

The Paradigm of Power Bounded High-Performance Computing

Rong Ge1, Xizhou Feng2, Pengfei Zou3, and Tyler Allen4

1 School of Computing, Clemson University, Clemson, SC 29634, U.S.A.
2 Meta Platform, Inc., Menlo Park, CA 94025, U.S.A.
3 Amazon, Inc., Seattle, WA 98170, U.S.A.
4 University of North Carolina at Charlotte, NC 27599, U.S.A.

E-mail: rge@clemson.edu; fengx@meta.com; pzou@g.clemson.edu; t.allen@uncc.edu

Received October 4, 2022; accepted January 2, 2023.

Abstract Modern computer systems are increasingly bounded by the available or permissible power at multiple layers

from individual components to data centers. To cope with this reality, it is necessary to understand how power bounds im-

pact performance, especially for systems built from high-end nodes, each consisting of multiple power hungry components.

Because placing an inappropriate power bound on a node or a component can lead to severe performance loss, coordinat-

ing power allocation among nodes and components is mandatory to achieve desired performance given a total power bud-

get. In this article, we describe the paradigm of power bounded high-performance computing, which considers coordinated

power bound assignment to be a key factor in computer system performance analysis and optimization. We apply this

paradigm to the problem of power coordination across multiple layers for both CPU and GPU computing. Using several

case studies, we demonstrate how the principles of balanced power coordination can be applied and adapted to the inter-

play of workloads, hardware technology, and the available total power for performance improvement.

Keywords power bounded computing, cross-component power coordination, hierarchical power allocation

 1 Introduction

Modern computer systems are increasingly bound-

ed by the available or permissible power at multiple

levels ranging from components and machines to clus-

ters and data centers①. For example, computer com-

ponents such as GPU cards and CPUs must operate

within their thermal design power, and exascale sys-

tems are imposed with a power budget of 20–30 mega-

watts[1]. Such power bounds are set due to physical,

technical, and economical reasons. Nevertheless, sys-

tem performance must continue to increase, which

makes power a deciding factor for the deliverable per-

formance and scalability of applications and systems.

Meanwhile, emerging workloads such as large neu-

ral networks have created an insatiable compute and

power demand②. The larger the network, the more

accurate the model, and the more the power demand.

The GPT-3's deep learning neural network has over

175 billion machine learning parameters, 17x larger

than the previous largest trained Turing NLG lan-

guage model. Motivated to increase model accuracy,

DNN training does not necessarily prioritize power

and performance efficiency[2]. Such workloads typical-

ly have a low system utilization of 52% on average on

highly optimized systems[2]. Indiscriminately running

the components at full speeds not only wastes the

limited available power but also suffers suboptimal

performance. To avoid this situation, it is mandatory

to allocate power to nodes and components based on

applications' needs. Left unaddressed, energy con-

sumption will exceed supply③. In short, power bound-

Perspective

Special Issue in Honor of Professor Kai Hwang’s 80th Birthday

This work is supported in part by the U.S. National Science Foundation under Grant Nos. CCF-1551511 and CNS-1551262.

Ge R, Feng X, Zou P et al. The paradigm of power bounded high-performance computing. JOURNAL OF COMPUTER

SCIENCE AND TECHNOLOGY 38(1): 87−102 Jan. 2023. DOI: 10.1007/s11390-023-2885-7

①Arrhenius equation for reliability. http://www.jedec.org/standards-documents/dictionary/terms/arrhenius-equation-reliability,
Jan. 2023.

②Bailey B. AI power consumption exploding. https://semiengineering.com/ai-power-consumption-exploding/, Dec. 2022.
③SRC. Decadal plan for semiconductors. https://www.src.org/about/decadal-plan/decadal-plan-full-report.pdf, Jan. 2023.
©Institute of Computing Technology, Chinese Academy of Sciences 2023

http://www.jedec.org/standards-documents/dictionary/terms/arrhenius-equation-reliability
https://semiengineering.com/ai-power-consumption-exploding/
https://www.src.org/about/decadal-plan/decadal-plan-full-report.pdf
https://www.forbes.com/sites/aarontilley/2017/05/16/hpe-160-terabytes-memory/?sh=265e05a3383f
https://www.forbes.com/sites/aarontilley/2017/05/16/hpe-160-terabytes-memory/?sh=265e05a3383f
https://doi.org/10.1007/s11390-023-2885-7

ed computing is not only urgent but also a reality.

Sustaining performance growth given a power

bound has motivated research in computer architec-

ture, system management, and their work in tandem.

The paradigm of power bounded computing applies to

system management. Specifically, it considers power

as a scarce resource and aims to maximally use the

available power budget to increase application perfor-

mance and system throughput. The system over-pro-

visions hardware components but dynamically man-

ages them to operate within the given power bound,

thus ensuring power is maximally translated to per-

formance. This paradigm relies on the availability of

power-aware components that support a set of power-

performance states and can transition from one state

to another as instructed by a user or a program.

We apply the paradigm of power bounded com-

puting for both homogeneous and heterogeneous pow-

er constrained computing. The paradigm can be ap-

plied hierarchically, supporting multiple levels includ-

ing clusters, nodes, accelerator devices, and compo-

nents, as well as job co-scheduling. We describe some

core technologies we have developed under this

paradigm: node level cross-component power coordi-

nation[3–5], CLIP (cluster level intelligent power coor-

dination)[6], and job co-running and resource sharing[7, 8].

These technologies tailor power allocation to applica-

tions and available power budgets, and significantly

improve performance in comparison to the default set-

tings.

 2 The Power Bounded Computing Problem

Power bounded computing is built upon the

premise that every compute node in the system can

and will operate under a given power budget. By

bounding per-node power consumption, a large-scale

system can reconfigure itself based on its current

workload to achieve better performance under the

same power budget. For simplicity, we focus on pro-

cessors and DRAM modules on hosts and discrete

GPU accelerators, i.e., CPUs and memory, and GPU

Streaming Multiprocessing cores (SMs) and global

memory. A reason for this simplification is that the

power consumption of other components is typically

smaller and has smaller variations.

Pb

Pb

Given a system M and a system power budget ,

the objective of power bounded computing (denoted

PBC) is to maximize application performance and

system throughput under total system power budget

 with available hardware in machine M. Because

the system power is allocated hierarchically, we for-

mulate the PBC problem at both the system level

and the nodal level.

{W1,W2, ...,Wn}
Pb

The system level power bounded computing prob-

lem is formulated as follows: given a job queue Q with

a set of parallel workloads , a ma-

chine M and a total power bound , find an optimal

power, hardware and job allocation such that:

STP (a∗, Q,M) = maxα∈ASTP (α,Q,M)1) , and∑
m∈M P ∗

m ⩽ Pb.2)

STP α

(J,Hw,P)

J Hw

P A
α

Here, is system throughput, is hardware and

resource allocation tuple (i.e., how work-

loads () are assigned to nodes () with corre-

sponding power budgets ()), and is the space that

comprises all possible values of . The system can dis-

tribute power across multiple levels, from a single

component to an entire node. We define a component

as power boundable if the component can and will al-

ways operate under the power cap allocated to it.

W nd

C1, C2, . . . , CK

Pnd

perfmax

α∗ = (P ∗
1 , P

∗
2 , . . . , P

∗
K

The node-level power bounded computing prob-

lem is formulated as follows: given a parallel work-

load , a node comprising a set of K power

boundable components , and a total

power bound , find the upper bound of the achiev-

able performance and the corresponding pow-

er allocation tuple) such that:

perfmax = maxα∈A perf(α,W, nd)1) ,

α∗ = arg maxα∈Aperf(α,W, nd)2) , and∑K
i=1 P

∗
i ⩽ Pnd3) .

α A
α

perf

Here, is a power allocation tuple and is the

space that comprises all possible values of within

the node. The performance metric, , can have dif-

ferent definitions depending on both the application

and the user's demand. Example metrics include com-

pute rate, performance-to-power ratio, and system

throughput.

 3 Nodal Level Cross-Component

Coordination

The first principle of power bounded computing is

balancing power budget allocation among all compo-

nents subject to an overall power cap with a system-

wide optimization objective instead of an individual

optimization goal. To understand how this principle

will be applied to real systems, we look at a high-lev-

el picture of power consumption on today's high-end

systems and their building blocks.

First, these systems and building blocks normally

have a significantly larger power envelope than what

88 J. Comput. Sci. & Technol., Jan. 2023, Vol.38, No.1

they actually consume at run-time. For example, a

compute node of the Frontier supercomputer inte-

grates 8 CCDs, 4 high-end GPUs with 2 GCDs, 512

GB DDR4 memory, and 512 GB HBM2e memory. Its

total power envelope exceeds 3 000 W. If we allocate

power based on these envelopes, inefficient use will

lead to significant waste.

Second, these systems have multiple major power

consumers like CPUs, GPUs, and memory whose

power budgets must be simultaneously managed to

maximize performance given a limited system power.

Memory may consume more power than processors on

big-memory systsems④, and high-end GPUs consume

comparable or more power than CPUs. Traditional

methods that focus on a single dominant component

would lead to suboptimal performance and power

waste.

Third, hardware resources are generally overprovi-

sioned but most applications will not fully utilize all

of them all the time. For example, CPU algorithms

do not use GPUs while GPU algorithms typically on-

ly use CPUs for kernel offloading and data manage-

ment. Activating components and running them at

full speed without disparity not only wastes the limit-

ed available power but also suffers suboptimal perfor-

mance.

Finally, to maintain a high performance given a

power budget, a balanced power allocation between

components must be robust; otherwise a small power

shift away from a balanced configuration may lead to

significant performance loss.

To develop effective and robust technology for

power bounded computing, we start from the node

level and study how to achieve robust balanced pow-

er allocation between processing units and memory

modules, i.e., CPUs and main memory, and GPUs

and GPU global memory. Our main focuses include

understanding the dynamics between processor-memo-

ry power allocation and application performance,

identifying the patterns of power allocation impacts,

and developing optimal power coordination strategies.

Our research[3, 4] leads to the following findings.

1) Cross-component power coordination can im-

prove performance significantly, e.g., 35% for GPU

computing and more for CPU computing. These re-

sults highlight the impacts and urgency of applying

power bounded computing principles to HPC (high

performance computing) systems.

2) There exist distinct patterns of performance

and power dynamics which can be categorized over

both CPU and GPU computing. These patterns guide

designing optimal cross-component power allocation

algorithms on modern HPC.

3) Different workloads considerably vary in char-

acteristics while sharing common patterns, suggesting

the need to integrate application awareness into pow-

er scheduling and management.

4) Heuristic algorithms can quickly pinpoint near-

optimal cross-component power allocations with

lightweight application profiling.

 3.1 Categorizing Power Allocation Effects

Pnd Pcpu

Pmem α = (Pcpu, Pmem)

Pnd ⩾ Pcpu+mem

To understand the implication of bounding com-

ponent power budget, we consider coordinated power

allocation between processing units and memory,

where each includes all the processors/cores and

memory devices respectively. We denote the total

power constraint , processing power , memory

power , and the power allocation .

We note holds for all power alloca-

tions.

Given a power budget, application performance

differs significantly by changing the power distribu-

tion between processors and memory. As shown in

Fig.1, there exist six categories of power allocation

scenarios with regard to their performance effects.

Pb

Category 1: Adequate Power Allocation for Both
CPUs and Memory. Both CPUs and memory receive

power allocation exceeding their maximum power de-

mands, and an application can achieve its maximum

performance. The actual power consumption of each

component stays constant, and the sum may be less

than .

Category 2: Adequate Memory Power, Lightly
Bounded CPU Power. The power allocated to CPUs

is lightly bounded but adequate to operate all proces-

sor cores at a performance state. The actual CPU

power closely matches the allocated power budget.

Meanwhile, the actual DRAM power stays near the

maximum value even though DRAM receives a high-

er power allocation. As CPU power budget decreases,

application performance decreases monotonously and

gradually.

Category 3: Adequate CPU Power, Bounded Mem-
ory Power. CPUs receive more power budget than

Rong Ge et al.: The Paradigm of Power Bounded High-Performance Computing 89

④HPE has constructed the largest singlememory computer system ever built. https://www.forbes.com/sites/aarontilley/2017/
05/16/hpe-160-terabytes-memory/?sh=265e05a3383f, Jan. 2023.

needed. Their actual power stays relatively constant

and is slightly smaller than the maximum demand,

regardless if more budget is allocated. Meanwhile,

DRAM receives inadequate allocations, and its actual

consumption is close to the budget. In scenario 3, ap-

plication performance is bounded by memory perfor-

mance; increasing power allocation to memory dra-

matically improves application performance.

Category 4: Adequate Memory Power, Significant-
ly Inadequate CPU Power. When CPU power is sig-

nificantly under-budgeted while DRAM is over-bud-

geted, the application performance drops sharply from

those in categories 2 and 3. In category 4, memory

consumes much less power than its allocation, mainly

due to the fact that CPUs make less frequent memo-

ry request.

Category 5: Adequate CPU Power, Minimum
Memory Power. The actual CPU power is close to the

maximum CPU power required by a given workload

(108 W in the test case used in Fig.1).

Category 6: Adequate Memory Power, Minimum
CPU Power. CPUs receive a minimal or close to mini-

mal power allocation. In this scenario, hardware over-

rides the software power allocation and CPUs con-

sume a constant power, i.e., 48 W. Meanwhile, memo-

ry receives an excessive power budget. This scenario

cannot ensure the system power bound and often de-

livers the worst performance.

 3.1.1 Power Allocation Categories on GPU

Computing

We have observed similar power allocation pat-

terns for allocating power between GPU devices and

memory for GPU computing. However, because GPU

supports a smaller range of power management and

uses different power capping mechanisms, the dynam-

ics of GPU cross-component power allocation and cat-

egories have some unique features[3] as shown in Fig.2.

First, fewer categories appear in the application

profiles, e.g., categories 1, 3 and 2 on Titan XP and

category 3 on Titan V. GPU hardware prohibits cate-

gories (4 & 5 & 6) which would deliver an unaccept-

able low performance, by disallowing low power caps

on SMs and memory. Further, the largest perfor-

mance difference among all power allocations is about

30%.

Second, unlike independent management of pro-

cessors and DRAM on the host, where the unused

power budget on one component is simply wasted, the

GPU power capping automatically reclaims and shifts

it to another component, e.g., from DRAM to SMs.

As a result, the intersections of categories are differ-

ent from those for CPU computing, and the actual to-

tal power consumption always matches the set power

cap, unless the cap exceeds applications' demands.

Third, with the new SM and HBM2 technologies,

Titan V has a smaller total and DRAM power range

than Titan XP.

 3.2 Category Based Power Allocation

Strategies

After analyzing the performance impacts of differ-

ent power allocations, we found that given a power

budget, the optimal cross-component power alloca-

P
e
rf

o
rm

a
n
c
e

A
c
tu

a
l
P
o
w

e
r

(W
)

DRAM Power Limit (W) DRAM Power Limit (W)

0.014

0.012

0.010

0.008

0.006

0.004

0.002

200

150

100

50

0
60 80 100 120 140

C5 C3 C1

160 180 200 220 60 80 100 120 140 160 180 200 220

C2 C4 C6

C5 C3 C1 C2 C4 C6

Total Power
CPU Power
DRAM Power

(b)(a)

Pnd = 240

Fig.1. Categories of power allocation effects[3, 4]. (a) Performance of hpcc.StarRandomAccess vs DRAM power on IvyBridge. (b)
Power of hpcc.StarRandomAccess vs DRAM power on IvyBridge. The plots of (a) application performance and (b) actual power
consumption for different power allocations between processors and memory modules visually reveal six categories of power alloca-
tion scenarios for W. Ci means category i.

90 J. Comput. Sci. & Technol., Jan. 2023, Vol.38, No.1

tion measured by delivered performance provides a

balanced interaction between compute and memory

access, while other allocations bound at least one of

them.

To study the effect of power bound, we define the

Rmax

RP

PK

R

Rmax

maximum capacity for a component K and the

allocated capacity when the component operates

given a power budget . A component reaches its

maximum capacity when it receives adequate power

while all other components are not subject to any

power constraint. In other words, whether a compo-

nent is bounded by power can be measured by such

component's utilization rate—the ratio of the compo-

nent's actual delivered rate to its maximum capaci-

ty .

With the optimal power allocation, the utilization

rate is high, close to 100% for both compute and

memory access. In contrast, when processors are un-

der powered, processor capacity utilization is high but

memory capacity utilization is low, indicating that

application execution is bounded by computing. Simi-

larly, when memory is under powered, the applica-

tion is bounded by memory access. Fig.3 illustrates

this concept by examining the performance of

DGEMM and STREAM benchmarks under different

utilization rates for CPUs and memory on an Ivy-

Bridge system.

Different applications have different demands for

compute and memory access, and thus different com-

pute intensities—the ratio of the computation rate to

the memory bandwidth on the same system. As a re-

sult, their optimal power allocations differ. DGEMM

is compute intensive and has a high power demand

for CPUs. In contrast, STREAM is memory intensive,

requiring more power allocation for memory access.

 3.2.1 Finding the Optimal Power Allocation

The optimal cross-component power allocation is

specific to the given power budget. It is located at

category 1 given sufficient power, and usually at the

intersection of two neighboring scenarios given small-

er power budgets. As the power budget decreases, the

optimal allocation is at the intersection of categories 2

and 3, and further moves to the intersection of cate-

gories 3 and 4. Table 1 summarizes the location of the

optimal allocation for varying power budgets.

From the optimal cross-component power alloca-

tion, a shift in either direction causes performance

degradation. However, shifting in one direction de-

grades performance more. We mark the critical com-

ponent as the one that, if under powered, drastically

degrades the application performance. The existence

of a critical component suggests that a power alloca-

tion strategy ensures the power budget for the criti-

35 40 45 50

mem (W)

mem (W)

0.0

2.5

5.0

7.5

10.0

12.5

P
e
rf

o
rm

a
n
c
e
 (

T
F
L
O

P
S
)

ub=125 W

ub=140 W

ub=160 W

ub=180 W

ub=200 W

ub=220 W

ub=240 W

ub=260 W

ub=125 W

ub=140 W

ub=160 W

ub=180 W

ub=200 W

ub=220 W

ub=240 W

ub=260 W

ub=125 W

ub=140 W

ub=160 W

ub=180 W

ub=200 W

ub=220 W

ub=240 W

ub=260 W

35 40 45 50
0

200

400

600

800

B
a
n
d
w

id
th

 (
G

B
/
s)

35 40 45 50
0

1

2

3

4

T
h
ro

u
g
h
p
u
t

(c
e
ll
s/

s)

(b)

mem (W)

(c)

(a)

108

Fig.2. Performance trends as memory power allocation increas-
es under various total power caps on Titan V[3]. The memory
power is estimated using memory frequency setting and empiri-
cal power models built from experiment data on the card. (a)
SGEMM on Titan V. (b) STREAM on Titan V. (c) Cloverleaf
on Titan V.

Rong Ge et al.: The Paradigm of Power Bounded High-Performance Computing 91

cal component and approaches the optimal allocation

from the scenario (underlined in Table 1) that better

preserves the performance. We would like to reiterate

that very small power budgets should not be allocat-

ed for running new jobs, due to unacceptable low

power efficiency and performance.

 3.2.2 Category-Based Heuristic Power

Coordination

The power allocation categories lead to the design

of heuristic power allocation methods for the problem

of cross-component coordination. Such methods elimi-

nate the need for exhaustive or fine-grain profiling to

search the optimal power allocation for any given

power budget. The existence of critical power levels

provides two important heuristics. First, the power

budget given to a computer system must be greater

than a threshold to fall into category 1, 2, or 3 and

operate in a productive manner. Second, given a pow-

er budget that is above this threshold, the critical

power values dictate the set of valid power allocation

scenarios and corresponding optimal cross-component

allocations.

Using these heuristics, we have developed a cate-

gory-based power coordination method called CO-

ORD[3] shown in Algorithm 1. In COORD, we as-

sume dedicated execution environments where only

one job runs on the system simultaneously, which is

true on traditional high-performance computing sys-

tems. We also consider fixed total power budgets and

distributions across components prior to job execu-

tion. Essentially, COORD breaks the set of possible

power budgets into four subsets: 1) adequate budgets

for both components to operate at their highest per-

formance states; 2) adequate budgets only for one

component to operate at its highest performance state

(in this case we prioritize memory power allocation as

it has a greater impact on performance); 3) neither

component has the adequate budget to run at its

highest performance state (in this case we proportion-

ally allocate power between processors and memory);

and 4) both components must be throttled down to

satisfy the power limit (the algorithm rejects to allo-

cate power to run the job due to the expected poor

performance).

Empirically, COORD ensures 1) the system meets

the power limits; and 2) the power allocation achieves

the best or close-to-best application performance giv-

en a power budget. The propositions are confirmed by

our experimental results.

Algorithm Adjustments for GPU Computing. Be-

cause GPU computing has a smaller power allocation

space and the hardware automatically excludes unac-

ceptable low power budgets, COORD can be simpli-

fied to use fewer parameters.

 3.2.3 Evaluation

We have evaluated the COORD algorithms on

multiple platforms using various applications[3] and

the results are summarized in Fig.4.

Table 1. Categorical Inter-Domain Interaction Allocation and
Critical Component vs Power Budget[3]

Pub Valid Allocation
Scenario Category

Optimal Allocation

Intersection Critical Component

Large 1, 2, 3, 4, 5, 6 1 None

↓ 2, 3, 4, 5, 6 2/3 DRAM
↓ 3, 4, 5, 6 3/4 CPU
↓ 4, 5, 6 4/6 DRAM

Small 5, 6 5/6 CPU

max (PKG) max (DRAM) max (PKG) max (DRAM)

P
e
rf

o
rm

a
n
c
e

P
e
rf

o
rm

a
n
c
e

Balanced:
(124, 84)

10

8

6

4

2

0

3.0

2.5

2.0

1.5

1.0

0.5

0.0
PKG Limited:

(76, 132)

DRAM Limited:

(140, 68)

(PKG: DRAM) Power Allocations (W)

Balanced:

(80, 128)

PKG Limited:

(68, 140)

DRAM Limited:

(120, 88)

(PKG: DRAM) Power Allocations (W)

(b)(a)
Fig.3. Balanced vs unbalanced allocations. Balanced compute and memory access for a given total power budget of 208 W[3]. (a)
DGEMM on IvyBridge. (b) STREAM on IvyBridge.

92 J. Comput. Sci. & Technol., Jan. 2023, Vol.38, No.1

Algorithm 1. Category-Based Heuristic Power Coordination[3]

Pb　 procedure COORD()

status← Success　　

Pb ⩾ Pcpu, L1
+ Pmem, L1

　　if then ▻ adequate power for both

Pcpu ← Pcpu, L1
　　　

Pmem ← Pmem, L1
　　　

status← Hint : power surplus　　　

Pb ⩾ Pcpu, L2
+ Pmem, L1

　　else if then ▻ adequate power for one

Pmem ← Pmem, L1
　　　

Pcpu ← (Pub − Pmem)　　　

Pb ⩾ Pcpu, L2
+ Pmem, L2

　　else if then ▻ inadequate power

Pdcpu ← Pcpu, L1
− Pcpu, L2

　　　

Pdmem ← Pmem, L1
− Pmem,L2

　　　

percentcpu ← 1.0× PdCPU/(PdCPU + Pdmem)　　　

Pprop ← Pb − (Pcpu, L2
+ Pmem, L2

)　　　

Pcpu ← Pcpu, L2
+ percentcpu × Pprop　　　

Pmem ← (Pb − Pcpu)　　　

　　else

status←Warning : budget too small!　　　

　　end if ▻ power budget too small

(Pcpu, Pmem, status)　　return

　end procedure

Fig.4 shows that the power allocation found by

COORD differs from the best power allocation by less

than 5% for large power caps (preferred), less than

9.6% on average for all power caps for all CPU bench-

marks, and less than 2% for GPU benchmarks. Given

a power budget greater than the applications' maxi-

mal power demand, COORD delivers the same or

similar performance as the best allocation for most

cases.

In addition, COORD only allocates to compo-

nents adequate powers that are lower than those set

in sweeping experiments. One noteworthy observa-

tion is that COORD outperforms the default NVIDIA

GPU power capping method by up to 33% for the ap-

plications under study. Such gain comes from the fact

that COORD is aware of applications and available

power budgets, while the default uses the same strate-

gy to distribute power between GPU SMs and global

memory.

 4 CLIP: Cluster Level Intelligent Power

Coordination

Building upon node-level power coordination, we

apply the paradigm of power bounded computing to

computer clusters. In a cluster, optimally managing

power for HPC workloads requires an intelligent

strategy to control the number of participating nodes

in addition to allocating the available power budget

to different subsystems (CPU-core, CPU-uncore and

memory) within nodes. With a number of nodes as an

additional dimension, cluster-level power bounded

computing offers more space to increase system per-

formance but also brings new challenges. Inappropri-

ate node assignment can either cause inefficient uti-

lization of the available power or lead to subsystems

running at ineffective power levels, thereby delivering

an inferior performance. Managing power at the clus-

ter level requires striking a balance between clusters,

nodes, and components.

We have developed a Cluster Level Intelligent

Power (CLIP) coordination framework to address the

challenges in cluster-level power bounded computing.

CLIP employs application-aware power bounded

scheduling for parallel applications on clusters built of

NUMA multicore nodes. It characterizes the scalabili-

ty of parallel applications and their power demands

and accordingly recommends the optimal application

execution configuration and power distribution. The

framework implementation is hierarchical and con-

sists of two levels: the cluster level determines the

number of nodes and the power budget for each node;

the node level selectively activates the CPU cores and

distributes the available power budget to the CPU

Rong Ge et al.: The Paradigm of Power Bounded High-Performance Computing 93

and memory within nodes. The CLIP framework uses

lightweight off-line profiling for application characteri-

zation, classifies workloads into three categories based

on their scalability, and then applies corresponding

power allocations.

 4.1 Application-Aware Configuration

Selection

There are three types of scalability trends on par-

allel applications, which we denote as linear, logarith-

mic, and parabolic. The performance of linear applica-

tions increases linearly with concurrency and proces-

sor frequency. The performance of logarithmic appli-

cations increases linearly until an inflection point, af-

ter which the performance growth drops. The perfor-

mance of parabolic applications increases linearly

when concurrency is less than the global maximum.

Beyond the global maximum, increasing concurrency

causes performance degradation. Both logarithmic

and parabolic can be approximated by a piecewise

model.

Fig.5 shows how a power budget would impact

the three types of applications differently[6]. For a lin-

ear application like EP in Fig.5(a), the performance is

best at the highest concurrency unless power is lower

than the lower bound of the acceptable power. For

logarithmic applications, the number of cores activat-

ed to achieve the best performance decreases with the

power budget, as shown in Fig.5(b). For parabolic ap-

plications, the insufficient power budget exacerbates

the performance loss of all-core configuration as seen

in Fig.5(c). The performance gap between the opti-

mal concurrency and the maximum concurrency also

increases when the power budget decreases.

Perf all Perf half Perf all Perf half

To classify the application scalability trend, we

simply compare the performance under two profiling

stages: and . and de-

150 200 250 300
0.0

2.5

5.0

7.5

10.0

12.5

T
F
L
O

P
S

HeuristicEval: SGEMM

COORD

Exp. Best

Default

COORD

Exp. Best

Default

150 200 250 300
0

20

40

60

80
G

F
L
O

P
s

HeuristicEval: HPCG

P
e
rf

o
rm

a
n
c
e
 (

1
0

4
)

P
e
rf

o
rm

a
n
c
e
 (

1
0

4
)

2.5

2.0

1.5

1.0

0.5

0.0

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

COORD
Exp. Best
Memory First

sp.C.x

Total Power Cap (W)

140 160 180 200 220 240 260 280

(a)

(c)

Total Power Cap (W)

140 160 180 200 220 240 260 280

(b)

(d)

COORD
Exp. Best
Memory First

mg.C.x

cap (W) cap (W)

Ptotref

Fig.4. Comparison between COORD and the best identified from experiments on the IvyBridge system and the Titan XP GPU sys-
tem[3]. The vertical lines in the GPU figures show the value of (the total power cap). (a) NPB SP on IvyBridge. (b) NPB MG
on IvyBridge. (c) SGEMM on Titan XP. (d) HPCG on Titan XP. Pcap: the experimentally best result.

94 J. Comput. Sci. & Technol., Jan. 2023, Vol.38, No.1

Perf half

Perf all
< 0.7

0.7 ⩽ Perf half

Perf all
< 1

Perf half

Perf all
⩾ 1

note the performance with all and half of the avail-

able cores respectively. The applications with

 are classified as the linear type; the appli-

cations with are classified as the loga-

rithmic type; and applications with are

classified as the parabolic type. We choose these ra-

tios in our study, but users can adjust them based on

their objectives and constraints.

 4.2 Application-Oriented Cluster Level

Power Allocation

Fig.6 outlines the CLIP framework[6], which in-

cludes a profiling module, a data-driven execution

configuration recommendation module, an applica-

tion execution module, and several helper tools to

provide a user-friendly power-bounded computing en-

vironment.

1) Profiling Module. It runs several iterations of

the application's kernel function with sufficient power.

The system collects performance events and execu-

tion time information for future affinity determina-

tion and scalability trend classification.

2) Configuration Recommendation Module. It

takes the profiling data and power budget as inputs

and returns a parallel workload execution configura-

tion.

3) Application Execution Module. It first checks

whether the database contains the profiling data of

the workload. If the response is negative, this module

requests the profiling module to profile the workloads

first and inputs the profiles data to the recommenda-

tion module to get the suggested configuration. The

application execution module submits the jobs using

the suggested configuration to the power-bounded

multicore cluster.

4) System Interface and Helper Tools. It includes

several customized system tools such as a power me-

ter reader, a performance state controller, a power

capping controller, and a performance event collector.

As outlined in Algorithm 2, the CLIP power-

bounded scheduling algorithm operates in two steps.

[PcpuLo
+ PmemLo

, PcpuHo
+

PmemHo
]

Step 1. Searching for the given job in the knowl-

edge database to decide if it is necessary to start

smart profiling. Through smart profiling or searching

from the knowledge database, CLIP is able to acq-

uire the optimal power range

 for each node. After that, the system inputs

the profile data and the given power budget recom-

mendation to decide the number of nodes and the

power budget for each node.

Step 2. Inputting the power budget for each node

and the profile data for each application to the recom-

mendation module and getting the suggested power

budget for the CPU and memory, the number of acti-

vated cores, and the optimal core affinity.

80

800

640

480

320

160

0
120

Concurrency

Scalability of EP Under Power Budget

Scalability of Stream Under Power Budget

8 Cores
12 Cores
16 Cores
20 Cores
24 Cores

Concurrency
8 Cores
12 Cores
16 Cores
20 Cores
24 Cores

160 200

P
er

fo
rm

a
n
ce

 (
M

o
p
/
s)

100

80

60

40

20

0

P
er

fo
rm

a
n
ce

 (
B

es
t

R
a
te

 (
G

B
/
s)

)

cpu (W)

(a)

80 120 160 200

cpu (W)

(b)

Scalability of SP Under Power Budget

Concurrency
8 Cores
12 Cores
16 Cores
20 Cores
24 Cores

25

20

15

10

5

0

P
er

fo
rm

a
n
ce

 (
K

M
o
p
/
s)

80 120 160 200

cpu (W)

(c)
Fig.5. Performance impact of processor power budget for (a)
linear, (b) logarithmic, and (c) parabolic applications[6].

Rong Ge et al.: The Paradigm of Power Bounded High-Performance Computing 95

Algorithm 2. CLIP (Cluster Level Intelligent Power Coordination System)[6]

App C　function CLIP(,)

Pub　　Input: : the total power budget for the cluster;

App　　 : the application under study;

C Ntotal　　 : the cluster with nodes;

Ntotal C　　 : the total number of nodes in the cluster

Nnodes　　Output: : suggested number of active compute nodes

Pcpuruni
i;　　 : suggested CPU power for node

Pmemruni
i;　　 : suggested memory power for node

Ncores　　 : suggested number of active cores on each node;

Map　　 : suggested mapping affinity

[PcpuHo
, PcpuLo

, PmemHo
, PmemLo

,Profile]← SmartProf(App)　

[Ncores,Map]←　 Recommendation (Profile)

App Ndef1 , ..., Ndefn　　if has a set of a predefined number of processes then

Ndefk ⩽ Pub/(PcpuLo
+ PmemLo

) < Ndefk+1
　　　if then

Nnodes ← Ndefk　　　　

Pnode ← Pub/Nnodes　　　　

i　　　　for every node to be activated do

[Pcpuruni
, Pmemruni

]← Pnode　　　　　

　　　　end for

　　　end if

　　else

Pub > Ntotal × (PcpuHo
+ PmemHo

)　　　if then

Nnodes ← Ntotal　　　　
　　　else

Nnodes ← Pub/(PcpuHo
+ PmemHo

)　　　　

　　　end if

i　　　for every node to be activated do

Pcpuruni
← PcpuHo

+ Pcpuvi
　　　　

Pmemruni
← PmemHo

+ Pmemvi
　　　　

　　　end for

　　end if

　end function

Job Scheduler

Configuration Recommendation

Module

Application Execution

Module

Measured Performance

Events and Power

Allocated Power and

Computing Resources

Job

Queue

S
m

a
rt

 P
ro

fi
li
n
g

M
o
d
u
le

Job Execution

Fig.6. Overview of CLIP[6].

96 J. Comput. Sci. & Technol., Jan. 2023, Vol.38, No.1

 4.3 Evaluation Results

We use the performance of the All-In method

which does not enforce a power bound as the baseline

performance and then compute the relative perfor-

mance of CLIP and other power allocation methods.

Fig.7 summarizes the comparison results[6], from

which we draw several observations.

40%

1) CLIP achieves similar performance as All-In for

most of the applications under study, and outper-

forms All-In by more than for MiniMD and SP-

MZ applications of the parabolic type, when there is

no specified power bound.

2) CLIP performs best for all the tested bench-

marks if the power budget is unlimited or higher

enough to support compute and memory components

to operate at their maximum capacity.

3) CLIP outperforms All-In, Coordinated, Lower

Limit for most cases, specially for logarithmic and

parabolic applications.

4) CLIP outperforms Coordinated for parabolic

applications (SP-MZ, miniAero and TeaLeaf) by up

to 60% overall. When the thread count further in-

creases, textit parabolic applications experience a

worsened performance but consume more power.

Carefully distributing resources for such applications

significantly improves performance.

5) CLIP outperforms Coordinated for logarithmic

applications when the power budget is low. Logarith-

mic applications are common among big data applica-

tions that require higher memory bandwidth. This ob-

servation confirms the hypothesis that it is beneficial

to classify applications and correspondingly set config-

urations for power-bounded computing.

 5 Job Co-Run and Resource Sharing

To improve system efficiency, modern HPC sys-

tems allow node sharing among different jobs. While

resource sharing has been extensively studied, job

scheduling considering both power and hardware re-

source is a fundamentally new problem. We found

that contention is the major key factor that degrades

the performance of co-running jobs. Power constraint

induces or aggravates resource contention among jobs,

particularly in the memory hierarchy. Furthermore,

when the total power is limited, balancing power

among nodes and components is critical. We study

how power limiting affects contention between collo-

cated scientific parallel jobs in multicore-based clus-

ters, and research effective strategies to mitigate con-

tention and maximize system performance under giv-

en power budgets.

To estimate the level of contention and mitigate

its performance impacts on co-running jobs, we have

developed CAPS[7], a Contention-Aware Power-

bounded Scheduling approach which uses machine

learning models to predict contention using applica-

tion performance and power profiles. Overall, CAPS

embraces two key ideas: 1) infer the contention using

applications' performance and power profiles and its

variation with power limits, and 2) exploit job collo-

cation and supportive power distribution across nodes

and components to mitigate contention caused by

power limits.

 5.1 Benefits of Resource Sharing Under

Power Constraints

Because different applications can have different

1.5

1.2

0.9

0.6

0.3

0.0

R
e
la

ti
v
e
 S

p
e
e
d
u
p

All-In
Lower Limit
Coordinated
CLIP

(a)

1.5

1.2

0.9

0.6

0.3

0.0

R
e
la

ti
v
e
 S

p
e
e
d
u
p

All-In
Lower Limit
Coordinated
CLIP

(b)

AM
G
bt
-m

z

Clov
er

Le
af
16

Clov
er

Le
af
12

8

CoM
D

lu
-m

z

m
in

iA
er

o

m
in

iM
D
sp
-m

z

Tea
Le

af

AM
G
bt
-m

z

Clov
er

Le
af
16

Clov
er

Le
af
12

8

CoM
D

lu
-m

z

m
in

iA
er

o

m
in

iM
D
sp
-m

z

Tea
Le

af

Pb = 1600

Fig.7. Performance comparison of different power allocation methods under high power budgets[6]. (a) Application performance
without power bound. (b) Application performance with W and 200 W power bound.

Rong Ge et al.: The Paradigm of Power Bounded High-Performance Computing 97

resource requirements and power demands, sharing

resources among jobs which are complementary to

each other can lead to performance gain and efficien-

cy improvement.

Fig.8 shows the throughput difference between

two scheduling methods. We run STREAM and EP

on an Intel Haswell Dual-processors node. The coarse-

grained method runs STREAM with 24 threads and

EP with 24 processes serially. The fine-grained me-

thod executes STREAM and EP concurrently, with

each workload occupying half of the core resources.

Correspondingly, the thread/process number of

STREAM/EP is reduced to 12 for each application.

As shown in Fig.8, sharing a node between EP

and STREAM improves the utilization of both hard-

ware resources and power budgets at the node level[7, 8].

While running STREAM and EP one after another,

the power consumption varies from 230 W to 160 W

without a power cap. The same power budget (e.g.,

220 W) will impact STREAM's performance signifi-

cantly and is underutilized by EP. Fine-grained

scheduling keeps more even power consumption across

nodes, and improves the system throughput by more

than 20%.

However, to ensure resource sharing given a pow-

er bound will benefit system throughput, we must an-

swer several questions. First, how should the system

determine complementary workloads that benefit

from resource sharing given a power bound? Second,

will job collocation still be beneficial under different

power budgets? Third, how does the system allocate

power to nodes and components for co-scheduling sys-

tems?

Our power bounded computing research provides

three key insights. First, job collocation is a practical

technique to increase system performance under cer-

tain power limits. Second, a proper scheduler must be

power-aware because power limits can change jobs

from non-interfering to interfering. Third, an effec-

tive scheduler must dynamically distribute available

power to computer components based on the avail-

able power and the workload characteristics of the

jobs under study.

 5.2 CAPS (Contention-Aware

Power-Bounded Scheduling)

Pb = P∞

On a power limited cluster, contentions between

collocated jobs are from two sources: 1) shortage of

hardware capacity if power is abundant () and

2) hardware capacity reduction due to power limits.

These contentions affect system throughput (STP)[9],

which is defined as

STP (Pb) =
∑

i,j

(
T

|
i (Pb)

T
||
i (Pb)

+
T

|
j(Pb)

T
||
j (Pb)

)
.

T | T || i j

Pb

STP STP > 1

i j

Here and are the execution time of jobs and

when they sequentially and concurrently run respec-

tively under the same power budget . Both runs use

all the CPU cores. is a relative metric;

indicates collocating jobs and gains throughput

over sequentially executing them.

P∞Contention under abundant power has been

extensively studied on multicore systems[10, 11]. Prior

works commonly use hardware performance monitor-

ing counter (PMC) to infer performance loss of each

job and the resulting system throughput. A variety of

inference methods have been suggested including sta-

tistical modeling and linear regression[12]. Recently,

neural networks[13] show promising performance loss

prediction on modern multicore systems.

(a) (b)

220 W

EP

STREAM

158 W

230 W

500 370

STREAM || EP

STREAM || EP

Time (s)Time (s)

320

P
o
w

e
r

C
o
n
su

m
p
ti
o
n

P
o
w

e
r

C
o
n
su

m
p
ti
o
n

Fig.8. Throughput comparison between (a) coarse-grained and (b) fine-grained (collocation) resource scheduling[7, 8].

98 J. Comput. Sci. & Technol., Jan. 2023, Vol.38, No.1

Pb = P∞

In our work, we apply a neural network model

which is similar to the one proposed in [13] to infer

system throughput when power is abundant ().

The model is a 2-layer neural network. The input lay-

er is connected with two hidden layers with 24 × 12

neurons. The model uses ReLU as the activation func-

tion and a learning rate of 0.01. The model outputs

are the execution times of collocated jobs, which we

use to calculate the resulting system throughput.

Fig.9 shows the model inputs and outputs.

Perf all

Perfhalf

To increase the model accuracy, our model uses

extra inputs like jobs' CPU and memory power con-

sumption, and the performance ratio between using

all and half of the cores . Except for the perfor-

mance ratio, all other inputs are collected when the

job runs exclusively on half of the cores distributed

across sockets without a power bound. Our model

output is the execution time of collocated jobs, which

is used to calculate the resulting system throughput.

Table 2 lists the details of metrics as input for inter-

ference prediction.

 5.3 Contention Under Power Limiting

STP

Pb

Assuming that the power budget would be opti-

mally distributed between CPU and memory,

generally decreases as power budget drops from

abundant to inadequate: interfering jobs become more

contentious, while complementary jobs may start to

contend due to reduced capacity of resources and

eventually interfere with one another. This trend indi-

cates that power limiting aggravates contentions be-

tween collocated jobs.

Pb i j

STP (P∞)

The scheduler for power bounded job co-run must

answer the job compatibility question: for a given

power budget and a pair of jobs and , should

the jobs be collocated for the sake of throughput? To

answer this question, we classify job paring into three

cases and develop an effective strategy for each case.

Denoting the system throughput under abundant

power , the three cases are listed as follows:

STP (P∞) < 1.0 i

j

● Case 1: . Never collocate jobs

and for any given power budget.

1.0 < STP (P∞) < 1.2

i j

● Case 2: . Do not collocate

jobs and for any given power budget. This strate-

gy may lose some opportunities for throughput im-

provement but is simple.

STP (P∞) > 1.2 i j

Pb > Pth Pth

● Case 3: . Collocate jobs and

if the given power budget , where is a

threshold we choose heuristically. This threshold en-

sures collocating the jobs has a system throughput

greater than 1.

STP (P∞) = 1.2Here is an empirical value we choose

based on our experimental results because it main-

tains a good tradeoff between individual job's perfor-

mance loss and the overall system throughput gain.

Users may choose a different value for their optimiza-

tion constraints and objectives.

 5.4 The Design and Implementation of

CAPS

CAPS is a two-level power coordination scheduler

that explicitly models contentions due to job colloca-

Memory Hierarchy Events

Instructions Related Events

Performance

Ratio

CPU

Power

Memory

Power

Memory Hierarchy Events

Instructions Related Events

Performance

Ratio

CPU

Power

Memory

Power

NN Model for Performance NN Model for CPU Power NN Model for DRAM Power

Fig.9. Performance and power estimation models[7, 8].

Rong Ge et al.: The Paradigm of Power Bounded High-Performance Computing 99

PcpuHij
PcpuLij

Pthij

Pmemij

tion and aims to minimize contentions when search-

ing for optimal power allocations. Specifically, we use

a neural network model to estimate and

from jobs' performance and power profiles when

CPUs run at the highest and lowest frequencies re-

spectively. We further use these two values to esti-

mate the threshold power suitable for their collo-

cation to avoid throughput loss. We always allocate

sufficient power to memory to avoid significant per-

formance degradation, and denote this power as .

j m

Pr

Assuming that job is assigned to run on

nodes and only uses a subset of the cores, and the

available power for these nodes is , the scheduler

examines the next job in the queue. To efficiently uti-

lize the power budget, the scheduler has different job

scheduling and power allocations based on the pre-

dicted power consumption of the collocated jobs.

Pr/m≫ PcpuHij
+ Pmemij

j

● : the scheduler may

switch to co-run with to avoid power budget waste

or request the system to reclaim extra power.

Pr/m > PcpuHij
+ Pmemij

● : the scheduler shifts ex-

tra power to other nodes as illustrated in Subsection

5.5.

Pr/m > Pthij
+ Pmemij

Pmemij

Pth

● : the scheduler allocates

 to memory, and the remaining power to proces-

sors, where is the model's estimated power thresh-

old suitable for job collocation.

Pr/m < Pthij
+ Pmemij

j

● : the scheduler may choose

to run job by itself to avoid significantly perfor-

mance loss by insufficient power.

After managing job scheduling and power alloca-

tion within nodes, the scheduler may coordinate pow-

er among multiple nodes to achieve global optimal

throughput, and ensure all jobs allocated with their

acceptable power ranges.

Once a collocated job completes execution, CAPS

coordinates power at the node and cluster levels to

best fit workloads' power demands. It does not con-

sider the phase changes inside a job to control over-

head.

 5.5 Evaluation

We evaluate the performance of CAPS on an 8

dual Haswell processors node cluster. We train the

models for interference and power prediction using a

training dataset collected from the benchmarks and

assess the model accuracy using the test dataset. We

summarize the key results as follows.

● After having examined multiple neural network

models, we find that the model of two hidden layers,

with 24 and 12 neurons at the two layers respectively,

provides the best accuracy. Thus, we adopt such a

network in CAPS for interference prediction.

● The average estimation error of the interference

model is about 7%. The model tends to underesti-

mate the interference for some memory intensive

workloads.

● The average difference between the prediction

power and the actual power is less than 10 W. Thus,

these power models satisfy the need to estimate the

power consumption of co-scheduling jobs' with high

accuracy.

We also find the following rule of thumb with re-

gard to node sharing from our model prediction and

experimental results.

STREAM CloverLeaf TeaLeaf CloverLeaf3D TeaLeaf
3D

● Extreme memory intensive applications like

, , , , -

 significantly interfere with each other. It is not rec-

ommended to share a node between these applica-

tions.

● Less memory intensive applications cause little

interference to extreme memory intensive applica-

tions. Conversely, extreme memory intensive applica-

tions interfere with others significantly. Nevertheless,

the overall throughput increases. Thus co-scheduling

extreme memory intensive applications with others

applications increases system throughput.

● Compute-intensive applications and compute-in-

tensive applications cause low interference to each

other. However, the memory bandwidth could be un-

derutilized when two compute intensive applications

are co-scheduled.

CAPS reduces the execution time by 25% when

the power is unbounded, in comparison with counter-

Table 2. Metrics Used in CAPS for Workload Interference
Prediction

Event Type Description

Memory hierarchy event Memory read bandwidth

Memory write bandwidth

Local L3 cache miss

Remote L3 cache miss

L3 miss rate

L3 request rate

L2 miss ratio

Instructions related event Cycles per instruction

Unhalted time/runtime

Power consumption data CPU power

DRAM power

Performance ratio Perfall/Perfhalf

Note: The metrics are platform-specific and may be subject to
changes on other platforms.

100 J. Comput. Sci. & Technol., Jan. 2023, Vol.38, No.1

parts[7]. When power bounds are enforced, CAPS in-

creases system throughput by 30%. Under the 1 600

W, FCFS allocates 40 W to memory and 160 W to

CPU on each node. Because CAPS considers work-

load contentions and schedules jobs to achieve higher

power utilization, it performs consistently better than

other methods on power-bounded systems. Experi-

mental details can be found at [7].

 6 Conclusions

Power bounded computing is still in its infancy in

research and continues to evolve to support ever in-

creasing demand by conventional and emerging work-

loads such as deep neural network based large ML

models. While the power constraint is not strictly en-

forced, efficiency is on its rise to be paramount to

managing energy bills and delivering desired applica-

tion performance. Power bounded computing aims to

translate energy saving into application performance

with an upper bound of power and energy consump-

tion.

As HPC computing is increasingly bounded by

power consumption, future systems and software

must cope with these limits. The key question is how

to cope with the power bound and build system man-

agement tools to distribute hardware resources and

power optimally to achieve maximum performance.

We believe power-bounded computing represents a

new computing paradigm that distinguishes it from

previous low-power computing and power-aware com-

puting because power bounded computing explicitly

considers the power bound as a design constraint and

emphasizes coordinated power allocations.

In this paper, we described how the paradigm of

power bounded computing is applied in the HPC un-

der three contexts: node level power coordination be-

tween processors and memory, cluster level between

nodes and components, and co-scheduling jobs and

power on HPC clusters. Two central principles in our

work are balanced power allocations and workload-

aware scheduling. This work provides multiple in-

sights in system scale power management to address

the power challenge for exascale supercomputing sys-

tems: 1) the effectiveness of power bounded comput-

ing for maximizing performance and energy efficiency

given a total budget, 2) the improvement through job

co-running and resource sharing, and 3) the feasibili-

ty of dynamic cluster level intelligent power coordina-

tion given a total power budget. The power bounded

computing paradigm also applies to IoT scenarios

where the power constraint is more pervasive.

Our study represents the first published body of

work to define and evaluate the paradigm of power

bounded high-performance computing. This work has

laid the groundwork for power bounded research as

we move toward exascale supercomputing. Our long

term future directions include developing ideas

around power bounded computing for emerging hard-

ware, power stable computing, self-learning resource

management, and the trade-off between power, per-

formance, and resilience.

References

 Lucas R, Ang J, Bergman K et al. Top ten exascale re-

search challenges. DOE Advanced Scientific Computing

Advisory Subcommittee (ASCAC) Report, U.S. Depart-

ment of Energy, Office of Science, 2014. DOI: 10.2172/

1222713.

[1]

 Jeon M, Venkataraman S, Phanishayee A, Qian J J, Xi-

ao W C, Yang F. Analysis of large-scale multi-tenant

GPU clusters for DNN training workloads. In Proc. the

2019 USENIX Annual Technical Conference, Jul. 2019,

pp.947–960.

[2]

 Ge R, Feng X Z, Allen T, Zou P F. The case for cross-com-

ponent power coordination on power bounded systems.

IEEE Trans. Parallel and Distributed Systems, 2021,

32(10): 2464-2476. DOI: 10.1109/TPDS.2021.3068235.

[3]

 Ge R, Feng X Z, He Y Y, Zou P F. The case for cross-

component power coordination on power bounded sys-

tems. In Proc. the 45th International Conference on Par-

allel Processing (ICPP), Aug. 2016, pp.516–525. DOI:

10.1109/ICPP.2016.66.

[4]

 Ge R, Zou P F, Feng X Z. Application-aware power coor-

dination on power bounded NUMA multicore systems. In

Proc. the 46th International Conference on Parallel Pro-

cessing (ICPP), Aug. 2017, pp.591–600. DOI: 10.1109/ICPP.

2017.68.

[5]

 Zou P F, Allen T, Davis C H, Feng X Z, Ge R. CLIP:

Cluster-level intelligent power coordination for power-

bounded systems. In Proc. the 2017 IEEE International

Conference on Cluster Computing (CLUSTER), Sept.

2017, pp.541–551. DOI: 10.1109/CLUSTER.2017.98.

[6]

 Zou P F, Feng X Z, Ge R. Contention aware workload

and resource co-scheduling on power-bounded systems. In

Proc. the 2019 IEEE International Conference on Net-

working, Architecture and Storage (NAS), Aug. 2019.

DOI: 10.1109/NAS.2019.8834721.

[7]

 Zou P F, Rodriguez D, Ge R. Maximizing throughput on

power-bounded HPC systems. In Proc. the 2018 IEEE In-

ternational Conference on Cluster Computing (CLUS-

TER), Sept. 2018, pp.156–157. DOI: 10.1109/CLUSTER.

2018.00030.

[8]

 Eyerman S, Eeckhout L. System-level performance met-[9]

Rong Ge et al.: The Paradigm of Power Bounded High-Performance Computing 101

http://dx.doi.org/10.2172/1222713.
http://dx.doi.org/10.2172/1222713.
http://dx.doi.org/10.1109/TPDS.2021.3068235
http://dx.doi.org/10.1109/ICPP.2016.66
http://dx.doi.org/10.1109/ICPP.2017.68
http://dx.doi.org/10.1109/ICPP.2017.68
http://dx.doi.org/10.1109/CLUSTER.2017.98
http://dx.doi.org/10.1109/NAS.2019.8834721
http://dx.doi.org/10.1109/CLUSTER.2018.00030
http://dx.doi.org/10.1109/CLUSTER.2018.00030

rics for multiprogram workloads. IEEE Micro, 2008,

28(3): 42–53. DOI: 10.1109/MM.2008.44.

 Blagodurov S, Zhuravlev S, Fedorova A. Contention-

aware scheduling on multicore systems. ACM Trans.

Computer Systems, 2010, 28(4): Article No. 8. DOI:

10.1145/1880018.1880019.

[10]

 Subramanian L, Seshadri V, Ghosh A, Khan S, Mutlu O.

The application slowdown model: Quantifying and con-

trolling the impact of inter-application interference at

shared caches and main memory. In Proc. the 48th Annu-

al IEEE/ACM International Symposium on Microarchi-

tecture, Dec. 2015, pp.62–75. DOI: 10.1145/2830772.

2830803.

[11]

 Kelley J, Stewart C, Tiwari D, Gupta S. Adaptive power

profiling for many-core HPC architectures. In Proc. the

2016 IEEE International Conference on Autonomic Com-

puting (ICAC), Jul. 2016, pp.179–188. DOI: 10.1109/ICAC.

2016.45.

[12]

 Mishra N, Lafferty J D, Hoffmann H. ESP: A machine

learning approach to predicting application interference.

In Proc. the 2017 IEEE International Conference on Au-

tonomic Computing (ICAC), Jul. 2017, pp.125–134. DOI:

10.1109/ICAC.2017.29.

[13]

Rong Ge received her B.S. and

M.S. degrees in engineering mechanics

from Tsinghua University, Beijing, in

1995 and 1998, respectively, and her

Ph.D. degree in computer science at

Virginia Tech, Blacksburg, Virginia, in

2007. She is the director of the Scal-

able Computing and Analytics Laboratory in the School

of Computing at Clemson University, Clemson. Her re-

search interest includes parallel and distributed systems,

machine learning and big data, heterogeneous comput-

ing, and performance evaluation and optimization.

Xizhou Feng received his M.S. de-

gree in engineering thermophysics

from Tsinghua University, Beijing, his

Ph.D. degree in computer science from

University of South Carolina, Colum-

bia, and his J.D. degree from Mar-

quette Law School, Wisconsin. He is

currently a software engineer at Meta Platform, Inc. His

research interests include complex AI models and train-

ing efficiency, high-performance computing and cyberin-

frastructure, scalable algorithms and systems, computa-

tional sciences and informatics, complex system model-

ing, and the interactions between technology and law.

Pengfei Zou received his B.S. de-

gree in remote sensing science and

technology from Wuhan University,

Wuhan, in 2012, his M.S. degree in ge-

ographical information system (GIS)

from University of Chinese Academy

of Sciences, Beijing, in 2015, and his

Ph.D. degree in computer science (CS) at Clemson Uni-

versity, Clemson, in 2020. His research interest includes

parallel and distributed systems, heterogeneous comput-

ing, remote sensing, and cross-discipline technologies be-

tween GIS and CS.

Tyler Allen is an assistant profes-

sor at University of North Carolina at

Charlotte. He received his Ph.D. de-

gree in computer science at Clemson

University, Clemson, in 2022. His re-

search interests are in high-perfor-

mance computing, parallel and het-

erogenous systems, and the system stack across compil-

er, operating system, and architecture. He has extensive

experience in GPGPU computing and manycore sys-

tems.

102 J. Comput. Sci. & Technol., Jan. 2023, Vol.38, No.1

https://doi.org/10.1109/MM.2008.44
http://dx.doi.org/10.1145/1880018.1880019
http://dx.doi.org/10.1145/1880018.1880019
http://dx.doi.org/10.1145/1880018.1880019
http://dx.doi.org/10.1145/2830772.2830803
http://dx.doi.org/10.1145/2830772.2830803
http://dx.doi.org/10.1109/ICAC.2016.45
http://dx.doi.org/10.1109/ICAC.2016.45
http://dx.doi.org/10.1109/ICAC.2017.29

	1 Introduction
	2 The Power Bounded Computing Problem
	3 Nodal Level Cross-Component Coordination
	3.1 Categorizing Power Allocation Effects
	3.1.1 Power Allocation Categories on GPU Computing

	3.2 Category Based Power Allocation Strategies
	3.2.1 Finding the Optimal Power Allocation
	3.2.2 Category-Based Heuristic Power Coordination
	3.2.3 Evaluation

	4 CLIP: Cluster Level Intelligent Power Coordination
	4.1 Application-Aware Configuration Selection
	4.2 Application-Oriented Cluster Level Power Allocation
	4.3 Evaluation Results

	5 Job Co-Run and Resource Sharing
	5.1 Benefits of Resource Sharing Under Power Constraints
	5.2 CAPS (Contention-Aware Power-Bounded Scheduling)
	5.3 Contention Under Power Limiting
	5.4 The Design and Implementation of CAPS
	5.5 Evaluation

	6 Conclusions
	References

