training

DeepWalk model (Dwns_AdvT), which generates ad-

versarial  examples  in  the  embedding  space  and  ob-

tains  adversarial  perturbation  with  the  fast  gradient

method[6, 16, 38]. Unlike our model, it ignores the guar-

antee of the imperceptibility of the adversarial exam-

ples,  thus  limiting  the  performances  of  adversarial

training. 

6    Conclusions

We proposed a novel identity-preserving adversar-

ial  training  method  IPAT  for  network  embedding,

guaranteeing the imperceptibility of adversarial exam-

ples and achieving a robust network embedding mod-

el.  Our method is applicable to enhance any existing

network  embedding  methods  as  a  flexible  module.

The results on datasets Cora, Citeeseer, Pubmed, and

Wiki showed that our IPAT outperforms the state-of-

the-art algorithms on link prediction and node classi-

fication  tasks.  Meanwhile,  the  experiments  proved

that  our  IPAT  improves  the  robustness  of  network

embedding models.

For  future  work,  we  plan  to  explore  generating

identity-preserving  adversarial  examples  in  the  raw

network data space. 
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