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Abstract    Realizing a high-performance and energy-efficient circuit system is one of the critical tasks for circuit design-

ers. Conventional researchers always concentrated on the tradeoffs between the energy and the performance in circuit and

system design  based  on  accurate  computing.  However,  as  video/image  processing  and  machine  learning  algorithms  are

widespread, the technique of approximate computing in these applications has become a hot topic. The errors caused by

approximate computing could be tolerated by these applications with specific processing or algorithms, and large improve-

ments in performance or power savings could be achieved with some acceptable loss in final output quality. This paper

presents a survey of approximate computing from arithmetic units design to high-level applications, in which we try to

give researchers a comprehensive and insightful understanding of approximate computing. We believe that approximate

computing will play an important role in the circuit and system design in the future, especially with the rapid develop-

ment of artificial intelligence algorithms and their related applications.
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 1    Introduction

The  concept  of  approximation  is  well-established

in many fields, such as physics (e.g., saddle point ap-

proximation,  quantum  mechanical  perturbation  solv-

ing),  engineering  (e.g.,  linear  approximation),  and

medicine  (e.g.,  medical  image  noise  reduction).  How-

ever, approximations have been introduced into differ-

ent fields for various reasons.  Despite the continuous

advances in semiconductor technology and energy-effi-

cient design techniques,  the computation demands of

large-scale modern systems such as scientific comput-

ing, data analysis, and financial transactions have in-

creased  significantly  in  recent  years,  especially  as

computer  systems  become  increasingly  mobile  and

embedded  with  various  sensors  to  interact  with  the

physical  world.  The  overall  energy  consumption  of

these  systems  continues  to  grow  exponentially  at  an

alarming rate. As a result, approximations have been

introduced to address this growing power and perfor-

mance challenges[1].

Approximate  computing  could  achieve  large  im-

provements  in  performance  and  energy  efficiency  by

relaxing the requirement of output quality for the sys-

tem, exploiting the gap between the level of accuracy

required by the user and the level of accuracy provid-

ed  by  the  computing  system  to  obtain  various  opti-

mizations.  For  example,  in  image  processing  applica-
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tions where the output quality of the computing sys-

tem is evaluated through the human perspective, the

statement of “good image quality” is very subjective,

and each person has different image analysis capabili-

ties.  With this  regard,  approximate image processing

can  be  implemented  with  tolerable  computation  er-

rors, which implies some loss of output quality.

Approximate  computing  could  be  implemented

through  a  variety  of  strategies,  from  the  hardware

level  to  various  layers  of  software  applications.  The

deployment  of  approximate  computing  at  different

levels  has  a  different  impact  on  final  output  quality.

At the hardware level of the integrated circuit design

in  nano-scale  era,  the  possibility  of  exhibiting  uncer-

tainties  and  errors  for  a  CMOS  device  is  increasing

substantially, which will lead to additional power con-

sumption as redundant components to be used to im-

prove the reliability of the circuit. Applying approxi-

mation  techniques  to  these  integrated  circuit  designs

could reduce the additional power consumption by in-

troducing  some  acceptable  errors.  Besides,  various

storage  and  processing  architectures  have  been  pro-

posed to  support  the  implementation of  approximate

computing  units  with  analytical  methods  and  design

metrics,  such as  approximate  adders,  multipliers  and

dividers.  At  the  application  level,  machine  learning

can  also  utilize  approximate  computing  techniques.

The training process of machine learning can tolerate

some accuracy loss, as in Google’s deep learning chip,

the  tensor  processing  units  use  accuracy  scaling,  re-

sulting  in  significant  performance  improvement.  The

introduction  of  approximate  computing  in  deep  neu-

ral  networks  (DNNs)  includes  quantization  and

weight pruning, which could make DNNs easier to de-

ploy and less computationally intensive with reduced

memory usage and computation complexity.

The introduction of approximation into a comput-

ing system has some intrinsic effects.  The benefits of

approximate computing have already been mentioned

above;  however,  approximate  computing  also  has  its

limitations,  as  it  will  reduce  the  intrinsic  reliability

and  accuracy  of  the  results.  In  some  applications

where  very  high  computation  accuracy  is  required

(e.g., aerospace systems), the approximate computing

may  lead  to  unexplained  system  crashes.  Obviously,

approximate computing is not suitable in these appli-

cations.  It  should  also  be  noted  that  even  when  ap-

proximate computing is used in the field of image pro-

cessing or machine learning, the output quality should

be evaluated completely and thoroughly.

In  fact,  there  have  been  many  review  papers  on

approximate  computing  up  to  now.  Approximation

techniques, in particular approximate multipliers, and

generalized  approximate  high-level  synthesis  ap-

proaches  are  introduced  in  detail  in  [2].  Machine

learning and neutral networks are used in addition to

these  approximate  computing  technologies  in  [2],  in

order  to  provide  some  corresponding  improvements

such  as  in  circuit  performance.  In  [3],  basic  arith-

metic  units  such  as  approximate  adders,  multipliers

and  dividers  with  multiple  circuit  structures  are  re-

viewed.  In  [4],  in  addition to  the  introduction of  the

approximate  logic  units,  the  circuit  structure  of  ap-

proximate memory blocks is described in detail. Com-

pared with all of these surveys, this paper presents a

survey  of  approximate  computing  from  the  arith-

metic units design to high-level applications, in which

we  try  to  give  researchers  a  comprehensive  and  in-

sightful understanding of approximate computing. As

shown in Fig.1, the structure of this survey is as fol-

lows. Section 2 introduces  approximate  computing

from the arithmetic units design to practical applica-

tions,  which  is  the  main  content  of  this  survey.  Be-
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sides, Section 3 describes  the  limitations  for  approxi-

mate computing. Section 4 describes the promises and

challenges of approximate computing. Conclusions are

presented in Section 5.

 2    Strategies for Approximate Computing

The researches and applications of approximation

techniques cover the entire circuit  and system levels,

including  approximating  feld-programmable  gate  ar-

rays (FPGAs), embedded systems, general computers,

and graphics processing units (GPUs). We divide the

techniques of approximate computing into four groups

and defines  their  implementation  levels:  approximate

arithmetic  units,  approximate  memory,  and  approxi-

mate  computing  in  software  and  application  levels.

All  of  these  approximate  computing  techniques  are

described in detail as follows.

 2.1    Approximate Arithmetic Units

Adders, multipliers and dividers are indispensable

computational units in circuit systems. Therefore, re-

searchers  have  carried  out  tremendous  work  on  the

computational design, from the transistor level to the

gate  circuit  level,  and even to specific  computational

methods for addition, multiplication and division.

(ln 2)× kT k

p (0.5 < p < 1)

(ln 2p)× kT

The  approximate  computation  at  the  CMOS  de-

vice  level  was  first  proposed  by Palem[5],  in  order  to

construct  the  basic  approximate  computational  unit,

namely PCMOS (Probabilistic  CMOS).  According to

the relevant exposition in the work, the lower bound

on the energy required for a single flip-flop of a single-

bit inverter in a perfectly correct output condition is

 joules  (  is  the  Boltzmann  constant,  and

T is  the  thermodynamic  temperature  scale).  If  the

probability  of  the  correct  output  is  no  longer  1,  de-

noted as  , the lower limit of energy re-

quired for one flip is . As shown in Fig.2,

since the probability of the correct flip and the ener-

gy  consumed  show  an  exponential  relationship,  a

small fraction of flip errors will lead to significant en-

ergy  saving  at  the  device  level.  Thus,  the  basic  ap-

proximate  computing  unit  can  be  constructed  with

this  theoretical  basis.  As  the  flip  errors  are  intro-

duced  mainly  by  reducing  the  supply  voltage,  in

which  the  supply  voltage  is  close  to  the  threshold

voltage  of  the  CMOS device,  the  device’ s  speed  will

drop significantly at this time. Supposing the operat-

ing  frequency  is  not  reduced  accordingly,  the  circuit

with  lower  supply  voltage  will  be  further  subject  to

timing  sampling  errors  on  top  of  logic  computing,

which  are  much  larger  than  the  flip  errors  of  the

CMOS  device  near  the  threshold  voltage.  The  rea-

sons as mentioned above make PCOMS, although be-

ing more promising at the theoretical level, encounter

big obstacles in practical applications.

 2.1.1    Approximate Adders

Adders  have  a  vital  position  in  circuit  systems,

and  the  design  of  adders  with  low  power  consump-

tion  and  high-performance  characteristics  has  been

long-standing in the traditional circuit  design.  In the

field of approximate computing, the design of approx-

imate adders has also received much attention.

Gupta et al.[6] proposed a deletion method for sin-

gle-bit full adders at the transistor level, as shown in

Fig.3. The basic idea is to partially remove the origi-

nal  transistor  structure  of  an  accurate  1-bit  mirror

adder  (shown in Fig.3(a))  to  obtain  a  1-bit  approxi-

mate adder, as shown in Fig.3(b). The deleted transis-

tors reduce the overall circuit capacitance and help to

reduce the circuit  power consumption and delay,  im-

proving  the  circuit  energy  efficiency.  At  the  same

time,  removing the transistor causes the 1-bit  mirror

adder  to  produce  a  partial  error  output.  In  fact,  the

authors  designed  1-bit  approximate  full  adders  with

different  degrees  of  approximation.  Reducing  the

number of transistors results in increased energy effi-

ciency,  but  also  leads  to  higher  levels  of  approxima-

tion  and  output  error.  Finally,  the  original  1-bit  full

adder  and  the  approximate  full  adder  are  combined.

For  example,  in  Ripple  Carry Adder  (RCA),  the  ex-

act full adders are used in the high bits, and the ap-

proximate full adders are used in the low bits. In this
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Fig.2.   Relationship  between  flip  probability  and  energy  con-
sumption for PCMOS[5]. out-rms: output-root means square.
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way,  the  entire  RCA  is  incorrectly  computed  in  the

low-bit output, and its power consumption and laten-

cy  will  be  effectively  reduced.  This  design  is  verified

in  Discrete  Cosine  Transform  (DCT)  in  image  pro-

cessing,  which  shows  superior  output  quality  results

to an adder structure with direct truncation. Howev-

er,  the  designer  has  to  reconstruct  the  circuit  layout

in  practice  because  the  original  circuit  of  the  full

adder needs to be deleted at the transistor level. This

process  makes  the  application  of  this  technique  ex-

tremely  inconvenient,  especially  in  the  design  of  cir-

cuit  systems  with  different  computational  bit  widths

and different accuracy requirements, where the work-

load is high and the design efficiency is low.

Given  the  large  cost  required  to  design  approxi-

mate  adders  at  the  transistor  level,  researchers  have

performed many designs at the gate circuit level[7–10].

These  designs  have  approximated  the  conventional

RCA  or  carry-lookahead  adder  (CLA),  in  which  the

main idea is  to  shorten the critical  path by approxi-

mation  methods.  However,  different  approximation

structures can lead to different output errors and en-

ergy efficiency gains. It is important to note that even

if an approximate adder has very low power consump-

tion or delay, it is still unusable in real applications if

its output error is too large.

As shown in Fig.4, Zhu et al.[8] attempted to seg-

ment  the  critical  path  of  the  conventional  RCA  by

prediction, such as dividing the N-bit RCA into sever-

M M < N

N/M an−1:0

bn−1:0 sn−1:0

al groups with -bit for one group ( ), and the

whole  RCA will  be  divided  into  groups, 

and  are  the  input  data,  and  is  the  out-

put data.  The carry signal  for each group is  predict-

ed by corresponding circuits, in which only part of the

input data will be used. As we know, in conventional

CLA, the circuits to predict the carry signal are very

complex  since  all  the  input  data  should  be  used  so

that the final result is correct. In this design, the in-

put for the prediction of the carry signal is only part

of  the  input  data,  and  then  the  sum  signal  of  each

group may be subject to error. By the above method,

the critical path of the whole adder is significantly re-

duced. Theoretically,  there is only one stage of carry

signal  prediction  delay  and  the  delay  of  the M-bits

summing block.  Reducing the critical  path delay can

effectively improve the computational circuit’s opera-

tion  speed  or  reduce  the  circuit  power  consumption

by  lowering  the  supply  voltage  while  keeping  the

speed constant. Both cases can essentially reduce the

circuit  operation  energy.  This  gate-level  approximate

design offers a high degree of flexibility and a simple

design process that can be directly synthesized by De-

sign-Compiler  tools  using  a  standard  circuit  descrip-

tion language.

However,  unfortunately,  the  output  error  of  this

approximate adder is significant; although it is highly

energy-efficient  in  operation,  in  practice,  the  large

output error makes the final output of the circuit sys-
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Fig.3.  Transistor level design[6]. (a) 1-bit accurate adder. (b) 1-bit approximate adder.
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tem using  this  approximate  unit  unable  to  meet  the

output quality requirements. The main reason for the

large  output  error  is  that  an  incorrect  prediction  to

the high carry signal will  cause the final result to be

incorrect  in  the  high  output  bits.  Thus,  Kim et  al.[7]

modified the carry signal predictor and tried to com-

pensate for the output error, in which the RCA is al-

so  divided  into  several  groups,  and  each  group  con-

sists  of  two  parts,  one  is  the  carry  signal  prediction

block,  and  the  other  is  implemented  with  an  RCA

scheme  that  calculates  the  current  sum  output.  A

multiplexer  (MUX) is  inserted  between two adjacent

groups.  It  should  be  noted  that  the  carry  signal  of

group ( )  is  connected to the carry signal  predic-

tion  blocks  ( )  and  ( )  through  the  MUX.  For

each input data, if each bit of the input data in part

( )  is  different,  the  output  of  carry  signal  prediction

block  ( )  will  be  used.  Otherwise,  the  value  of

block ( ) will be taken. For the final addition result, if

each bit  of  the  input  data  in  parts  ( )  and ( )  is

different,  and  the  predicted  carry  signal  for  part

( ) value is detected to be different from the real

carry  signal,  then  the  approximate  result  will  be

forcibly set to “1” in parts ( ) and ( ) as an error

compensation.  By  the  above  measures,  the  approxi-

mate adder reduces the mean square value of the er-

ror  by three  orders  of  magnitude  compared with  the

approximate adder in [8]. However, in practical appli-

cations,  this  magnitude  of  output  errors  is  still  too

large to make the adder used in specific applications.

This method of segmenting the critical path of the

adder  into  different  groups  is  also  applied  in  several

others designs, such as Accuracy-Confifigurable Adder

(ACA)[8],  and  approximate  adder  with  correct  sign

calculation[10].  Among  all  of  these  researches,  it  is

worth noting that the approximate adder proposed in

[10] has a unique advantage, since a correct sign cal-

culation for 2’s complement signed additions is ensu-

red.  This improvement is  very meaningful,  as in real

computation  tasks,  the  input  data  is  always  in  2’ s
complement  formation.  The  output  error  may  be

quite  large  if  the  final  sum  result  has  a  wrong  sign,

which will further crash the entire computing system.

The approximate adders mentioned above use the

conventional  CMOS  process  to  construct  the  whole

cell and have a common feature that regardless of the

approximation method, these adders will complete the

computation  in  one  clock  cycle.  In  addition  to  these

adders,  there  are  also  variable  latency  approximate

adders[11], which will complete the computation with-

in  various  clock  cycles.  In  some  other  researches[12],

approximate  adders  are  implemented  based  on  novel

process,  such  as  quantum-dot  cellular  automata

(QCA)[13].

Fig.5 shows an approximate  adder  with the  vari-

able  latency  scheme  as  proposed  in  [11].  In  essence,

this  kind  of  approximate  adders  also  try  to  cut  the

critical  path  of  each  adder  into  several  short  paths.

After inserting a series of prediction blocks, there is a

risk  of  prediction  errors  at  each  prediction  block,

which can lead to an error in the output. A variable

latency scheme is  used mainly  because  of  the  special

requirement that the high bits of the output must be

accurately computed. In the single-cycle approximate

adder  described  above,  no  matter  how  the  designers

use  error  compensation,  errors  will  be  inevitably  in-

troduced in the high bits, even though the probabili-

ty of  such errors occurring may not be high.  In con-

trast, the designer performs exact computation for the

high  bits  with  variable  clock  cycles  in  the  approxi-
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Fig.4.  Approximate adder with partial prediction[8].
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mate adder.  For the low bits,  approximate computa-

tion  will  be  used  without  extra  cycles.  As  shown  in

Fig.5, taking a 32-bit adder as an example (  and

 are  the  input  data; , ,  ...  ,

 and  are  the  output  data;

 and  are the signal predicting where

is a wrong speculation), every four bits are divided in-

to a group, and seven prediction blocks need to be in-

serted. For the first three prediction blocks, if the pre-

dicted  carry  signals  do  not  match  the  real  ones,  the

prediction blocks will generate error signals. These er-

ror  signals  will  latch  the  input  and output  flip-flops,

and the real carry signals will be passed forward. Af-

ter  several  clock  cycles,  the  first  12  bits  of  the  sum-

output  must  be  calculated  correctly.  As  for  the  last

four prediction blocks, no error signal is issued even if

an error occurs in prediction blocks, which means that

no clock cycles will be consumed.

It can be seen that there are two benefits using a

variable latency scheme. One is that it can effectively

be ensured that the high bits do not introduce any er-

rors.  The other  is  that  the output errors  and perfor-

mance improvements can be flexibly configured over a

wide  range.  However,  this  structure  also  has  enor-

mous  drawbacks.  The  number  of  clocks  required  for

each  addition  operation  can  be  a  random  number,

leading  to  a  relatively  significant  burden  on  the  en-

tire pipeline when designing synchronous timing logic

circuits.

In  addition  to  using  the  traditional  CMOS  pro-

cess and the Boolean logic gate, new process technolo-

gies  have  been  applied  in  approximate  adder

design[12].  It  should  be  noted  that  these  new  process

F = M(A,B,C) = AB +BC +AC

technologies  rely  on  majority  logic  (ML),  which  is  a

different  framework  from conventional  Boolean logic.

As shown in Fig.6(a), the inputs are A, B, C and the

output  is F.  The  logic  expression  of  this  ML gate  is

.  Thus,  for  one bit
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Fig.5.  Approximate adder with variable latency scheme[11]. clr: clear; clk: clock; rst: reset; D: input of D-flip-flop; Q: output of D-
flip-flop.
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Fig.6.   (a)  Majority  logic  gate[12].  (b)  Accurate  adder  with
ML[12]. (c) Approximate adder with ML[12].
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accurate  adder,  the  final  sum (S)  and  carry  (C)  sig-

nals can be expressed with ML as: 

Cout = AB +BC +AC = M(A,B,C),
 

S = A⊕B ⊕ C = M(Cout,M(A,B,C), C).

Cout

The corresponding scheme is shown in Fig.6(b). With

this  basic  circuit  scheme,  Zhang et  al.[12] proposed  a

one-bit  approximate  adder  based  on  ML.  The  au-

thors  observed  that  and  C  are  almost  same  ex-

cept  for  two  cases.  Thus,  the  proposed  approximate

adder is expressed as: 

Cout = C,
 

S = M(Cout,M(A,B,C), C) = (A,B,C).

The corresponding scheme is shown in Fig.6(c). It can

be seen that two ML gates can be saved, which means

that  the  energy  efficiency  of  the  adder  will  be  im-

proved with certain output error. In essence, this ap-

proach of simplifying the truth table can also be used

to approximate the adder design with CMOS process

and Boolean logic.  In [12],  the authors evaluated the

proposed  ML-based  approximate  adder  with  QCA

technology,  which  shows  large  improvements  in  per-

formance  and  energy  efficiency  due  to  the  approxi-

mate design method.

 2.1.2    Approximate Multipliers

Compared with adders, multipliers are more com-

plex  and  consume  relatively  more  energy  and  delay.

At  the  same  time,  in  large-scale  machine  learning

tasks,  many convolution operations  are  computed by

multiplication-accumulation,  and  thus  the  design  of

low-power,  high-performance  approximate  multipliers

has  received  extensive  attention  in  past  researches.

Generally,  a  multiplier  consists  of  three  stages:  par-

tial product generation, partial product accumulation

and  final  addition.  Among  all  these  stages,  the  par-

tial  product  accumulation  consumes  the  most  delay

and power. In essence, whether it is an accurate mul-

tiplier or an approximate multiplier, all the designers

try to optimize the process of partial product accumu-

lation to reduce its delay and power consumption. In

accurate  multiplier  design,  Wallace  tree,  Dadda  tree

and carry-save adder  array[14] have been proposed to

improve the speed of the multiplier. For the Wallace

tree  multiplier,  no  carry  propagation  is  generated  as

the  accumulation  for  every  three  partial  products  is

operated in parallel.  In fact, these accumulations can

be  implemented  with  (3:  2)  compressors  or  (4:  2)

compressors.

In past researches, there are different kinds of ap-

proximate  multipliers:  1)  approximate  recursive  mul-

tiplier  using  inaccurate  2  × 2  block  to  generate  ap-

proximate  partial  products[15–17];  2)  multiplies  apply-

ing  approximation  in  partial  product  tree,  including

truncation,  approximate  accumulation  using  inaccu-

rate adders or compressors[18–21]; 3) approximate loga-

rithmic multipliers and booth multipliers[22–26].

A1A0 B1B0

A1A0

B1B0

AH XH

AL XL

For  approximate  recursive  multipliers,  the  very

first to use the approximate 2 × 2 multiplier to gener-

ate partial products is proposed by Kulkarni et al.[15].

Considering  and  as the input for the 2 × 2

multiplier,  they  approximated  the  truth  table  of  the

2-bit multiplier as shown in Table 1. All the values in

the truth table are correct except one, i.e.,  and

, where the accurate result should be “1001” but

incorrectly  replaced  by  “111” .  Although this  step  of

approximation  is  small,  the  final  implementation  of

the digital circuit saves a large number of logic gates,

and thus the speed and energy efficiency of the whole

circuit is  greatly improved, as shown in Fig.7(a) and

Fig.7(b).  It  can  be  seen  that  XOR-gate  is  no  longer

needed in approximate implementation and the whole

critical  path  is  reduced  substantially.  Thus,  the  par-

tial  products of  a longer multiplier could be generat-

ed with this approximate 2 × 2 multiplier,  as shown

in Fig.7(c). For the 4 × 4 multiplier,  and  are

the upper two bits, and  and  are the lower two

bits. Using the proposed 2 × 2 multiplier, the partial

products could be generated, and then approximation

will  be  introduced  through  the  partial  products  and

the  remaining  accumulations  are  accurately  comput-

ed.
  

Table  1.   Truth Table for Approximate 2 × 2 Multiplier[15]

A1A0 B1B0

00 01 11 10

00 000 000 000 000

01 000 001 011 010

11 000 011 111 110

10 000 010 110 100
 

Some similar work is also shown in [16]; however,

Waris et  al.[17] pointed out  the  potential  problems of

the above approximation multiplier, as the errors gen-

erated by previous approximate multipliers are unidi-

rectional.  Thus,  the  errors  of  partial  products  from

this  approximate  building  block  will  be  accumulated

in  one  direction,  leading  to  a  large  output  error  at

last. Waris et al.[17] argued that the approximate mul-

tiplier  has  been  simplified  in  the  circuit  in  [15],  but

there  is  still  more  space  for  exploration.  With  all  of
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Mul2a
Mul2b Mul2a

Mul2b
Mul2a Mul2b

Mul2a Mul2b

these observations, Waris et al.[17] proposed two kinds

of improved 2 × 2 approximate adders, and the truth

tables  are  shown  in Table 2 (called  and

). In , five outputs are approximated and

in ,  six  inaccurate  outputs  are  generated.  It

should be  noted that  in  both  and ,  the

generated error has both positive and negative values.

This is a big advantage when using  or 

to generate partial products of a longer-bit multiplier,

as the error for the final accumulation of partial prod-

ucts  will  be compensated,  which will  lead to a much

smaller output error for the approximate multiplier.

In [18, 19], the designers turn attention to the ap-

proximation  of  partial  products  accumulation,  which

is different from the design in [15–17], where the par-

tial products are generated with approximation errors,

but accumulated using exact operations.  However,  in

[18, 19], truncation and approximate compressors are

utilized to accomplish the accumulation processing. In

[18],  an  approximate  multiplier  is  proposed  by  omit-

ting some carry-save adders (CSA) as shown in Fig.8.

In  essence,  the  most  straightforward  way  is  to  trun-

cate  some  least  significant  bits  (LSBs)  of  the  input

data, which means that no partial products and corre-

sponding accumulations for LSBs are needed. But, the

truncation  method  will  cause  too  large  output  error

for  practical  applications.  Another  approach  for  ap-

proximate partial products accumulation is to use in-

accurate  (4:  2)  compressors,  which  are  proposed  in

[19].  It  is  worth  noting  that  the  design  method  of

these approximate compressors uses the same idea of

simplifying the truth table.  Depending on the degree

of approximation, the designers try to compromise be-

tween the output error and circuit performance. As a

general  design  principle,  all  the  designers  want  the

output error of the approximate multiplier to have a

Table  2.   Truth Table of Improved Approximate 2 × 2 Multiplier[17]

Input Exact Truth Table Mul 2a Truth Table Mul 2b Truth Table

a1 a0 b1 b0 C3 C2 C1 C0 C3 C2 C1 C0 C3 C2 C1 C0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 1× 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1

0 1 1 0 0 0 1 0 0 0 1 0 0 0 0× 0

0 1 1 1 0 0 1 1 0 0 1 1 0 0 0× 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 1× 0

1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1×
1 0 1 0 0 1 0 0 0 1 0 0 0 1 1 0

1 0 1 1 0 1 1 0 0 1 1 1× 0 1 1 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 1× 0

1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1

1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

1 1 1 1 1 0 0 1 0× 1× 1× 1 0× 1× 1× 1

Note: ×: not correct.
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Fig.7.  (a) Accurate 2 × 2 multiplier. (b) Approximate 2 × 2 multiplier. (c) Using the 2 × 2 multiplier as a building block to gener-
ate longer bits multiplier.
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standard or uniform distribution with zero mean val-

ue.

n (2n)

A B Ar Br

In  [20],  an  interesting  approximate  method  to

multiplier is proposed, which is different from all the

above work[15–19]. The main idea is that each of the in-

put  data  for  multiplication  is  approximated  to  the

power  . Denoting the approximate input data of

 and  by  and  respectively,  then  the  final

multiplication can be expressed as: 

A×B = (Ar −A)× (Br −B)+Ar×B+Br×A−Ar×Br.

(Ar −A)× (Br −B)

Ar ×Br Ar ×B

Br ×A

(Ar −A)× (Br −B)

The  most  important  observation  is  that,  if  we

eliminate ,  which  is  hard  to  be

computed,  the  multiplications  of , ,

and  can  be  implemented  just  by  the  shifter

units.  The  final  result  could  be  obtained  by  adding

these three shifting outputs. This means the approxi-

mation of  will be introduced, but

the  whole  implementation  complexity  of  a  multiplier

is  reduced  substantially.  The  designers  in  [20]  com-

pared  the  proposed  multiplier  with  some  other  de-

signs in [21], and showed various degrees in accuracy

and energy efficiency improvement.

{d2i+1, d2i, d2i−1}

In  addition  to  applying  approximation  in  partial

product  generation  and  accumulation,  researchers  al-

so  have  applied  approximation  in  booth  multiplie-

rs[22– 24],  logarithmic  multipliers[25, 26],  and  majority-

logic (ML) based multipliers using new materials[27]. It

is  well  known that  in  booth  multipliers,  after  encod-

ing the input data,  the partial  products  could be re-

duced so that large improvement in performance and

energy  efficiency  could  be  achieved.  Approximate

radix-4 booth multipliers are first proposed in [22, 23]

in  which  the  partial  products  are  approximated  as

shown  in Table 3.  For  the  three  consecutive  bits

,  the  accurate  and  approximate  en-

coding are listed in the last three columns in Table 3.

The  corresponding  partial  product  (PP)  is  selected

±2c ±1c ±2c

±2c ±c

from ( , ,  0).  Here,  “ ”  means  to  shift  the

partial  product.  In [22, 23]  parts  of  the encoding are

simplified, as “ ” is turned into “ ” or “0”. With

this  approximate  method,  the  final  multiplier  shows

large  reduction  on  power,  delay,  area  and  power-de-

lay  product  (PDP).  Some  cases  show  59%  reduction

of  PDP  compared  with  the  conventional  accurate

booth multiplier.

±3x

{±4x,±3x,±2x,±1x, 0}

{±4x,±3x,±2x,±1x, 0}
{±4x,±3x,±2x,±1x, 0}

±3x ±2x

It should be noted that few researches have made

efforts  to  propose  the  approximate  Radix-8  booth

multiplier  even  though  more  partial  products  reduc-

tion  could  be  achieved  compared  with  Radix-4.  As

pointed  in  [24],  this  is  mainly  because  the  encoding

processing in Radix-8 requires the generation of d

multiplicand  (the  set  of  will

be  generated),  which  means  that  some  preliminary

processing  should  be  involved  and  more  correspond-

ing  delay  or  power  will  be  consumed.  In  [24],  this

problem has been solved, as the designers turned the

encoding  set  of  to  the  ap-

proximate set of , in which all

the  multiplicands  are  approximated  to  the 

multiplicand.  Thus,  the  final  logic-gate  implementa-

tion of this approximate Radix-8 booth multiplier be-

comes  much  simpler.  The  experimental  results  show

that  compared  with  the  approximate  multiplier  in

[23], reduced energy of 22% with a comparable mean

relative error distance (MRED) can be achieved.

In addition to the conventional multiplier, using a

logarithmic  transformation,  which  converts  multipli-

cation into addition, is also a novel design method as

proposed  in  [25, 26].  It  should  be  noted  that  after

converting the input data to logarithmic numbers, the

whole  multiplication  process  only  involves  shifts  and

addition, which means that the area, delay and pow-

er  can  be  reduced  significantly.  However,  this  im-

provement  is  achieved at  the  cost  of  inexact  output,

since  the  logarithmic  transformation  is  used  and  ap-

proximation  is  unavoidable  in  the  final  results.  The

first  logarithmic  (LM)  multiplier  is  proposed  by

Mitchell[25],  followed  by  several  modified  designs  to

improve the accuracy with iterative technique or more

Table   3.   Approximate  Partial  Product  in  Radix-4  Booth

Multipliers[22, 23]

d2i+1d2id2i–1 000 001 010 011 100 101 110 111

PPi 0 +1c +1c +2c –2c –1c –1c 0

[22] 0 +1c +1c 0 0 –1c –1c 0

[23] 0 +1c +1c +1c –1c –1c –1c 0

CSA

Array

Vector
Merging
Adder

Horizontally-Omitted Cell Vertically-Omitted Cell

 
Fig.8.  Approximate accumulation array in multiplier design[18].
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refined  approximation  of  logarithmic  transformation.

No inexact logic circuits, such as approximate adders,

are  used  in  these  approximate  LMs.  In  [26],  inexact

units  like  approximate  lower-part-or  adders  (LOA)

are  used  in  approximate  LM to  further  improve  the

accuracy  and  energy  efficiency.  The  proposed  LOA

could compensate the error generated by the logarith-

mic transformation and has a much simpler  comput-

ing  scheme  since  the  addition  for  lower  bits  is  re-

placed by OR-gate  without carry signal  propagation.

Experiments show that the proposed approximate LM

in [26] has 18% lower normalized mean error distance

than conventional LM with reduction of up to 37% in

PDP.  Similar  to  the  design  of  approximate  adders,

new process  techniques  also  play  an  essential  role  in

the design of approximate multipliers. In [27], the au-

thors  also  used  new  process  ML  gates  to  design  the

Radix-4 approximate booth multiplier. Since the new

process  has  advantages  over  the conventional  CMOS

process  in  terms  of  power  consumption,  speed  and

area, together with the approximate design method, it

is possible to design approximate multipliers with low

power consumption and high performance.

 2.1.3    Approximate Dividers

X Y

Q R

X = Y Q+R

Compared  with  adders  and  multipliers,  approxi-

mate dividers are not very widely studied. In terms of

structure, dividers are more complex and require mul-

tiple clock cycles to complete the operation. However,

in recent years, researchers have also applied approxi-

mate  computation  design  methods  to  dividers.  They

have successfully traded a loss in computational accu-

racy for a significant gain in energy efficiency. Consid-

ering  the  integer  division,  the  input  data  are  divi-

dend  and  the  non-zero  divisor ,  and  the  output

data are the quotient  and the remainder . The re-

lationship  of  these  four  data  can  be  expressed  as

. Just like the adder design, a one-bit full

subtractor  is  inevitable  when  the  long  divider  is  de-

signed, which is shown in Fig.9. 

D = X ⊕ Y ⊕Bin,
 

Bout = X ⊕ Y ×Bin +XY.

In  [28],  several  approximate  one-bit  full  subtrac-

tors  are  proposed  as  shown  in Fig.10(a).  In  essence,

some logic gates are removed and the final result may

be wrong in some cases. With these accurate and ap-

proximate one-bit full subtractor cells, the non-restor-

ing  array  divider  cell  (NADC)  could  be  obtained  as

shown in Fig.10(b). At last, combining several NAD-

Cs,  an  approximate  divider  with  long  input  data

could be achieved, as shown in Fig.11.

As a general design principle, all exact cells can be

replaced  by  approximate  cells.  However,  in  practical

applications,  the  approximate  cell  should  be  applied

more  in  the  lower  part  of  the  whole  array  when  re-

placing the exact cells, based on the fact that for the

binary output the higher bits have more weight.

Another design point is that since the approxima-

tion  unit  can  have  different  circuit  structures,  each

circuit structure will exhibit a different error distribu-

tion.  Therefore,  when making a  replacement,  the  de-

signer  needs  to  design  a  combination  of  approxima-

tion units with different circuit structures so that the

final divider will  not always have a positive or nega-

 
Fig.9.  Accurate one-bit full subtractor.
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Fig.10.   (a)  Approximate  subtractor[28].  (b)  Accurate/approxi-
mate  non-restoring  array  divider  cell[28].  EXSC:  an  exact  sub-
tractor cell.
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tive  output  error  but  a  zero-mean error  distribution.

For high-radix division, the technique of prescaling[29]

is proposed. In [30], the authors proposed an approxi-

mate  signed-digit  adder  cell  to  replace  the  accurate

cells in [29]. Furthermore, at the array level, different

configurations  and  replacement  depths  have  been

used  so  that  various  energy  efficiency  improvement

and error distributions could be achieved.

 2.2    Approximate Memory

For  image  processing  and  machine  learning  algo-

rithms,  data  storage  of  the  digital  integrated  circuit

occupies a non-negligible proportion of the system en-

ergy  consumption.  For  example,  in  video  processing

such as MPEG or H.264, on-chip static storage (Stat-

ic Random Access Memory, SRAM) consumes a large

amount  of  energy,  about  75%  of  the  overall  motion

vector  estimation[31].  Meanwhile,  off-chip  Dynamic

Random  Access  Memory  (DRAM)  accounts  for  30%

of  the  energy  for  entire  cell  phone  circuit  system[32].

Given the limited energy supply of most current ter-

minal  device  batteries,  it  is  important  to  effectively

reduce  the  storage  power  consumption  of  on-chip

SRAM and off-chip DRAM. Existing researches have

conducted a series of designs using approximate stor-

age  methods  in  terms  of  application  output  quality

and energy efficiency.

 2.2.1    Approximating SRAM

The  primary  cell  scheme  of  SRAM  is  shown  in

Fig.12[33].  This  single-bit  memory  consists  of  six

CMOS transistors  (referred  to  6T  scheme).  The  two

inverters  in  the  middle  position  constitute  the  posi-

tive feedback, and the two NMOS transistors on both

sides  constitute  the  write  and  read  interfaces  of  the

memory cell. When the data is written, the WL (word

line) signal is high, and then the AR and AL transis-

tors are turned on. Thus, the input data will be writ-
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Fig.11.  Approximate non-restoring divider[28]. EXDCr: an exact restoring divider cell.
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Fig.12.  Circuit scheme of single-bit SRAM cell[33].
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Q

Q

ten to the cell through the BL (bit line) and BLB (bit

line bar) lines. Two situations may occur at this time.

First,  it  is  supposed  that  the  written  signal  is  oppo-

site to the currently saved signal. In that case, the in-

termediate  positive  feedback  inverter  loop  will  be

forcibly  flipped  to  the  desired  signal  value,  in  which

both  inverters  will  be  charged-discharged  and  con-

sume energy. If the written signal has the same value

as the signal retained in the previous state, the write

operation  will  not  incur  flip  power  consumption.  As

for  reading  data,  the  BL  and  BLB  signal  lines  are

first pre-charged to a high voltage, and then the pre-

charge  circuit  will  be  disconnected.  The  load  capaci-

tors of the BL and BLB signal lines are charged and

discharged  through  the  AL-AR transistors,  and  then

the  signal  value  will  be  read.  If  the  value  is  low,

the  capacitors  are  discharged.  Conversely,  if  the 

value  is  high,  the  load  capacitance  remains  un-

changed.  It  is  clear  that  the  inverter  will  not  flip  in

the reading process, in which the power consumption

of the whole circuit comes only from the charging and

discharging  process  of  the  load  capacitor.  Therefore,

in  the  power  analysis  of  SRAM,  data  writing  is  the

primary  source  of  power  consumption  of  the  entire

on-chip  storage.  For  on-chip  memory  cell  circuits  in

Fig.12, the circuit energy is mainly determined by the

following equation: 

E = α× C × V DD2,

α C

V DD

where  is the flip probability of the circuit,  is the

equivalent capacitance,  and  is  the supply volt-

age.  Therefore,  theoretically,  the  designer  can reduce

the energy of SRAM in three ways.

However,  in  practical  design,  the  equivalent  ca-

pacitance  is  mainly  related  to  the  circuit  structure,

and it is challenging to improve the equivalent capaci-

tance  from  the  design  point  of  view.  Reducing  the

voltage  is  effective  since  the  energy  is  squared  with

the  supply  voltage.  However,  this  approach  has  two

problems. First, after reducing the voltage, the speed

of the memory cell  also has to decrease.  If  the speed

does  not  follow  the  voltage  drop,  fatal  timing  errors

will  occur,  which  will  contaminate  the  stored  data.

Therefore lowering the voltage while the designer gen-

erally  chooses  to  lower  the  speed  hinders  some high-

performance  circuit  designs,  especially  for  real-time

processing applications. Another more problematic is-

sue  is  that  even  in  those  cases  where  the  speed  re-

quirements are not high (when processing CIF/QCIF

images, the circuit can run at a lower speed of about

10 Mhz), reducing the supply voltage can satisfy both

the low energy and the speed requirements. However,

the  memory cell  faces  process  deviations,  which  may

trigger  logic  errors  with  voltage  drops  during  the

read/write  process.  These  logic  errors  are  different

from  the  timing  errors.  No  matter  how  we  decrease

the speed, the logic error originating from the process

deviation  cannot  be  avoided  under  the  low  voltage

conditions. The output error probability will increase

with the voltage reduction.

Chang et  al.  proposed  a  low-voltage  approximate

SRAM  with  a  hybrid  scheme[33].  The  authors  ob-

served that the high bits of the stored data should be

accurate for applications such as image processing or

machine  learning.  Otherwise,  due  to  the  big  weights

for the high bits of the stored data, an error for these

bits  would  largely  shift  the  whole  data,  which  will

crush the output quality.  Conversely,  the low bits of

the  stored  data  have  a  limited  impact  on  the  final

output quality if errors occur with low voltage condi-

tions.

In [33], Chang et al.  first proposed an SRAM cell

with  low  logic  errors  in  a  low  voltage  condition,  as

shown  in Fig.12 and Fig.13.  It  can  be  seen  that  the

core  of  this  memory  cell  is  still  two  inverter  loops

forming positive feedback,  while  two additional  tran-

sistors,  NB  and  AB,  are  added  (referred  to  as  8T

scheme). The readout side is effectively isolated from

the whole memory cell due to NB and AB transistors,

which can reduce the logic errors for data reading. At

the  same  time,  the  NB  transistor  can  effectively  re-

duce  the  driving  capability  required  for  the  positive

feedback  circuit  to  flip  during  the  write  operation.

Therefore,  this  circuit  scheme  can  reduce  the  proba-

bility of wrong flips for the SRAM at low voltage.
 

BL BLB

ARAL
Q QB

WWL (Write Word Line) 
RBL (Read Bit
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RWL (Read
Word Line)

AB

NB

 
Fig.13.  Circuit scheme of 8T SRAM cell.

 

At last,  using both 8T and 6T memory cells,  the

raw input data could be divided into two parts.  The

data will be stored using the 8T scheme for the high

262 J. Comput. Sci. & Technol., Mar. 2023, Vol.38, No.2



bits, and the 6T scheme will be used for the low bits.

Two  main  design  metrics  determine  the  ratio  of  8T

and  6T.  First,  the  output  quality  needs  to  meet  the

lower limit set by the designer at the beginning. Sec-

ond,  the  energy  consumption  should  be  reduced  as

much as possible while the output quality is satisfied.

As  shown  in Table 4,  a  standard  test  video

“AKIY” in CIF format with 50 frames is used to veri-

fy the proposed hybrid SRAM in [33]. The video da-

ta will be processed with the hybrid SRAM, and then

the data will be fed into the MPEG decoder. Finally,

the  peak-signal-to-noise  ratio  (PSNR)  between  ap-

proximate  SRAM  output  and  exact  SRAM  output

will  be  achieved.  Since  the  pixel  data  has  eight  bits,

as shown in Table 4, “0-bit 8” means that all the da-

ta bits are stored by 6T memory cells with three dif-

ferent  supply  voltages  of  600  mV,  700  mV  and  800

mV, respectively.  The other  settings  are  similar,  i.e.,

“6-bit 8” means that the first six bits of 8-bit raw da-

ta  are  stored  by  8T  memory  cells,  and  the  last  two

bits are stored by 6T memory cells. From the experi-

mental results, we can see that at 800 mV, if the 6T

memory cells are used for all data bits, the final out-

put  quality  is  not  much  degraded  due  to  the  small

logic error with this voltage. However, as the voltage

keeps dropping, the output quality of all 6T memory

cells for storage decreases from 23.48 dB to 14.75 dB,

which is unacceptable in practical applications. At the

same  time,  it  can  be  seen  that  the  output  quality

keeps improving with the increasing proportion of 8T

memory cells under the 600 mV supply voltage. If the

designer allows less than 1 dB PSNR loss, the “4-bit

8”  storage setting can meet this requirement, and at

this  time,  the  power  consumption  could  be  reduced

significantly due to the lower voltage.
  
Table  4.   PSNR (dB) with Different Ratios of 8T and 6T at
Various Voltages[33]

VDD
(V)

0-Bit
8T

1-Bit
8T

2-Bit
8T

3-Bit
8T

4-Bit
8T

5-Bit
8T

6-Bit
8T

7-Bit
8T

8-Bit
8T

0.6 14.75 19.26 21.86 22.96 23.96 23.42 23.49 23.55 23.61

0.7 21.41 22.92 23.40 23.54 23.57 23.59 23.60 23.60 23.61

0.8 23.48 23.58 23.60 23.61 23.61 23.61 23.61 23.61 23.61

 2.2.2    Approximating DRAM

Off-chip DRAM also has a large amount of  ener-

gy consumption in the circuit system. A single-bit dy-

namic  memory cell[34] is  shown in Fig.14,  which con-

sists  of  capacitors,  MOS  transistors,  and  a  sensitive

amplifier. When the row and column addresses are set

to “1” ,  the two MOS transistors  are turned on,  and

the input data will  charge or discharge the capacitor

through the sensitive amplifier. When the written da-

ta is “0”, the capacitor will be discharged. The capac-

itor  will  be  charged  when  the  written  data  is  “ 1” .

However,  as  the  capacitor  itself  has  a  leakage  prob-

lem,  it  needs  to  be  charged again  by the  refresh cir-

cuit after some time. Therefore, as pointed out in [35],

the  power  consumption  of  DRAM is  proportional  to

the refresh frequency of the entire memory device and

the number of high voltage bits stored.

Liu et  al.  proposed  a  multi-stage  refresh  frequen-

cy  for  approximate  DRAM[36].  The  authors  also  fol-

lowed  the  principle  that  the  high  bits  of  the  stored

data  cannot  be  contaminated,  and  the  refresh  fre-

quency of high bits is kept constant to ensure correct-

ness.  For  the  lower  bits,  the  refresh  frequency  is  re-

duced at  different  levels.  It  should  be  noted that  re-

ducing the refresh frequency only causes errors for the

bits  stored as  high voltage (logic  “1” )  because  these

high  voltage  bits  may  not  be  refreshed  in  time  with

reduced frequency. Based on this idea, the refresh fre-

quency  of  the  DRAM can be  scheduled  according  to

different  applications  and  output  quality  require-

ments,  thus  reducing  the  power  consumption  while

losing some of the output quality. The main problem

in  this  approach  is  the  need  to  modify  the  original

DRAM  refresh  control  system,  and  the  additional

overhead  caused  by  this  modification  cannot  be  ne-

glected. In [37], researchers also adopted the same ap-

proach  to  reduce  the  power  consumption  of  DRAM

by  using  dynamic  data  truncation  to  reduce  the

amount of  data  storage.  The storage  controller  trun-

cates  the  raw  data  for  specific  applications  and  out-

put  quality  requirements.  Output  quality  checks  are

performed  at  regular  intervals  during  the  runtime

phase to generate feedback and adjust the number of

bits  truncated  by  the  memory  controller.  However,
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Fig.14.  Circuit scheme of DRAM cell[34].
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there is a considerable loss of information due to sim-

ple  data  truncation,  leading  to  significant  degrada-

tion  of  the  final  output  quality.  Therefore,  this  de-

sign method has some limitations in practical applica-

tion.

 2.2.3    Approximating  Memories  Based  on  New

Process

Unlike SRAM and DRAM memory under the tra-

ditional CMOS process, memory devices composed of

various new materials have also received much atten-

tion. Non-volatile random-access memory[38] can keep

the data when power is lost, which is a significant ad-

vantage  for  conventional  memory,  especially  in  the

case  of  an  unstable  power  supply  system.  The  prob-

lem with non-volatile memory is that the device may

fail  within  a  short  period  if  the  memory  is  read  and

written frequently. Researchers can use methods such

as  data  compression  to  reduce  the  number  of  data

reads and writes and extend the life of the device. In

recent  years,  memristors  have also  received great  at-

tention.  Resistive  Random  Access  Memory  (RRAM)

allows  for  high-performance,  large-scale  computation.

Designers  have  used  its  cross-switching  matrix  for

convolutional neural network approximation[39], which

has significantly improved energy efficiency. However,

due  to  a  large  amount  of  ADC interfaces,  additional

overhead  to  the  design  is  inevitable.  Moreover,  the

RRAM process  is  very  mature.  Large  process  devia-

tions  and  a  wide  range  of  threshold  voltage  shifts

make it limited in practice. Similar to RRAM, Phase

Change Memory (PCM)[40] has the distinct feature of

having  several  different  intermediate  states  and  a

large  storage  capacity.  However,  PCM’ s  fatal  prob-

lem is to update the data because it requires multiple

writes  to  this  memory  device.  Otherwise,  the  data

written  will  generate  some  logical  errors.  However,

multiple  writes  usually  incur  a  sizeable  additional

overhead; therefore the authors[40] also apply the prin-

ciple  of  approximate  computation  to  ensure  the  cor-

rectness of high bits data using multiple writes while

reducing the  number  of  writes  for  the  low bits  data.

Similar  to  RRAM,  PCM’ s  biggest  challenge  is  the

threshold  shift  in  the  long-term  operation,  which

needs to be addressed in large-scale applications.

 2.3    Software Level

 2.3.1    Loop Perforation

Loop  perforation  is  an  algorithm-based  approxi-

mation technique that trades computational precision

for  performance  efficiency,  by  skipping  specific  itera-

tions in a loop, contributing to the reduced computa-

tional  cost  and  a  significant  performance  gain  with-

out  executing  all  code  iterations.  For  example,  when

performing finite element analysis, the more the parti-

tioned  meshes  are,  the  longer  the  execution  time  is,

and the higher the energy consumption is. Hence, the

researcher  has  ability  to  choose  to  skip  some  of  the

mesh  blocks  with  repetitive  or  unimportant  roles  to

acquire  the  execution  time  advantage  and  perfor-

mance improvement. This approximation technique[41]

is applied to the computational model of a generic al-

gorithm  by  sequentially  perforating  the  loop  with  a

given perforation scheme (that is, the fraction of iter-

ations  to  be  skipped,  referred  to  as  the  perforation

rate in the literature), using representative inputs for

the perforation computation, and evaluating the com-

putational  system  outputs  (which  are  probably  not

available). Finally, extremely erroneous iterations are

filtered  out,  and  the  system  is  crashed,  resulting  in

the  critical  loops  (called  unapproximable  or  non-ad-

justable  loops)  featuring  a  significant  negative  im-

pact such as fatal errors, system crashes, an apparent

decrease in inefficiency, or an evident increase in exe-

cution  time  due  to  the  filtered-out  perforation.  The

remaining terms that can be perforated (namely,  ad-

justable loops) are approximated. Moreover, two algo-

rithms have been investigated in the literature to ex-

plore a perfect balance between efficiency and accura-

cy.  The  first  algorithm  adopts  a  specific  strategy,

namely  using  multiple  perforation  rates  to  filter  out

the adjustable cycles. Thus, the efficiency and the ac-

curacy of the Pareto-optimal variants are derived be-

tween the perforation rate  and the adjustable  cycles.

The other algorithm adopts a greedy strategy, name-

ly using heuristic scoring metrics to prioritize the cy-

cles/perforation rates, so as to seek the maximum op-

erating efficiency within a given accuracy error. For a

range  of  applications,  loop  perforation  can  typically

improve performance up to more than twice as much

while incurring no more than a 10% loss in accuracy.

Mainstream  parallel  computing  frameworks  such

as  OpenMP and  OpenACC are  employed  to  acceler-

ate the circularly parallelized applications. OpenMP is

suitable  for  parallel  programming  on  multicore  CPU

machines,  and  OpenACC  supports  CPU/GPU work.

In the accelerated applications using such computing

frameworks,  many  loop  iterations  are  started  as

threads  on  the  accelerator,  which  fits  well  with  loop

perforation applications. A new instruction[42] was uti-
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lized in OpenACC to trade off performance and accu-

racy by perforating loop iterations.

Loop  perforation  is  an  algorithmic  software  level

based technique, which is only applicable to cyclic it-

erative  code structures.  In other  words,  loop-through

techniques  can  be  applied  in  software  and  pro-

grammable hardware codes. As for the FPGA side, a

cyclic iterative code structure can be multiple circuits

executing in parallel  or a constantly re-executing cir-

cuit. The impact of implementing loop-through on the

software side is different in comparison with the FP-

GA  side.  The  software  side  primarily  influences  the

arithmetic  power  consumption and execution time of

the  application,  while  the  FPGA  side  impacts  the

area and energy cost.

 2.3.2    Data Precision Reduction

The  most  straightforward  concept  of  data  preci-

sion  (the  number  of  data  bits)  reduces  the  memory

footprint and hence exchanges the cost of precision re-

duction  for  memory  consumption  and  performance

improvement. Data precision reduction can be imple-

mented at the software level in various ways to con-

strain  precision  and  achieve  performance  goals.  Re-

ducing  the  bit  width  used  for  data  representation  is

one  of  the  most  prevalent  approaches.  For  example,

DoD et al.[43] introduced a dynamic program analysis

tool  called  Precimonious  to  assist  developers  to  tune

the  precision  of  floating-point  programs.  Precimo-

nious  first  creates  a  search  space  under  the  project

containing all  the local  variables  of  the functions ac-

cessible from the main static. After such an operation,

each variable in the search file is associated with a set

of  types.  Subsequently,  each  of  the  type  sets  is  re-

fined by using an algorithmic iteration that considers

a  pair  of  the  highest  and  second  highest  precision

available  and then  identifies  the  set  of  floating-point

variables  assigned  with  the  highest  precision,  which

would be ignored in the next iteration.  Furthermore,

valid type configurations are identified after the gen-

eration  of  a  program  variant  that  can  automatically

reflect  the  type  configuration.  The  implementation

has  a  performance  advantage  over  most  programs

when instantiated with lower precision types. An en-

ergy-aware  hybrid  precision  selection  framework

called EHPS[44] was proposed to reduce the consump-

tion  of  shaders  in  the  mobile  GPUs.  In  comparison

with  traditional  reduction  mechanisms,  EHPS  com-

bines  a  traditional  mechanism  consisting  of  fixed-

point and reduced floating-point precision with a con-

tour-based  precision  selection  mechanism  that  maxi-

mizes  energy  savings.  Through  this  mechanism,  the

range  of  values  is  shortened from an entire  precision

floating point, and the reduction in image data preci-

sion contributes to an overall reduction in image qual-

ity. More specifically, it makes sense to trade accura-

cy for performance as long as the degradation of im-

age  quality  is  kept  within  the  range  that  is  not  per-

ceptible to the human eye or acceptable to the user.

Implementing  specific  algorithms  efficiently  in

some  classification  problem scenarios  is  of  overriding

importance.  Support  vector  machines  (SVM)  repre-

sent  a  robust  nonlinear  classifier  that  is  possibly  not

efficiently  implemented  in  the  SVM  classification

stage ascribed to arithmetic and energy limitations in

some complex  scenarios.  One  possible  approach  is  to

reduce  the  working  accuracy  of  SVM  to  adapt  to

working scenarios where arithmetic power and energy

consumption  do  not  support  it.  The  relationship  be-

tween SVM classification accuracy and floating-point

arithmetic  accuracy  has  been  investigated[45],  specifi-

cally,  researchers  adapted  based  on  the  perturbation

bounds,  and  experiments  were  performed  with  three

publicly  available  benchmark  datasets.  The  results

demonstrated much room for  a  substantial  reduction

in  the  working  accuracy  before  the  SVM  classifica-

tion  accuracy  reaches  the  loss  limit  level.  Moreover,

data accuracy reduction also has wide applications for

neural  networks  (NNs).  For  example,  deep  networks

can  be  trained  with  only  fixed-point  numbers  with

less bit-width and no degradation in classification ac-

curacy  by  approximating  the  bit-width  of  the  data

with  a  random  probability.  This  application  aspect

will be detailed in the survey.

 2.4    Application Level

In  this  subsection,  two  mainstream  approxima-

tion methods in the field of  machine learning will  be

introduced in detail. In machine learning, neural net-

works are increasingly used for tasks such as recogni-

tion, classification, and segmentation. The neural net-

work technology, firstly called perceptron, consisted of

a  simple  three-layer  structure  of  an  input  layer,  an

implicit layer, and an output layer. Later, multilayer

perceptron was proposed to solve the defect of not be-

ing  able  to  fit  the  heterogeneous  logic  and  also

brought inspiration to the development of neural net-

works,  where  the  number  of  layers  directly  deter-
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mined  the  ability  to  portray  reality.  Pre-training  is

used to  alleviate  the  problem of  local  optimality.  In-

stead  of  using  the  sigmoid  function,  transfer  func-

tions  such  as  ReLU  or  max  were  used  to  overcome

part  of  the gradient disappearance problem, gradual-

ly leading to today’s DNNs with more implicit layers,

especially the recent emergence of deep residual learn-

ing  to  further  avoid  gradient  disappearance.  The  in-

crease in network layers makes NNs more capable of

representation  and  highly  complex.  Besides,  spatially

deep  convolutional  neural  networks  (CNNs)  update

the  structure  of  neural  networks  by  adding  convolu-

tional  kernels.  However,  the  disadvantages  of  highly

complex large-scale neural networks should not be ig-

nored  as  computation  or  power  consumption  can  be

exceptionally  high.  Introducing  approximate  comput-

ing into neural networks is a feasible approach, which

raises  the challenging question of  how to employ ap-

proximate  computing  in  NNs  systematically.  Related

researches  have  proposed  many  representative  solu-

tions  to  employ  approximate  computing  from  the

modeling phase to the inference phase, achieving low

power and high energy efficiency.

In  the  training  phase  of  neural  networks,  the

backpropagation algorithm is currently the most com-

mon  and  efficient  training  algorithm.  After  the  for-

ward transmission  process  of  NNs training,  the  error

between the output result of the output layer and the

actual output result is calculated, and the error is re-

distributed forward into the network until it is propa-

gated to the input layer. The network parameters are

generally  initialized  randomly,  adjusted  according  to

the  backpropagation  error,  and  iterated  continuously

until  convergence.  Such  properties  of  backpropaga-

tion algorithms provide a measure of the error of each

neuron  on  the  network  output.  For  example,

Venkataramani et  al. proposed  a  backpropagation-

based  approximate  neural  network  (AxNN)  design

method that utilizes the backpropagation property to

characterize  the  importance  of  each  neuron  in  the

NNs and determine the neurons more sensitive to the

quality  of  the  output  and  the  insensitive  neurons

(called  resilient  neurons  in  their  description)[46].  The

identified  neurons  with  less  impact  on  the  quality  of

the work were replaced with the resilient neurons us-

ing  approximate  neurons,  where  precision  scaling

techniques implemented the approximate neurons. Fi-

nally,  incremental  retraining  of  the  AXNN  was  per-

formed.  Backpropagation,  in  essence,  can  au-

tonomously repair  the errors in the network and can

benefit from the errors generated when using the ap-

proximation technique.

 2.4.1    Parameter Quantization

⩽

In  DNNs  model  training,  model  parameters  such

as weights of the NNs and bias data types are typical-

ly  stored  in  computations  with  double-precision

(FP64),  single-precision  (FP32),  and  half-precision

(FP16)  data  types.  Today,  most  DNNs  applications

use  FP32  for  handling  training  and  inference  work-

loads. Quantization approximates a continuous signal

through  a  set  of  discrete  symbols.  The  basic  idea  of

model quantization is to replace the original floating-

point precision with lower precision. Low-bit parame-

ter quantization could result in significant reductions

in  bandwidth,  energy  consumption,  and  chip  area

during training. The smaller the bits of the model are,

the smaller the model storage is, and the more signifi-

cant  the  execution  speedup  to  occur  is.  The  central

challenge  is  to  weaken  the  representation  accuracy

without  significant  degradation  of  the  model  accura-

cy,  suggesting  that  the  usability  of  the  gradient  de-

scent  algorithm  is  maintained  during  backpropaga-

tion.  The classification accuracy did  not  significantly

degrade when the floating-point  parameters  were ap-

proximated  to  a  16-bit  vast  fixed-point  number

(int16)  representation  using  a  random  rounding

method,  quantized and trained on the  DNNs[47].  The

bit  width  of  the  parameters  was  further  reduced.

With the block-based accumulation and floating-point

random rounding, training was performed using 8-bit

wide  floating-point  precision  (FP8).  Additionally,  8-

bit  comprehensive  fixed-point  numeric  representation

was  employed  in  training,  while  retraining  was  re-

quired, and accuracy was not guaranteed in most cas-

es  after  int8  quantization[48].  Zhu et  al.  proposed  a

unified  int8  training  framework[49] to  stabilize  int8

training  using  generic  techniques  such  as  reducing

gradient  direction bias  and avoid illegal  gradient  up-

dates  along the wrong direction.  A CNN approxima-

tion  framework,  called  Ristretto,  constructed  by  Gy-

sel et  al.[50],  allows  empirical  studies  on  the  trade-off

among  various  digit  representations  and  word  width

choices,  as  well  as  the  classification  accuracy  of  the

model,  so  as  to  fine-tune the model  parameters  after

int8 quantization and recover a portion of the model

accuracy loss due to approximation. Designs were al-

so presented for the extreme quantization of the last 4

bits and less than 4 bits (  INT4). A practical 4-bit

post-training quantization method[51] was provided to
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quantify  activations  and  weights.  Moreover,  three

novel methods of analytical clipping of integer quanti-

zation  (ACIQ),  bit  allocation  strategy,  and  bias  cor-

rection  were  introduced  to  minimize  tensor-level

quantization  errors.  The  INT4  quantization  fine-tun-

ing phase has many instabilities.  Various methods to

overcome this difficulty were proposed, such as using

a small subset of the training set to calibrate the acti-

vation size and discarding outlier activations based on

percentile  and  clamped  quantization  activations  and

gradients.  A  compromise  was  achieved  for  the  prob-

lem of  over-quantized  parameters  and unstable  mod-

els,  where  the  training  employed  two or  more  differ-

ent  bit-width  types  in  the  model  simultaneously,

namely, mixed-precision training. For example, DNNs

training using a hybrid FP8 format was demonstrat-

ed[52], which uses two FP8 formats for forwarding and

backward propagation. A mixed-precision scheme was

adopted[53], where FP16 is taken for forwarding prop-

agation and gradient computation, while FP32 stores

the  gradients  of  the  network  parameters  (which  is

called  weight  backup)  and  effectively  mitigates  the

gradient  disappearance  in  low-bit  quantization  train-

ing.

 2.4.2    Model Pruning

Model pruning is a commonly-used model approxi-

mation  method  to  efficiently  generate  models  with

smaller sizes, higher memory utilization, lower energy

consumption,  and  faster  inference  with  less  accuracy

loss.  Model  pruning  in  NNs  is  inspired  by  synaptic

pruning  in  the  human  brain,  which  is  the  complete

decline  and  death  of  axons  and  dendrites.  Similar

work can be conducted in NNs, and the basic idea is

to prune the least important parts. For example, neu-

rons  in  a  network  can  be  ranked  according  to  their

contribution,  and  then  a  smaller  and  faster  network

can  be  obtained  by  removing  the  lower-ranked  neu-

rons.  The  design  concept  of  model  pruning  has  been

researched for a long time. For example, a magnitude-

based pruning method was proposed to minimize the

number of hidden units by applying a weight decay to

each remote unit in the network concerning its abso-

lute  value[54].  OBD  and  OBS  methods  were

proposed[55] to  measure  the  importance  of  weights  in

the network based on the second-order derivatives of

the loss function considering the weights. Model prun-

ing  is  only  gradually  emphasized  after  DNNs  are

widely  used  and  the  number  of  network  layers  is

deepened.  These  design  methods  have  been  exerting

profound influence on the development of model prun-

ing later.  Model pruning is unavoidable in the era of

widespread DNNs use. For example, Google explored

the  performance  comparison  between  large  sparse

models  and small  dense  models[56] where  large  sparse

models consistently outperformed small  dense models

in a wide range of neural network architectures.

The  fine-grained  pruning  approach  is  straightfor-

ward.  As  shown  in Fig.15,  first,  a  baseline  model  is

trained,  and  then  the  magnitude  of  the  weights  is

sorted  to  remove  the  connection  below  a  predefined

threshold, resulting in a pruned network. Finally, the

pruned network is fine-tuned, and the execution con-

tinues  from  the  previous  step  until  the  termination

condition is satisfied. One of the critical issues is how

to  evaluate  the  importance  of  these  connections.

Thus,  NVIDIA  proposed  a  magnitude-based  ap-

proach to evaluate the connection importance[57].
 

Network

Stop Pruning
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Fig.15.  Pruning process.

 

Compared  with  fine-grained  pruning,  coarse-

grained  pruning  will  be  more  effective  in  obtaining

small,  sparse  models  that  do  not  require  specialized

algorithmic  support.  Coarse-grained  pruning  can  be

performed  on  filters  or  feature  channels.  One  ap-

proach to featuring channel pruning is to evaluate the

effectiveness  of  a  channel  in  conjunction  with  con-

straining some channels to make the model sparse. In

[58],  extensive  and  large  networks  are  used  as  input

models,  and  during  training,  channels  with  higher

sparsity are automatically identified and removed, re-

sulting in compact models with considerable accuracy.

The scaling factor in batch normalization is applied to

crop the unimportant channels. In [59], an end-to-end

random training approach is used to force the output

of  specific  channels  to  be  constant  and  then  remove

these  constant  channels  in  the  original  neural  net-

work by adjusting the bias of its influence layer in or-

der to fine-tune the generated compact model quickly.

 3    Limitations of Approximate Computing

As  mentioned  earlier,  approximate  computing,  a

paradigm shifted from traditional accurate processing,
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has  potential  usage  at  all  stack  levels  of  computing

systems, especially for large-scale centralized and dis-

tributed edge computing. However, approximate com-

puting also has limitations. In the specific implemen-

tation of approximate computing, fault tolerance and

security vulnerability are two necessary conditions to

confirm whether approximations can be applied in the

practical applications.

 3.1    Fault Tolerance of a System

Fault tolerance of a system is generally defined as

the ability of the system to execute a given algorithm

correctly  without  affecting  the  accuracy  of  the  sys-

tem  or  within  an  acceptable  level  of  output  quality

when approximations  or  errors  are  introduced  in  the

inputs  or  intermediate  operations  of  the  computing

system. Approximate computing is based on the fault

tolerance  of  the  system.  Thus,  an  essential  condition

for  applications  with  approximate  computing  is

whether  the  computing  system  is  fault-tolerant.  The

computing system is considered unsuitable for the ap-

proximation  mechanism  if  it  is  not  fault-tolerant.  In

general,  safety-critical  systems  are  less  fault-tolerant,

and  therefore  the  use  of  approximate  computing  to

such  systems  is  sophisticated.  Moreover,  though  the

fault  tolerance  of  the  computing  system  satisfies  the

approximation  mechanism,  there  is  another  situation

where the approximate computing is also not suitable,

and where  the  introduction of  the  approximate  com-

puting  brings  adverse  effects  such  as  an  obvious  in-

crease in execution time, a significant increase in ener-

gy consumption, and an unacceptable decrease in per-

formance, which are all contrary to the original inten-

tion of using the approximate computing.

 3.2    Unpredictable Security Vulnerability

Approximate  computing  techniques  carry  an  in-

trinsic  uncertainty,  and  to  some  extent  probably  in-

troduce  new  unpredictable  security  vulnerability  to

the  computing  system.  The  following  reasons  should

be considered. First, in a computing system with ap-

proximate modules,  there  is  a  clear  boundary among

approximate  modules  and  other  exact  modules  in

most cases. Supposing that there is no unique hiding

mechanism for approximate modules. In this case, this

boundary works  as  a  practical  guide  for  attackers  to

attack  the  computing  system,  allowing  attackers  to

recognize  vulnerable  parts  of  the  computing  system

faster  and  provide  a  new  attack  surface  to  damage

the  computing  system.  In  terms  of  approximate

adders,  for  example,  the  approximate  operation  can

dramatically change the transition probability of spe-

cific signals, resulting in easier-to-detect security vul-

nerability by attackers. Second, approximate modules

are  generally  fault-tolerant.  Therefore,  distinguishing

whether the error is caused by the approximate com-

puting  or  carefully  designed  by  attackers  is  arduous,

and  therefore  attackers  can  easily  falsify  the  attack

into an approximation in the module.

 4    Promises  and  Challenges  of  Approximate

Computing

Approximate  computing  is  a  widely  applicable

and  excellent  paradigm  in  different  applications.  Al-

though approximate computing is not mature enough,

there  is  a  glimpse  of  the  unlimited  potential  of  ap-

proximate computing concerning energy efficiency and

high  performance.  Approximation  computing  will  be

confronted with opportunities and many challenges in

the coming years.

 4.1    Opportunities to Come

Apparently  approximate  computing  is  applicable

at  all  stack  levels  of  the  system  and  have  evaluated

representative  techniques  at  each  stack  level.  When

most of the techniques at each stack level become ma-

tured, a natural trend to investigate compounding ef-

fects  by  applying  multiple  techniques  in  the  system

will  emerge.  For the purpose of exploiting such com-

pounding  effects,  considering  holistically  at  multiple

levels  of  the system stack and designing new reason-

able  and effective  accelerator  cannot  be  ignored.  For

example,  IBM  proposed  the  TeraOPS  deep  learning

processor  core  in  2018[60].  This  is  an  AI  accelerator

chip  that  compounds  approximation  techniques  at

multiple stack levels to achieve performance and area

advantages compared with other high-performance AI

chips. In [61], the researchers proposed a resource-ori-

ented  high-level  synthesis  (HLS)  method,  in  which

heterogeneous  resource  constraints  can  be  defined

with  minimizing  the  output  error.  The  proposed

method is applied to approximate designs in FPGAs.

With  this  HLS  method,  the  designers  could  exploit

the  resources  in  FPGA  more  efficiently  with  certain

approximation.
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 4.2    Challenges to Be Faced

Approximation  techniques  introduce  security  vul-

nerabilities,  which  are  a  significant  concern  for  the

continued  development  of  approximation  techniques

in the future.  The security threats  such as  uncertain

results of approximation execution during approxima-

tion  execution,  may  be  indistinguishable  from  data

tampered with by malicious attacks presented in Sec-

tion 3. More effective solutions should be proposed in

the research related to the security applications of ap-

proximate  computing.  In  [62],  the  researchers  pro-

posed  security  protection  methods  using  redundant

number  representation,  most  significant  digit  first

arithmetic,  and  algorithmic  approximation  analysis.

The  exemplary  stationary  iterative  solver  is  used  to

hide  information.  Furthermore,  applying  approxima-

tion techniques for security-critical and high-cost sys-

tems is  a promising direction for extensive future re-

search.

 5    Conclusions

This  paper  discusses  the  concept  of  approximate

computing and its various applications.  It provides a

broad overview of  the  field,  starting  from the  design

of  approximate  arithmetic  units  and  ending  with

high-level  applications  of  approximate  computing.

One of the main conclusions of the survey is that ap-

proximate computing is  a promising approach to im-

proving  the  performance,  energy  efficiency,  and  cost

of computing systems. The paper shows that there are

many opportunities for approximate computing in dif-

ferent  areas,  including  machine  learning,  signal  pro-

cessing,  and  multimedia  processing.  Another  conclu-

sion  is  that  the  design  of  approximate  arithmetic

units  is  a  critical  aspect  of  approximate  computing.

The  paper  presents  several  techniques  for  designing

approximate  arithmetic  units.  We  also  discussed  the

advantages  and  limitations  of  each  technique  and

highlighted  the  importance  of  choosing  the  right  ap-

proach for a particular application.  Furthermore,  the

paper  emphasizes  the  need  for  tools  and  methodolo-

gies to support the design and implementation of ap-

proximate computing systems.
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