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Abstract    In this paper, we present Emotion-Aware Music Driven Movie Montage, a novel paradigm for the challeng-

ing task of generating movie montages. Specifically, given a movie and a piece of music as the guidance, our method aims

to generate a montage out of the movie that is emotionally consistent with the music. Unlike previous work such as video

summarization, this task requires not only video content understanding, but also emotion analysis of both the input movie

and music. To this end, we propose a two-stage framework, including a learning-based module for the prediction of emo-

tion similarity and an optimization-based module for the selection and composition of candidate movie shots. The core of

our method is  to align and estimate emotional  similarity between music  clips  and movie shots  in a multi-modal  latent

space via contrastive learning. Subsequently, the montage generation is modeled as a joint optimization of emotion similar-

ity and additional constraints such as scene-level story completeness and shot-level rhythm synchronization. We conduct

both qualitative and quantitative evaluations to demonstrate that our method can generate emotionally consistent mon-

tages and outperforms alternative baselines.
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1    Introduction

In  recent  years,  with  the  rapid  growth  of  social

network  and  mobile  applications,  it  has  become  in-

creasingly popular and important to create high-quali-

ty short videos and montages. As one of the best re-

sources for  montages,  movies  are often cut and com-

posed into shorter versions accompanied by a piece of

background  music,  to  obtain  the  trailers,  previews

and/or highlights of the original ones. However, exist-

ing  montage  editing  tools  typically  rely  on  the  users

to manually pick shots from the movie and align with

the music, which is tedious and time-consuming. It re-

mains difficult for non-professional users to generate a

movie  montage  of  satisfactory  quality  to  match  the

rhythm and emotion of the music, with the addition-

al constraint that the selected shots provide a reason-

able and comprehensible summary of the original con-

tent or story.

As machine learning technologies  emerge and ad-

vance,  several  methods  have  been  proposed  in  the

past  few  years  for  the  automatic  generation  of  mon-

tages,  ranging  from  video  summarization[1] to  emo-

tion-oriented music video generation[2, 3]. However, the

former mainly focuses on the content of the video it-

self,  ignoring  the  correlation  with  any  input  music,
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while  the  latter  has  difficulty  in  understanding  and

handling long videos.

Walter  Scott  Murch,  one  of  the  most  famous

movie  editors,  has  summarized  the Rule  of  Six for

film  editing,  including  emotion,  story,  rhythm,  eye

trace,  2D  plane  of  screen,  and  3D  space  of  action[4],

which have different values in terms of importance for

the  final  cut.  Among  these  six  elements,  emotion  is

the  most  important  one  and  has  an  importance  fac-

tor  of  51%,  while  story  and  rhythm correspond  to  a

factor  of  23%  and  10%,  respectively.  Inspired  by

Murch's Rule of Six, we propose Emotion-Aware Mu-

sic Driven Movie Montage (EaMD), a method to au-

tomatically generate a montage from an input movie

with  a  piece  of  user-specified  music  as  the  guidance.

Specifically, we compose the output montage by tak-

ing  the  most  important  three  elements  for  film  edit-

ing into account to meet the following requirements.

1) Emotional  Consistency. The  shots  that  are

used to compose the output montage are emotionally

consistent with the input music.

2) Story  Completeness. The  montage  needs  to

present  a  story  that  is  relatively  complete  and  com-

prehensible.

3) Rhythm  Synchronization. The  visual  and  the

audio  content  of  the  montage  should  have  synchro-

nized rhythms.

To achieve the above goals, we adopt a two-stage

framework.  In  the  first  stage,  we  build  a  network  to

align multi-modal signals of music, text, and image in

the emotion space based on CLIP (contrastive langu-

ege-image pre-training) and contrastive learning[5].  In

the second stage, we formulate the task of composing

montages  as  an  optimization  problem  and  generate

the output using a knapsack-based solver. Specifically,

we divide the input movie at both the scene level and

the  shot  level.  The  output  montage  is  generated  by

maximizing  the  emotional  similarity  between

scenes/shots and the input music. We ensure that the

story  in  the  montage  is  comprehensible  by  adding

constraints on the number of selected scenes. Further-

more,  we  align  selected  shots  with  bars  of  the  input

music using quantified duration so that the rhythm of

both the visual and audio signals is synchronized.

As illustrated in Fig.1,  given a movie as a candi-

date,  we  can  choose  different  shot  combinations  to

form a montage result according to the user-supplied

emotional  music.  The  changing  emotion  score  in  the

movie will be used as a significant indicator to select

the target shots.

In  summary,  our  main  contributions  are  as  fol-

lows.

• We  present  a  novel  method,  EaMD,  for  mon-

tage generation from an input movie and a user-speci-

fied music clip based on well-established rules for film

editing.

• We propose a two-stage framework to generate

output  movie  montages,  by  formulating  the  genera-

tion task as a constrained optimization problem.

• We conduct qualitative and quantitative evalua-

tions  to  demonstrate  that  our  method leads  to  high-

quality  emotionally  consistent  montages  and  outper-

forms alternative baselines. 

2    Related Work

Music-Driven  Video  Generation. The  purpose  of

music video generation is to combine music and video

to enhance entertainment quality and emotional reso-

nance.  Most  previous  methods,  e.g.,  [6, 7],  only  con-

Input Movie

...

Excited.wav

...

Sad.wav

Fear.wav

...

Timeline

Emotion Score

Fear Score

Sad Score

Excited Score

Output Montages

...

Fig.1.  Emotion score based music-driven movie montage. When editing the same input movie with different background music, the
corresponding emotion scores are completely different, and thus the final movie montages guided by different music are also distinct.
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sider  the  relationship  between  low-level  acoustic  fea-

tures and visual features while ignoring semantic con-

straints. Liao et al.[8] cut the input video to synchro-

nize  the  music  rhythm  and  generated  audio-visually

consistent  results.  To  narrow  the  semantic  gap  be-

tween  low-level  acoustic  features  and  human  percep-

tion, some methods[2, 3, 9] try to map the two into the

emotion  space  and  make  the  audience  have  a  good

match  in  their  emotional  perception  when  watching

the  generated  music  video.  Lin et  al.[10] proposed  an

emotion-based  pseudo-song  prediction  and  matching

framework.  Lin et  al.[11] considered  the  continuity  of

video content while matching music and videos. Gross

et  al.[12] generated  music  videos  by  using  features  of

the  video  color  histogram  and  key  changes  in  music

and  genre.  However,  these  methods  do  not  consider

long  sequence  videos.  When  videos  are  fed  that  are

much  longer  than  the  audio  time,  these  methods  ig-

nore the relevance of video content. They ensure emo-

tional consistency but the generated results often lack

a storyline. To address this issue, we propose an algo-

rithm to select shots that enhance the storytelling of

videos while maintaining emotional consistency.

Video Summarization. Video summarization refers

to  the  task  of  generating  summaries  by  stitching  to-

gether important contents of a video. Early approach-

es (e.g., [13, 14]) mainly use unsupervised methods to

generate  video  summaries  due  to  the  lack  of  useful

datasets. After the creation of some manually collect-

ed  datasets[15, 16],  several  supervised  methods  (e.g.,

[17])  have  emerged.  However,  when  users  browse

videos,  they  always  try  to  find  something  specific.

Therefore,  Sharghi et  al.[18] proposed  the  Query-Fo-

cused  Video  Summarization  (QFVS)  dataset,  allow-

ing  video  summaries  to  find  specific  shots  through  a

query to generate results, making the results more us-

er-friendly.  After  the  introduction  of  CLIP[5],

Narasimhan et  al.[1] proposed  a  single  framework  for

solving  general  and  query-focused  video  summariza-

tion in both unsupervised and supervised methods by

combining  CLIP  and  video  summarization.  Movie

trailer  generation  is  one  of  the  main  applications  of

video summarization work, which attracted many re-

searchers' attention. Existing methods usually exploit

shallow audio-visual features[19–22],  but these methods

usually only focus on information about the movie it-

self. However, music is an integral part of video edit-

ing, which can affect the viewing experience of the fi-

nal result. Thus, we use music as the guidance to gen-

erate an emotion-aware movie montage.

Emotion Analysis of Music and Videos. The emo-

tions  associated  with  music  and  videos  have  been

well-studied. It has been suggested that emotions are

one  of  the  main  reasons  why  people  engage  in

music[23],  and  psychological  research  has  shown  that

people  also  have  emotional  responses  to  visual

stimuli[24]. Therefore, it is a very natural way to con-

nect  videos and music  through emotions.  Categorical

and  dimensional  representations  have  been  used  to

represent  emotions  in  music[25].  Discrete  categorical

labels  include  terms  like  excited,  relaxed,  and  sad.

One  study  found  that  the  number  of  emotion  cate-

gories did not reflect the richness of emotions that hu-

mans  perceive,  or  that  the  taxonomy  is  inherently

ambiguous[23].  Therefore,  some  other  studies  used  di-

mensional labels in the two-dimensional (2D) plane of

valence  and  arousal  to  represent  music[26].  This  con-

tinuous representation has no classification problems,

but it is difficult to distinguish some mental and emo-

tional  concepts.  Similar  to  music,  emotions  associat-

ed  with  images  and  videos  are  also  represented  by

categories[27] and  dimensions[28].  Baveye et  al.[29] ex-

pressed  the  features  of  movie  scenes  in  the  valence-

arousal  space.  Hanjalic  and  Xu[30] introduced  domi-

nance as  an additional  dimension to  characterize  the

emotion of videos. 

3    Method

In this section, we introduce our method for emo-

tion-aware movie montage generation. We first revis-

it the general setting of montage generation and then

extend it into an emotion-aware constrained optimiza-

tion problem. As demonstrated in Fig.2, there are two

key  components  in  our  method  framework,  including

1)  multi-modal  emotion  latent  space  alignment,  and

2) emotion score based shots selection. 

3.1    Problem Statement

xm xv

xv E = {e1, e2, ..., em}

S = {s1, s2, ..., sn}
τ(si) = ej

xm

Our goal is to generate a montage given the user-

specified music  and a long movie . Following the

common  practice  for  montage  generation,  we  divide

the  movie  into  a  set  of  scenes 

and  each  scene  can  be  split  into  multiple  shots.  We

denote  all  the  shots  as  a  shot  set 

and  use  a  mapping  function  to  record  the

relationship  between  scenes  and  shots.  Similarly,  the

input  music  is  split  into  a  series  of  bars
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B = {b1, b2, ..., bl}
R S

1ls(si)

ϕ(bk) = si

C = {c1, c2, ..., cα}

.  Then  the  goal  of  montage  genera-

tion is to select a subset of shots  from  and asso-

ciate  each  bar  with  a  movie  shot.  In  other  words,

montage generation requires 1) a shot indicator func-

tion ,  determining  which  shots  are  selected  and

2) a mapping function  to present the rela-

tionship between shots and bars. This task is in gen-

eral  an  under-constrained  problem,  and  hence  addi-

tional constraints to  are required to

limit  the  feasible  solutions.  Valid  constraints  include

the  total  number  of  selected  scenes  and  the  rhythm

synchronization between shots and bars.

M(si, x
m)

M

R

In  this  work,  we  add  emotion-aware  constraints

for the shot selection task. Our key insight is to intro-

duce  an  emotion  measurement  function ,

which  can  be  used  to  evaluate  the  consistency  be-

tween  each  shot  and  the  whole  music.  With ,  we

can  formulate  the  optimization  target  such  that  the

selected  subset  of  shots  can  construct  a  montage

by maximizing the emotional consistency between the

audio and visual signals, as shown below: 

R = argmax
i

n∑
i=1

M(si, x
m)1ls(si), s.t. C. (1)

M(si, x
m)

C 1ls(si)

ϕ(bk) = si

To  solve  the  proposed  optimization  problem,  we

further develop a two-stage paradigm to learn the re-

quired functions. Specifically, we adopt a CLIP-based

multi-modal  alignment  approach  for  emotion  latent

representation  learning  and  use  it  as .  The

optimization  of  scenes  and  shots  selection  can  be

modeled as a knapsack problem given the constraints

. The shot indicator function  and the shot-bar

mapping function  can be obtained via a de-

terministic knapsack solver. We will provide details in

Subsections 3.2–3.4. 

3.2    Multi-Modal  Emotion  Latent  Space

Alignment

M

Em Et Ei

xm xt xi

fm

f t f i

The first stage of our pipeline is to learn an emo-

tion  measurement  function  between  movie  shots

and  music.  It  requires  embedding  and  alignment  of

signs  from different  modalities  in  the  emotion  space.

Inspired  by  AudioCLIP[31],  we  train  three  encoders

( , , )  of  different  modalities  (music,  text,  and

image) to produce matched representations, as shown

in Fig.2(a).  Specifically,  given a tuple of music,  text,

and image ( , , ) as the input, we use the three

encoders to obtain a set of latent representations ( ,

, ). The purpose of introducing text modality is to

use it as an anchor to improve the classification accu-

racy.  We  initialize  the  encoders  with  the  pretrained

AudioCLIP  model  and  further  optimize  joint  audio-

text-visual  representations  via  contrastive  learning

procedure[5].

fa f b a, b

fa f b

Contrastive  Constraints  for  Multi-Modal  Emo-
tions. The pretrained AudioCLIP model gives a good

embedding  space  for  features  from  different  modali-

ties, and we further align the feature space and make

it  emotion-aware.  Specifically,  for  arbitrary  feature

pair ( , ), where  are from different modalities,

we aim to align the distribution of ,  if they cor-

respond  to  the  same  emotion,  and  push  away  other-

wise.

Towards this end, we first define an emotion indi-

cator  for  different  modalities.  As  demonstrated  by

Pandeya and Lee[32], emotions of audio and visual sig-

nals  can  be  measured  together  in  the  2D  valence-

arousal  space,  which  provides  a  reasonable  indicator

to  compare  the  differences  of  both  modalities.  Thus,

we follow the settings in [32] and divide the emotion

spaces into six categories to cover the emotion space

(a)

“Relaxation”
Text

Encoder

Image

Encoder

Similarity

Score

ℒ
ℒ

(b)

…
…

…

…
…

…

Montage.mp4

Emotion-Aware Knapsack Solver

Rhythm 

Synchronization

Emotional 

Consistency

Story 

Completeness

Music

Encoder


 

 

 

 

 

 

 
 

 







cls

cls









Fig.2.  Illustration of our framework. (a) In the first stage, we construct an emotion space by aligning the latent representation of
multiple modalities. (b) In the second stage, we select and compose several emotion-related shots from the candidates using our emo-
tion-aware knapsack based optimization solver.
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of daily communications, i.e., excited, fearful, neutral,

relaxed, sad, and tense.

6× 6

fm+ f i+

f i− fm−

LCE

For  each  iteration  of  the  network  training  stage,

we  build  three  modality  constraint  matrices.

Taking image-music modalities as an example, we de-

note a music feature and an image feature either as a

positive  pair  ( , )  which  will  be  placed  on  the

diagonal of the matrix if they have the same emotion

indicator, or as negative examples  and  which

will  be  placed  on  the  off-diagonal  of  the  matrix.  We

use  the  cross  entropy  loss  to  push  the  conver-

gence  of  the  emotion  space  between  two  specific

modalities  in  the  matrix  diagonal.  The  detailed  im-

age-music contrastive loss is as follows: 

Limage_music = LCE(S
(i+, m+), 1) + LCE(S

(i+, m−), 0)+

LCE(S
(i−, m+), 0),

1 0
S

where  represents a full one vector, and  denotes a

zero  vector.  is  the  emotional  consistency  score  we

use to evaluate the distance between different modali-

ties, defined as follows: 

S(a,b) =
<fa × f b>

∥fa∥ × ∥f b∥
.

Ltext_image

Ltext_music

We  compute  the  constraints  and

 for  text-image  modalities  and  text-music

modalities in the same way respectively.

f t

Ctext

Fi

Fm

Emotion  Classification  Constraints. In  order  to

further  improve  the  discriminability  of  emotion  fea-

tures, we add a fully-connected layer after the image

and music encoder to classify the emotion categories,

which  enhances  the  linearity  of  the  latent  emotion

space. The text information is used as a tag to influ-

ence  feature  space  construction.  More  concretely,  a

text prompt feature  will  be reshaped to a one-hot

vector  as the target. We denote the image linear

classification layer as  and the music linear classifi-

cation layer as . These classification layers learn to

discriminate  the  emotion  categories  of  images  and

music  by  the  cross-entropy  loss.  Therefore,  the  final

classification constraint is formulated as: 

Lcls = LCE(Fi(f i),Ctext) + LCE(Fm(fm),Ctext).

Total Loss. Our full objective loss function can be

written as follows: 

Ltotal = Limage_music + Ltext_music + Ltext_image + αLcls,

αwhere  is  a  parameter  to  balance  different  loss

terms.

Ei

After  the  training  stage,  we  apply  the  image  en-

coder  on  each  shot  to  get  the  image  feature  set

F i = {f i
1, f

i
2, ..., f

i
n}

xi

Em

xm

Ω = {S(i,m)
1 , S

(i,m)
2 , ..., S(i,m)

n }
M(si, x

m)

.  Since each frame in a single shot

is similar, we represent the content of a single shot by

picking an intermediate frame  in the shot interval.

Meanwhile,  the  trained  music  encoder  is  used  to

extract features of the input music . We collect all

the emotion consistency scores for each shot and the

whole  music  to  form  a  set  of  emotion  scores

 as  the  original  value  of

. 

3.3    Emotion Score Based Shot Selection

M

C

1ls(si)

Given  the  learned  emotion  score  function ,  our

next step is to select candidate shots which yield the

maximum  emotion  score  w.r.t.  the  optimization  tar-

get in (1). Following Walter Murch's montage criteri-

on[33],  we use  two constraints  as  to  limit  the solu-

tion  space:  1)  scene-based  story  completeness  con-

straint  to  improve  the  causality  of  the  montage;  2)

shot-based  audio-visual  rhythm  synchronization  con-

straint  to  guarantee  the  audio-visual  harmonious  de-

gree  of  the  montage.  The  shot  indicator  function

 will be obtained during optimization with these

constraints.

Scene-Level  Constraint  for  Story  Completeness.
Our  key  observation  is  that  the  less  the  changes  in

characters  and  the  environment,  the  easier  the  audi-

ences understand the storyline.  Therefore,  a high ag-

gregation degree of scenes can provide a better story

completeness.  Intuitively,  we  can  improve  the  story

completeness  by limiting  the  number  of  scenes  to  be

involved.

1le(ej)Hence,  we  define  a  function  to  indicate

whether a scene is selected. A scene is considered se-

lected when one of its shots is chosen: 

1le(ej) =

1, if
n∑

i,τ(si)=ej

1ls(si) > 0,

0, otherwise.

Ne

1le(ej)

Furthermore, we denote  as the maximum number

of selected scenes,  and take it as an upper bound on

the sum of , formulated as:
 

m∑
j=1

1le(ej) ⩽ Ne. (2)

Shot-Level  Constraint  for  Rhythm  Synchroniza-
tion. Empirically,  the  audiences  feel  more  harmo-

nious  if  the  shot  and  music  rhythm of  a  montage  is

changed synchronously. Here the music rhythm is de-

fined  as  the  duration  of  bars.  We  can  model  such  a
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tc,bk

td,bk

td,si

tc,si td,bk

Nb

rhythm  synchronization  constraint  by  establishing  a

mapping relationship between shots and bars. Specifi-

cally, we require each music bar should correspond to

a shot and each shot should contain at least one com-

plete music bar. To achieve this, we first quantify the

duration of both shots and bars. Since the variation of

music bar duration is small, we take the average con-

tinuous bar duration  as the unit of discrete time,

noted as . Then for each shot of movie, we obtain

the discrete shot duration  by exactly dividing the

continuous shot duration  with . We further re-

quire  that  the sum of  discrete  selected shot  duration

is  equal  to  the  sum  of  all  discrete  bar  duration ,

which is formulated as follows: 

n∑
i=1

td,si 1ls(si) =
l∑

k=1

td,bk = Nb. (3)

Final  Optimization  Formula. We define  the  com-

plete optimization problem as: 

R = argmax
i

n∑
i=1

M(si, x
m)1ls(si),

s.t.
n∑

i=1

td,si 1ls(si) = Nb,

m∑
j=1

1le(ej) ⩽ Ne.

(4)

 

3.4    Emotion-Aware Knapsack Solver

si

pi
S

(i,m)
i

P = {p1, p2, ..., pn}

To tackle the above optimization problem, we de-

sign  an  emotion-aware  multi-dimensional  knapsack

solver  with  the  proposed constraints.  Specifically,  we

define three attributes belonging to shot  according

to the optimization formula. The first one is a weight-

ed  emotion  score .  To  further  enhance  the  impor-

tance of scenes, for each , we adjust the value by

adding the average emotion score of  the scene which

the  shot  belongs  to  and  form  the  weighted  emotion

score set . Each item in P is formu-

lated as: 

pi = S
(i,m)
i +

1
n∑

i=1

1l(τ(si) = ej)

n∑
i,τ(si)=ej

S
(i,m)
i ,

1l(·)
(·) 1

td,si

T d,s = {td,s1 , td,s2 , ...,

td,sn }

where  is a boolean indicator function. If the con-

dition  holds, it returns , and 0 otherwise. The sec-

ond attribute  is  the discrete  shot  length ,  used to

ensure  the  visual-audio  rhythm  synchronization  con-

straint  in  (3).  After  traversing  each  item,  we  obtain

the  discrete  shot  duration  set 

.  The  third  attribute  is  the  scene  number  con-

qistraint score  corresponding to (2). We define a step

function  relying  on  the  subscripts  of  the  scene  to

which the shot belongs, used to classify different scene

categories: 

qi = j, ej = τ(si).

Q = {q1, q2, ..., qn}We denote  as  the  set  of  scores  for

scene  number  constraints.  The  three  attribute  sets

will be regarded as individual factors in the knapsack

solver.

(i, j, k, z)

k

j

i z

i

qi ̸= qi−1

Ne

P
Backtrack(·)
1ls(si)

R

ϕ(bk)

Hard Scene Constraint Knapsack Solver. The ba-

sic  state  is  defined  to  represent  the  maxi-

mum  emotion  score  achieved  by  selecting  exactly 

scenes, with a total discrete shot duration of , and it-

erating  over  the  first  shots.  means  whether  the

scene  to  which  the -th  shot  belongs  is  selected.  We

display the detailed state transition equation in Algo-

rithm 1.  Considering  whether  the  current  state  is  on

the  boundary  of  the  scene  ( ),  four  possible

state transition paths need to be discussed separately.

When the user queries a specific upper bound on the

number of  scenarios ,  the  maximum emotion score

 can  be  quickly  looked  up.  Meanwhile,  the

 method,  as  the  shot  indicator  function

, will trace a legal path in inverse order and re-

turn a possible index set of shots . Then, we can ob-

tain the mapping function  by matching selected

shots and bars of music in chronological order.

Algorithm 1. Hard Scene Constraint Knapsack Solver

P Q T d,s n,Nb,NeInput:  set ,  set ,  set ,  and  as corresponding
capacity

P
R

Output: the maximum emotion score , the picked shot index

set 

i : 1→ n1: for  do

j : 1→ Nb2:　for  do

k : 1→ Ne3:　　for  do

qi ̸= qi−14:　　　if  then

(i, j, k, 1)← max((i− 1, j − td,si , k − 1, 0) + pi,
(i− 1, j − td,si , k − 1, 1) + pi)

5:　　　　

　　　　　

(i, j, k, 0)← max((i− 1, j, k, 0), (i− 1, j, k, 1))6:　　　　

7:　　　else

(i, j, k, 1)← max((i− 1, j − td,si , k − 1, 0) + pi,
(i− 1, j − td,si , k, 1) + pi, (i− 1, j, k, 1))

8:　　　　

　　　　　

(i, j, k, 0)← (i− 1, j, k, 0)9:　　　　

10:　　　end if

11:　　end for

12:　end for
13: end for

P← max((n,Nb,Ne, 1), (n,Nb,Ne, 0))14: 

R← Backtrack(P)15: 

P, R16: return 
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The hard scene  constraint  requires  that  the  total

number  of  selected  scenes  is  less  than  an  upper

bound. As illustrated in Fig.3(a), we constrain the ca-

pacity of the set of scenes to which selected shots be-

long. Algorithm 1 in the main paper displays the de-

tails  of  hard  scene  constraint  knapsack.  We  iterate

through  all  possible  states  with  a  triple  loop  which

contains  three  core  factors.  In  each  state  transition,

the  current  state  will  obtain  the  maximum  emotion

score from some legal substates. Specifically, four dif-

ferent state transition cases need to be discussed.

  

1/2 1/2 1/6 1/6 1/6 1/6 1/6 1/6 1/3 1/3 1/3

1/2 1/6 1/6 1/61/6 1/3 1/3+ +1/6 ≤ 2

……

1 1 2 2 2 2 2 2 3 3 3

2 2 22 3 3set( ), ≤ 2

……

(b)

(a)

Fig.3.   (a)  Hard  scene  constraints.  The  sum  of  weights  of  all
picked shots is limited. (b) Soft scene constraints. The number
of scenes that picked shots belong to is constrained.

 
qi qi−1

z = 1

1)  If  and  belong  to  different  scenes,  we

choose  the  scene  to  which  the i-th  shot  belongs

( ). In line 5 of Algorithm 1, two valid substates

that  reduce  the  number  of  scenes  should  be  consid-

ered when selecting a scene on the boundary.

qi qi−1

i

z = 0

2) If  and  belong to the different scenes, we

do  not  choose  the  scene  to  which  the -th  shot  be-

longs  ( ).  In  line  6  of Algorithm 1,  the  scene

number  will  not  decrease  in  substates  because  noth-

ing is selected.

qi qi−1

i

z = 1

i

i

3)  If  and  belong  to  the  same  scene,  we

choose  the  scene  to  which  the -th  shot  belongs

( ).  Line  8  of Algorithm 1 shows  three  possible

substates.  If  the -th  shot  is  selected,  the  algorithm

needs  to  separately  consider  whether  the  number  of

scenes is reduced. Conversely, the scene to which the

-th shot belongs must be chosen before this state.

qi qi−1

i

z = 0

i

4) If  and  belong to the same scene, we do

not  choose  the  scene  to  which  the -th  shot  belongs

( ).  In line 9 of Algorithm 1,  the scene to which

the -th  shot  belongs  cannot  be  selected  in  the  sub-

state.

Soft  Scene  Constraint  Knapsack  Solver. As  illus-

trated in Fig.3(b), the soft scene constraint knapsack

solver  assigns  corresponding  scene  constraint  weight

for each shot and limits the sum of weights for all se-

lected  shots.  Before  starting  optimization,  we  multi-

ply  all  scene  constraint  weights  by  a  magnification

constant and round them down to ensure each weight

is an integer.

Ne

Fixing the number of scenes may fail to obtain the

highest  sum  of  emotion  scores.  Thus,  we  loosen  the

restriction in (2). Instead of limiting the upper bound

of  the  sum  of  selected  scenes,  we  constrain  that  the

sum of the inverse of the number of shots in the scene

to  which  the  selected  shots  belong  is  no  larger  than

: 

n∑
i=1

1
n∑

α=1

1l(τ(sα) = τ(si))

1ls(si) ⩽ Ne,

1l(·)where  is  a  standard  indicator.  If  the  equation  is

established, the function value is 1; otherwise it is 0.

Q̃ = {q̃1, q̃2, ..., q̃n}
Then,  we  reconstruct  the  soft  scene  number  con-

straint  score  set  as ,  where  each

item of the set is formulated as: 

qi =
1

n∑
α=1

1l(τ(sα) = ej)

, ej = τ(si).

(i, j, k)

i

j

k

(i, j, k)

(i− 1, j − td,si , k − qi)

In  this  condition, Algorithm 1 will  degenerate  into  a

vanilla  three-dimensional  knapsack  solver.  We  as-

sume  a  basic  state ,  which  stores  the  maxi-

mum emotion score when it traverses to the -th shot

constrained by the sum of picked scene weight  and

the  sum  of  picked  discrete  shot  duration .  During

optimization,  the  state  will  visit  all

 states,  and  pick  the  maximum

value to transfer. We get the same results as above.

1ls(si)

ϕ(bk)

At  last,  when  the  function  of  searching  the  best

solution  has been obtained, we discard the part

where  the  shot  is  longer  than the  bar  to  align  dura-

tion,  concatenate  all  selected  shots  in  chronological

order and append the given music according to 

to get  the final  montage.  In general,  we provide two

knapsack-based deterministic optimization schemes to

select  the  shot  with  high  emotion  relevance  from

abundant candidate shots. 

4    Experiments
 

4.1    Dataset

The  music  video  dataset[32] is  used  to  train  our
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model.  This  dataset  focuses  on  the  multimodal  emo-

tion  classification  task,  utilizing  audio  and  visual  in-

formation  to  discriminate  the  category  of  music

videos.  During  the  training  stage,  a  total  of 4 788

samples are used, consisting of videos that convey 843

instances of excitement, 828 instances of fear, 678 in-

stances  of  neutrality, 1 057 instances  of  relaxation,

730 instances of sadness, and 652 instances of tension.

Since  the  labels  are  assigned  to  the  whole  video,  we

assume  that  the  emotion  of  each  frame  within  the

same shot is consistent in each batch of training. We

randomly pick a frame from videos as the input of im-

age encoder, and use the full music to encode the au-

dio  feature.  For  text  modality,  we  use  six  fixed  text

prompts.  Finally,  we  test  the  generated  results  on  a

test set of 300 samples, where each emotion category

contains 50 videos.

The original data in the dataset we use has consis-

tent  and  rich  emotions.  Concretely,  the  consistency

represents  the  raw  materials  convey  the  same  emo-

tion signal in the visual and audio modalities. For ex-

ample,  the “excited” contains  positive  emotions  with

bright  hued  scenes  and  the  corresponding  music  has

light  rhythm  and  pleasant  chords.  Meanwhile,  the

richness of emotions means that each category in the

dataset  covers  various  fine-grained emotions.  For  ex-

ample,  the  category  of “excited” encompasses  emo-

tions  such  as  happiness,  joy,  love,  and  excitement,

while the category of “fear” includes emotions such as

fearfulness, disgust, terror, and so on. 

4.2    Experimental Setup

For visual modality, we extract the shot of video

α

by TransNet v2[34] and obtain the scene segmentation

boundary  by  the  method  of  Rao et  al.[35].  For  audio

modality,  we split  the bar of music by the Madmom

library[36]. We train our model for 50 epochs with the

Adam  optimizer[37] on  a  single  NVIDIA  RTX  3090.

The  learning  rate  is 0.000 1 and  the  batch  size  is  6.

Meanwhile,  we  set  the  trade-off  as  1.  In  the  opti-

mization stage, we denote Ours(h) as the montage re-

sults  generated  by  using  the  hard  scene  constraint,

and  Ours(s)  as  the  ones  generated  by  using  the  soft

constraint.  The  scene  number  constraint  for  both

methods is 5.

é

To  comprehensively  compare  the  differences  be-

tween various types of movies and music in the mon-

tage  task,  in  the  evaluation  phrase,  we  choose  11

movies whose categories cover action (e.g., L on), love

(e.g.,  Titanic),  science fiction (e.g.,  Inception),  come-

dy  (e.g.,  The  Grand  Budapest  Hotel)  and  fear  (e.g.,

Train  to  Busan).  Sixteen  pieces  of  music  with  dis-

tinct emotions are used as background songs. 

4.3    Qualitative Evaluations

In  this  subsection,  we  show  some  qualitative  re-

sults  from  visual-audio  aspect.  To  directly  evaluate

the  quality  of  montage, Fig.4 shows  some  visualized

results that frames are picked from the montage gen-

erated  by our  method.  Forrest  Gum,  as  an  example,

is  clipped  by  various  kinds  of  music  with  different

emotions.  The  representative  pictures  with  strong

emotions  are  shown  in  each  column.  Apparently,

some  optimistic  scenes  (excitement  or  relaxation)

(a) (b) (c) (d) (e) (f)

Fig.4.  Montage results generated by our framework driven by music with different emotions. (a) Excited.wav. (b) Fear.wav. (c) Re-
laxation.wav. (d) Sad.wav. (e) Tension.wav. (f) Neutral.wav.
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with  the  bright  light  are  selected  by  the  delighted

music.  On the  other  side,  the  painful  scenes  (fear  or

sadness)  are  often  accompanied  by  crying  and  dark

atmosphere. To some extent, the results demonstrate

that  our  method  has  a  good  audio-visual  emotional

consistency performance.

Ablation  Study. To  explore  the  impact  of  each

component in our solvers on the preferences of the au-

dience,  we  ablate  three  key  factors  in  (4),  including

emotional consistency, story completeness and rhythm

synchronization,  to  make  a  30-second  montage  with

fixed music. For user study, we select five movies and

generate five montages for each movie by our models

and the baseline (ablated) models.  We also invite an

expert to make a montage for each movie under same

conditions. Finally, we get 30 montages and invite 36

investigators to rate them (1–5),  considering four as-

pects:  1) the degree of  audio-visual  emotional  consis-

tency; 2) the degree of story completeness; 3) the de-

gree  of  audio-visual  rhythm  synchronization;  4)  the

overall quality of the montage.

Table 1 shows the average rating statistics. Apart

from  the  results  from  the  expert  as  upper  bound,

Ours(h) achieves the highest rating in story complete-

ness,  rhythm  synchronization  and  overall  evaluation

under  full  constraints.  We  bold  the  highest  score  of

our  method  in  each  metric.  With  a  movie  of  about

two hours as a benchmark, our method only takes 20

minutes to process a montage, but it takes the expert

2–3  days  to  process  a  30-second  video,  because  it

takes a lot of time to choose suitable shots.  Further,

by relaxing the constraint of the scenes, Ours(s) out-

performs  on  emotional  consistency  than  Ours(h)  but

slightly  decreases  in  other  metrics  due  to  the  loss  of

overall  coherence.  When  the  emotion  factor  is  not

considered (w/o emotion),  there  is  a  significant  drop

in all  ratings,  proving the importance of  audio-visual

emotional  consistency  for  montages.  Similarity,  de-

spite  the  selection  of  the  largest  emotion  score,  the

lack  of  a  story  completeness  constraint  (w/o  story)

will limit the overall quality of montages. Due to peo-

ple's  sensitivity  to  audio-visual  rhythm  synchroniza-

tion (sync.), the last factor (w/o rhythm) gets almost

the worst score in most aspects.

Qualitative  Comparisons  with  Other  Methods. To

the best of our knowledge, the proposed framework is

the first to achieve music-driven movie montage, lack-

ing  comparable  methods  and  open  source  codes.  [11]

by Lin et al. is the most similar work to ours, which

firstly  recommends  a  piece  of  matched  music  from a

fixed  music  database  according  to  the  user-supplied

video and then obtains the final montage by selecting

shots  under  cost-based  constraints.  Although  the  in-

put  is  not  exactly  consistent,  the  output  of  that

work[11] is  the same as ours;  therefore,  we set it  as a

baseline. To further prove the effectiveness of our ap-

proach, we invite the expert to clip the montages un-

der the same conditions.

In  this  study,  we  make  montages  of  lengths  be-

tween  three  and  five  minutes  with  a  piece  of  music

from the user-specified video about 15 minutes. Final-

ly, we produce five montages and invite 40 investiga-

tors  to  participate  this  experiment.  These  partici-

pants  receive  the  same  questions  as  the  user  study.

They  rate  each  montage  on  a  scale  of  1–5  based  on

emotional consistency, story completeness and rhythm

synchronization  and  overall  aspect. Table 2 demon-

strates  that  compared  with  [11],  we  achieve  signifi-

cant  superiority  on  all  evaluation  metrics.  We  bold

the highest score of methods in each evaluation crite-

rion except for expert ratings. In particular, since we

explicitly consider the influencing factors of film edit-

ing, we achieve large improvements in story complete-

ness  and  rhythm  synchronization,  and  can  even

achieve  scores  that  are  competitive  with  expert  re-

sults.
  

Table  2.    Qualitative Comparisons with Other Methods

Method Emotional
Consistency

Story
Completeness

Rhythm
Sync.

Overall

Lin et al.[11] 3.690 3.723 3.178 3.401

Ours 3.782 4.101 3.678 3.987

Expert 3.835 3.948 4.024 4.103
 

Arbitrary  Music  Driven  Movie  Montage. To  re-

flect the disparity guided by different types of music,

we  conduct  a  user  study  to  explore  the  audio-visual

emotional  consistency  of  our  approach.  For  compari-

son,  we  select  different  types  of  pieces  of  emotional

music  to  drive  movie  clips,  and  each  movie  will  be

 

Table  1.    Results of Ablation Study

Method Emotional
Consistency

Story
Completeness

Rhythm
Sync.

Overall

Ours(h) 3.574 3.624 3.616 3.783

Ours(s) 3.672 3.148 3.438 3.502

w/o
emotion

3.026 3.146 3.412 3.105

w/o story 3.384 3.140 3.460 3.328

w/o
rhythm

3.182 3.044 3.124 3.138

Expert 3.938 3.886 3.966 4.037
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edited  by  two  random emotions.  In  this  experiment,

investigators  need to  answer  two questions.  1)  What

emotions do you feel from the movie montage? 2) How

strong  are  they?  Considering  different  proportions  of

emotions  of  diverse  people,  we  allow them to  choose

multiple  emotions  for  each movie  montage and score

the emotion degree in the montage on a scale of 1–10,

where  higher  scores  represent  more  prominent  emo-

tions. Finally, we receive a total of 46 valid question-

naires. As shown in Fig.5, in each row, we display the

voted percentage of  each emotion category for  a  sin-

gle  movie  driven  by  a  piece  of  music  with  different

emotions.  For each piece of  music,  we draw the nor-

malized degree of relevance that the participants vot-

ed on, and the red word means the highest probabili-

ty category. By observing the results, we achieve the

distinct differences in all six emotions. The relaxation

is  the  easiest  category  to  tell  due  to  that  beautiful

landscapes and bright scenes are often appeared. The

excitement  and  tension  become  the  most  confusing

emotion  category  on  account  of  a  large  amount  of

similar facial expressions and body movements.
 

4.4    Quantitative Evaluations

Confusion  Matrix  of  Emotion  Classification. We

apply the music video emotion classification accuracy

to  assess  the  performance  of  our  model.  We validate

our model on the test set using a confusion matrix as

a visual evaluation method, which counts the number

of  samples  in  classes  that  are  misclassified  between

different categories. As shown in Fig.6, our model per-

forms  well  on  categories  of “fear”, “relaxation” and

“excited”.  However, “neutrality” is  often  misclassi-

fied as other classes, because its data resembles other

emotions.

Movie Guided Music Montage Frame Emotion

Forrest Gump

Relaxation.wav

Excitement        

Fear

Relaxation

Sadness            

Tension

Neutrality    

Neutrality.wav

Excitement

Fear

Relaxation

Sadness

Tension

Neutrality

Léon

Excitement.wav

Excitement

Fear

Relaxation

Sadness

Tension

Neutrality

Tension.wav

Excitement

Fear

Relaxation

Sadness

Tension

Neutrality

The Grand Budapest Hotel

Fear.wav

Excitement

Fear

Relaxation

Sadness

Tension

Neutrality

Sadness.wav

Excitement

Fear

Relaxation

Sadness

Tension

Neutrality

13.04%

0.00%

4.35%

91.30%

0.00%

13.04%

4.35%

21.74%

0.00%

0.00%

82.61%

21.74%

26.09%

21.74%

4.35%

21.74%

13.04%

56.52%

65.22%

17.39%

17.39%

8.70%

4.35%

43.48%

0.00%

60.87%

4.35%

0.00%

34.78%

17.39%

17.39%

0.00%

73.91%

30.43%

0.00%

4.35%

Fig.5.  Percentage of most possible emotions for movie montages guided by two pieces of random emotional music. Six examples are
displayed, including the guided music, the montage frame, and the emotion probability map voted by investigators.
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1

Statistics of the Accuracy and F1-Score. We com-

pare our methods with others in terms of top-1 accu-

racy  (Acc.)  and F1-score  (F )  to  prove  the  discrim-

inability of our emotion space by feeding signals in diff-

erent modalities. We select the method of [38], vanil-

la AudioCLIP[31], and Wav2CLIP[39] as baselines. The

results are shown in Table 3, where “Ours w cls” and

“Ours w/o cls” correspond to training models with and

without a classifier, respectively. “Ours w/o text-enc”
means  to  remove  the  text  encoder  and  does  not  use

the text modality to enhance the feature. “Ours w/o

pretrain” means  the  encoder  is  trained  from scratch.

We  demonstrate  the  effectiveness  of  our  full  frame-

work  by  comparing  the  classification  performance  of

encoders under various conditions. We bold the high-

est  score  and  underline  the  second  highest  score  in

each metric. We achieve the best top-1 accuracy and

F1-score  on  the  emotion  classification  task  of  music

videos.  AudioCLIP  and  Wav2CLIP  completely  lose

the ability to classify video emotions due to the con-

straint  of  the  original  pretrained  dataset.  Compared

with [38], our method also achieves the highest perfor-

mance in the audio modality.
 
 

Table  3.    Statistics of the Accuracy and F1-Score

Method Accuracy (%) 1F  (%)

Audio Visual Audio Visual

Pandeya et al.[38] 74.0 74.0 73.0 73.0

AudioCLIP[31] 18.3 34.0 12.6 32.9

Wav2CLIP[39] 16.3 12.7 4.7 11.5

Ours w cls 82.0 69.7 82.0 70.0

Ours w/o cls 76.7 67.7 76.9 67.7

Ours w/o text-enc 75.3 63.2 75.1 63.2

Ours w/o pretrain 69.0 56.8 69.2 56.6
 

4.5    Video Demo

To  demonstrate  the  effectiveness  of  our  frame-

work, we provide a video demo that consists of movie

montages  guided  by  various  pieces  of  emotional  mu-

sic. Two specific tasks are presented in the video.

The first task is to generate movie montages driv-

en by different pieces of emotional music for a single

movie.  We  list  two  different  movies,  including “For-

rest Gump” and “Leon”. For the same movie, we pro-

cess it with our pipeline, adding a piece of 30-second

emotional  music,  such  as “Forrest  Gump” edited  by

relaxed  and  neutral  music  and “Leon” with  excited

and  tense  music.  Apparently,  we  can  easily  observe

the  difference  in  the  montage  results.  For  example,

the  beautiful  landscape  (i.e.,  sea  and  forest)  frames

are mainly picked in the montage when a music with

the relaxed emotion is used as guidance. On the con-

trary, with a piece of neutral music,  the movie mon-

tage  often  contains  static  pictures,  for  example,  the

expressionless man sitting on the chair. Based on our

solver, we successfully select the suitable set of movie

shots to create a montage, which leads to the dispari-

ty.

The second task in our demo is to create the mon-

tage  using  the  corresponding  theme  song  of  the

movie.  Two  movies, “Mulan” and “The  Grand  Bu-

dapest Hotel”, are used as raw materials. In this case,

we  show  our  framework  can  create  a  montage  that

fits the overall mood and rhythm of the movie accord-

ing to the theme song. 

5    Discussions and Limitations

Although our method can achieve emotional  con-

sistency  and  rhythmic  synchronization  in  montage,

there  are  still  some  limitations.  For  example,  when

the selected shot length is longer than the correspond-

ing music bar length, part of the shot will be cut off,

which  may  compromise  the  integrity  of  the  shot.

Moreover, our method does not explicitly consider the

semantic transition and coherence between shots; thus

there  may  be  plot  jumps  between  two  consecutive

shots.  In  the  future,  we  will  further  explore  and  ad-

dress these issues. 

6    Conclusions

In this paper, we introduced a new task for emo-

tional perception in movie montages that is driven by

music.  Our  task  involves  the  challenge  of  retrieving
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and reorganizing shots from movies based on specific

segments  of  music  selected  by  the  user.  To  address

this  problem,  we  formulated  it  as  an  optimization

problem and proposed a two-stage framework that in-

cludes  a  learning-based  module  for  predicting  emo-

tional  similarity  and  an  optimization-based  module

for selecting and synthesizing candidate movie shots.

Our  proposed  framework  is  effective  in  capturing

movie shots that align with audio emotions and gen-

erating  storytelling  montage  videos.  We  conducted

qualitative and quantitative evaluations, and achieved

the  highest  accuracy  of  82%  and F1-score  of  82%,

which demonstrate that our method can handle ultra-

long  videos  and  produce  high-quality  results  com-

pared with existing methods.

In the future, we plan to further improve our ap-

proach  in  both  video  transitions  and  storytelling  to

achieve results comparable to those of professional ed-

itors.
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