

A Survey of Approximate Computing: From Arithmetic Units
Design to High-Level Applications

Hao-Hua Que1 (阙浩华), Yu Jin1 (金　雨), Tong Wang1 (王　童), Ming-Kai Liu1 (刘明楷)
Xing-Hua Yang1, * (杨兴华), and Fei Qiao2 (乔　飞), Senior Member, CCF, Member, IEEE

1 College of Science, Beijing Forestry University, Beijing 100091, China
2 Department of Electronic Engineering, Tsinghua University, Beijing 100084, China

E-mail: qh13005968844@bjfu.edu.cn; AUH2OJin@bjfu.edu.cn; WangTom@bjfu.edu.cn; KleinKai565@bjfu.edu.cn
yangxh@bjfu.edu.cn; qiaofei@tsinghua.edu.cn

Received May 28, 2022; accepted March 16, 2023.

Abstract Realizing a high-performance and energy-efficient circuit system is one of the critical tasks for circuit design-

ers. Conventional researchers always concentrated on the tradeoffs between the energy and the performance in circuit and

system design based on accurate computing. However, as video/image processing and machine learning algorithms are

widespread, the technique of approximate computing in these applications has become a hot topic. The errors caused by

approximate computing could be tolerated by these applications with specific processing or algorithms, and large improve-

ments in performance or power savings could be achieved with some acceptable loss in final output quality. This paper

presents a survey of approximate computing from arithmetic units design to high-level applications, in which we try to

give researchers a comprehensive and insightful understanding of approximate computing. We believe that approximate

computing will play an important role in the circuit and system design in the future, especially with the rapid develop-

ment of artificial intelligence algorithms and their related applications.

Keywords approximate computing, arithmetic unit, low power, high performance, reduced output quality

 1 Introduction

The concept of approximation is well-established

in many fields, such as physics (e.g., saddle point ap-

proximation, quantum mechanical perturbation solv-

ing), engineering (e.g., linear approximation), and

medicine (e.g., medical image noise reduction). How-

ever, approximations have been introduced into differ-

ent fields for various reasons. Despite the continuous

advances in semiconductor technology and energy-effi-

cient design techniques, the computation demands of

large-scale modern systems such as scientific comput-

ing, data analysis, and financial transactions have in-

creased significantly in recent years, especially as

computer systems become increasingly mobile and

embedded with various sensors to interact with the

physical world. The overall energy consumption of

these systems continues to grow exponentially at an

alarming rate. As a result, approximations have been

introduced to address this growing power and perfor-

mance challenges[1].

Approximate computing could achieve large im-

provements in performance and energy efficiency by

relaxing the requirement of output quality for the sys-

tem, exploiting the gap between the level of accuracy

required by the user and the level of accuracy provid-

ed by the computing system to obtain various opti-

mizations. For example, in image processing applica-

Survey

Special Section on Approximate Computing Circuits and Systems
 This work was supported by the Fundamental Research Funds for the Central Universities of China under Grant No.
BLX202015, Beijing Municipal Natural Science Foundation under Grant No. 6222038, and the National Natural Science Foundation
of China under Grant No. 92164203.

*Corresponding Author

Que HH, Jin Y, Wang T et al. A survey of approximate computing: From arithmetic units design to high-level applica-

tions. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 38(2): 251−272 Mar. 2023. DOI: 10.1007/s11390-

023-2537-y

©Institute of Computing Technology, Chinese Academy of Sciences 2023

https://doi.org/10.1007/s11390-023-2537-y
https://doi.org/10.1007/s11390-023-2537-y

tions where the output quality of the computing sys-

tem is evaluated through the human perspective, the

statement of “good image quality” is very subjective,

and each person has different image analysis capabili-

ties. With this regard, approximate image processing

can be implemented with tolerable computation er-

rors, which implies some loss of output quality.

Approximate computing could be implemented

through a variety of strategies, from the hardware

level to various layers of software applications. The

deployment of approximate computing at different

levels has a different impact on final output quality.

At the hardware level of the integrated circuit design

in nano-scale era, the possibility of exhibiting uncer-

tainties and errors for a CMOS device is increasing

substantially, which will lead to additional power con-

sumption as redundant components to be used to im-

prove the reliability of the circuit. Applying approxi-

mation techniques to these integrated circuit designs

could reduce the additional power consumption by in-

troducing some acceptable errors. Besides, various

storage and processing architectures have been pro-

posed to support the implementation of approximate

computing units with analytical methods and design

metrics, such as approximate adders, multipliers and

dividers. At the application level, machine learning

can also utilize approximate computing techniques.

The training process of machine learning can tolerate

some accuracy loss, as in Google’s deep learning chip,

the tensor processing units use accuracy scaling, re-

sulting in significant performance improvement. The

introduction of approximate computing in deep neu-

ral networks (DNNs) includes quantization and

weight pruning, which could make DNNs easier to de-

ploy and less computationally intensive with reduced

memory usage and computation complexity.

The introduction of approximation into a comput-

ing system has some intrinsic effects. The benefits of

approximate computing have already been mentioned

above; however, approximate computing also has its

limitations, as it will reduce the intrinsic reliability

and accuracy of the results. In some applications

where very high computation accuracy is required

(e.g., aerospace systems), the approximate computing

may lead to unexplained system crashes. Obviously,

approximate computing is not suitable in these appli-

cations. It should also be noted that even when ap-

proximate computing is used in the field of image pro-

cessing or machine learning, the output quality should

be evaluated completely and thoroughly.

In fact, there have been many review papers on

approximate computing up to now. Approximation

techniques, in particular approximate multipliers, and

generalized approximate high-level synthesis ap-

proaches are introduced in detail in [2]. Machine

learning and neutral networks are used in addition to

these approximate computing technologies in [2], in

order to provide some corresponding improvements

such as in circuit performance. In [3], basic arith-

metic units such as approximate adders, multipliers

and dividers with multiple circuit structures are re-

viewed. In [4], in addition to the introduction of the

approximate logic units, the circuit structure of ap-

proximate memory blocks is described in detail. Com-

pared with all of these surveys, this paper presents a

survey of approximate computing from the arith-

metic units design to high-level applications, in which

we try to give researchers a comprehensive and in-

sightful understanding of approximate computing. As

shown in Fig.1, the structure of this survey is as fol-

lows. Section 2 introduces approximate computing

from the arithmetic units design to practical applica-

tions, which is the main content of this survey. Be-

Introduction

Strategies for Approximation

Approximate Adders

Approximate Multipliers

Approximate Dividers

Approximate Memory

Approximating SRAM

Software Level

Use of Neural Networks

Data Precision Reduction

Application Level

Conclusions

Approximating DRAM

Limitations of Approximate Computing

Parameter Quantization

Model Pruning

 Fault Tolerance of a System

 Opportunities to Come

 Challenges to Be Faced

Unpredictable Security Vulnerability

Approximate Arithmetic Units

Approximating Memories Based on New

Process

Promises and Challenges of Approximate Computing

Fig.1. Organization of the paper.

252 J. Comput. Sci. & Technol., Mar. 2023, Vol.38, No.2

sides, Section 3 describes the limitations for approxi-

mate computing. Section 4 describes the promises and

challenges of approximate computing. Conclusions are

presented in Section 5.

 2 Strategies for Approximate Computing

The researches and applications of approximation

techniques cover the entire circuit and system levels,

including approximating feld-programmable gate ar-

rays (FPGAs), embedded systems, general computers,

and graphics processing units (GPUs). We divide the

techniques of approximate computing into four groups

and defines their implementation levels: approximate

arithmetic units, approximate memory, and approxi-

mate computing in software and application levels.

All of these approximate computing techniques are

described in detail as follows.

 2.1 Approximate Arithmetic Units

Adders, multipliers and dividers are indispensable

computational units in circuit systems. Therefore, re-

searchers have carried out tremendous work on the

computational design, from the transistor level to the

gate circuit level, and even to specific computational

methods for addition, multiplication and division.

(ln 2)× kT k

p (0.5 < p < 1)

(ln 2p)× kT

The approximate computation at the CMOS de-

vice level was first proposed by Palem[5], in order to

construct the basic approximate computational unit,

namely PCMOS (Probabilistic CMOS). According to

the relevant exposition in the work, the lower bound

on the energy required for a single flip-flop of a single-

bit inverter in a perfectly correct output condition is

 joules (is the Boltzmann constant, and

T is the thermodynamic temperature scale). If the

probability of the correct output is no longer 1, de-

noted as , the lower limit of energy re-

quired for one flip is . As shown in Fig.2,

since the probability of the correct flip and the ener-

gy consumed show an exponential relationship, a

small fraction of flip errors will lead to significant en-

ergy saving at the device level. Thus, the basic ap-

proximate computing unit can be constructed with

this theoretical basis. As the flip errors are intro-

duced mainly by reducing the supply voltage, in

which the supply voltage is close to the threshold

voltage of the CMOS device, the device’ s speed will

drop significantly at this time. Supposing the operat-

ing frequency is not reduced accordingly, the circuit

with lower supply voltage will be further subject to

timing sampling errors on top of logic computing,

which are much larger than the flip errors of the

CMOS device near the threshold voltage. The rea-

sons as mentioned above make PCOMS, although be-

ing more promising at the theoretical level, encounter

big obstacles in practical applications.

 2.1.1 Approximate Adders

Adders have a vital position in circuit systems,

and the design of adders with low power consump-

tion and high-performance characteristics has been

long-standing in the traditional circuit design. In the

field of approximate computing, the design of approx-

imate adders has also received much attention.

Gupta et al.[6] proposed a deletion method for sin-

gle-bit full adders at the transistor level, as shown in

Fig.3. The basic idea is to partially remove the origi-

nal transistor structure of an accurate 1-bit mirror

adder (shown in Fig.3(a)) to obtain a 1-bit approxi-

mate adder, as shown in Fig.3(b). The deleted transis-

tors reduce the overall circuit capacitance and help to

reduce the circuit power consumption and delay, im-

proving the circuit energy efficiency. At the same

time, removing the transistor causes the 1-bit mirror

adder to produce a partial error output. In fact, the

authors designed 1-bit approximate full adders with

different degrees of approximation. Reducing the

number of transistors results in increased energy effi-

ciency, but also leads to higher levels of approxima-

tion and output error. Finally, the original 1-bit full

adder and the approximate full adder are combined.

For example, in Ripple Carry Adder (RCA), the ex-

act full adders are used in the high bits, and the ap-

proximate full adders are used in the low bits. In this

0.6 0.7 0.8 0.9 1.0

0

5

10

15

Correct Probability of Flip

out-rms=0.4 V

analytical-rms=0.4 V

out-rms=0.2 V

analytical-rms=0.2 V

E
n
e
rg

y
 C

o
n
su

m
e
d
 i
n

O
n
e
 F

li
p
 (

J
)

1014

Fig.2. Relationship between flip probability and energy con-
sumption for PCMOS[5]. out-rms: output-root means square.

Hao-Hua Que et al.: Approximate Computing: From Arithmetic Units Design to High-Level Applications 253

way, the entire RCA is incorrectly computed in the

low-bit output, and its power consumption and laten-

cy will be effectively reduced. This design is verified

in Discrete Cosine Transform (DCT) in image pro-

cessing, which shows superior output quality results

to an adder structure with direct truncation. Howev-

er, the designer has to reconstruct the circuit layout

in practice because the original circuit of the full

adder needs to be deleted at the transistor level. This

process makes the application of this technique ex-

tremely inconvenient, especially in the design of cir-

cuit systems with different computational bit widths

and different accuracy requirements, where the work-

load is high and the design efficiency is low.

Given the large cost required to design approxi-

mate adders at the transistor level, researchers have

performed many designs at the gate circuit level[7–10].

These designs have approximated the conventional

RCA or carry-lookahead adder (CLA), in which the

main idea is to shorten the critical path by approxi-

mation methods. However, different approximation

structures can lead to different output errors and en-

ergy efficiency gains. It is important to note that even

if an approximate adder has very low power consump-

tion or delay, it is still unusable in real applications if

its output error is too large.

As shown in Fig.4, Zhu et al.[8] attempted to seg-

ment the critical path of the conventional RCA by

prediction, such as dividing the N-bit RCA into sever-

M M < N

N/M an−1:0

bn−1:0 sn−1:0

al groups with -bit for one group (), and the

whole RCA will be divided into groups,

and are the input data, and is the out-

put data. The carry signal for each group is predict-

ed by corresponding circuits, in which only part of the

input data will be used. As we know, in conventional

CLA, the circuits to predict the carry signal are very

complex since all the input data should be used so

that the final result is correct. In this design, the in-

put for the prediction of the carry signal is only part

of the input data, and then the sum signal of each

group may be subject to error. By the above method,

the critical path of the whole adder is significantly re-

duced. Theoretically, there is only one stage of carry

signal prediction delay and the delay of the M-bits

summing block. Reducing the critical path delay can

effectively improve the computational circuit’s opera-

tion speed or reduce the circuit power consumption

by lowering the supply voltage while keeping the

speed constant. Both cases can essentially reduce the

circuit operation energy. This gate-level approximate

design offers a high degree of flexibility and a simple

design process that can be directly synthesized by De-

sign-Compiler tools using a standard circuit descrip-

tion language.

However, unfortunately, the output error of this

approximate adder is significant; although it is highly

energy-efficient in operation, in practice, the large

output error makes the final output of the circuit sys-

out

 in

in

Sum
Sum

in

in in

out

(b)(a)
Fig.3. Transistor level design[6]. (a) 1-bit accurate adder. (b) 1-bit approximate adder.

254 J. Comput. Sci. & Technol., Mar. 2023, Vol.38, No.2

i+ 1

i i− 1

i

i− 1

i

i i− 1

i+ 1

i i− 1

tem using this approximate unit unable to meet the

output quality requirements. The main reason for the

large output error is that an incorrect prediction to

the high carry signal will cause the final result to be

incorrect in the high output bits. Thus, Kim et al.[7]

modified the carry signal predictor and tried to com-

pensate for the output error, in which the RCA is al-

so divided into several groups, and each group con-

sists of two parts, one is the carry signal prediction

block, and the other is implemented with an RCA

scheme that calculates the current sum output. A

multiplexer (MUX) is inserted between two adjacent

groups. It should be noted that the carry signal of

group () is connected to the carry signal predic-

tion blocks () and () through the MUX. For

each input data, if each bit of the input data in part

() is different, the output of carry signal prediction

block () will be used. Otherwise, the value of

block () will be taken. For the final addition result, if

each bit of the input data in parts () and () is

different, and the predicted carry signal for part

() value is detected to be different from the real

carry signal, then the approximate result will be

forcibly set to “1” in parts () and () as an error

compensation. By the above measures, the approxi-

mate adder reduces the mean square value of the er-

ror by three orders of magnitude compared with the

approximate adder in [8]. However, in practical appli-

cations, this magnitude of output errors is still too

large to make the adder used in specific applications.

This method of segmenting the critical path of the

adder into different groups is also applied in several

others designs, such as Accuracy-Confifigurable Adder

(ACA)[8], and approximate adder with correct sign

calculation[10]. Among all of these researches, it is

worth noting that the approximate adder proposed in

[10] has a unique advantage, since a correct sign cal-

culation for 2’s complement signed additions is ensu-

red. This improvement is very meaningful, as in real

computation tasks, the input data is always in 2’ s
complement formation. The output error may be

quite large if the final sum result has a wrong sign,

which will further crash the entire computing system.

The approximate adders mentioned above use the

conventional CMOS process to construct the whole

cell and have a common feature that regardless of the

approximation method, these adders will complete the

computation in one clock cycle. In addition to these

adders, there are also variable latency approximate

adders[11], which will complete the computation with-

in various clock cycles. In some other researches[12],

approximate adders are implemented based on novel

process, such as quantum-dot cellular automata

(QCA)[13].

Fig.5 shows an approximate adder with the vari-

able latency scheme as proposed in [11]. In essence,

this kind of approximate adders also try to cut the

critical path of each adder into several short paths.

After inserting a series of prediction blocks, there is a

risk of prediction errors at each prediction block,

which can lead to an error in the output. A variable

latency scheme is used mainly because of the special

requirement that the high bits of the output must be

accurately computed. In the single-cycle approximate

adder described above, no matter how the designers

use error compensation, errors will be inevitably in-

troduced in the high bits, even though the probabili-

ty of such errors occurring may not be high. In con-

trast, the designer performs exact computation for the

high bits with variable clock cycles in the approxi-

Carry Prediction

Block

Sum

Generator

Sum

Generator

Carry Prediction

Block

Carry Prediction

Block

Sum

Generator

...

...

...

Fig.4. Approximate adder with partial prediction[8].

Hao-Hua Que et al.: Approximate Computing: From Arithmetic Units Design to High-Level Applications 255

An...1

Bn...1 S(k:1) S(2k:k+1)

S(n−k:n−2k+1) S(n:n−k+1)

errn/k−2 errn/k−1

mate adder. For the low bits, approximate computa-

tion will be used without extra cycles. As shown in

Fig.5, taking a 32-bit adder as an example (and

 are the input data; , , ... ,

 and are the output data;

 and are the signal predicting where

is a wrong speculation), every four bits are divided in-

to a group, and seven prediction blocks need to be in-

serted. For the first three prediction blocks, if the pre-

dicted carry signals do not match the real ones, the

prediction blocks will generate error signals. These er-

ror signals will latch the input and output flip-flops,

and the real carry signals will be passed forward. Af-

ter several clock cycles, the first 12 bits of the sum-

output must be calculated correctly. As for the last

four prediction blocks, no error signal is issued even if

an error occurs in prediction blocks, which means that

no clock cycles will be consumed.

It can be seen that there are two benefits using a

variable latency scheme. One is that it can effectively

be ensured that the high bits do not introduce any er-

rors. The other is that the output errors and perfor-

mance improvements can be flexibly configured over a

wide range. However, this structure also has enor-

mous drawbacks. The number of clocks required for

each addition operation can be a random number,

leading to a relatively significant burden on the en-

tire pipeline when designing synchronous timing logic

circuits.

In addition to using the traditional CMOS pro-

cess and the Boolean logic gate, new process technolo-

gies have been applied in approximate adder

design[12]. It should be noted that these new process

F = M(A,B,C) = AB +BC +AC

technologies rely on majority logic (ML), which is a

different framework from conventional Boolean logic.

As shown in Fig.6(a), the inputs are A, B, C and the

output is F. The logic expression of this ML gate is

. Thus, for one bit

clr

Stage Stage
Stage

S
ta
g
e

Enable

Enable

D Q

clk

rst

D Q

clk

rst

Enable

D Q

clk

rst

P
re
d
ic
to
r

P
re
d
ic
to
r

P
re
d
ic
to
r

P
re
d
ic
to
r

Fig.5. Approximate adder with variable latency scheme[11]. clr: clear; clk: clock; rst: reset; D: input of D-flip-flop; Q: output of D-
flip-flop.

 out

out

(b)(a)

(c)
Fig.6. (a) Majority logic gate[12]. (b) Accurate adder with
ML[12]. (c) Approximate adder with ML[12].

256 J. Comput. Sci. & Technol., Mar. 2023, Vol.38, No.2

accurate adder, the final sum (S) and carry (C) sig-

nals can be expressed with ML as:

Cout = AB +BC +AC = M(A,B,C),

S = A⊕B ⊕ C = M(Cout,M(A,B,C), C).

Cout

The corresponding scheme is shown in Fig.6(b). With

this basic circuit scheme, Zhang et al.[12] proposed a

one-bit approximate adder based on ML. The au-

thors observed that and C are almost same ex-

cept for two cases. Thus, the proposed approximate

adder is expressed as:

Cout = C,

S = M(Cout,M(A,B,C), C) = (A,B,C).

The corresponding scheme is shown in Fig.6(c). It can

be seen that two ML gates can be saved, which means

that the energy efficiency of the adder will be im-

proved with certain output error. In essence, this ap-

proach of simplifying the truth table can also be used

to approximate the adder design with CMOS process

and Boolean logic. In [12], the authors evaluated the

proposed ML-based approximate adder with QCA

technology, which shows large improvements in per-

formance and energy efficiency due to the approxi-

mate design method.

 2.1.2 Approximate Multipliers

Compared with adders, multipliers are more com-

plex and consume relatively more energy and delay.

At the same time, in large-scale machine learning

tasks, many convolution operations are computed by

multiplication-accumulation, and thus the design of

low-power, high-performance approximate multipliers

has received extensive attention in past researches.

Generally, a multiplier consists of three stages: par-

tial product generation, partial product accumulation

and final addition. Among all these stages, the par-

tial product accumulation consumes the most delay

and power. In essence, whether it is an accurate mul-

tiplier or an approximate multiplier, all the designers

try to optimize the process of partial product accumu-

lation to reduce its delay and power consumption. In

accurate multiplier design, Wallace tree, Dadda tree

and carry-save adder array[14] have been proposed to

improve the speed of the multiplier. For the Wallace

tree multiplier, no carry propagation is generated as

the accumulation for every three partial products is

operated in parallel. In fact, these accumulations can

be implemented with (3: 2) compressors or (4: 2)

compressors.

In past researches, there are different kinds of ap-

proximate multipliers: 1) approximate recursive mul-

tiplier using inaccurate 2 × 2 block to generate ap-

proximate partial products[15–17]; 2) multiplies apply-

ing approximation in partial product tree, including

truncation, approximate accumulation using inaccu-

rate adders or compressors[18–21]; 3) approximate loga-

rithmic multipliers and booth multipliers[22–26].

A1A0 B1B0

A1A0

B1B0

AH XH

AL XL

For approximate recursive multipliers, the very

first to use the approximate 2 × 2 multiplier to gener-

ate partial products is proposed by Kulkarni et al.[15].

Considering and as the input for the 2 × 2

multiplier, they approximated the truth table of the

2-bit multiplier as shown in Table 1. All the values in

the truth table are correct except one, i.e., and

, where the accurate result should be “1001” but

incorrectly replaced by “111” . Although this step of

approximation is small, the final implementation of

the digital circuit saves a large number of logic gates,

and thus the speed and energy efficiency of the whole

circuit is greatly improved, as shown in Fig.7(a) and

Fig.7(b). It can be seen that XOR-gate is no longer

needed in approximate implementation and the whole

critical path is reduced substantially. Thus, the par-

tial products of a longer multiplier could be generat-

ed with this approximate 2 × 2 multiplier, as shown

in Fig.7(c). For the 4 × 4 multiplier, and are

the upper two bits, and and are the lower two

bits. Using the proposed 2 × 2 multiplier, the partial

products could be generated, and then approximation

will be introduced through the partial products and

the remaining accumulations are accurately comput-

ed.

Table 1. Truth Table for Approximate 2 × 2 Multiplier[15]

A1A0 B1B0

00 01 11 10

00 000 000 000 000

01 000 001 011 010

11 000 011 111 110

10 000 010 110 100

Some similar work is also shown in [16]; however,

Waris et al.[17] pointed out the potential problems of

the above approximation multiplier, as the errors gen-

erated by previous approximate multipliers are unidi-

rectional. Thus, the errors of partial products from

this approximate building block will be accumulated

in one direction, leading to a large output error at

last. Waris et al.[17] argued that the approximate mul-

tiplier has been simplified in the circuit in [15], but

there is still more space for exploration. With all of

Hao-Hua Que et al.: Approximate Computing: From Arithmetic Units Design to High-Level Applications 257

Mul2a
Mul2b Mul2a

Mul2b
Mul2a Mul2b

Mul2a Mul2b

these observations, Waris et al.[17] proposed two kinds

of improved 2 × 2 approximate adders, and the truth

tables are shown in Table 2 (called and

). In , five outputs are approximated and

in , six inaccurate outputs are generated. It

should be noted that in both and , the

generated error has both positive and negative values.

This is a big advantage when using or

to generate partial products of a longer-bit multiplier,

as the error for the final accumulation of partial prod-

ucts will be compensated, which will lead to a much

smaller output error for the approximate multiplier.

In [18, 19], the designers turn attention to the ap-

proximation of partial products accumulation, which

is different from the design in [15–17], where the par-

tial products are generated with approximation errors,

but accumulated using exact operations. However, in

[18, 19], truncation and approximate compressors are

utilized to accomplish the accumulation processing. In

[18], an approximate multiplier is proposed by omit-

ting some carry-save adders (CSA) as shown in Fig.8.

In essence, the most straightforward way is to trun-

cate some least significant bits (LSBs) of the input

data, which means that no partial products and corre-

sponding accumulations for LSBs are needed. But, the

truncation method will cause too large output error

for practical applications. Another approach for ap-

proximate partial products accumulation is to use in-

accurate (4: 2) compressors, which are proposed in

[19]. It is worth noting that the design method of

these approximate compressors uses the same idea of

simplifying the truth table. Depending on the degree

of approximation, the designers try to compromise be-

tween the output error and circuit performance. As a

general design principle, all the designers want the

output error of the approximate multiplier to have a

Table 2. Truth Table of Improved Approximate 2 × 2 Multiplier[17]

Input Exact Truth Table Mul 2a Truth Table Mul 2b Truth Table

a1 a0 b1 b0 C3 C2 C1 C0 C3 C2 C1 C0 C3 C2 C1 C0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 1× 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1

0 1 1 0 0 0 1 0 0 0 1 0 0 0 0× 0

0 1 1 1 0 0 1 1 0 0 1 1 0 0 0× 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 1× 0

1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1×
1 0 1 0 0 1 0 0 0 1 0 0 0 1 1 0

1 0 1 1 0 1 1 0 0 1 1 1× 0 1 1 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 1× 0

1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1

1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

1 1 1 1 1 0 0 1 0× 1× 1× 1 0× 1× 1× 1

Note: ×: not correct.

b1

a1

b0

a1

b1

a0

b0

a0

Out 0

Out 1

Out 2

Out 3
b1

a1

b0

a1

b1

a0

b0

a0

Out 0

Out 1

Out 2

(b)(a) (c)
Fig.7. (a) Accurate 2 × 2 multiplier. (b) Approximate 2 × 2 multiplier. (c) Using the 2 × 2 multiplier as a building block to gener-
ate longer bits multiplier.

258 J. Comput. Sci. & Technol., Mar. 2023, Vol.38, No.2

standard or uniform distribution with zero mean val-

ue.

n (2n)

A B Ar Br

In [20], an interesting approximate method to

multiplier is proposed, which is different from all the

above work[15–19]. The main idea is that each of the in-

put data for multiplication is approximated to the

power . Denoting the approximate input data of

 and by and respectively, then the final

multiplication can be expressed as:

A×B = (Ar −A)× (Br −B)+Ar×B+Br×A−Ar×Br.

(Ar −A)× (Br −B)

Ar ×Br Ar ×B

Br ×A

(Ar −A)× (Br −B)

The most important observation is that, if we

eliminate , which is hard to be

computed, the multiplications of , ,

and can be implemented just by the shifter

units. The final result could be obtained by adding

these three shifting outputs. This means the approxi-

mation of will be introduced, but

the whole implementation complexity of a multiplier

is reduced substantially. The designers in [20] com-

pared the proposed multiplier with some other de-

signs in [21], and showed various degrees in accuracy

and energy efficiency improvement.

{d2i+1, d2i, d2i−1}

In addition to applying approximation in partial

product generation and accumulation, researchers al-

so have applied approximation in booth multiplie-

rs[22– 24], logarithmic multipliers[25, 26], and majority-

logic (ML) based multipliers using new materials[27]. It

is well known that in booth multipliers, after encod-

ing the input data, the partial products could be re-

duced so that large improvement in performance and

energy efficiency could be achieved. Approximate

radix-4 booth multipliers are first proposed in [22, 23]

in which the partial products are approximated as

shown in Table 3. For the three consecutive bits

, the accurate and approximate en-

coding are listed in the last three columns in Table 3.

The corresponding partial product (PP) is selected

±2c ±1c ±2c

±2c ±c

from (, , 0). Here, “ ” means to shift the

partial product. In [22, 23] parts of the encoding are

simplified, as “ ” is turned into “ ” or “0”. With

this approximate method, the final multiplier shows

large reduction on power, delay, area and power-de-

lay product (PDP). Some cases show 59% reduction

of PDP compared with the conventional accurate

booth multiplier.

±3x

{±4x,±3x,±2x,±1x, 0}

{±4x,±3x,±2x,±1x, 0}
{±4x,±3x,±2x,±1x, 0}

±3x ±2x

It should be noted that few researches have made

efforts to propose the approximate Radix-8 booth

multiplier even though more partial products reduc-

tion could be achieved compared with Radix-4. As

pointed in [24], this is mainly because the encoding

processing in Radix-8 requires the generation of d

multiplicand (the set of will

be generated), which means that some preliminary

processing should be involved and more correspond-

ing delay or power will be consumed. In [24], this

problem has been solved, as the designers turned the

encoding set of to the ap-

proximate set of , in which all

the multiplicands are approximated to the

multiplicand. Thus, the final logic-gate implementa-

tion of this approximate Radix-8 booth multiplier be-

comes much simpler. The experimental results show

that compared with the approximate multiplier in

[23], reduced energy of 22% with a comparable mean

relative error distance (MRED) can be achieved.

In addition to the conventional multiplier, using a

logarithmic transformation, which converts multipli-

cation into addition, is also a novel design method as

proposed in [25, 26]. It should be noted that after

converting the input data to logarithmic numbers, the

whole multiplication process only involves shifts and

addition, which means that the area, delay and pow-

er can be reduced significantly. However, this im-

provement is achieved at the cost of inexact output,

since the logarithmic transformation is used and ap-

proximation is unavoidable in the final results. The

first logarithmic (LM) multiplier is proposed by

Mitchell[25], followed by several modified designs to

improve the accuracy with iterative technique or more

Table 3. Approximate Partial Product in Radix-4 Booth

Multipliers[22, 23]

d2i+1d2id2i–1 000 001 010 011 100 101 110 111

PPi 0 +1c +1c +2c –2c –1c –1c 0

[22] 0 +1c +1c 0 0 –1c –1c 0

[23] 0 +1c +1c +1c –1c –1c –1c 0

CSA

Array

Vector
Merging
Adder

Horizontally-Omitted Cell Vertically-Omitted Cell

Fig.8. Approximate accumulation array in multiplier design[18].

Hao-Hua Que et al.: Approximate Computing: From Arithmetic Units Design to High-Level Applications 259

refined approximation of logarithmic transformation.

No inexact logic circuits, such as approximate adders,

are used in these approximate LMs. In [26], inexact

units like approximate lower-part-or adders (LOA)

are used in approximate LM to further improve the

accuracy and energy efficiency. The proposed LOA

could compensate the error generated by the logarith-

mic transformation and has a much simpler comput-

ing scheme since the addition for lower bits is re-

placed by OR-gate without carry signal propagation.

Experiments show that the proposed approximate LM

in [26] has 18% lower normalized mean error distance

than conventional LM with reduction of up to 37% in

PDP. Similar to the design of approximate adders,

new process techniques also play an essential role in

the design of approximate multipliers. In [27], the au-

thors also used new process ML gates to design the

Radix-4 approximate booth multiplier. Since the new

process has advantages over the conventional CMOS

process in terms of power consumption, speed and

area, together with the approximate design method, it

is possible to design approximate multipliers with low

power consumption and high performance.

 2.1.3 Approximate Dividers

X Y

Q R

X = Y Q+R

Compared with adders and multipliers, approxi-

mate dividers are not very widely studied. In terms of

structure, dividers are more complex and require mul-

tiple clock cycles to complete the operation. However,

in recent years, researchers have also applied approxi-

mate computation design methods to dividers. They

have successfully traded a loss in computational accu-

racy for a significant gain in energy efficiency. Consid-

ering the integer division, the input data are divi-

dend and the non-zero divisor , and the output

data are the quotient and the remainder . The re-

lationship of these four data can be expressed as

. Just like the adder design, a one-bit full

subtractor is inevitable when the long divider is de-

signed, which is shown in Fig.9.

D = X ⊕ Y ⊕Bin,

Bout = X ⊕ Y ×Bin +XY.

In [28], several approximate one-bit full subtrac-

tors are proposed as shown in Fig.10(a). In essence,

some logic gates are removed and the final result may

be wrong in some cases. With these accurate and ap-

proximate one-bit full subtractor cells, the non-restor-

ing array divider cell (NADC) could be obtained as

shown in Fig.10(b). At last, combining several NAD-

Cs, an approximate divider with long input data

could be achieved, as shown in Fig.11.

As a general design principle, all exact cells can be

replaced by approximate cells. However, in practical

applications, the approximate cell should be applied

more in the lower part of the whole array when re-

placing the exact cells, based on the fact that for the

binary output the higher bits have more weight.

Another design point is that since the approxima-

tion unit can have different circuit structures, each

circuit structure will exhibit a different error distribu-

tion. Therefore, when making a replacement, the de-

signer needs to design a combination of approxima-

tion units with different circuit structures so that the

final divider will not always have a positive or nega-

Fig.9. Accurate one-bit full subtractor.

(b)

(a)

EXSC

in out

in in

inin

out

out

out

out

Fig.10. (a) Approximate subtractor[28]. (b) Accurate/approxi-
mate non-restoring array divider cell[28]. EXSC: an exact sub-
tractor cell.

260 J. Comput. Sci. & Technol., Mar. 2023, Vol.38, No.2

tive output error but a zero-mean error distribution.

For high-radix division, the technique of prescaling[29]

is proposed. In [30], the authors proposed an approxi-

mate signed-digit adder cell to replace the accurate

cells in [29]. Furthermore, at the array level, different

configurations and replacement depths have been

used so that various energy efficiency improvement

and error distributions could be achieved.

 2.2 Approximate Memory

For image processing and machine learning algo-

rithms, data storage of the digital integrated circuit

occupies a non-negligible proportion of the system en-

ergy consumption. For example, in video processing

such as MPEG or H.264, on-chip static storage (Stat-

ic Random Access Memory, SRAM) consumes a large

amount of energy, about 75% of the overall motion

vector estimation[31]. Meanwhile, off-chip Dynamic

Random Access Memory (DRAM) accounts for 30%

of the energy for entire cell phone circuit system[32].

Given the limited energy supply of most current ter-

minal device batteries, it is important to effectively

reduce the storage power consumption of on-chip

SRAM and off-chip DRAM. Existing researches have

conducted a series of designs using approximate stor-

age methods in terms of application output quality

and energy efficiency.

 2.2.1 Approximating SRAM

The primary cell scheme of SRAM is shown in

Fig.12[33]. This single-bit memory consists of six

CMOS transistors (referred to 6T scheme). The two

inverters in the middle position constitute the posi-

tive feedback, and the two NMOS transistors on both

sides constitute the write and read interfaces of the

memory cell. When the data is written, the WL (word

line) signal is high, and then the AR and AL transis-

tors are turned on. Thus, the input data will be writ-

C
1
2
3

[3.0]

3 210

[3.0]

 [3.0]

[7.0]
7
6
5
4
3
2
1
0

1
2
3

0

EXDCr EXDCr EXDCr EXDCr

EXDCr EXDCrEXDCrEXDCr

EXDCrEXDCrEXDCr

EXDCrEXDCr EXDCr

EXDCr

EXDCr

Fig.11. Approximate non-restoring divider[28]. EXDCr: an exact restoring divider cell.

BL BLB

ARAL
Q QB(Q Bar)

WL

Fig.12. Circuit scheme of single-bit SRAM cell[33].

Hao-Hua Que et al.: Approximate Computing: From Arithmetic Units Design to High-Level Applications 261

Q

Q

ten to the cell through the BL (bit line) and BLB (bit

line bar) lines. Two situations may occur at this time.

First, it is supposed that the written signal is oppo-

site to the currently saved signal. In that case, the in-

termediate positive feedback inverter loop will be

forcibly flipped to the desired signal value, in which

both inverters will be charged-discharged and con-

sume energy. If the written signal has the same value

as the signal retained in the previous state, the write

operation will not incur flip power consumption. As

for reading data, the BL and BLB signal lines are

first pre-charged to a high voltage, and then the pre-

charge circuit will be disconnected. The load capaci-

tors of the BL and BLB signal lines are charged and

discharged through the AL-AR transistors, and then

the signal value will be read. If the value is low,

the capacitors are discharged. Conversely, if the

value is high, the load capacitance remains un-

changed. It is clear that the inverter will not flip in

the reading process, in which the power consumption

of the whole circuit comes only from the charging and

discharging process of the load capacitor. Therefore,

in the power analysis of SRAM, data writing is the

primary source of power consumption of the entire

on-chip storage. For on-chip memory cell circuits in

Fig.12, the circuit energy is mainly determined by the

following equation:

E = α× C × V DD2,

α C

V DD

where is the flip probability of the circuit, is the

equivalent capacitance, and is the supply volt-

age. Therefore, theoretically, the designer can reduce

the energy of SRAM in three ways.

However, in practical design, the equivalent ca-

pacitance is mainly related to the circuit structure,

and it is challenging to improve the equivalent capaci-

tance from the design point of view. Reducing the

voltage is effective since the energy is squared with

the supply voltage. However, this approach has two

problems. First, after reducing the voltage, the speed

of the memory cell also has to decrease. If the speed

does not follow the voltage drop, fatal timing errors

will occur, which will contaminate the stored data.

Therefore lowering the voltage while the designer gen-

erally chooses to lower the speed hinders some high-

performance circuit designs, especially for real-time

processing applications. Another more problematic is-

sue is that even in those cases where the speed re-

quirements are not high (when processing CIF/QCIF

images, the circuit can run at a lower speed of about

10 Mhz), reducing the supply voltage can satisfy both

the low energy and the speed requirements. However,

the memory cell faces process deviations, which may

trigger logic errors with voltage drops during the

read/write process. These logic errors are different

from the timing errors. No matter how we decrease

the speed, the logic error originating from the process

deviation cannot be avoided under the low voltage

conditions. The output error probability will increase

with the voltage reduction.

Chang et al. proposed a low-voltage approximate

SRAM with a hybrid scheme[33]. The authors ob-

served that the high bits of the stored data should be

accurate for applications such as image processing or

machine learning. Otherwise, due to the big weights

for the high bits of the stored data, an error for these

bits would largely shift the whole data, which will

crush the output quality. Conversely, the low bits of

the stored data have a limited impact on the final

output quality if errors occur with low voltage condi-

tions.

In [33], Chang et al. first proposed an SRAM cell

with low logic errors in a low voltage condition, as

shown in Fig.12 and Fig.13. It can be seen that the

core of this memory cell is still two inverter loops

forming positive feedback, while two additional tran-

sistors, NB and AB, are added (referred to as 8T

scheme). The readout side is effectively isolated from

the whole memory cell due to NB and AB transistors,

which can reduce the logic errors for data reading. At

the same time, the NB transistor can effectively re-

duce the driving capability required for the positive

feedback circuit to flip during the write operation.

Therefore, this circuit scheme can reduce the proba-

bility of wrong flips for the SRAM at low voltage.

BL BLB

ARAL
Q QB

WWL (Write Word Line)
RBL (Read Bit

Line)

RWL (Read
Word Line)

AB

NB

Fig.13. Circuit scheme of 8T SRAM cell.

At last, using both 8T and 6T memory cells, the

raw input data could be divided into two parts. The

data will be stored using the 8T scheme for the high

262 J. Comput. Sci. & Technol., Mar. 2023, Vol.38, No.2

bits, and the 6T scheme will be used for the low bits.

Two main design metrics determine the ratio of 8T

and 6T. First, the output quality needs to meet the

lower limit set by the designer at the beginning. Sec-

ond, the energy consumption should be reduced as

much as possible while the output quality is satisfied.

As shown in Table 4, a standard test video

“AKIY” in CIF format with 50 frames is used to veri-

fy the proposed hybrid SRAM in [33]. The video da-

ta will be processed with the hybrid SRAM, and then

the data will be fed into the MPEG decoder. Finally,

the peak-signal-to-noise ratio (PSNR) between ap-

proximate SRAM output and exact SRAM output

will be achieved. Since the pixel data has eight bits,

as shown in Table 4, “0-bit 8” means that all the da-

ta bits are stored by 6T memory cells with three dif-

ferent supply voltages of 600 mV, 700 mV and 800

mV, respectively. The other settings are similar, i.e.,

“6-bit 8” means that the first six bits of 8-bit raw da-

ta are stored by 8T memory cells, and the last two

bits are stored by 6T memory cells. From the experi-

mental results, we can see that at 800 mV, if the 6T

memory cells are used for all data bits, the final out-

put quality is not much degraded due to the small

logic error with this voltage. However, as the voltage

keeps dropping, the output quality of all 6T memory

cells for storage decreases from 23.48 dB to 14.75 dB,

which is unacceptable in practical applications. At the

same time, it can be seen that the output quality

keeps improving with the increasing proportion of 8T

memory cells under the 600 mV supply voltage. If the

designer allows less than 1 dB PSNR loss, the “4-bit

8” storage setting can meet this requirement, and at

this time, the power consumption could be reduced

significantly due to the lower voltage.

Table 4. PSNR (dB) with Different Ratios of 8T and 6T at
Various Voltages[33]

VDD
(V)

0-Bit
8T

1-Bit
8T

2-Bit
8T

3-Bit
8T

4-Bit
8T

5-Bit
8T

6-Bit
8T

7-Bit
8T

8-Bit
8T

0.6 14.75 19.26 21.86 22.96 23.96 23.42 23.49 23.55 23.61

0.7 21.41 22.92 23.40 23.54 23.57 23.59 23.60 23.60 23.61

0.8 23.48 23.58 23.60 23.61 23.61 23.61 23.61 23.61 23.61

 2.2.2 Approximating DRAM

Off-chip DRAM also has a large amount of ener-

gy consumption in the circuit system. A single-bit dy-

namic memory cell[34] is shown in Fig.14, which con-

sists of capacitors, MOS transistors, and a sensitive

amplifier. When the row and column addresses are set

to “1” , the two MOS transistors are turned on, and

the input data will charge or discharge the capacitor

through the sensitive amplifier. When the written da-

ta is “0”, the capacitor will be discharged. The capac-

itor will be charged when the written data is “ 1” .

However, as the capacitor itself has a leakage prob-

lem, it needs to be charged again by the refresh cir-

cuit after some time. Therefore, as pointed out in [35],

the power consumption of DRAM is proportional to

the refresh frequency of the entire memory device and

the number of high voltage bits stored.

Liu et al. proposed a multi-stage refresh frequen-

cy for approximate DRAM[36]. The authors also fol-

lowed the principle that the high bits of the stored

data cannot be contaminated, and the refresh fre-

quency of high bits is kept constant to ensure correct-

ness. For the lower bits, the refresh frequency is re-

duced at different levels. It should be noted that re-

ducing the refresh frequency only causes errors for the

bits stored as high voltage (logic “1”) because these

high voltage bits may not be refreshed in time with

reduced frequency. Based on this idea, the refresh fre-

quency of the DRAM can be scheduled according to

different applications and output quality require-

ments, thus reducing the power consumption while

losing some of the output quality. The main problem

in this approach is the need to modify the original

DRAM refresh control system, and the additional

overhead caused by this modification cannot be ne-

glected. In [37], researchers also adopted the same ap-

proach to reduce the power consumption of DRAM

by using dynamic data truncation to reduce the

amount of data storage. The storage controller trun-

cates the raw data for specific applications and out-

put quality requirements. Output quality checks are

performed at regular intervals during the runtime

phase to generate feedback and adjust the number of

bits truncated by the memory controller. However,

Capacitance

Row Address Line

C
o
lu

m
n
 A

d
d
re

ss
 L

in
e

Sensitive
Amplifier

Bits Lines (Data I/O)
Fig.14. Circuit scheme of DRAM cell[34].

Hao-Hua Que et al.: Approximate Computing: From Arithmetic Units Design to High-Level Applications 263

there is a considerable loss of information due to sim-

ple data truncation, leading to significant degrada-

tion of the final output quality. Therefore, this de-

sign method has some limitations in practical applica-

tion.

 2.2.3 Approximating Memories Based on New

Process

Unlike SRAM and DRAM memory under the tra-

ditional CMOS process, memory devices composed of

various new materials have also received much atten-

tion. Non-volatile random-access memory[38] can keep

the data when power is lost, which is a significant ad-

vantage for conventional memory, especially in the

case of an unstable power supply system. The prob-

lem with non-volatile memory is that the device may

fail within a short period if the memory is read and

written frequently. Researchers can use methods such

as data compression to reduce the number of data

reads and writes and extend the life of the device. In

recent years, memristors have also received great at-

tention. Resistive Random Access Memory (RRAM)

allows for high-performance, large-scale computation.

Designers have used its cross-switching matrix for

convolutional neural network approximation[39], which

has significantly improved energy efficiency. However,

due to a large amount of ADC interfaces, additional

overhead to the design is inevitable. Moreover, the

RRAM process is very mature. Large process devia-

tions and a wide range of threshold voltage shifts

make it limited in practice. Similar to RRAM, Phase

Change Memory (PCM)[40] has the distinct feature of

having several different intermediate states and a

large storage capacity. However, PCM’ s fatal prob-

lem is to update the data because it requires multiple

writes to this memory device. Otherwise, the data

written will generate some logical errors. However,

multiple writes usually incur a sizeable additional

overhead; therefore the authors[40] also apply the prin-

ciple of approximate computation to ensure the cor-

rectness of high bits data using multiple writes while

reducing the number of writes for the low bits data.

Similar to RRAM, PCM’ s biggest challenge is the

threshold shift in the long-term operation, which

needs to be addressed in large-scale applications.

 2.3 Software Level

 2.3.1 Loop Perforation

Loop perforation is an algorithm-based approxi-

mation technique that trades computational precision

for performance efficiency, by skipping specific itera-

tions in a loop, contributing to the reduced computa-

tional cost and a significant performance gain with-

out executing all code iterations. For example, when

performing finite element analysis, the more the parti-

tioned meshes are, the longer the execution time is,

and the higher the energy consumption is. Hence, the

researcher has ability to choose to skip some of the

mesh blocks with repetitive or unimportant roles to

acquire the execution time advantage and perfor-

mance improvement. This approximation technique[41]

is applied to the computational model of a generic al-

gorithm by sequentially perforating the loop with a

given perforation scheme (that is, the fraction of iter-

ations to be skipped, referred to as the perforation

rate in the literature), using representative inputs for

the perforation computation, and evaluating the com-

putational system outputs (which are probably not

available). Finally, extremely erroneous iterations are

filtered out, and the system is crashed, resulting in

the critical loops (called unapproximable or non-ad-

justable loops) featuring a significant negative im-

pact such as fatal errors, system crashes, an apparent

decrease in inefficiency, or an evident increase in exe-

cution time due to the filtered-out perforation. The

remaining terms that can be perforated (namely, ad-

justable loops) are approximated. Moreover, two algo-

rithms have been investigated in the literature to ex-

plore a perfect balance between efficiency and accura-

cy. The first algorithm adopts a specific strategy,

namely using multiple perforation rates to filter out

the adjustable cycles. Thus, the efficiency and the ac-

curacy of the Pareto-optimal variants are derived be-

tween the perforation rate and the adjustable cycles.

The other algorithm adopts a greedy strategy, name-

ly using heuristic scoring metrics to prioritize the cy-

cles/perforation rates, so as to seek the maximum op-

erating efficiency within a given accuracy error. For a

range of applications, loop perforation can typically

improve performance up to more than twice as much

while incurring no more than a 10% loss in accuracy.

Mainstream parallel computing frameworks such

as OpenMP and OpenACC are employed to acceler-

ate the circularly parallelized applications. OpenMP is

suitable for parallel programming on multicore CPU

machines, and OpenACC supports CPU/GPU work.

In the accelerated applications using such computing

frameworks, many loop iterations are started as

threads on the accelerator, which fits well with loop

perforation applications. A new instruction[42] was uti-

264 J. Comput. Sci. & Technol., Mar. 2023, Vol.38, No.2

lized in OpenACC to trade off performance and accu-

racy by perforating loop iterations.

Loop perforation is an algorithmic software level

based technique, which is only applicable to cyclic it-

erative code structures. In other words, loop-through

techniques can be applied in software and pro-

grammable hardware codes. As for the FPGA side, a

cyclic iterative code structure can be multiple circuits

executing in parallel or a constantly re-executing cir-

cuit. The impact of implementing loop-through on the

software side is different in comparison with the FP-

GA side. The software side primarily influences the

arithmetic power consumption and execution time of

the application, while the FPGA side impacts the

area and energy cost.

 2.3.2 Data Precision Reduction

The most straightforward concept of data preci-

sion (the number of data bits) reduces the memory

footprint and hence exchanges the cost of precision re-

duction for memory consumption and performance

improvement. Data precision reduction can be imple-

mented at the software level in various ways to con-

strain precision and achieve performance goals. Re-

ducing the bit width used for data representation is

one of the most prevalent approaches. For example,

DoD et al.[43] introduced a dynamic program analysis

tool called Precimonious to assist developers to tune

the precision of floating-point programs. Precimo-

nious first creates a search space under the project

containing all the local variables of the functions ac-

cessible from the main static. After such an operation,

each variable in the search file is associated with a set

of types. Subsequently, each of the type sets is re-

fined by using an algorithmic iteration that considers

a pair of the highest and second highest precision

available and then identifies the set of floating-point

variables assigned with the highest precision, which

would be ignored in the next iteration. Furthermore,

valid type configurations are identified after the gen-

eration of a program variant that can automatically

reflect the type configuration. The implementation

has a performance advantage over most programs

when instantiated with lower precision types. An en-

ergy-aware hybrid precision selection framework

called EHPS[44] was proposed to reduce the consump-

tion of shaders in the mobile GPUs. In comparison

with traditional reduction mechanisms, EHPS com-

bines a traditional mechanism consisting of fixed-

point and reduced floating-point precision with a con-

tour-based precision selection mechanism that maxi-

mizes energy savings. Through this mechanism, the

range of values is shortened from an entire precision

floating point, and the reduction in image data preci-

sion contributes to an overall reduction in image qual-

ity. More specifically, it makes sense to trade accura-

cy for performance as long as the degradation of im-

age quality is kept within the range that is not per-

ceptible to the human eye or acceptable to the user.

Implementing specific algorithms efficiently in

some classification problem scenarios is of overriding

importance. Support vector machines (SVM) repre-

sent a robust nonlinear classifier that is possibly not

efficiently implemented in the SVM classification

stage ascribed to arithmetic and energy limitations in

some complex scenarios. One possible approach is to

reduce the working accuracy of SVM to adapt to

working scenarios where arithmetic power and energy

consumption do not support it. The relationship be-

tween SVM classification accuracy and floating-point

arithmetic accuracy has been investigated[45], specifi-

cally, researchers adapted based on the perturbation

bounds, and experiments were performed with three

publicly available benchmark datasets. The results

demonstrated much room for a substantial reduction

in the working accuracy before the SVM classifica-

tion accuracy reaches the loss limit level. Moreover,

data accuracy reduction also has wide applications for

neural networks (NNs). For example, deep networks

can be trained with only fixed-point numbers with

less bit-width and no degradation in classification ac-

curacy by approximating the bit-width of the data

with a random probability. This application aspect

will be detailed in the survey.

 2.4 Application Level

In this subsection, two mainstream approxima-

tion methods in the field of machine learning will be

introduced in detail. In machine learning, neural net-

works are increasingly used for tasks such as recogni-

tion, classification, and segmentation. The neural net-

work technology, firstly called perceptron, consisted of

a simple three-layer structure of an input layer, an

implicit layer, and an output layer. Later, multilayer

perceptron was proposed to solve the defect of not be-

ing able to fit the heterogeneous logic and also

brought inspiration to the development of neural net-

works, where the number of layers directly deter-

Hao-Hua Que et al.: Approximate Computing: From Arithmetic Units Design to High-Level Applications 265

mined the ability to portray reality. Pre-training is

used to alleviate the problem of local optimality. In-

stead of using the sigmoid function, transfer func-

tions such as ReLU or max were used to overcome

part of the gradient disappearance problem, gradual-

ly leading to today’s DNNs with more implicit layers,

especially the recent emergence of deep residual learn-

ing to further avoid gradient disappearance. The in-

crease in network layers makes NNs more capable of

representation and highly complex. Besides, spatially

deep convolutional neural networks (CNNs) update

the structure of neural networks by adding convolu-

tional kernels. However, the disadvantages of highly

complex large-scale neural networks should not be ig-

nored as computation or power consumption can be

exceptionally high. Introducing approximate comput-

ing into neural networks is a feasible approach, which

raises the challenging question of how to employ ap-

proximate computing in NNs systematically. Related

researches have proposed many representative solu-

tions to employ approximate computing from the

modeling phase to the inference phase, achieving low

power and high energy efficiency.

In the training phase of neural networks, the

backpropagation algorithm is currently the most com-

mon and efficient training algorithm. After the for-

ward transmission process of NNs training, the error

between the output result of the output layer and the

actual output result is calculated, and the error is re-

distributed forward into the network until it is propa-

gated to the input layer. The network parameters are

generally initialized randomly, adjusted according to

the backpropagation error, and iterated continuously

until convergence. Such properties of backpropaga-

tion algorithms provide a measure of the error of each

neuron on the network output. For example,

Venkataramani et al. proposed a backpropagation-

based approximate neural network (AxNN) design

method that utilizes the backpropagation property to

characterize the importance of each neuron in the

NNs and determine the neurons more sensitive to the

quality of the output and the insensitive neurons

(called resilient neurons in their description)[46]. The

identified neurons with less impact on the quality of

the work were replaced with the resilient neurons us-

ing approximate neurons, where precision scaling

techniques implemented the approximate neurons. Fi-

nally, incremental retraining of the AXNN was per-

formed. Backpropagation, in essence, can au-

tonomously repair the errors in the network and can

benefit from the errors generated when using the ap-

proximation technique.

 2.4.1 Parameter Quantization

⩽

In DNNs model training, model parameters such

as weights of the NNs and bias data types are typical-

ly stored in computations with double-precision

(FP64), single-precision (FP32), and half-precision

(FP16) data types. Today, most DNNs applications

use FP32 for handling training and inference work-

loads. Quantization approximates a continuous signal

through a set of discrete symbols. The basic idea of

model quantization is to replace the original floating-

point precision with lower precision. Low-bit parame-

ter quantization could result in significant reductions

in bandwidth, energy consumption, and chip area

during training. The smaller the bits of the model are,

the smaller the model storage is, and the more signifi-

cant the execution speedup to occur is. The central

challenge is to weaken the representation accuracy

without significant degradation of the model accura-

cy, suggesting that the usability of the gradient de-

scent algorithm is maintained during backpropaga-

tion. The classification accuracy did not significantly

degrade when the floating-point parameters were ap-

proximated to a 16-bit vast fixed-point number

(int16) representation using a random rounding

method, quantized and trained on the DNNs[47]. The

bit width of the parameters was further reduced.

With the block-based accumulation and floating-point

random rounding, training was performed using 8-bit

wide floating-point precision (FP8). Additionally, 8-

bit comprehensive fixed-point numeric representation

was employed in training, while retraining was re-

quired, and accuracy was not guaranteed in most cas-

es after int8 quantization[48]. Zhu et al. proposed a

unified int8 training framework[49] to stabilize int8

training using generic techniques such as reducing

gradient direction bias and avoid illegal gradient up-

dates along the wrong direction. A CNN approxima-

tion framework, called Ristretto, constructed by Gy-

sel et al.[50], allows empirical studies on the trade-off

among various digit representations and word width

choices, as well as the classification accuracy of the

model, so as to fine-tune the model parameters after

int8 quantization and recover a portion of the model

accuracy loss due to approximation. Designs were al-

so presented for the extreme quantization of the last 4

bits and less than 4 bits (INT4). A practical 4-bit

post-training quantization method[51] was provided to

266 J. Comput. Sci. & Technol., Mar. 2023, Vol.38, No.2

quantify activations and weights. Moreover, three

novel methods of analytical clipping of integer quanti-

zation (ACIQ), bit allocation strategy, and bias cor-

rection were introduced to minimize tensor-level

quantization errors. The INT4 quantization fine-tun-

ing phase has many instabilities. Various methods to

overcome this difficulty were proposed, such as using

a small subset of the training set to calibrate the acti-

vation size and discarding outlier activations based on

percentile and clamped quantization activations and

gradients. A compromise was achieved for the prob-

lem of over-quantized parameters and unstable mod-

els, where the training employed two or more differ-

ent bit-width types in the model simultaneously,

namely, mixed-precision training. For example, DNNs

training using a hybrid FP8 format was demonstrat-

ed[52], which uses two FP8 formats for forwarding and

backward propagation. A mixed-precision scheme was

adopted[53], where FP16 is taken for forwarding prop-

agation and gradient computation, while FP32 stores

the gradients of the network parameters (which is

called weight backup) and effectively mitigates the

gradient disappearance in low-bit quantization train-

ing.

 2.4.2 Model Pruning

Model pruning is a commonly-used model approxi-

mation method to efficiently generate models with

smaller sizes, higher memory utilization, lower energy

consumption, and faster inference with less accuracy

loss. Model pruning in NNs is inspired by synaptic

pruning in the human brain, which is the complete

decline and death of axons and dendrites. Similar

work can be conducted in NNs, and the basic idea is

to prune the least important parts. For example, neu-

rons in a network can be ranked according to their

contribution, and then a smaller and faster network

can be obtained by removing the lower-ranked neu-

rons. The design concept of model pruning has been

researched for a long time. For example, a magnitude-

based pruning method was proposed to minimize the

number of hidden units by applying a weight decay to

each remote unit in the network concerning its abso-

lute value[54]. OBD and OBS methods were

proposed[55] to measure the importance of weights in

the network based on the second-order derivatives of

the loss function considering the weights. Model prun-

ing is only gradually emphasized after DNNs are

widely used and the number of network layers is

deepened. These design methods have been exerting

profound influence on the development of model prun-

ing later. Model pruning is unavoidable in the era of

widespread DNNs use. For example, Google explored

the performance comparison between large sparse

models and small dense models[56] where large sparse

models consistently outperformed small dense models

in a wide range of neural network architectures.

The fine-grained pruning approach is straightfor-

ward. As shown in Fig.15, first, a baseline model is

trained, and then the magnitude of the weights is

sorted to remove the connection below a predefined

threshold, resulting in a pruned network. Finally, the

pruned network is fine-tuned, and the execution con-

tinues from the previous step until the termination

condition is satisfied. One of the critical issues is how

to evaluate the importance of these connections.

Thus, NVIDIA proposed a magnitude-based ap-

proach to evaluate the connection importance[57].

Network

Stop Pruning
Continue

Pruning?
Fine Tuning

No

Yes

Evaluate
Importance
of Neuron

Remove the
Least Important

Neuron

Fig.15. Pruning process.

Compared with fine-grained pruning, coarse-

grained pruning will be more effective in obtaining

small, sparse models that do not require specialized

algorithmic support. Coarse-grained pruning can be

performed on filters or feature channels. One ap-

proach to featuring channel pruning is to evaluate the

effectiveness of a channel in conjunction with con-

straining some channels to make the model sparse. In

[58], extensive and large networks are used as input

models, and during training, channels with higher

sparsity are automatically identified and removed, re-

sulting in compact models with considerable accuracy.

The scaling factor in batch normalization is applied to

crop the unimportant channels. In [59], an end-to-end

random training approach is used to force the output

of specific channels to be constant and then remove

these constant channels in the original neural net-

work by adjusting the bias of its influence layer in or-

der to fine-tune the generated compact model quickly.

 3 Limitations of Approximate Computing

As mentioned earlier, approximate computing, a

paradigm shifted from traditional accurate processing,

Hao-Hua Que et al.: Approximate Computing: From Arithmetic Units Design to High-Level Applications 267

has potential usage at all stack levels of computing

systems, especially for large-scale centralized and dis-

tributed edge computing. However, approximate com-

puting also has limitations. In the specific implemen-

tation of approximate computing, fault tolerance and

security vulnerability are two necessary conditions to

confirm whether approximations can be applied in the

practical applications.

 3.1 Fault Tolerance of a System

Fault tolerance of a system is generally defined as

the ability of the system to execute a given algorithm

correctly without affecting the accuracy of the sys-

tem or within an acceptable level of output quality

when approximations or errors are introduced in the

inputs or intermediate operations of the computing

system. Approximate computing is based on the fault

tolerance of the system. Thus, an essential condition

for applications with approximate computing is

whether the computing system is fault-tolerant. The

computing system is considered unsuitable for the ap-

proximation mechanism if it is not fault-tolerant. In

general, safety-critical systems are less fault-tolerant,

and therefore the use of approximate computing to

such systems is sophisticated. Moreover, though the

fault tolerance of the computing system satisfies the

approximation mechanism, there is another situation

where the approximate computing is also not suitable,

and where the introduction of the approximate com-

puting brings adverse effects such as an obvious in-

crease in execution time, a significant increase in ener-

gy consumption, and an unacceptable decrease in per-

formance, which are all contrary to the original inten-

tion of using the approximate computing.

 3.2 Unpredictable Security Vulnerability

Approximate computing techniques carry an in-

trinsic uncertainty, and to some extent probably in-

troduce new unpredictable security vulnerability to

the computing system. The following reasons should

be considered. First, in a computing system with ap-

proximate modules, there is a clear boundary among

approximate modules and other exact modules in

most cases. Supposing that there is no unique hiding

mechanism for approximate modules. In this case, this

boundary works as a practical guide for attackers to

attack the computing system, allowing attackers to

recognize vulnerable parts of the computing system

faster and provide a new attack surface to damage

the computing system. In terms of approximate

adders, for example, the approximate operation can

dramatically change the transition probability of spe-

cific signals, resulting in easier-to-detect security vul-

nerability by attackers. Second, approximate modules

are generally fault-tolerant. Therefore, distinguishing

whether the error is caused by the approximate com-

puting or carefully designed by attackers is arduous,

and therefore attackers can easily falsify the attack

into an approximation in the module.

 4 Promises and Challenges of Approximate

Computing

Approximate computing is a widely applicable

and excellent paradigm in different applications. Al-

though approximate computing is not mature enough,

there is a glimpse of the unlimited potential of ap-

proximate computing concerning energy efficiency and

high performance. Approximation computing will be

confronted with opportunities and many challenges in

the coming years.

 4.1 Opportunities to Come

Apparently approximate computing is applicable

at all stack levels of the system and have evaluated

representative techniques at each stack level. When

most of the techniques at each stack level become ma-

tured, a natural trend to investigate compounding ef-

fects by applying multiple techniques in the system

will emerge. For the purpose of exploiting such com-

pounding effects, considering holistically at multiple

levels of the system stack and designing new reason-

able and effective accelerator cannot be ignored. For

example, IBM proposed the TeraOPS deep learning

processor core in 2018[60]. This is an AI accelerator

chip that compounds approximation techniques at

multiple stack levels to achieve performance and area

advantages compared with other high-performance AI

chips. In [61], the researchers proposed a resource-ori-

ented high-level synthesis (HLS) method, in which

heterogeneous resource constraints can be defined

with minimizing the output error. The proposed

method is applied to approximate designs in FPGAs.

With this HLS method, the designers could exploit

the resources in FPGA more efficiently with certain

approximation.

268 J. Comput. Sci. & Technol., Mar. 2023, Vol.38, No.2

 4.2 Challenges to Be Faced

Approximation techniques introduce security vul-

nerabilities, which are a significant concern for the

continued development of approximation techniques

in the future. The security threats such as uncertain

results of approximation execution during approxima-

tion execution, may be indistinguishable from data

tampered with by malicious attacks presented in Sec-

tion 3. More effective solutions should be proposed in

the research related to the security applications of ap-

proximate computing. In [62], the researchers pro-

posed security protection methods using redundant

number representation, most significant digit first

arithmetic, and algorithmic approximation analysis.

The exemplary stationary iterative solver is used to

hide information. Furthermore, applying approxima-

tion techniques for security-critical and high-cost sys-

tems is a promising direction for extensive future re-

search.

 5 Conclusions

This paper discusses the concept of approximate

computing and its various applications. It provides a

broad overview of the field, starting from the design

of approximate arithmetic units and ending with

high-level applications of approximate computing.

One of the main conclusions of the survey is that ap-

proximate computing is a promising approach to im-

proving the performance, energy efficiency, and cost

of computing systems. The paper shows that there are

many opportunities for approximate computing in dif-

ferent areas, including machine learning, signal pro-

cessing, and multimedia processing. Another conclu-

sion is that the design of approximate arithmetic

units is a critical aspect of approximate computing.

The paper presents several techniques for designing

approximate arithmetic units. We also discussed the

advantages and limitations of each technique and

highlighted the importance of choosing the right ap-

proach for a particular application. Furthermore, the

paper emphasizes the need for tools and methodolo-

gies to support the design and implementation of ap-

proximate computing systems.

References

 Xu Q, Mytkowicz T, Kim N S. Approximate computing:

A survey. IEEE Design & Test, 2016, 33(1): 8–22. DOI:

10.1109/MDAT.2015.2505723.

[1]

 Zervakis G, Saadat H, Amrouch H, Gerstlauer A,

Parameswaran S, Henkel J. Approximate computing for

ML: State-of-the-art, challenges and visions. In Proc. the

26th Asia and South Pacific Design Automation Confer-

ence (ASP-DAC), Jan. 2021, pp.189–196. DOI: 10.1145/

3394885.3431632.

[2]

 Jiang H L, Santiago F J H, Mo H, Liu L B, Han J. Ap-

proximate arithmetic circuits: A survey, characterization,

and recent applications. Proceedings of the IEEE, 2020,

108(12): 2108–2135. DOI: 10.1109/JPROC.2020.3006451.

[3]

 Amanollahi S, Kamal M, Afzali-Kusha A, Pedram M. Cir-

cuit-level techniques for logic and memory blocks in ap-

proximate computing systems. Proceedings of the IEEE,

2020, 108(12): 2150–2177. DOI: 10.1109/JPROC.2020.

3020792.

[4]

 Cheemalavagu S, Korkmaz P, Palem K V et al. A proba-

bilistic CMOS switch and its realization by exploiting

noise. In Proc. IFIP International Conference on VLSI,

Oct. 2005, pp.535–541.

[5]

 Gupta V, Mohapatra D, Raghunathan A, Roy K. Low-

power digital signal processing using approximate adders.

IEEE Trans. Computer-Aided Design of Integrated Cir-

cuits and Systems, 2013, 32(1): 124–137. DOI: 10.1109/

TCAD.2012.2217962.

[6]

 Kim Y, Zhang Y, Li P. An energy efficient approximate

adder with carry skip for error resilient neuromorphic VL-

SI systems. In Proc. the 2013 IEEE/ACM International

Conference on Computer-Aided Design (ICCAD), Nov.

2013, pp.130–137. DOI: 10.1109/ICCAD.2013.6691108.

[7]

 Zhu N, Goh W L, Wang G, Yeo K S. Enhanced low-pow-

er high-speed adder for error-tolerant application. In Proc.

the 2010 International SoC Design Conference, Nov. 2010,

pp.323–327. DOI: 10.1109/SOCDC.2010.5682905.

[8]

 Lin I C, Yang Y M, Lin C C. High-performance low-pow-

er carry speculative addition with variable latency. IEEE

Trans. Very Large Scale Integration (VLSI) Systems,

2015, 23(9): 1591–1603. DOI: 10.1109/TVLSI.2014.2355217.

[9]

 Hu J J, Li Z J, Yang M, Huang Z X, Qian W K. A high-

accuracy approximate adder with correct sign calculation.

Integration, 2019, 65: 370–388. DOI: 10.1016/j.vlsi.2017.

09.003.

[10]

 Yang X H, Xing Y, Qiao F, Yang H Z. Multistage laten-

cy adders architecture employing approximate computing.

Journal of Circuits, Systems and Computers, 2017, 26(3):

1750039. DOI: 10.1142/S0218126617500396.

[11]

 Zhang T T, Liu W Q, McLarnon E, O'Neill M, Lombardi

F. Design of majority logic (ML) based approximate full

adders. In Proc. the 2018 IEEE International Symposium

on Circuits and Systems (ISCAS), May 2018. DOI:

10.1109/ISCAS.2018.8350962.

[12]

 Liang J H, Han J, Lombardi F. New metrics for the relia-

bility of approximate and probabilistic adders. IEEE

Trans. Computers, 2013, 62(9): 1760–1771. DOI: 10.1109/

TC.2012.146.

[13]

 Niharika A, Ramesh M K. 16×16 modified booth multipli-

er implementation using Wallace tree structures. Journal

of Signal Processing, 2022, 8(1): 16–21.

[14]

Hao-Hua Que et al.: Approximate Computing: From Arithmetic Units Design to High-Level Applications 269

https://doi.org/10.1109/MDAT.2015.2505723
https://doi.org/10.1145/3394885.3431632
https://doi.org/10.1145/3394885.3431632
https://doi.org/10.1109/JPROC.2020.3006451
https://doi.org/10.1109/JPROC.2020.3020792
https://doi.org/10.1109/JPROC.2020.3020792
https://doi.org/10.1109/TCAD.2012.2217962
https://doi.org/10.1109/TCAD.2012.2217962
https://doi.org/10.1109/ICCAD.2013.6691108
https://doi.org/10.1109/SOCDC.2010.5682905
https://doi.org/10.1109/TVLSI.2014.2355217
https://doi.org/10.1016/j.vlsi.2017.09.003
https://doi.org/10.1016/j.vlsi.2017.09.003
https://doi.org/10.1142/S0218126617500396
https://doi.org/10.1109/ISCAS.2018.8350962
https://doi.org/10.1109/TC.2012.146
https://doi.org/10.1109/TC.2012.146

 Kulkarni P, Gupta P, Ercegovac M. Trading accuracy for

power with an underdesigned multiplier architecture. In

Proc. the 24th Internatioal Conference on VLSI Design,

Jan. 2011, pp.346–351. DOI: 10.1109/VLSID.2011.51.

[15]

 Rehman S, El-Harouni W, Shafique M, Kumar A, Henkel

J, Henkel J. Architectural-space exploration of approxi-

mate multipliers. In Proc. the 2016 IEEE/ACM Interna-

tional Conference on Computer-Aided Design (ICCAD),

Nov. 2016. DOI: 10.1145/2966986.2967005.

[16]

 Waris H, Wang C H, Xu C Y, Liu W Q. AxRMs: Ap-

proximate recursive multipliers using high-performance

building blocks. IEEE Trans. Emerging Topics in Com-

puting, 2022, 10(2): 1229–1235. DOI: 10.1109/TETC.2021.

3096515.

[17]

 Mahdiani H R, Ahmadi A, Fakhraie S M, Lucas C. Bio-

inspired imprecise computational blocks for efficient VL-

SI implementation of soft-computing applications. IEEE

Trans. Circuits and Systems I: Regular Papers, 2009,

57(4): 850–862. DOI: 10.1109/TCSI.2009.2027626.

[18]

 Baran D, Aktan M, Oklobdzija V G. Energy efficient im-

plementation of parallel CMOS multipliers with im-

proved compressors. In Proc. the 16th ACM/IEEE Inter-

national Symposium on Low-Power Electronics and De-

sign, Aug. 2010, pp.147–152. DOI: 10.1145/1840845.

1840876.

[19]

 Zendegani R, Kamal M, Bahadori M, Afzali-Kusha A, Pe-

dram M. RoBA multiplier: A rounding-based approxi-

mate multiplier for high-speed yet energy-efficient digital

signal processing. IEEE Trans. Very Large Scale Integra-

tion (VLSI) Systems, 2017, 25(2): 393–401. DOI: 10.1109/

TVLSI.2016.2587696.

[20]

 Narayanamoorthy S, Moghaddam H A, Liu Z H, Park T,

Kim N S. Energy-efficient approximate multiplication for

digital signal processing and classification applications.

IEEE Trans. Very Large Scale Integration (VLSI) Sys-

tems, 2015, 23(6): 1180–1184. DOI: 10.1109/TVLSI.2014.

2333366.

[21]

 Liu W Q, Qian L Y, Wang C H, Jiang H L, Han J, Lom-

bardi F. Design of approximate radix-4 booth multipliers

for error-tolerant computing. IEEE Trans. Computers,

2017, 66(8): 1435–1441. DOI: 10.1109/TC.2017.2672976.

[22]

 Venkatachalam S, Adams E, Lee H J, Ko S B. Design

and analysis of area and power efficient approximate

booth multipliers. IEEE Trans. Computers, 2019, 68(11):

1697–1703. DOI: 10.1109/TC.2019.2926275.

[23]

 Waris H, Wang C H, Liu W Q. Hybrid low radix encod-

ing-based approximate booth multipliers. IEEE Trans.

Circuits and Systems II: Express Briefs, 2020, 67(12):

3367–3371. DOI: 10.1109/TCSII.2020.2975094.

[24]

 Mitchell J N. Computer multiplication and division using

binary logarithms. IRE Trans. Electronic Computers,

1962, EC-11(4): 512–517. DOI: 10.1109/TEC.1962.5219391.

[25]

 Liu W Q, Xu J H, Wang D Y, Wang C H, Montuschi P,

Lombardi F. Design and evaluation of approximate loga-

rithmic multipliers for low power error-tolerant applica-

tions. IEEE Trans. Circuits and Systems I: Regular Pa-

pers, 2018, 65(9): 2856–2868. DOI: 10.1109/TCSI.2018.

[26]

2792902.

 Zhang T T, Jiang H L, Mo H, Liu W Q, Lombardi F, Liu

L B, Han J. Design of majority logic-based approximate

booth multipliers for error-tolerant applications. IEEE

Trans. Nanotechnology, 2022, 21: 81–89. DOI: 10.1109/

TNANO.2022.3145362.

[27]

 Chen L B, Han J, Liu W Q, Lombardi F. On the design

of approximate restoring dividers for error-tolerant appli-

cations. IEEE Trans. Computers, 2016, 65(8): 2522–2533.

DOI: 10.1109/TC.2015.2494005.

[28]

 Ercegovac M D, Lang T, Montuschi P. Very-high radix

division with prescaling and selection by rounding. IEEE

Trans. Computers, 1994, 43(8): 909–918. DOI: 10.1109/12.

295853.

[29]

 Chen L B, Lombardi F, Montuschi P, Han J, Liu W Q.

Design of approximate high-radix dividers by inexact bi-

nary signed-digit addition. In Proc. the on Great Lakes

Symposium on VLSI 2017, May 2017, pp.293–298. DOI:

10.1145/3060403.3060404.

[30]

 Lin C P, Tseng P C, Chiu Y T, Lin S S, Cheng C C,

Fang H C, Chao W M, Chen L G. A 5mW MPEG4 SP

encoder with 2D bandwidth-sharing motion estimation for

mobile applications. In Proc. the 2006 IEEE Internation-

al Solid State Circuits Conference-Digest of Technical Pa-

pers, Feb. 2006, pp.1626–1635. DOI: 10.1109/ISSCC.2006.

1696217.

[31]

 Carroll A, Heiser G. An analysis of power consumption in

a smartphone. In Proc. the 2010 USENIX Conference on

USENIX Annual Technical Conference, Jun. 2010.

[32]

 Chang I J, Mohapatra D, Roy K. A priority-based 6T/8T

hybrid SRAM architecture for aggressive voltage scaling

in video applications. IEEE Trans. Circuits and Systems

for Video Technology, 2011, 21(2): 101–112. DOI: 10.1109/

TCSVT.2011.2105550.

[33]

 Zhou N, Qiao F, Yang H Z, Wang H. Low-power off-chip

memory design for video decoder using embedded bus-in-

vert coding. In Proc. the 10th International Symposium

on Autonomous Decentralized Systems, Mar. 2011,

pp.251–255. DOI: 10.1109/ISADS.2011.33.

[34]

 Joo Y, Choi Y, Shim H. Energy exploration and reduc-

tion of SDRAM memory systems. In Proc. the 2002 De-

sign Automation Conference, Jun. 2002, pp.892–897. DOI:

10.1109/DAC.2002.1012748.

[35]

 Liu S, Pattabiraman K, Moscibroda T, Zorn B G. Flikker:

Saving DRAM refresh-power through critical data parti-

tioning. In Proc. the 16th International Conference on Ar-

chitectural Support for Programming Languages and Op-

erating Systems, Mar. 2011, pp.213–224. DOI: 10.1145/

1950365.1950391.

[36]

 Tian Y, Zhang Q, Wang T, Yuan F, Xu Q. ApproxMA:

Approximate memory access for dynamic precision scal-

ing. In Proc. the 25th Edition on Great Lakes Sympo-

sium on VLSI, May 2015, pp.337–342. DOI: 10.1145/

2742060.2743759.

[37]

 Shiga H, Takashima D, Shiratake S I, Hoya K, Miyakawa

T, Ogiwara R, Fukuda R, Takizawa R, Hatsuda K, Mat-

suoka F, Nagadomi Y, Hashimoto D, Nishimura H, Hio-

[38]

270 J. Comput. Sci. & Technol., Mar. 2023, Vol.38, No.2

https://doi.org/10.1109/VLSID.2011.51
https://doi.org/10.1145/2966986.2967005
https://doi.org/10.1109/TETC.2021.3096515
https://doi.org/10.1109/TETC.2021.3096515
https://doi.org/10.1109/TCSI.2009.2027626
https://doi.org/10.1145/1840845.1840876
https://doi.org/10.1145/1840845.1840876
https://doi.org/10.1109/TVLSI.2016.2587696
https://doi.org/10.1109/TVLSI.2016.2587696
https://doi.org/10.1109/TVLSI.2014.2333366
https://doi.org/10.1109/TVLSI.2014.2333366
https://doi.org/10.1109/TC.2017.2672976
https://doi.org/10.1109/TC.2019.2926275
https://doi.org/10.1109/TCSII.2020.2975094
https://doi.org/10.1109/TEC.1962.5219391
https://doi.org/10.1109/TCSI.2018.2792902
https://doi.org/10.1109/TCSI.2018.2792902
https://doi.org/10.1109/TNANO.2022.3145362
https://doi.org/10.1109/TNANO.2022.3145362
https://doi.org/10.1109/TC.2015.2494005
https://doi.org/10.1109/12.295853
https://doi.org/10.1109/12.295853
https://doi.org/10.1145/3060403.3060404
https://doi.org/10.1109/ISSCC.2006.1696217
https://doi.org/10.1109/ISSCC.2006.1696217
https://doi.org/10.1109/TCSVT.2011.2105550
https://doi.org/10.1109/TCSVT.2011.2105550
https://doi.org/10.1109/ISADS.2011.33
https://doi.org/10.1109/DAC.2002.1012748
https://doi.org/10.1145/1950365.1950391
https://doi.org/10.1145/1950365.1950391
https://doi.org/10.1145/2742060.2743759
https://doi.org/10.1145/2742060.2743759

ka T, Doumae S, Shimizu S, Kawano M, Taguchi T,

Watanabe Y, Fujii S, Ozaki T, Kanaya H, Kumura Y,

Shimojo Y, Yamada Y, Minami Y, Shuto S, Yamakawa

K, Yamazaki S, Kunishima I, Hamamoto T, Nitayama A,

Furuyama T. A 1.6 GB/s DDR2 128 Mb chain FeRAM

with scalable octal bitline and sensing schemes. IEEE

Journal of Solid-State Circuits, 2010, 45(1): 142–152.

DOI: 10.1109/JSSC.2009.2034414.

 Li B X, Xia L X, Gu P, Wang Y, Yang H Z. Merging the

interface: Power, area and accuracy co-optimization for

RRAM crossbar-based mixed-signal computing system. In

Proc. the 52nd ACM/EDAC/IEEE Design Automation

Conference, Jun. 2015. DOI: 10.1145/2744769.2744870.

[39]

 Nelson J, Sampson A, Ceze L. Dense approximate stor-

age in phase-change memory. In Proc. the Wild and

Crazy Ideas w/International Conference on Architectural

Support for Programming Languages and Operating Sys-

tems (WACI w/ASPLOS), Mar. 2011.

[40]

 Sidiroglou-Douskos S, Misailovic S, Hoffmann H, Rinard

M. Managing performance vs. accuracy trade-offs with

loop perforation. In Proc. the 19th ACM SIGSOFT Sym-

posium and the 13th European Conference on Founda-

tions of Software Engineering, Sept. 2011, pp.124–134.

DOI: 10.1145/2025113.2025133.

[41]

 Lashgar A, Atoofian E, Baniasadi A. Loop perforation in

OpenACC. In Proc. the 2018 IEEE International Confer-

ence on Parallel & Distributed Processing with Applica-

tions, Ubiquitous Computing & Communications, Big Da-

ta & Cloud Computing, Social Computing & Networking,

Sustainable Computing & Communications (ISPA/IUCC/-

BDCloud/SocialCom/SustainCom), Dec. 2018, pp.163–170.

DOI: 10.1109/BDCloud.2018.00036.

[42]

 Rubio-González C, Nguyen C, Nguyen H D, Demmel J,

Kahan W, Sen K, Bailey D H, Iancu C, Hough D. Preci-

monious: Tuning assistant for floating-point precision. In

Proc. the International Conference on High Performance

Computing, Networking, Storage and Analysis, Nov. 2013.

DOI: 10.1145/2503210.2503296.

[43]

 Hsiao C C, Chu S L, Chen C Y. Energy-aware hybrid

precision selection framework for mobile GPUs. Comput-

ers & Graphics, 2013, 37(5): 431–444. DOI: 10.1016/j.cag.

2013.03.003.

[44]

 Lesser B, Mücke M, Gansterer W N. Effects of reduced

precision on floating-point SVM classification accuracy.

Procedia Computer Science, 2011, 4: 508–517. DOI: 10.

1016/j.procs.2011.04.053.

[45]

 Venkataramani S, Ranjan A, Roy K, Raghunathan A.

AxNN: Energy-efficient neuromorphic systems using ap-

proximate computing. In Proc. the 2014 IEEE/ACM In-

ternational Symposium on Low Power Electronics and

Design (ISLPED), Aug. 2014, pp.27–32. DOI: 10.1145/

2627369.2627613.

[46]

 Gupta S, Agrawal A, Gopalakrishnan K, Narayanan P.

Deep learning with limited numerical precision. In Proc.

the 32nd International Conference on Machine Learning,

Jul. 2015, pp.1737–1746.

[47]

 Krishnamoorthi R. Quantizing deep convolutional net-[48]

works for efficient inference: A whitepaper. arXiv: 1806.

08342, 2018. https://arxiv.org/abs/1806.08342, April 2023.

 Zhu F, Gong R H, Yu F W, Liu X L, Wang Y F, Li Z L,

Yang X Q, Yan J J. Towards unified INT8 training for

convolutional neural network. In Proc. the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

Jun. 2020, pp.1966–1976. DOI: 10.1109/CVPR42600.2020.

00204.

[49]

 Gysel P, Pimentel J, Motamedi M, Ghiasi S. Ristretto: A

framework for empirical study of resource-efficient infer-

ence in convolutional neural networks. IEEE Trans. Neu-

ral Networks and Learning Systems, 2018, 29(11):

5784–5789. DOI: 10.1109/TNNLS.2018.2808319.

[50]

 Banner R, Nahshan Y, Soudry D. Post training 4-bit

quantization of convolutional networks for rapid-deploy-

ment. In Proc. the 33rd International Conference on Neu-

ral Information Processing Systems, Dec. 2019,

pp.7950–7958.

[51]

 Sun X, Choi J, Chen C Y, Wang N G, Venkataramani S,

Srinivasan V V, Cui X D, Zhang W, Gopalakrishnan K.

Hybrid 8-bit floating point (HFP8) training and inference

for deep neural networks. In Proc. the 33rd International

Conference on Neural Information Processing Systems,

Dec. 2019, pp.4900–4909.

[52]

 Micikevicius P, Narang S, Alben J, Diamos G, Elsen E,

Garcia D, Ginsburg B, Houston M, Kuchaiev O,

Venkatesh G, Wu H. Mixed precision training. arXiv:

1710.03740, 2017. https://arxiv.org/abs/1710.03740#, April

2023.

[53]

 Hanson S J, Pratt L Y. Comparing biases for minimal

network construction with back-propagation. In Proc. the

1st International Conference on Neural Information Pro-

cessing Systems, Jan. 1988, pp.177–185.

[54]

 LeCun Y, Denker J S, Solla S A. Optimal brain damage.

In Proc. the Advances in Neural Information Processing

Systems, Nov. 1989. pp.598–605.

[55]

 Zhu M, Gupta S. To prune, or not to prune: Exploring

the efficacy of pruning for model compression. In Proc.

the 6th International Conference on Learning Representa-

tions, Apr. 2018.

[56]

 Han S, Pool J, Tran J, Dally W J. Learning both weights

and connections for efficient neural networks. In Proc. the

28th International Conference on Advances in Neural In-

formation Processing Systems, Dec. 2015. pp.1135–1143.

[57]

 Liu Z, Li J G, Shen Z Q, Huang G, Yan S M, Zhang C S.

Learning efficient convolutional networks through net-

work slimming. In Proc. the 2017 IEEE International

Conference on Computer Vision, Oct. 2017, pp.2755–2763.

DOI: 10.1109/ICCV.2017.298.

[58]

 Ye J B, Lu X, Lin Z, Wang J Z. Rethinking the smaller-

norm-less-informative assumption in channel pruning of

convolution layers. In Proc. the 6th International Confer-

ence on Learning Representations, Apr. 2018.

[59]

 Fleischer B, Shukla S, Ziegler M, Silberman J, Oh J,

Srinivasan V, Choi J, Mueller S, Agrawal A, Babinsky T,

Cao M Z, Chen C Y, Chuang P, Fox T, Gristede G, Guil-

lorn M, Haynie H, Klaiber M, Lee D, LO S H, Maier G,

[60]

Hao-Hua Que et al.: Approximate Computing: From Arithmetic Units Design to High-Level Applications 271

https://doi.org/10.1109/JSSC.2009.2034414
https://doi.org/10.1145/2744769.2744870
https://doi.org/10.1145/2744769.2744870
https://doi.org/10.1145/2744769.2744870
https://doi.org/10.1145/2025113.2025133
https://doi.org/10.1109/BDCloud.2018.00036
https://doi.org/10.1145/2503210.2503296
https://doi.org/10.1016/j.cag.2013.03.003
https://doi.org/10.1016/j.cag.2013.03.003
https://doi.org/10.1016/j.procs.2011.04.053
https://doi.org/10.1016/j.procs.2011.04.053
https://doi.org/10.1145/2627369.2627613
https://doi.org/10.1145/2627369.2627613
https://arxiv.org/abs/1806.08342
https://doi.org/10.1109/CVPR42600.2020.00204
https://doi.org/10.1109/CVPR42600.2020.00204
https://doi.org/10.1109/TNNLS.2018.2808319
https://arxiv.org/abs/1710.03740#
https://doi.org/10.1109/ICCV.2017.298

Scheuermann M, Venkataramani S, Vezyrtzis C, Wang N

G, Yee F, Zhou C, Lu P F, Curran B, Chang L,

Gopalakrishnan K. A scalable multi-TeraOPS deep learn-

ing processor core for AI Trainina and inference. In Proc.

the 2018 IEEE Symposium on VLSI Circuits, Jun. 2018,

pp.35–36. DOI: 10.1109/VLSIC.2018.8502276.

 Li H, Pang Y R, Zhang J L. Security enhancements for

approximate machine learning. In Proc. the on Great

Lakes Symposium on VLSI 2021, Jun. 2021, pp.461–466.
DOI: 10.1145/3453688.3461753.

[61]

 Leipnitz M T, Nazar G L. High-level synthesis of re-

source-oriented approximate designs for FPGAs. In Proc.

the 56th ACM/IEEE Design Automation Conference

(DAC), Jun. 2019.

[62]

Hao-Hua Que is currently pursuing

his B.S. degree in Beijing Forestry

University, Beijing. His research inter-

est includes artificial intelligence appli-

cations and machine learning algo-

rithms based on approximate circuits.

Yu Jin is currently an undergradu-

ate of Beijing Forestry University, ma-

joring in electronic information sci-

ence and technology, Beijing. His re-

search interests include approximate

computing in algorithm, and FPGA.

Tong Wang is currently an under-

graduate from Beijing Forestry Uni-

versity, majoring in electronic informa-

tion science and technology, Beijing.

His research interests include digit cir-

cuit and approximate calculation.

Ming-Kai Liu is currently an under-

graduate from Beijing Forestry Uni-

versity, Beijing, majoring in electronic

information science and technology.

His research interests include approxi-

mate computing in algorithm, signal

analyzing and processing.

Xing-Hua Yang received his Ph.D.

degree in electronic science and tech-

nology from Department of Electron-

ics Engineering, Tsinghua University,

Beijing, in 2017. He is currently work-

ing as a lecturer of College of Science,

Beijing Forestry University, Beijing.

His research interests include approximate computing in

algorithm, circuit, and system design.

Fei Qiao received his Bachelor’s de-

gree in electronics and information

system from Lanzhou University,

Lanzhou, in 2000, and his Ph.D. de-

gree in electronics science and technol-

ogy from Tsinghua University, Beijing,

in 2006. He is currently an associate

professor with the Department of Electronic Engineer-

ing, Tsinghua University, Beijing. He has authored

around 90 papers and holds over 30 invented patents.

His research interests include low power circuits design,

and energy-efficient integrated perception circuits and

systems for intelligent robots, wearables and IoT de-

vices.

272 J. Comput. Sci. & Technol., Mar. 2023, Vol.38, No.2

https://doi.org/10.1109/VLSIC.2018.8502276
https://doi.org/10.1145/3453688.3461753

	1 Introduction
	2 Strategies for Approximate Computing
	2.1 Approximate Arithmetic Units
	2.1.1 Approximate Adders
	2.1.2 Approximate Multipliers
	2.1.3 Approximate Dividers

	2.2 Approximate Memory
	2.2.1 Approximating SRAM
	2.2.2 Approximating DRAM
	2.2.3 Approximating Memories Based on New Process

	2.3 Software Level
	2.3.1 Loop Perforation
	2.3.2 Data Precision Reduction

	2.4 Application Level
	2.4.1 Parameter Quantization
	2.4.2 Model Pruning

	3 Limitations of Approximate Computing
	3.1 Fault Tolerance of a System
	3.2 Unpredictable Security Vulnerability

	4 Promises and Challenges of Approximate Computing
	4.1 Opportunities to Come
	4.2 Challenges to Be Faced

	5 Conclusions
	References

