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Abstract    Modern computer systems are increasingly bounded by the available or permissible power at multiple layers

from individual components to data centers. To cope with this reality, it is necessary to understand how power bounds im-

pact performance, especially for systems built from high-end nodes, each consisting of multiple power hungry components.

Because placing an inappropriate power bound on a node or a component can lead to severe performance loss, coordinat-

ing power allocation among nodes and components is mandatory to achieve desired performance given a total power bud-

get. In this article, we describe the paradigm of power bounded high-performance computing, which considers coordinated

power bound assignment to be a key factor in computer system performance analysis  and optimization.  We apply this

paradigm to the problem of power coordination across multiple layers for both CPU and GPU computing. Using several

case studies, we demonstrate how the principles of balanced power coordination can be applied and adapted to the inter-

play of workloads, hardware technology, and the available total power for performance improvement.
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 1    Introduction

Modern computer systems are increasingly bound-

ed  by  the  available  or  permissible  power  at  multiple

levels ranging from components and machines to clus-

ters and data centers①.  For example, computer com-

ponents  such as  GPU cards and CPUs must operate

within  their  thermal  design  power,  and  exascale  sys-

tems are imposed with a power budget of 20–30 mega-

watts[1].  Such  power  bounds  are  set  due  to  physical,

technical,  and  economical  reasons.  Nevertheless,  sys-

tem  performance  must  continue  to  increase,  which

makes power a deciding factor for the deliverable per-

formance and scalability of applications and systems.

Meanwhile, emerging workloads such as large neu-

ral networks have created an insatiable compute and

power  demand②.  The  larger  the  network,  the  more

accurate the model, and the more the power demand.

The  GPT-3's  deep  learning  neural  network  has  over

175  billion  machine  learning  parameters,  17x  larger

than  the  previous  largest  trained  Turing  NLG  lan-

guage  model.  Motivated  to  increase  model  accuracy,

DNN  training  does  not  necessarily  prioritize  power

and performance efficiency[2]. Such workloads typical-

ly have a low system utilization of 52% on average on

highly  optimized  systems[2].  Indiscriminately  running

the  components  at  full  speeds  not  only  wastes  the

limited  available  power  but  also  suffers  suboptimal

performance. To avoid this situation, it is mandatory

to allocate power to nodes and components based on

applications'  needs.  Left  unaddressed,  energy  con-

sumption will exceed supply③. In short, power bound-
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ed computing is not only urgent but also a reality.

Sustaining  performance  growth  given  a  power

bound  has  motivated  research  in  computer  architec-

ture, system management, and their work in tandem.

The paradigm of power bounded computing applies to

system  management.  Specifically,  it  considers  power

as  a  scarce  resource  and  aims  to  maximally  use  the

available power budget to increase application perfor-

mance and system throughput. The system over-pro-

visions  hardware  components  but  dynamically  man-

ages  them to  operate  within  the  given power  bound,

thus  ensuring  power  is  maximally  translated  to  per-

formance.  This  paradigm relies  on  the  availability  of

power-aware components that support a set of power-

performance states and can transition from one state

to another as instructed by a user or a program.

We  apply  the  paradigm  of  power  bounded  com-

puting for both homogeneous and heterogeneous pow-

er  constrained  computing.  The  paradigm  can  be  ap-

plied hierarchically, supporting multiple levels includ-

ing  clusters,  nodes,  accelerator  devices,  and  compo-

nents, as well as job co-scheduling. We describe some

core  technologies  we  have  developed  under  this

paradigm:  node  level  cross-component  power  coordi-

nation[3–5], CLIP (cluster level intelligent power coor-

dination)[6], and job co-running and resource sharing[7, 8].

These technologies tailor power allocation to applica-

tions  and  available  power  budgets,  and  significantly

improve performance in comparison to the default set-

tings.

 2    The Power Bounded Computing Problem

Power  bounded  computing  is  built  upon  the

premise  that  every  compute  node  in  the  system  can

and  will  operate  under  a  given  power  budget.  By

bounding  per-node  power  consumption,  a  large-scale

system  can  reconfigure  itself  based  on  its  current

workload  to  achieve  better  performance  under  the

same power budget.  For simplicity,  we focus on pro-

cessors  and  DRAM  modules  on  hosts  and  discrete

GPU accelerators, i.e., CPUs and memory, and GPU

Streaming  Multiprocessing  cores  (SMs)  and  global

memory.  A  reason  for  this  simplification  is  that  the

power  consumption  of  other  components  is  typically

smaller and has smaller variations.

Pb

Pb

Given a system M and a system power budget ,

the  objective  of  power  bounded  computing  (denoted

PBC)  is  to  maximize  application  performance  and

system throughput  under  total  system power  budget

 with  available  hardware  in  machine M.  Because

the  system  power  is  allocated  hierarchically,  we  for-

mulate  the  PBC  problem  at  both  the  system  level

and the nodal level.

{W1,W2, ...,Wn}
Pb

The system level power bounded computing prob-

lem is formulated as follows: given a job queue Q with

a  set  of  parallel  workloads ,  a  ma-

chine M and a total power bound , find an optimal

power, hardware and job allocation such that:

STP (a∗, Q,M) = maxα∈ASTP (α,Q,M)1) , and∑
m∈M P ∗

m ⩽ Pb.2) 

STP α

(J,Hw,P )

J Hw

P A
α

Here,  is  system throughput,  is  hardware and

resource  allocation  tuple  (i.e.,  how  work-

loads  ( )  are  assigned  to  nodes  ( )  with  corre-

sponding power budgets ( )), and  is the space that

comprises all possible values of . The system can dis-

tribute  power  across  multiple  levels,  from  a  single

component to an entire node. We define a component

as power boundable if the component can and will al-

ways operate under the power cap allocated to it.

W nd

C1, C2, . . . , CK

Pnd

perfmax

α∗ = (P ∗
1 , P

∗
2 , . . . , P

∗
K

The  node-level  power  bounded  computing  prob-

lem  is  formulated  as  follows:  given  a  parallel  work-

load ,  a  node  comprising  a  set  of K power

boundable  components ,  and  a  total

power bound , find the upper bound of the achiev-

able performance  and the corresponding pow-

er allocation tuple ) such that:

perfmax = maxα∈A perf(α,W, nd)1) ,

α∗ = arg maxα∈Aperf(α,W, nd)2) , and∑K
i=1 P

∗
i ⩽ Pnd3) .

α A
α

perf

Here,  is  a  power  allocation  tuple  and  is  the

space  that  comprises  all  possible  values  of  within

the node. The performance metric, , can have dif-

ferent  definitions  depending  on  both  the  application

and the user's demand. Example metrics include com-

pute  rate,  performance-to-power  ratio,  and  system

throughput.

 3    Nodal Level Cross-Component

Coordination

The first principle of power bounded computing is

balancing  power  budget  allocation  among  all  compo-

nents subject to an overall power cap with a system-

wide  optimization  objective  instead  of  an  individual

optimization  goal.  To  understand  how  this  principle

will be applied to real systems, we look at a high-lev-

el  picture  of  power consumption on today's  high-end

systems and their building blocks.

First, these systems and building blocks normally

have a significantly larger power envelope than what
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they  actually  consume  at  run-time.  For  example,  a

compute  node  of  the  Frontier  supercomputer  inte-

grates  8  CCDs,  4  high-end GPUs with  2  GCDs,  512

GB DDR4 memory, and 512 GB HBM2e memory. Its

total  power envelope exceeds 3 000 W. If  we allocate

power  based  on  these  envelopes,  inefficient  use  will

lead to significant waste.

Second, these systems have multiple major power

consumers  like  CPUs,  GPUs,  and  memory  whose

power  budgets  must  be  simultaneously  managed  to

maximize performance given a limited system power.

Memory may consume more power than processors on

big-memory systsems④,  and high-end GPUs consume

comparable  or  more  power  than  CPUs.  Traditional

methods  that  focus  on  a  single  dominant  component

would  lead  to  suboptimal  performance  and  power

waste.

Third, hardware resources are generally overprovi-

sioned but  most  applications  will  not  fully  utilize  all

of  them  all  the  time.  For  example,  CPU  algorithms

do not use GPUs while GPU algorithms typically on-

ly  use  CPUs  for  kernel  offloading  and  data  manage-

ment.  Activating  components  and  running  them  at

full speed without disparity not only wastes the limit-

ed available power but also suffers suboptimal perfor-

mance.

Finally,  to  maintain  a  high  performance  given  a

power  budget,  a  balanced  power  allocation  between

components must be robust; otherwise a small power

shift away from a balanced configuration may lead to

significant performance loss.

To  develop  effective  and  robust  technology  for

power  bounded  computing,  we  start  from  the  node

level and study how to achieve robust balanced pow-

er  allocation  between  processing  units  and  memory

modules,  i.e.,  CPUs  and  main  memory,  and  GPUs

and  GPU  global  memory.  Our  main  focuses  include

understanding the dynamics between processor-memo-

ry  power  allocation  and  application  performance,

identifying  the  patterns  of  power  allocation  impacts,

and developing optimal power coordination strategies.

Our research[3, 4] leads to the following findings.

1)  Cross-component  power  coordination  can  im-

prove  performance  significantly,  e.g.,  35%  for  GPU

computing  and  more  for  CPU  computing.  These  re-

sults  highlight  the  impacts  and  urgency  of  applying

power  bounded  computing  principles  to  HPC  (high

performance computing) systems.

2)  There  exist  distinct  patterns  of  performance

and  power  dynamics  which  can  be  categorized  over

both CPU and GPU computing. These patterns guide

designing  optimal  cross-component  power  allocation

algorithms on modern HPC.

3)  Different  workloads  considerably  vary  in  char-

acteristics while sharing common patterns, suggesting

the need to integrate application awareness into pow-

er scheduling and management.

4) Heuristic algorithms can quickly pinpoint near-

optimal  cross-component  power  allocations  with

lightweight application profiling.

 3.1    Categorizing Power Allocation Effects

Pnd Pcpu

Pmem α = (Pcpu, Pmem)

Pnd ⩾ Pcpu+mem

To  understand  the  implication  of  bounding  com-

ponent power budget, we consider coordinated power

allocation  between  processing  units  and  memory,

where  each  includes  all  the  processors/cores  and

memory  devices  respectively.  We  denote  the  total

power constraint ,  processing power ,  memory

power , and the power allocation .

We  note  holds  for  all  power  alloca-

tions.

Given  a  power  budget,  application  performance

differs  significantly  by  changing  the  power  distribu-

tion  between  processors  and  memory.  As  shown  in

Fig.1,  there  exist  six  categories  of  power  allocation

scenarios with regard to their performance effects.

Pb

Category 1: Adequate  Power  Allocation  for  Both
CPUs and Memory. Both CPUs and memory receive

power allocation exceeding their maximum power de-

mands,  and an application can achieve  its  maximum

performance.  The  actual  power  consumption  of  each

component  stays  constant,  and  the  sum may  be  less

than .

Category 2: Adequate  Memory  Power,  Lightly
Bounded  CPU Power. The  power  allocated  to  CPUs

is lightly bounded but adequate to operate all proces-

sor  cores  at  a  performance  state.  The  actual  CPU

power  closely  matches  the  allocated  power  budget.

Meanwhile,  the  actual  DRAM  power  stays  near  the

maximum value even though DRAM receives a high-

er power allocation. As CPU power budget decreases,

application  performance  decreases  monotonously  and

gradually.

Category 3: Adequate CPU Power, Bounded Mem-
ory  Power. CPUs  receive  more  power  budget  than
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needed.  Their  actual  power  stays  relatively  constant

and  is  slightly  smaller  than  the  maximum  demand,

regardless  if  more  budget  is  allocated.  Meanwhile,

DRAM receives inadequate allocations, and its actual

consumption is close to the budget. In scenario 3, ap-

plication  performance  is  bounded  by  memory  perfor-

mance;  increasing  power  allocation  to  memory  dra-

matically improves application performance.

Category 4: Adequate Memory Power, Significant-
ly  Inadequate  CPU Power. When CPU power  is  sig-

nificantly  under-budgeted  while  DRAM  is  over-bud-

geted, the application performance drops sharply from

those  in  categories  2  and  3.  In  category  4,  memory

consumes much less power than its allocation, mainly

due to the fact that CPUs make less frequent memo-

ry request.

Category 5: Adequate  CPU  Power,  Minimum
Memory Power. The actual CPU power is close to the

maximum CPU power  required  by  a  given  workload

(108 W in the test case used in Fig.1).

Category 6: Adequate  Memory  Power,  Minimum
CPU Power. CPUs receive a minimal or close to mini-

mal power allocation. In this scenario, hardware over-

rides  the  software  power  allocation  and  CPUs  con-

sume a constant power, i.e., 48 W. Meanwhile, memo-

ry  receives  an  excessive  power  budget.  This  scenario

cannot ensure the system power bound and often de-

livers the worst performance.

 3.1.1    Power Allocation Categories on GPU

Computing

We  have  observed  similar  power  allocation  pat-

terns  for  allocating  power  between GPU devices  and

memory for GPU computing. However, because GPU

supports  a  smaller  range  of  power  management  and

uses different power capping mechanisms, the dynam-

ics of GPU cross-component power allocation and cat-

egories have some unique features[3] as shown in Fig.2.

First,  fewer  categories  appear  in  the  application

profiles,  e.g.,  categories  1,  3  and 2 on Titan XP and

category 3 on Titan V. GPU hardware prohibits cate-

gories (4 & 5 & 6) which would deliver an unaccept-

able low performance, by disallowing low power caps

on  SMs  and  memory.  Further,  the  largest  perfor-

mance difference among all power allocations is about

30%.

Second,  unlike  independent  management  of  pro-

cessors  and  DRAM  on  the  host,  where  the  unused

power budget on one component is simply wasted, the

GPU power capping automatically reclaims and shifts

it  to  another  component,  e.g.,  from  DRAM to  SMs.

As a  result,  the  intersections  of  categories  are  differ-

ent from those for CPU computing, and the actual to-

tal power consumption always matches the set power

cap, unless the cap exceeds applications' demands.

Third, with the new SM and HBM2 technologies,

Titan V has a smaller total and DRAM power range

than Titan XP.

 3.2    Category Based Power Allocation

Strategies

After analyzing the performance impacts of differ-

ent  power  allocations,  we  found  that  given  a  power

budget,  the  optimal  cross-component  power  alloca-
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90 J. Comput. Sci. & Technol., Jan. 2023, Vol.38, No.1



tion  measured  by  delivered  performance  provides  a

balanced  interaction  between  compute  and  memory

access,  while  other  allocations  bound  at  least  one  of

them.

To study the effect of power bound, we define the

Rmax

RP

PK

R

Rmax

maximum capacity  for  a  component K and the

allocated  capacity  when  the  component  operates

given  a  power  budget .  A  component  reaches  its

maximum  capacity  when  it  receives  adequate  power

while  all  other  components  are  not  subject  to  any

power  constraint.  In  other  words,  whether  a  compo-

nent  is  bounded  by  power  can  be  measured  by  such

component's utilization rate—the ratio of the compo-

nent's actual delivered rate  to its maximum capaci-

ty .

With the optimal power allocation, the utilization

rate  is  high,  close  to  100%  for  both  compute  and

memory  access.  In  contrast,  when  processors  are  un-

der powered, processor capacity utilization is high but

memory  capacity  utilization  is  low,  indicating  that

application execution is bounded by computing. Simi-

larly,  when  memory  is  under  powered,  the  applica-

tion  is  bounded  by  memory  access. Fig.3 illustrates

this  concept  by  examining  the  performance  of

DGEMM and  STREAM benchmarks  under  different

utilization  rates  for  CPUs  and  memory  on  an  Ivy-

Bridge system.

Different  applications  have  different  demands  for

compute and memory access, and thus different com-

pute intensities—the ratio of the computation rate to

the memory bandwidth on the same system. As a re-

sult,  their  optimal  power  allocations  differ.  DGEMM

is  compute  intensive  and  has  a  high  power  demand

for CPUs. In contrast, STREAM is memory intensive,

requiring more power allocation for memory access.

 3.2.1    Finding the Optimal Power Allocation

The  optimal  cross-component  power  allocation  is

specific  to  the  given  power  budget.  It  is  located  at

category 1 given sufficient  power,  and usually  at  the

intersection of two neighboring scenarios given small-

er power budgets. As the power budget decreases, the

optimal allocation is at the intersection of categories 2

and 3, and further moves to the intersection of cate-

gories 3 and 4. Table 1 summarizes the location of the

optimal allocation for varying power budgets.

From  the  optimal  cross-component  power  alloca-

tion,  a  shift  in  either  direction  causes  performance

degradation.  However,  shifting  in  one  direction  de-

grades performance more.  We mark the critical  com-

ponent as the one that,  if  under powered, drastically

degrades  the  application  performance.  The  existence

of a critical component suggests that a power alloca-

tion  strategy  ensures  the  power  budget  for  the  criti-
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Fig.2.  Performance trends as memory power allocation increas-
es  under  various  total  power  caps  on Titan V[3].  The memory
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cal  power models  built  from experiment data on the card.  (a)
SGEMM on Titan V. (b) STREAM on Titan V. (c) Cloverleaf
on Titan V.
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cal component and approaches the optimal allocation

from the scenario (underlined in Table 1) that better

preserves the performance. We would like to reiterate

that very small power budgets should not be allocat-

ed  for  running  new  jobs,  due  to  unacceptable  low

power efficiency and performance.

 3.2.2    Category-Based Heuristic Power

Coordination

The power allocation categories lead to the design

of heuristic power allocation methods for the problem

of cross-component coordination. Such methods elimi-

nate the need for exhaustive or fine-grain profiling to

search  the  optimal  power  allocation  for  any  given

power  budget.  The  existence  of  critical  power  levels

provides  two  important  heuristics.  First,  the  power

budget  given  to  a  computer  system  must  be  greater

than  a  threshold  to  fall  into  category  1,  2,  or  3  and

operate in a productive manner. Second, given a pow-

er  budget  that  is  above  this  threshold,  the  critical

power values dictate the set of valid power allocation

scenarios and corresponding optimal cross-component

allocations.

Using these heuristics,  we have developed a cate-

gory-based  power  coordination  method  called  CO-

ORD[3] shown  in Algorithm 1.  In  COORD,  we  as-

sume  dedicated  execution  environments  where  only

one  job  runs  on  the  system simultaneously,  which  is

true  on  traditional  high-performance  computing  sys-

tems. We also consider fixed total power budgets and

distributions  across  components  prior  to  job  execu-

tion.  Essentially,  COORD  breaks  the  set  of  possible

power budgets into four subsets: 1) adequate budgets

for  both components  to  operate  at  their  highest  per-

formance  states;  2)  adequate  budgets  only  for  one

component to operate at its highest performance state

(in this case we prioritize memory power allocation as

it  has  a  greater  impact  on  performance);  3)  neither

component  has  the  adequate  budget  to  run  at  its

highest performance state (in this case we proportion-

ally allocate power between processors and memory);

and  4)  both  components  must  be  throttled  down  to

satisfy the power limit (the algorithm rejects to allo-

cate  power  to  run  the  job  due  to  the  expected  poor

performance).

Empirically, COORD ensures 1) the system meets

the power limits; and 2) the power allocation achieves

the best or close-to-best application performance giv-

en a power budget. The propositions are confirmed by

our experimental results.

Algorithm  Adjustments  for  GPU  Computing. Be-

cause GPU computing has a smaller power allocation

space and the hardware automatically excludes unac-

ceptable  low power  budgets,  COORD can  be  simpli-

fied to use fewer parameters.

 3.2.3    Evaluation

We  have  evaluated  the  COORD  algorithms  on

multiple  platforms  using  various  applications[3] and

the results are summarized in Fig.4.

Table  1.   Categorical Inter-Domain Interaction Allocation and
Critical Component vs Power Budget[3]

Pub Valid Allocation
Scenario Category

Optimal Allocation

Intersection Critical Component

Large 1, 2, 3, 4, 5, 6 1 None

↓ 2, 3, 4, 5, 6 2/3 DRAM
↓ 3, 4, 5, 6 3/4 CPU
↓ 4, 5, 6 4/6 DRAM

Small 5, 6 5/6 CPU
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Fig.3.  Balanced vs unbalanced allocations. Balanced compute and memory access for a given total power budget of 208 W[3].  (a)
DGEMM on IvyBridge. (b) STREAM on IvyBridge.
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Algorithm 1. Category-Based Heuristic Power Coordination[3]

Pb　 procedure COORD( )

status← Success　　

Pb ⩾ Pcpu, L1
+ Pmem, L1

　　if  then ▻ adequate power for both

Pcpu ← Pcpu, L1
　　　

Pmem ← Pmem, L1
　　　

status← Hint : power surplus　　　

Pb ⩾ Pcpu, L2
+ Pmem, L1

　　else if  then ▻ adequate power for one

Pmem ← Pmem, L1
　　　

Pcpu ← (Pub − Pmem)　　　

Pb ⩾ Pcpu, L2
+ Pmem, L2

　　else if  then ▻ inadequate power

Pdcpu ← Pcpu, L1
− Pcpu, L2

　　　

Pdmem ← Pmem, L1
− Pmem,L2

　　　

percentcpu ← 1.0× PdCPU/(PdCPU + Pdmem)　　　

Pprop ← Pb − (Pcpu, L2
+ Pmem, L2

)　　　

Pcpu ← Pcpu, L2
+ percentcpu × Pprop　　　

Pmem ← (Pb − Pcpu)　　　

　　else

status←Warning : budget too small!　　　

　　end if ▻ power budget too small

(Pcpu, Pmem, status)　　return 

　end procedure

Fig.4 shows  that  the  power  allocation  found  by

COORD differs from the best power allocation by less

than  5%  for  large  power  caps  (preferred),  less  than

9.6% on average for all power caps for all CPU bench-

marks, and less than 2% for GPU benchmarks. Given

a  power  budget  greater  than  the  applications'  maxi-

mal  power  demand,  COORD  delivers  the  same  or

similar  performance  as  the  best  allocation  for  most

cases.

In  addition,  COORD  only  allocates  to  compo-

nents  adequate  powers  that  are  lower  than those  set

in  sweeping  experiments.  One  noteworthy  observa-

tion is that COORD outperforms the default NVIDIA

GPU power capping method by up to 33% for the ap-

plications under study. Such gain comes from the fact

that  COORD  is  aware  of  applications  and  available

power budgets, while the default uses the same strate-

gy to distribute power between GPU SMs and global

memory.

 4    CLIP: Cluster Level Intelligent Power

Coordination

Building  upon  node-level  power  coordination,  we

apply  the  paradigm of  power  bounded  computing  to

computer  clusters.  In  a  cluster,  optimally  managing

power  for  HPC  workloads  requires  an  intelligent

strategy to control the number of participating nodes

in  addition  to  allocating  the  available  power  budget

to  different  subsystems  (CPU-core,  CPU-uncore  and

memory) within nodes. With a number of nodes as an

additional  dimension,  cluster-level  power  bounded

computing  offers  more  space  to  increase  system  per-

formance but also  brings  new challenges.  Inappropri-

ate  node  assignment  can  either  cause  inefficient  uti-

lization of  the available  power or  lead to subsystems

running at ineffective power levels, thereby delivering

an inferior performance. Managing power at the clus-

ter level  requires striking a balance between clusters,

nodes, and components.

We  have  developed  a  Cluster  Level  Intelligent

Power (CLIP) coordination framework to address the

challenges  in  cluster-level  power bounded computing.

CLIP  employs  application-aware  power  bounded

scheduling for parallel applications on clusters built of

NUMA multicore nodes. It characterizes the scalabili-

ty  of  parallel  applications  and  their  power  demands

and  accordingly  recommends  the  optimal  application

execution  configuration  and  power  distribution.  The

framework  implementation  is  hierarchical  and  con-

sists  of  two  levels:  the  cluster  level  determines  the

number of nodes and the power budget for each node;

the node level selectively activates the CPU cores and

distributes  the  available  power  budget  to  the  CPU
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and memory within nodes. The CLIP framework uses

lightweight off-line profiling for application characteri-

zation, classifies workloads into three categories based

on  their  scalability,  and  then  applies  corresponding

power allocations.

 4.1    Application-Aware Configuration

Selection

There are three types of scalability trends on par-

allel applications, which we denote as linear, logarith-

mic, and parabolic. The performance of linear applica-

tions  increases  linearly  with  concurrency  and  proces-

sor  frequency.  The  performance  of  logarithmic  appli-

cations increases linearly until an inflection point, af-

ter which the performance growth drops. The perfor-

mance  of  parabolic  applications  increases  linearly

when  concurrency  is  less  than  the  global  maximum.

Beyond  the  global  maximum,  increasing  concurrency

causes  performance  degradation.  Both  logarithmic

and  parabolic  can  be  approximated  by  a  piecewise

model.

Fig.5 shows  how  a  power  budget  would  impact

the three types of applications differently[6]. For a lin-

ear application like EP in Fig.5(a), the performance is

best at the highest concurrency unless power is lower

than  the  lower  bound  of  the  acceptable  power.  For

logarithmic applications, the number of cores activat-

ed to achieve the best performance decreases with the

power budget, as shown in Fig.5(b). For parabolic ap-

plications,  the  insufficient  power  budget  exacerbates

the performance loss  of  all-core configuration as seen

in Fig.5(c).  The  performance  gap  between  the  opti-

mal  concurrency and the  maximum concurrency also

increases when the power budget decreases.

Perf all Perf half Perf all Perf half

To  classify  the  application  scalability  trend,  we

simply  compare  the  performance  under  two  profiling

stages:  and .  and  de-
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Perf half

Perf all
< 0.7

0.7 ⩽ Perf half

Perf all
< 1

Perf half

Perf all
⩾ 1

note  the  performance  with  all  and  half  of  the  avail-

able  cores  respectively.  The  applications  with

 are classified as the linear type; the appli-

cations with  are classified as the loga-

rithmic  type;  and  applications  with  are

classified  as  the parabolic  type.  We  choose  these  ra-

tios in our study, but users can adjust them based on

their objectives and constraints.

 4.2    Application-Oriented Cluster Level

Power Allocation

Fig.6 outlines  the  CLIP  framework[6],  which  in-

cludes  a  profiling  module,  a  data-driven  execution

configuration  recommendation  module,  an  applica-

tion  execution  module,  and  several  helper  tools  to

provide a user-friendly power-bounded computing en-

vironment.

1) Profiling  Module.  It  runs  several  iterations  of

the application's kernel function with sufficient power.

The  system  collects  performance  events  and  execu-

tion  time  information  for  future  affinity  determina-

tion and scalability trend classification.

2) Configuration  Recommendation  Module.  It

takes  the  profiling  data  and  power  budget  as  inputs

and  returns  a  parallel  workload  execution  configura-

tion.

3) Application  Execution  Module.  It  first  checks

whether  the  database  contains  the  profiling  data  of

the workload. If the response is negative, this module

requests the profiling module to profile the workloads

first and inputs the profiles data to the recommenda-

tion  module  to  get  the  suggested  configuration.  The

application  execution  module  submits  the  jobs  using

the  suggested  configuration  to  the  power-bounded

multicore cluster.

4) System Interface and Helper Tools.  It includes

several customized system tools such as a power me-

ter  reader,  a  performance  state  controller,  a  power

capping controller, and a performance event collector.

As  outlined  in Algorithm 2,  the  CLIP  power-

bounded scheduling algorithm operates in two steps.

[PcpuLo
+ PmemLo

,  PcpuHo
+

PmemHo
]

Step 1.  Searching for  the given job in the knowl-

edge  database  to  decide  if  it  is  necessary  to  start

smart profiling. Through smart profiling or searching

from  the  knowledge  database,  CLIP  is  able  to  acq-

uire the optimal power range 

 for  each  node.  After  that,  the  system inputs

the  profile  data  and  the  given  power  budget  recom-

mendation  to  decide  the  number  of  nodes  and  the

power budget for each node.

Step 2. Inputting the power budget for each node

and the profile data for each application to the recom-

mendation  module  and  getting  the  suggested  power

budget for the CPU and memory, the number of acti-

vated cores, and the optimal core affinity.
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Fig.5.   Performance  impact  of  processor  power  budget  for  (a)
linear, (b) logarithmic, and (c) parabolic applications[6].
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Algorithm 2. CLIP (Cluster Level Intelligent Power Coordination System)[6]

App C　function CLIP( , )

Pub　　Input: : the total power budget for the cluster;

App　　 : the application under study;

C Ntotal　　 : the cluster with  nodes;

Ntotal C　　 : the total number of nodes in the cluster 

Nnodes　　Output: : suggested number of active compute nodes

Pcpuruni
i;　　 : suggested CPU power for node 

Pmemruni
i;　　 : suggested memory power for node 

Ncores　　 : suggested number of active cores on each node;

Map　　 : suggested mapping affinity

[PcpuHo
, PcpuLo

, PmemHo
, PmemLo

,Profile]← SmartProf(App)　

[Ncores,Map]←　  Recommendation (Profile)

App Ndef1 , ..., Ndefn　　if  has a set of a predefined number of processes  then

Ndefk ⩽ Pub/(PcpuLo
+ PmemLo

) < Ndefk+1
　　　if  then

Nnodes ← Ndefk　　　　

Pnode ← Pub/Nnodes　　　　

i　　　　for every node  to be activated do

[Pcpuruni
, Pmemruni

]← Pnode　　　　　

　　　　end for

　　　end if

　　else

Pub > Ntotal × (PcpuHo
+ PmemHo

)　　　if  then

Nnodes ← Ntotal　　　　
　　　else

Nnodes ← Pub/(PcpuHo
+ PmemHo

)　　　　

　　　end if

i　　　for every node  to be activated do

Pcpuruni
← PcpuHo

+ Pcpuvi
　　　　

Pmemruni
← PmemHo

+ Pmemvi
　　　　

　　　end for

　　end if

　end function
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Fig.6.  Overview of CLIP[6].
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 4.3    Evaluation Results

We  use  the  performance  of  the  All-In  method

which does not enforce a power bound as the baseline

performance  and  then  compute  the  relative  perfor-

mance  of  CLIP and  other  power  allocation  methods.

Fig.7 summarizes  the  comparison  results[6],  from

which we draw several observations.

40%

1) CLIP achieves similar performance as All-In for

most  of  the  applications  under  study,  and  outper-

forms All-In by more than  for  MiniMD and SP-

MZ applications of  the parabolic  type,  when there is

no specified power bound.

2)  CLIP  performs  best  for  all  the  tested  bench-

marks  if  the  power  budget  is  unlimited  or  higher

enough to support compute and memory components

to operate at their maximum capacity.

3)  CLIP  outperforms  All-In,  Coordinated,  Lower

Limit  for  most  cases,  specially  for  logarithmic  and

parabolic applications.

4)  CLIP  outperforms  Coordinated  for  parabolic

applications  (SP-MZ,  miniAero  and  TeaLeaf)  by  up

to  60%  overall.  When  the  thread  count  further  in-

creases,  textit  parabolic  applications  experience  a

worsened  performance  but  consume  more  power.

Carefully  distributing  resources  for  such  applications

significantly improves performance.

5) CLIP outperforms Coordinated for logarithmic

applications when the power budget is low. Logarith-

mic applications are common among big data applica-

tions that require higher memory bandwidth. This ob-

servation confirms the hypothesis that it is beneficial

to classify applications and correspondingly set config-

urations for power-bounded computing.

 5    Job Co-Run and Resource Sharing

To  improve  system  efficiency,  modern  HPC  sys-

tems allow node sharing among different  jobs.  While

resource  sharing  has  been  extensively  studied,  job

scheduling  considering  both  power  and  hardware  re-

source  is  a  fundamentally  new  problem.  We  found

that contention is the major key factor that degrades

the performance of co-running jobs. Power constraint

induces or aggravates resource contention among jobs,

particularly  in  the  memory  hierarchy.  Furthermore,

when  the  total  power  is  limited,  balancing  power

among  nodes  and  components  is  critical.  We  study

how power  limiting  affects  contention  between  collo-

cated  scientific  parallel  jobs  in  multicore-based  clus-

ters, and research effective strategies to mitigate con-

tention and maximize system performance under giv-

en power budgets.

To  estimate  the  level  of  contention  and  mitigate

its  performance impacts  on co-running jobs,  we have

developed  CAPS[7],  a  Contention-Aware  Power-

bounded  Scheduling  approach  which  uses  machine

learning  models  to  predict  contention  using  applica-

tion  performance  and  power  profiles.  Overall,  CAPS

embraces two key ideas: 1) infer the contention using

applications'  performance  and  power  profiles  and  its

variation with power limits,  and 2) exploit  job collo-

cation and supportive power distribution across nodes

and  components  to  mitigate  contention  caused  by

power limits.

 5.1    Benefits of Resource Sharing Under

Power Constraints

Because  different  applications  can  have  different
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Fig.7.   Performance  comparison  of  different  power  allocation  methods  under  high  power  budgets[6].  (a)  Application  performance
without power bound. (b) Application performance with  W and 200 W power bound.
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resource  requirements  and  power  demands,  sharing

resources  among  jobs  which  are  complementary  to

each other can lead to performance gain and efficien-

cy improvement.

Fig.8 shows  the  throughput  difference  between

two  scheduling  methods.  We  run  STREAM and  EP

on an Intel Haswell Dual-processors node. The coarse-

grained  method  runs  STREAM with  24  threads  and

EP  with  24  processes  serially.  The  fine-grained  me-

thod  executes  STREAM  and  EP  concurrently,  with

each  workload  occupying  half  of  the  core  resources.

Correspondingly,  the  thread/process  number  of

STREAM/EP is reduced to 12 for each application.

As  shown  in Fig.8,  sharing  a  node  between  EP

and STREAM improves the utilization of both hard-

ware resources and power budgets at the node level[7, 8].

While  running  STREAM and  EP  one  after  another,

the power consumption varies from 230 W to 160 W

without  a  power  cap.  The  same  power  budget  (e.g.,

220  W)  will  impact  STREAM's  performance  signifi-

cantly  and  is  underutilized  by  EP.  Fine-grained

scheduling keeps more even power consumption across

nodes,  and improves the system throughput by more

than 20%.

However, to ensure resource sharing given a pow-

er bound will benefit system throughput, we must an-

swer  several  questions.  First,  how should  the  system

determine  complementary  workloads  that  benefit

from resource  sharing given a  power  bound? Second,

will  job  collocation  still  be  beneficial  under  different

power  budgets?  Third,  how does  the  system allocate

power to nodes and components for co-scheduling sys-

tems?

Our  power  bounded  computing  research  provides

three key insights. First, job collocation is a practical

technique  to  increase  system  performance  under  cer-

tain power limits. Second, a proper scheduler must be

power-aware  because  power  limits  can  change  jobs

from  non-interfering  to  interfering.  Third,  an  effec-

tive  scheduler  must  dynamically  distribute  available

power  to  computer  components  based  on  the  avail-

able  power  and  the  workload  characteristics  of  the

jobs under study.

 5.2    CAPS (Contention-Aware

Power-Bounded Scheduling)

Pb = P∞

On  a  power  limited  cluster,  contentions  between

collocated  jobs  are  from  two  sources:  1)  shortage  of

hardware capacity if power is abundant ( ) and

2)  hardware  capacity  reduction  due  to  power  limits.

These  contentions  affect  system throughput (STP)[9],

which is defined as 

STP (Pb) =
∑

i,j

(
T

|
i (Pb)

T
||
i (Pb)

+
T

|
j(Pb)

T
||
j (Pb)

)
.

T | T || i j

Pb

STP STP > 1

i j

Here  and  are the execution time of jobs  and 

when  they  sequentially  and  concurrently  run  respec-

tively under the same power budget . Both runs use

all  the  CPU cores.  is  a  relative  metric; 

indicates  collocating  jobs  and  gains  throughput

over sequentially executing them.

P∞Contention  under  abundant  power  has  been

extensively  studied  on  multicore  systems[10, 11].  Prior

works  commonly  use  hardware  performance  monitor-

ing  counter  (PMC) to  infer  performance  loss  of  each

job and the resulting system throughput. A variety of

inference methods have been suggested including sta-

tistical  modeling  and  linear  regression[12].  Recently,

neural  networks[13] show  promising  performance  loss

prediction on modern multicore systems.
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Fig.8.  Throughput comparison between (a) coarse-grained and (b) fine-grained (collocation) resource scheduling[7, 8].
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Pb = P∞

In  our  work,  we  apply  a  neural  network  model

which  is  similar  to  the  one  proposed  in  [13]  to  infer

system throughput when power is abundant ( ).

The model is a 2-layer neural network. The input lay-

er is connected with two hidden layers with 24 × 12

neurons. The model uses ReLU as the activation func-

tion  and  a  learning  rate  of  0.01.  The  model  outputs

are  the  execution  times  of  collocated  jobs,  which  we

use  to  calculate  the  resulting  system  throughput.

Fig.9 shows the model inputs and outputs.

Perf all

Perfhalf

To  increase  the  model  accuracy,  our  model  uses

extra  inputs  like  jobs'  CPU and memory power con-

sumption,  and  the  performance  ratio  between  using

all and half of the cores . Except for the perfor-

mance  ratio,  all  other  inputs  are  collected  when  the

job  runs  exclusively  on  half  of  the  cores  distributed

across  sockets  without  a  power  bound.  Our  model

output is the execution time of collocated jobs, which

is  used to  calculate  the  resulting  system throughput.

Table 2 lists the details of metrics as input for inter-

ference prediction.

 5.3    Contention Under Power Limiting

STP

Pb

Assuming  that  the  power  budget  would  be  opti-

mally  distributed  between  CPU  and  memory, 

generally  decreases  as  power  budget  drops  from

abundant to inadequate: interfering jobs become more

contentious,  while  complementary  jobs  may  start  to

contend  due  to  reduced  capacity  of  resources  and

eventually interfere with one another. This trend indi-

cates  that  power  limiting  aggravates  contentions  be-

tween collocated jobs.

Pb i j

STP (P∞)

The scheduler for power bounded job co-run must

answer  the  job  compatibility  question:  for  a  given

power  budget  and  a  pair  of  jobs  and ,  should

the jobs be collocated for the sake of throughput? To

answer this question, we classify job paring into three

cases and develop an effective strategy for each case.

Denoting  the  system  throughput  under  abundant

power , the three cases are listed as follows:

STP (P∞) < 1.0 i

j

● Case 1: .  Never  collocate  jobs 

and  for any given power budget.

1.0 < STP (P∞) < 1.2

i j

● Case 2: .  Do not collocate

jobs  and  for any given power budget. This strate-

gy  may  lose  some  opportunities  for  throughput  im-

provement but is simple.

STP (P∞) > 1.2 i j

Pb > Pth Pth

● Case 3: .  Collocate jobs  and 

if  the  given  power  budget ,  where  is  a

threshold  we  choose  heuristically.  This  threshold  en-

sures  collocating  the  jobs  has  a  system  throughput

greater than 1.

STP (P∞) = 1.2Here  is an empirical value we choose

based  on  our  experimental  results  because  it  main-

tains a good tradeoff between individual job's perfor-

mance  loss  and  the  overall  system  throughput  gain.

Users may choose a different value for their optimiza-

tion constraints and objectives.

 5.4    The Design and Implementation of

CAPS

CAPS is a two-level power coordination scheduler

that explicitly models contentions due to job colloca-

Memory Hierarchy Events

Instructions Related Events

Performance

Ratio

CPU

Power

Memory

Power

Memory Hierarchy Events

Instructions Related Events

Performance

Ratio

CPU

Power

Memory

Power

NN Model for Performance NN Model for CPU Power NN Model for DRAM Power

 

     

 
Fig.9.  Performance and power estimation models[7, 8].
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PcpuHij
PcpuLij

Pthij

Pmemij

tion  and  aims  to  minimize  contentions  when  search-

ing for optimal power allocations. Specifically, we use

a neural network model to estimate  and 

from  jobs'  performance  and  power  profiles  when

CPUs  run  at  the  highest  and  lowest  frequencies  re-

spectively.  We  further  use  these  two  values  to  esti-

mate the threshold power  suitable for their collo-

cation  to  avoid  throughput  loss.  We  always  allocate

sufficient  power  to  memory  to  avoid  significant  per-

formance degradation, and denote this power as .

j m

Pr

Assuming  that  job  is  assigned  to  run  on 

nodes  and  only  uses  a  subset  of  the  cores,  and  the

available  power  for  these  nodes  is ,  the  scheduler

examines the next job in the queue. To efficiently uti-

lize the power budget, the scheduler has different job

scheduling  and  power  allocations  based  on  the  pre-

dicted power consumption of the collocated jobs.

Pr/m≫ PcpuHij
+ Pmemij

j

● :  the  scheduler  may

switch to co-run with  to avoid power budget waste

or request the system to reclaim extra power.

Pr/m > PcpuHij
+ Pmemij

● :  the  scheduler  shifts  ex-

tra power to other nodes as illustrated in Subsection

5.5.

Pr/m > Pthij
+ Pmemij

Pmemij

Pth

● :  the  scheduler  allocates

 to memory, and the remaining power to proces-

sors, where  is the model's estimated power thresh-

old suitable for job collocation.

Pr/m < Pthij
+ Pmemij

j

● :  the  scheduler  may  choose

to  run  job  by  itself  to  avoid  significantly  perfor-

mance loss by insufficient power.

After  managing  job  scheduling  and  power  alloca-

tion within nodes, the scheduler may coordinate pow-

er  among  multiple  nodes  to  achieve  global  optimal

throughput,  and  ensure  all  jobs  allocated  with  their

acceptable power ranges.

Once a collocated job completes execution, CAPS

coordinates  power  at  the  node  and  cluster  levels  to

best  fit  workloads'  power  demands.  It  does  not  con-

sider  the  phase  changes  inside  a  job to  control  over-

head.

 5.5    Evaluation

We  evaluate  the  performance  of  CAPS  on  an  8

dual  Haswell  processors  node  cluster.  We  train  the

models  for  interference  and power  prediction  using  a

training  dataset  collected  from  the  benchmarks  and

assess the model accuracy using the test dataset. We

summarize the key results as follows.

● After having examined multiple neural network

models, we find that the model of two hidden layers,

with 24 and 12 neurons at the two layers respectively,

provides  the  best  accuracy.  Thus,  we  adopt  such  a

network in CAPS for interference prediction.

● The average estimation error of the interference

model  is  about  7%.  The  model  tends  to  underesti-

mate  the  interference  for  some  memory  intensive

workloads.

● The  average  difference  between  the  prediction

power and the actual power is less than 10 W. Thus,

these  power  models  satisfy  the  need  to  estimate  the

power  consumption  of  co-scheduling  jobs'  with  high

accuracy.

We also find the following rule of thumb with re-

gard  to  node  sharing  from our  model  prediction  and

experimental results.

STREAM CloverLeaf TeaLeaf CloverLeaf3D TeaLeaf
3D

● Extreme  memory  intensive  applications  like

, , , , -

 significantly interfere with each other. It is not rec-

ommended  to  share  a  node  between  these  applica-

tions.

● Less  memory  intensive  applications  cause  little

interference  to  extreme  memory  intensive  applica-

tions. Conversely, extreme memory intensive applica-

tions interfere  with others  significantly.  Nevertheless,

the  overall  throughput  increases.  Thus  co-scheduling

extreme  memory  intensive  applications  with  others

applications increases system throughput.

● Compute-intensive applications and compute-in-

tensive  applications  cause  low  interference  to  each

other. However, the memory bandwidth could be un-

derutilized  when  two  compute  intensive  applications

are co-scheduled.

CAPS  reduces  the  execution  time  by  25%  when

the power is unbounded, in comparison with counter-

Table   2.   Metrics  Used  in  CAPS  for  Workload  Interference
Prediction

Event Type Description

Memory hierarchy event Memory read bandwidth

Memory write bandwidth

Local L3 cache miss

Remote L3 cache miss

L3 miss rate

L3 request rate

L2 miss ratio

Instructions related event Cycles per instruction

Unhalted time/runtime

Power consumption data CPU power

DRAM power

Performance ratio Perfall/Perfhalf

Note: The metrics are platform-specific and may be subject to
changes on other platforms.
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parts[7].  When power  bounds  are  enforced,  CAPS in-

creases  system  throughput  by  30%.  Under  the 1 600

W,  FCFS  allocates  40  W to  memory  and  160  W to

CPU  on  each  node.  Because  CAPS  considers  work-

load contentions and schedules jobs to achieve higher

power utilization, it performs consistently better than

other  methods  on  power-bounded  systems.  Experi-

mental details can be found at [7].

 6    Conclusions

Power bounded computing is still in its infancy in

research  and  continues  to  evolve  to  support  ever  in-

creasing demand by conventional and emerging work-

loads  such  as  deep  neural  network  based  large  ML

models. While the power constraint is not strictly en-

forced,  efficiency  is  on  its  rise  to  be  paramount  to

managing energy bills  and delivering desired applica-

tion performance. Power bounded computing aims to

translate  energy  saving  into  application  performance

with an upper  bound of  power and energy consump-

tion.

As  HPC  computing  is  increasingly  bounded  by

power  consumption,  future  systems  and  software

must cope with these limits. The key question is how

to cope with the power bound and build system man-

agement  tools  to  distribute  hardware  resources  and

power  optimally  to  achieve  maximum  performance.

We  believe  power-bounded  computing  represents  a

new  computing  paradigm  that  distinguishes  it  from

previous low-power computing and power-aware com-

puting  because  power  bounded  computing  explicitly

considers the power bound as a design constraint and

emphasizes coordinated power allocations.

In  this  paper,  we  described  how the  paradigm of

power bounded computing is applied in the HPC un-

der three contexts: node level power coordination be-

tween  processors  and  memory,  cluster  level  between

nodes  and  components,  and  co-scheduling  jobs  and

power on HPC clusters. Two central principles in our

work  are  balanced  power  allocations  and  workload-

aware  scheduling.  This  work  provides  multiple  in-

sights  in  system scale  power  management  to  address

the power challenge for exascale supercomputing sys-

tems:  1)  the effectiveness  of  power bounded comput-

ing for maximizing performance and energy efficiency

given a total budget, 2) the improvement through job

co-running and resource sharing, and 3) the feasibili-

ty of dynamic cluster level intelligent power coordina-

tion given a total power budget. The power bounded

computing  paradigm  also  applies  to  IoT  scenarios

where the power constraint is more pervasive.

Our  study  represents  the  first  published  body  of

work  to  define  and  evaluate  the  paradigm  of  power

bounded high-performance computing. This work has

laid  the  groundwork  for  power  bounded  research  as

we  move  toward  exascale  supercomputing.  Our  long

term  future  directions  include  developing  ideas

around power bounded computing for emerging hard-

ware,  power  stable  computing,  self-learning  resource

management,  and  the  trade-off  between  power,  per-

formance, and resilience.
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