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Abstract    With the increasing pervasiveness of mobile devices such as smartphones, smart TVs, and wearables, smart

sensing, transforming the physical world into digital information based on various sensing medias, has drawn researchers’

great attention. Among different sensing medias, WiFi and acoustic signals stand out due to their ubiquity and zero hard-

ware  cost.  Based  on  different  basic  principles,  researchers  have  proposed  different  technologies  for  sensing  applications

with WiFi and acoustic signals covering human activity recognition, motion tracking, indoor localization, health monitor-

ing, and the like. To enable readers to get a comprehensive understanding of ubiquitous wireless sensing, we conduct a sur-

vey of existing work to introduce their underlying principles, proposed technologies, and practical applications. Besides we

also  discuss  some open issues  of  this  research  area.  Our  survey  reals  that  as  a  promising  research  direction,  WiFi  and

acoustic sensing technologies can bring about fancy applications, but still have limitations in hardware restriction, robust-

ness, and applicability.

Keywords    WiFi sensing, acoustic sensing, human-computer interaction, human activity recognition

 

 1    Introduction

In recent years, a new round of scientific and tech-

nological  revolution  has  been  booming  around  the

world. Human beings have stepped into the era of In-

ternet of Things (IoT). With increasing pervasiveness

of  wireless  and  acoustic  hardware,  researchers  have

begun to pay more attention to developing novel sens-

ing  technologies  based  on  WiFi  and  acoustic  signals.

Numerous  studies  have  demonstrated  the  technical

feasibility and effectiveness of sensing applications us-

ing these two types of signals,  such as in the human

activity  recognition,  health  caring,  positioning  and

navigation, and many other aspects of human life.

Among different types of sensing media, WiFi sig-

nals have the advantages of prominent pervasiveness,

nearly zero hardware cost, and robustness to environ-

mental conditions, such as light, temperature, and hu-

midity. Bahl and Padmanabhan[1] first proposed a Wi-

Fi-based  sensing  application— indoor  localization  ba-

sed on the received signal strength indication (RSSI).

RSSI is usually computed by using the energy of sig-

nals as a reference to 1 mW, which is expressed in a

logarithmic form.
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The  CSI  tool  was  developed  in  [2]  for  extracting

the channel state information (CSI) from commercial

network cards, which greatly facilitated the acquisiti-

on of the CSI from commercial WiFi devices and made

the use of more fine-grained CSI for sensing a new tr-

end. The sensing of the CSI has become a new trend.

Subsequently,  the  human  behavior  sensing  technolo-

gy based on WiFi  signal  was  developed rapidly.  The

emergence of the CSI read interface makes CSI wide-

ly used in the WiFi sensing and sleep monitoring[3–8],

fall detection[9–17], gesture detection[18–32], lip language

recognition[33, 34],  crowd  detection[35, 36],  daily  behav-

ior  detection[9, 37–48],  respiration  and heartbeat  detec-

tion[7, 32, 49– 51],  gait  recognition[52– 55],  indoor  localiza-

tion[56–69] and a series of other applications[70–72].

The WiFi signal has long-range and good penetra-

tion characteristics, and WiFi-based sensing can cap-

ture  a  large  range  of  human  activities  and  even  de-

tect people moving behind obstacles. However, a long

sensing  range  also  makes  it  vulnerable  to  the  sur-

rounding  environment.  In  contrast,  although  the

acoustic  signal  has  limited  coverage  for  surrounding

sensing due to its fast decay, it is more sensitive and

resilient  to  changes  in  the  environment.  This  makes

acoustic-based sensing and WiFi-based sensing a valu-

able  complement  to  each  other.  Based  on  the  sound

wave sensing, the hardware base mainly includes two

components: microphone and speaker. With the popu-

larity  of  mobile  devices  and  wearable  devices,

widespread deployment of microphones and speakers,

and the continuous progress of audio chips and tech-

nologies,  the  acoustic  signals  have  become  very  easy

to  acquire  and  handle  with  high-quality  and  exten-

sive sensing and communication capabilities. After ob-

taining the WiFi or acoustic signal, the next step is to

characterize it using various sensing techniques. Simi-

lar  to  WiFi  sensing,  typical  applications  based  on

acoustic sensing include daily actions monitoring[73–78],

gesture and hand movements recognition[79–87], health

caring[88–92],  localization and navigation[93–98] and pri-

vacy and security[99–111]. In the following, we will also

introduce the basic content of signals and other char-

acterization methods.

Through these  basic  contents  and  technologies,  a

wide range of applications can improve the quality of

our daily life and work efficiency, and bring great in-

fluence and changes to the human life. These applica-

tions include:  daily behavior recognition,  gesture and

hand  motion  recognition,  and  tracking  in  behavior

recognition;  health-related  applications,  such  as

breathing  monitoring,  heartbeat  monitoring,  lung

monitoring, sleep quality detection, fall detection, and

abnormal sleep detection in abnormal events; various

positioning  and  navigation  applications  based  on

WiFi  and  sound waves;  and  the  user  in  privacy  and

security authentication, keystroke snooping, voice as-

sistant  attacks,  and  voice  assistant  protection  touch

in every aspect of human life. In Section 4, we will in-

troduce  applications  based  on  WiFi  sensing  and

acoustic  sensing  from  four  aspects:  behavior  recogni-

tion and tracking, health caring, positioning and navi-

gation,  and  privacy  and  security. Fig.1 shows  the

overall structure frame of this paper.

The rest of the paper is organized as follows. Sec-

tion 2 introduces  the  background  knowledge  of  WiFi

and acoustic signals. Section 3 demonstrates some im-

portant key technologies that enable WiFi and acous-

tic sensing. Section 4 presents WiFi and acoustic sens-

ing applications from four aspects  including behavior

recognition  and  tracking,  health  caring,  localization,

and privacy and security. Section 5 discusses the limi-

tations  of  existing  work  and  highlights  future  re-

search  directions. Section 6 summarizes  this  survey

paper.

 2    Background

Both  WiFi  and  acoustic  signals  are  wireless  sig-

nals. They share a common characteristic, namely the

multipath  effect.  It  describes  the  phenomenon  that

the signal reaches the receiver through different prop-

agation  paths,  which  can  affect  the  performance  of

many sensing systems.

The  wave  in  the  process  of  transmission  in-

evitably  encounters  many  obstacles  due  to  different

material  obstructions.  The  wave  incidence  angles

cause  wave  refraction  and  reflection,  and  make  the

same  waves  through  different  paths  to  receive  node

multipath signals in time and to overlap, which caus-

es  direct  signal  distortion  and  affects  the  receiving

end  of  signal  recognition.  The  phenomenon  of  phase

inconsistency, caused by the multipath effect and re-

sulting  in  the  fading  state  of  the  received  signal,  is

called  the  multipath  fading,  which  has  a  great  im-

pact on communication, detection, etc.

In  the  HAR  (human  action  recognition)  scenario

of  WiFi,  the  WiFi  channel  includes  signals  reflected

by static objects in some environments, such as furni-

ture or others. CSI represents the signal change from

the  transmitter  to  the  receiver.  These  additional  re-

flections  caused  by  different  activities  can  be  ob-

served in Fig.2.
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Fig.1.  Overall frame diagram of the paper.
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Fig.2.  Propagation of WiFi radio waves across a room.
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For sound waves, the air is a multipath and time-

varying  attenuation  channel.  The  propagation  of

sound waves in air can be regarded as the superposi-

tion  of  multiple  signals  with  different  delays  and

phases like Fig.3.
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Fig.3.  Schematic of multipath effect.

 

Fig.4 is  a  roadmap  of  perception  by  application,

using  WiFi  and  acoustic  signals  that  have  evolved

over time. In addition to their common features, they

also have some unique features,  which we will  be in-

troduced in two parts.

 2.1    WiFi

In  this  subsection,  we  mainly  introduce  Orthogo-

nal Frequency Division Multiplexing (OFDM), as well

as  channel  state  information  (CSI)  and  received  sig-

nal  strength  indication  (RSSI)  in  the  WiFi  sensing

field.  This  information  will  help  us  understand  the

WiFi  sensing behind it.  The physical  quantities  used

by researchers for WiFi sensing are described below.

 2.1.1    Orthogonal Frequency Division

Multiplexing (OFDM)

There  are  some  applications  of  acoustic  sensing

which use this technology, except in FingerIO, where

the  OFDM technology  is  used  to  recognize  gestures.

However, OFDM is mainly manifested in the CSI sig-

nal as introduced in Subsection 2.1.3. Compared with

continuous  wave  (CW)  signals,  OFDM  signals  have

stronger  ability  to  resist  environmental  interference.

Its mathematical formula is: 
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Fig.4.  Roadmap of WiFi and acoustic sensing in terms of applications.
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xk =
N−1∑
n=0

Xne
2πkni

N , k = 0, ..., N − 1,

Xn

n

where N represents  the  number  of  parts  into  which

the bandwidth is cut. The data bits  are transmit-

ted to the -th channel.

The main idea of OFDM is to divide the channel

into  several  orthogonal  sub-channels.  A  high-speed

data signal is converted into a parallel low-speed sub-

data stream, and then it is modulated to transmit to

each sub-channel. The signal bandwidth on each sub-

channel is less than the correlation bandwidth of the

channel.

Therefore,  it  can  be  regarded  as  flat  fading  on

each  sub-channel,  and  the  inter-symbol  interference

can be  eliminated.  Moreover,  since  the  bandwidth of

each  sub-channel  is  only  a  small  part  of  the  band-

width  of  the  original  channel,  the  channel  equaliza-

tion becomes relatively easy.

 2.1.2    Received Signal Strength Indication (RSSI)

WiFi signals are widely deployed. Since no sensor

needs  to  be  carried,  human  senseless  sensing  as  well

as NLOS (none line of sight) sensing, are not affected

by  external  conditions,  such  as  light,  humidity,  and

temperature.  WiFi  signals  were  used  for  sensing  for

the first time in 2000 when Bahl and Padmanabhan[1]

proposed RADAR as a system for indoor positioning

based  on  WiFi  signal  strength  information  (RSS).

RSS is  an important indicator for the wireless  trans-

mission layer to determine link quality. The transmis-

sion layer uses RSS to determine whether it is neces-

sary  to  increase  the  sending  intensity  of  the  sender.

Normally, RSS is represented by power in watts (W).

However,  the  power  of  the  wireless  signal  is  weak,

usually  at  the  milliwatt  (mW)  level.  Therefore,  the

signal energy is expressed in logarithmic form on the

basis of 1 mw, i.e., RSSI. This is a common practice.

RSS information can be read directly through the

program  interface  on  universal  devices,  such  as  mo-

bile  phones  and  computers,  without  requiring  any

equipment  or  program  modification.  It  is  quick  and

convenient  to  obtain.  It  is  also  compatible  with  the

advantages of universal devices. But RSSI value sens-

ing accuracy is low and fine-grained sensing cannot be

achieved  as  the  RSS  information  obtained  from  uni-

versal devices is not a real signal strength. Meanwhile,

the  RSS  values  are  updated  slowly,  but  they  cannot

be updated in real time. In addition, RSS is suscepti-

ble to the environmental interference.

 2.1.3    Channel State Information (CSI)

In 2011, Halperin et al.[2] released the CSI tool to

extract  CSI  from  commercial  network  cards,  which

greatly  facilitates  the  acquisition  of  CSI  on  commer-

cial WiFi devices, making it a new trend to use finer-

grained CSI for sensing. Subsequently, the human be-

havior sensing technology based on WiFi signals was

developed rapidly.

CSI provides information to each transmitter and

receiver antenna pair at each carrier frequency based

on  multiple  input  multiple  output  (MIMO)  and

OFDM. Mathematically a CSI can be expressed as[32]: 

H(f, t) =
L∑

i=1

Aie
(j2π

di(t)

λ
),

Ai

di(t) i

where L is the number of paths,  is the complex at-

tenuation and  is the propagation length of the -

th path.

CSI  estimates  each  subcarrier  for  each  transmis-

sion link. Therefore, compared with RSS, it has finer

granularity  and  sensitivity,  and  can  sense  more  sub-

tle  changes  in  the  channel.  As  shown  in Fig.5,  the

time  series  of  the  CSI  matrix  characterizes  the  MI-

MO channel  variation  in  different  domains[112] (time,

frequency,  and  space).  The  OFDM  technology  di-

vides  the  WiFi  channel  with  MIMO  into  multiple

subcarriers.

The  3D  CSI  matrix  is  similar  to  a  digital  image

with a spatial resolution of N × M and K color chan-

nels.  Therefore,  this  also  enables  CSI-based  WiFi

sensing combined with the field of computer vision.

CSI  can  be  obtained  in  three  ways,  namely  bea-

con frame, injection frame, and data frame. The bea-

con  frame  is  transmitted  periodically  and  it  has  the

effect of announcing the existence of WLAN. The in-

jection frames are created in the monitor mode to de-

tect  network  failures.  The  data  frames  appear  when

data is  communicated.  Since the injection frame mo-

nopolizes  a  sensing  channel,  the  CSI  measurement  is

more  controllable,  while  the  data  frame  can  coexist

with data communication and CSI acquisition. There-

fore, it becomes the two most commonly-used frames

for CSI acquisition in most sensing applications. How-

ever, most sensing applications do not use the beacon

frame  as  the  sampling  rate  of  CSI  measurements  in

the beacon frame is too low for most sensing applica-

tions.

In  addition,  after  the  release  of  the  CSI  tool  in

2011[2],  Xie et al.[113] released another CSI acquisition
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tool  in 2015, namely the Atheros-CSI-Tool,  based on

Ath9k,  a  Linux  open  source  network  card  driver.  In

2020,  Hernandez  and  Bulut[31] developed  the  ESP32

CSI toolkit, which allows researchers to access CSI di-

rectly  from  the  ESP32  microcontroller.  ESP32  with

this  toolkit  can  provide  online  CSI  processing  from

any  computer,  smartphone,  or  even  stand-alone  de-

vice. In 2021, Jiang et al.[114] developed the PicoScene

platform,  which  is  a  versatile  and  powerful  middle-

ware for CSI-based WiFi sensor research. It helps re-

searchers  to  overcome  two  barriers  in  the  WiFi  sen-

sor  research:  inadequate  hardware  functionality  and

inadequate  measurement  software  functionality.

These new developments have made it possible to ob-

tain CSI on more devices and have greatly expanded

the range of WiFi-aware applications.

 2.2    Acoustic

 2.2.1    Hardware Basics

The  hardware  base  of  the  acoustic  sensing  tech-

nology  mainly  includes  microphone  and  loudspeaker.

The microphone is a kind of transducers that can con-

vert the physical sound into analog electrical signals.

Most  microphones  are  capacitive  in  nature,  which

mainly  include  two  types:  electret  (ECM)  micro-

phones  and  micro  electromechanical  (MEMS)  micro-

phones.  The  capacitive  microphones  are  air-gap  ca-

pacitors  with  removable  membranes  and  fixed  elec-

trodes.

Air pressure due to sound waves can cause the di-

aphragm  to  get  bent  with  changes  in  air  pressure.

Since  the  other  electrode  remains  stationary,  the

movement of the membrane can cause a change in the

capacitance  value  between  the  membrane  and  the

fixed electrode. Due to their miniature size, low pow-

er consumption and excellent temperature characteris-

tics,  microphones  of  micro  electromechanical  systems

have  been  widely  used  in  mobile  devices,  including

smart  phones  and  wearable  devices. Fig.6 shows  the

schematic diagram of sound signal transmission path-

way.

The  speaker  is  a  transducer  device  that  converts

electrical  signals  into  acoustic  signals.  It  is  a  sound

transmission  device  that  can  transmit  sound  to  the

mobile phone system. It has the characteristic of caus-

ing  vibration  when  it  receives  current  data.  At

present, many mobile phones are accommodating du-

al  speakers.  When  a  mobile  phone  is  playing  sound,
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Fig.5.  The 4D CSI tensor is the time series of the CSI matrix of the MIMO-OFDM channel. It captures multipath channel changes,
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Fig.6.  Schematic diagram of sound signal transmission pathway.
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the  top  of  the  body  will  also  emit  sound,  and  there

will  be  a  feeling  of  surrounding  sound.  Currently,

there  are  some  models  whose  mainstream  configura-

tion  is  for  dual  speakers,  such  as  iPhone,  Samsung,

and  so  on.  In  addition,  the  purpose  of  the  human

body with two ears is  to hear the sound in three di-

mensions  and  identify  the  position  of  the  sound

source. A single speaker cannot transmit three-dimen-

sional sound effects, but dual speakers can do it. The

widespread  use  of  microphones  and  speakers  offers

great  opportunities  for  acoustic-based  sensing,  and

better-quality hardware can significantly improve the

sensing accuracy.

 2.2.2    Microphone Array

Microphone array is an array formed with a group

of  omnidirectional  microphones,  located  at  different

positions in space, according to certain shape rules. It

is a device for spatial sampling of spatially propagat-

ed  sound  signals.  According  to  the  distance  between

the  sound  source  and  the  microphone  array,  the  ar-

ray can be divided into the near-field model  and the

far-field model.  According to the topology of  the mi-

crophone  array,  it  can  be  divided  into  linear  array,

cross  array,  plane array,  spiral  array,  and so on.  Af-

ter  the  microphones  are  arranged  according  to  the

specified  requirements,  the  corresponding  algorithm

(arrangement  and  algorithm)  can  be  used  to  solve

many  acoustic  problems,  such  as  sound  source  local-

ization, abnormal sound detection, sound recognition,

speech enhancement, whistle capture, and so on.

According  to  the  distance  between  the  sound

source  and  the  microphone  array,  the  sound  field

model can be divided into two groups:  the near field

model  and  the  far  field  model.  The  near-field  model

regards  the  sound  wave  as  a  spherical  wave,  which

considers  the  amplitude  difference  between  the  re-

ceived  signals  of  the  microphone  elements.  The  far-

field model regards the sound wave as a plane wave,

which  ignores  the  amplitude  difference  between  the

received  signals  of  any  array  element,  and  approxi-

mately  considers  the  difference  between  the  received

signals. Obviously, the far-field model is a simplifica-

tion of the actual model, which greatly simplifies the

processing  difficulty.  The  general  speech  enhance-

ment method is based on the far-field model. There is

no  absolute  standard  for  classifying  the  near-field

model  and the far-field  model.  It  is  generally  consid-

ered  to  be  a  far-field  model  when  the  distance  be-

tween the sound source and the reference point of the

d

λmin

2d2

λmin

center of  the microphone array is  much greater than

the  signal  wavelength;  otherwise,  it  is  a  near-field

model.  Let  the  distance  between  the  adjacent  array

elements  of  the  uniform  linear  array  (also  known  as

the  array  aperture)  be ,  and  the  wavelength  of  the

highest frequency speech of the sound source (that is,

the minimum wavelength of the sound source) is .

If the distance from the sound source to the center of

the  array  is  greater  than ,  then  it  is  a  far-field

model; otherwise it is a near-field model, as shown in

Fig.7.
 

S



Near Field Far Field
 

Fig.7.  Near-field model/far-field model. S: signal source.

 3    Technologies

 3.1    Chirp Signal and FMCW

 3.1.1    Chirp Signal

A chirp signal is a signal whose frequency increas-

es  (up-chirp)  or  decreases  (down-chirp)  as  the  signal

changes. A linear chirp signal is expressed as 

s(t) = A cos
(
2π

(
fmint+ kt2

2

)
+ φ

)
,

fmin A

φ k

where  is the initial frequency,  is the maximum

amplitude,  is the initial phase, and  is the modula-

tion  coefficient  or  chirp  tweet  rate.  During  the  sens-

ing,  the  chirp  signal  is  transmitted  repeatedly,  for

which  it  is  also  called  as  the  frequency  modulated

continuous  wave  (FMCW).  The  time  and  frequency

domains of a chirp signal are shown in Fig.8. An au-

to-correlated chirp signal  produces  sharp and narrow

peaks whose temporal bandwidth is inversely propor-

tional to the signal bandwidth, a property also known

as the pulse compression. Since the energy of the sig-

nal does not change during the pulse compression, the

concentration of the signal power in a narrower time

interval results in a peak signal-to-noise gain propor-

tional to the product of the signal bandwidth and du-

ration. Therefore, acoustic sensing systems using chirp
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signals  are  robust  to  dynamic  channel  conditions,

such as Doppler effects, insensitive to Doppler effects,

resistant  to  strong  background  noise  or  interference,

and resilient to multipath fading.

 3.1.2    FMCW

f

t = f/k k

k = (F2 − F1)/T F2 F1

T

s = vt/2 v

FMCW  is  a  frequency-modulated  continuous

wave.  It  transmits  a  chirp  signal.  The  frequency  of

the  signal  increases  linearly  within  a  predetermined

period.  The  signal  touches  the  reflector  of  the  envi-

ronment and returns to the receiving end after a peri-

od of  delay,  so  that  the  delay  can be  determined by

comparing  the  frequencies  of  the  received  and  trans-

mitted signals. As shown in Fig.9, if  is the frequen-

cy  difference,  the  time  delay  can  be  obtained  as

, where  represents the slope of the line that

can be obtained as .  and  repre-

sent the upper and lower limits of the wave frequen-

cy, respectively, and  is the time of one cycle of the

wave signal. Accordingly, the displacement of the tar-

get  unit  can  be  obtained  from  and  repre-

sents the propagation speed of the wave in air. In the

time  domain,  the  FMCW  can  be  formulated  as  fol-

lows:
 

b = A cos 2π
(
F1 + F2

2
t+

(F2 − F1)(t−N × T )2

2T

)
,

Nwhere A represents the amplitude of the wave and 

means the number of cycles.

 3.2    CIR

In  WiFi,  CSI  is  CFR  (Channel  Frequency  Re-

sponse)  in  the  frequency  domain.  CIR  (Channel  Im-

pulse  Response)  is  obtained  by  IFFT  (inverse  fast

Fourier transform).

S(t)

R(t)

h(t)

R(t) = S(t)× h(t)

R[n] = S[n]× h[n]

h[n]

In  acoustics,  CIR  represents  the  propagation  of

acoustic signals under the combined effects of scatter-

ing, fading, and power attenuation of the transmitted

signals.  When  the  sound  signal  is  transmitted

through the loudspeaker, it propagates into the micro-

phone  through  multipath  and  is  accepted  as .  If

 is the CIR of the sound signal propagation chan-

nel,  then ,  where  × is  the  convolu-

tion  operator.  Since  the  received  acoustic  signal  is

represented  discretely,  in  the  actual  application  sce-

nario,  the  formula  is .  In  order  to

solve ,  the  least  squares  channel  estimation
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Fig.8.  Chirp signal representation in time and frequency domain. (a) Linear chirp in time domain. (b) Spectrum of the chirp signal.
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Fig.9.  Schematic diagram of FMCW-modulated acoustic wave.
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m = (m1,m2, ...,mN)

y = (y1, y2,

..., yN)

m P × L
m P P

h = (MH M)−1MH yL

yL = (yL+1,

yL+2, ..., yL+P ), N = L+ P

method is usually used. It is assumed that the speak-

er  transmits  the  known  signal  ,

and  the  microphone  receives  the  signal 

.  For  the  length  of  the  transmitted  signal,  a

cyclic training matrix M is generated from the vector

, where the dimension of M is ,  i.e.,  the vec-

tor  is repeated  times to form the  rows of M,

and  the  CIR  is  estimated  as 

(H means  conjugate  transpose),  where 

. In order to satisfy the con-

straints, the lengths of L and P of the CIR need to be

determined manually. Increasing L can estimate more

channel states, but it may reduce the reliability of the

estimation.  For  some  practical  applications  of  CIR,

UltraGesture[85] provides a resolution of 7 mm, which

is sufficient to identify slight finger movements. It en-

capsulates  the  CIR  measurements  into  images  with

better  accuracy  than  Doppler-based  schemes,  and  it

can run on commercial speakers and microphones that

have  already  existed  in  most  mobile  devices  without

requiring any hardware modification. RobuCIR[86] us-

es  a  frequency  hopping  mechanism  to  mitigate  fre-

quency of the selective fading to avoid any signal in-

terference.  This  high-precision  CIR  can  recognize  15

gestures.

 3.3    Doppler Shift

f

fs
c

vr
vs

f

When there is a relative motion between the wave

source and the observer, the frequency of the wave re-

ceived by the observer is not the same as the frequen-

cy emitted by the wave source. The wave here can be

a  mechanical  wave  or  an  electromagnetic  wave.  As

the  wavelength  is  compressed,  the  frequency  increas-

es.  Otherwise,  the  frequency  decreases.  Suppose  that

the  observed  frequency  of  the  observer  is ,  the  fre-

quency of  the wave source is ,  the propagation ve-

locity of the wave in the medium is , the relative ve-

locity of the wave source is , and the velocity of the

wave source is . The formula for computing frequen-

cy  of the wave source is (in the following formula,

“/” stands for “or”): 

f =

(
c+/− vr
c−/+ vs

)
.

In specific applications, taking the gesture recogni-

tion based on the Doppler effect as an example, both

microphone and the speaker are integrated in a smart

device,  where  the  speaker  acts  as  a  wave  source  to

emit  ultrasonic  waves.  Assume  that  the  velocity  of

the  gesture  movement  relative  to  the  wave  source  is

vh
v

fs

fh

, the propagation rate of the sound wave in the air

medium  is ,  and  the  frequency  of  the  sound  wave

emitted  by  the  speaker  wave  source  is .  When  the

hand is  the  receiver  of  the  sound wave,  the  received

sound wave frequency  can be expressed as follows

(in the following formula, “/” stands for “or”): 

fh =

(
v +/− vh

v

)
× fs.

∆f

The  sound  waves  reflected  by  the  movement  of

the hand and received by the microphone can be re-

garded as emitted by the hand. The hand is used here

as a new wave source, and the microphone is used as

the receiver. At this time, the receiving frequency dif-

ference  generated by the hand movement can be

expressed as (in the following formula, “/” stands for

“or”): 

∆f = |f − fs| =
2vh

v −/+ vh
× fs.

 3.4    MFCC

The  Mel-Scale  Frequency  Cepstral  Coefficient

(MFCC) is one of the most commonly-used audio fea-

ture  parameters[115].  For  audio  recognition,  the  most

basic operation is to extract feature parameters from

speech  information.  In  other  words,  it  is  to  extract

the  identifiable  components  from  the  audio  informa-

tion that can characterize the entire audio signal, and

then  to  discard  other  information,  such  as  back-

ground  noise,  which  is  the  most  basic  audio  feature

extraction.  The  mel  scale  is  a  nonlinear  feature  that

can  be  used  to  characterize  the  human ear's  sensory

judgment  to  sound changes  at  equal  distances.  Since

the  human  ear's  sensing  of  audio  signals  has  nonlin-

ear  correlation  characteristics,  the  relationship  be-

tween  the  auditory  sensing  ability  and  its  frequency

satisfies  the  logarithmic  expression  when  the  speech

signal  exceeds  1  kHz.  The corresponding relationship

can be expressed as: 

m = 2 595 logm

(
1 +

f

700

)
,

m

f

where  represents the mel frequency of human audi-

tory sensing, and  is the frequency (in Hz) of the au-

dio signal.  If  the distribution of  the mel scale is  uni-

form,  the  gap  between  the  actual  frequencies  be-

comes larger and larger. In the mel frequency domain,

the  human  auditory  sensing  ability  is  obviously  lin-

early  related,  indicating  that  the  two  audio  frequen-

cies are in the mel frequency domain. The audio fea-

Jia-Ling Huang et al.: Ubiquitous WiFi and Acoustic Sensing: Principles, Technologies, and Applications 33



ture  parameter  extracted  according  to  the  auditory

sensing ability  of  the human ear  has  an excellent  ef-

fect  on  distinguishing  different  key  audios.  The  mel

spectrum can be obtained by preprocessing the signal,

framing,  windowing,  and  Fourier  transform,  passing

through the mel  filter,  and then performing logarith-

mic operations and discrete cosine transform (DCT).

 3.5    Wireless Ranging

In HCI, it is often necessary to use a wireless sig-

nal  to  measure  the  distance  between  two  objects  or

devices.  The  location  algorithms  for  wireless  sensor

networks  depend  on  a  variety  of  distance  measure-

ment  techniques.  There  are  many  factors  that  affect

the  accuracy  of  a  location  algorithm.  Therefore,  the

selection  of  the  infinite  distance  algorithm should  be

based on various applications, such as network struc-

ture,  sensor  density  in  the  area,  number  of  anchors,

and geometry of the measurement area. However, the

type  of  measurements  and the  corresponding  accura-

cy fundamentally determine the accuracy of the loca-

tion  algorithm.  Common  wireless  ranging  technolo-

gies  are  time  of  arrival  (ToA)/time  of  flight  (ToF),

time  difference  of  arrival  (TDOA),  angle  of  arrival

(AOA), phase difference, and RSSI attenuation mod-

els.

 3.5.1    Time  of  Arrival  (ToA)/Time  of  Flight

(ToF)

ToA is the time at which a signal travels between

the transmitter and the receiver.

v

d = v × ToA

v = 344 m/s

Combining  with  the  propagation  speed  of  the

signal,  the  propagation  distance  can  be

calculated. In acoustics, . This method re-

quires  precise  synchronization  between  the  transmit-

ter and the receiver to avoid measurement errors.

Due  to  the  large  environmental  impact,  the  ToF

range selected based on signal strength is unstable. In

practice, when the speed of signal propagation in the

medium  is  known,  the  signal  propagation  time  (also

called  the  flight  time)  is  often  used  to  measure  the

signal  distance.  There  are  three  common  ways  to

measure  ToF,  which  are  time  synchronous  measure-

ment, signal reflection, and waves velocity difference.

Time  Synchronous  Measurement. Assuming  pre-

cise time synchronization between the sender and the

receiver,  when  the  sender  sends  a  packet  to  the  re-

ceiver, the receiver records the arrival time of the sig-

d = c× t d

c

t

nal after receiving the message, and obtains the ToF

by  subtracting  the  sending  time  stamp  from  the  re-

ceiving  time  stamp.  The  pass  distance  is  derived  as

,  where  is  the distance from the sender to

the receiver,  is the speed at which the signal travels,

and  is the measured flight time.

Signal  Reflection. Since  it  is  difficult  to  directly

use  ToF  measurements,  it  has  been  proposed  to  use

signal reflection to calculate the flight time in order to

avoid the time synchronization between the transceiv-

er and the receiver. This is usually done in two ways.

The first method is the direct reflection of the trans-

mitted signal, which uses the range finder as a reflec-

tor.  For  example,  to  measure  ToF  using  FMCW  as

the transmission signal, this method requires that the

transceiver  can  operate  in  full  duplex  mode  and  the

ranging  object  has  a  certain  volume.  The  second

method is to use two devices as the sender and the re-

ceiver  respectively,  where  the  sender  transmits  the

signal,  the receiver  receives  it  and waits  for  a period

of  time  to  return  the  same  wave,  and  finally  the

sender records the time of  reply to calculate the dis-

tance. The formula for the same is as follows: 

d = (v × (t1 − t0 −∆t))/2,

t1
t0

∆t

where  is the moment when the sender receives the

reply from the receiver,  is the time when the sender

sends the signal and  is the time when the receiver

returns the same wave. This method requires bidirec-

tional communication between the sender and the re-

ceiver, which is divided into two parts—one-sided bid-

irectional  ranging,  which  measures  the  distance  from

a single-sided round-trip communication, and two-sid-

ed bidirectional  ranging,  which reduces the one-sided

bidirectional  error.  However,  this  method  is  still  af-

fected by the clock drift of both devices.

Waves Velocity Difference. This  method uses the

wave  velocity  difference  between  the  two  signals  to

measure the distance. The sender sends two different

wireless  signals  at  the  same  time,  and  then  records

the  arrival  time  of  the  two  signals  at  the  receiver.

Based  on  the  different  arrival  time,  the  distance  be-

tween the sender and the receiver can be calculated as

follows: 

d =
vrvs(ts − tr)

vr − vs
.

r s

tr ts
vr vs

In the above formula,  and  are two types of signals,

 and  are the time when the two signals reach the

receiving end respectively, and  and  are the corre-

sponding  speeds  at  which  the  two  signals  propagate
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respectively. The formula for calculating the distance

can be simplified if the propagation speed of one sig-

nal is much smaller than that of the other. Assuming

that the s-signal is much smaller than the r-signal, it

can be simplified.

 3.5.2    Time Difference of Arrival (TDOA)

In fact, TDOA is a modification of the ToA algo-

rithm, which uses the time difference between the sig-

nals  reflected  by  the  object  to  be  measured  and  the

different receivers to analyze the distance difference.

∆t

v

∆d

Assuming that the time difference between the ar-

rival  of  the  two  objects  to  be  measured  at  different

transmitting (receiving) sections is , multiplying by

the speed of signal transmission , the travel distance

difference  of  the  wireless  signal  to  different  base

stations can be found. The TDOA algorithm is main-

ly divided into two cases: the first case is that to send

data from the object  to  the receiver,  the  receiver  re-

ceives  the  data,  gets  the  time  stamp,  and  then  can

calculate the distance difference between the two ob-

jects to be measured to each receiver. The other case

is that all the transmitters send data to the object to

be  measured  at  the  same  time,  and  the  time  differ-

ence of the signal arrival is recorded by the object to

be measured.

 3.5.3    Angle of Arrival (AOA)

The core idea of AOA is to calculate the relative

orientation  of  the  receiving  and  transmitting  nodes

through a hardware device. It usually relies on multi-

ple antenna arrays. In a multi-antenna array, for sig-

nals arriving at the antenna array at different angles,

there will be a time difference between the individual

antennas,  which  corresponds  to  the  angle  of  arrival

(AOA).  There  are  three  common  methods  to  obtain

the angle of arrival: the method using signal time de-

lay  estimation;  the  method  using  Multiple  Signal

Classification (MUSIC), and the method using beam-

forming (Beamforming).

Method Using Signal Delay. The time delay of the

received signal of the array is determined, and the in-

formation of the angle of arrival is obtained by com-

bining the propagation speed of the signal and the ge-

ometric  distribution  of  the  array.  This  method  has

more applications in acoustics, such as working[116, 117].

Method Using Multiple Signals. It is an algorithm

based on subspace decomposition,  which uses the or-

thogonality of the signal and noise subspaces to con-

struct a spatial spectral function and estimate the pa-

rameters  of  the  signal  by  spectral  peak  search.  The

basic  idea  is  to  decompose  the  covariance  matrix  of

the output data of an arbitrary array into features, so

as to obtain the signal subspace corresponding to the

signal  component  and  the  noise  subspace  orthogonal

to the signal component, and then to use the orthogo-

nality of these two subspaces to estimate the parame-

ters  of  the  signal,  such  as  the  direction  of  incidence,

polarization  information  and  signal  strength,  and  so

on.  An  example  is  the  Music  method.  This  method

has high directional  accuracy,  high resolution for the

lateral  direction  of  the  signal  within  the  antenna

beam, is suitable for short data cases, and can be pro-

cessed  in  real  time  using  high-speed  processing  tech-

niques,  but  when  the  wavelength  is  less  than  twice

the  high-frequency  component  of  the  array  element

spacing,  the  array  element  cannot  receive  the  signal;

and  in  radar  systems,  with  the  increasing  require-

ments of anti-stealth and resolution of the target, the

assumption of narrow-band signals is no longer in line

with the actual situation.

Beamforming. This  method  uses  antenna  arrays

to enhance signals in different directions, and detects

signal  strength  information  in  different  directions  to

determine  the  arrival  angle.  There  are  two  common

beam  shaping  methods,  one  is  based  on  delay  sum

and  the  other  is  based  on  SRP  (Steered-Response

Power).  After  the  arrival  angle  is  obtained  by  the

three  methods  mentioned  above,  the  position  of  the

point  to  be  measured  can  be  obtained  by  locating  it

with the theorem of triangle. For example, Gallo and

Magone[118] suggested to associate the measured WiFi

RSSI  with  the  electronic  compass  data  on  a  smart-

phone  to  calculate  the  angle  of  arrival  of  the  smart-

phone signal and the movement of the smartphone.

 3.5.4    Phase Difference

The received signal phase method uses the carrier

phase (or phase difference) to estimate the distance[119].

This  method  is  also  known  as  the  phase  of  arrival

(POA)[120].  Assume that all  transmitters emit a sinu-

soidal signal with a frequency of F and a phase offset

of zero. In order to determine the phase of the signal

received at the target point, the signal sent from each

transmitter  to  the  receiver  requires  a  limited  trans-

mission  delay.  As  shown  in Fig.10,  transmitter  sta-

tions B to E are placed in a specific location in a fic-

tional cubic building and T is the target location. The

delay is  expressed as  a  fraction of  the  wavelength of
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Si(t) = sin(2πft+ ϕi) Iϕi
= (2πfDi)/

c i ∈ (B,C,D,E) c

0 ⩽ ϕi ⩽ 2π Di =

cϕi/(2πf)

the signal as , where 

,  and  is  the  velocity  of  light.  As

long  as  the  wavelength  of  the  transmitted  signal  is

greater  than  the  diagonal  of  the  cubic  building,  i.e.,

,  the  distance  can  be  estimated  as 

.

For  indoor  positioning  systems,  the  signal  phase

method can be used in combination with ToA/TDOA

or the RSS method to fine-tune positioning. However,

the receiving signal phase method needs to overcome

the  ambiguity  of  the  carrier  phase  measurement.  It

requires  LOS  signaling;  otherwise  it  will  cause  more

errors in the indoor environment.

 3.5.5    RSSI Attenuation Model

This ranging method is mainly used in WiFi. Path

loss refers to the loss of radio signals in transmission.

Generally, RSSI is affected by four factors:  transmis-

sion power, path attenuation, reception gain and sys-

tem processing  gain.  Therefore,  the  RSSI  can  be  ex-

pressed as: 

RSSI = TxPower + PathLoss +RxGain + SystemGain,

TxPower, PathLoss, RxGain, SystemGainwhere  and  repre-

sent the four influencing factors of transmission pow-

er, path attenuation, reception gain, and system pro-

cessing gain, respectively.

Due to the multipath effect, signals from different

propagation  paths  have  different  delays  and  energy

decay. Intuitively, the farther the distance, the lower

the  signal  strength  (it  can  also  be  seen  in  the  free-

propagation-based  path  consumption  model  in

theory).  The  distance  measurement  using  the  signal

strength  is  based  on  a  free-space  propagation  path

consumption  model①,  which  is  used  to  predict  the

strength  of  the  received  signal  in  a  distance-of-sight

environment without any obstacle between the receiv-

er and the transmitter.

For  the  propagation  of  wireless  signals  in  free

space,  the  path  consumption  has  the  same  receiving

and  transmitting  distance,  which  will  cause  power

change  loss  in  the  distance  of  100  m  to 1 000 m.  In

this scenario, the formula for calculating the received

power in logarithmic terms is: 

10 lg(Pr) = 10 lg(c0Pt)− 10n lg(r) = A− 10n lg(r),

Pr Pt

r c0

n

A− 10n lg(r)

where  and  are  the  receiving  power  and  the

transmitting power of the wireless signal respectively,

 is  the  distance  between  transceivers,  is  a  con-

stant  related  to  antenna  parameters  and  signal  fre-

quency,  and  is  the propagation factor  whose value

depends on the environment in which the wireless sig-

nal  is  propagated.  Since  the  transmission  power  is

known,  can  be  viewed  as  the  power  to

transmit  1  m  long-time  received  signal.  From  the

above  formula,  the  values  of  constants A and n can

be  obtained,  which  determine  the  relationship  be-

tween  the  received  signal  strength  and  the  signal

transmission distance.

n

As shown in Fig.11, if the signal propagation fac-

tor  is fixed, the intensity of the wireless signal de-

creases  rapidly  when  it  travels  near  the  field,  and

slowly  and  linearly  when  it  travels  long  distances.

When A is  fixed,  the  smaller  the  attenuation  of  the

signal  in  the propagation process,  the longer  the sig-

nal can travel①. The RSSI measurement uses the the-

oretical  or  empirical  loss  of  the  signal  propagation

model,  calculates  the  distance  between  the  receiver

and  the  receiver  through  the  path  distance  formula,

and calculates the signal loss during the transmission.

nTo  sum  up,  if  we  know  and A received  when

the wireless transceiver nodes are together for 1 m, we

can  calculate  the  distance.  Generally,  these  two  val-

ues  are  empirical,  which  are  closely  related  to  the

used  hardware  nodes  and  the  environment  in  which

wireless  signals  are  propagated.  Therefore,  before

ranging, these two empirical values must be calibrat-

ed well in the application environment. The accuracy

of the calibration is directly related to the accuracy of





Transimitter Location







Target Location
 

Fig.10.  Positioning based on the signal phase.
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ranging  and  positioning.  Therefore,  measuring  dis-

tances  using  RSSI  can  encounter  the  instability  of

RSSI,  which  can  be  smoothened  by  designing  filters,

e.g., the mean filter and the weighted filter.

 3.6    Wireless Tracking

Visually,  tracking  can  achieve  the  goal  of  track-

ing  a  target  by  constantly  calculating  its  location.

However,  in  practice,  we  can  achieve  the  effect  of

tracking  without  calculating  the  specific  location.  As

long  as  the  initial  position  of  the  target  is  known,

tracking and positioning of the target can be achieved

continuously.  The  tracking  technology  can  use  the

signal  characteristics  of  frequency,  phase,  etc.  of  the

object to be measured to know the change in its spa-

tial position, so as to achieve the purpose of tracking.

In target tracking, often the object to be measured is

tracked based on the change in distance. In the field

of  acoustics  and  WiFi,  three  tracking  methods  are

commonly used:  Doppler  tracking,  FMCW (Frequen-

cy Modulated Continuous Wave) tracking, and signal

phase tracking.

 3.6.1    Doppler Tracking

Based  on  the  Doppler  effect,  the  velocity  of  mo-

tion of the receiver can be calculated as follows: 

v =
f − f0
f0

c =
∆f

f0
c,

f0
c ∆f

∆f

where  denotes  the  frequency  at  which  the  source

emits sound and  denotes the speed of sound.  de-

notes the frequency change produced by the Doppler

effect. In the time window, the frequency domain in-

formation  of  the  signal  can  be  obtained  by  SSFT

(short  time  Fourier  transform),  which  can  then  be

used to obtain the frequency of the signal. If the origi-

nal signal is fixed, then it can be obtained as .

d =
∫ T

0
vdt

The variation in the distance of the receiver's mo-

tion can be obtained by integrating the velocity with

time, that is , where T represents the time

from the beginning to the end of the receiver motion.

If the initial location of the recipient is known, the fi-

nal  location  of  the  target  can  be  calculated  to  track

the target.

 3.6.2    FMCW Tracking

fmin fmax fmax

fmin

The basic  principle  of  FMCW (Frequency Modu-

lated Continuous Wave) is to emit a frequency wave

continuously  whose  frequency  increases  or  decreases

periodically. The frequency of FMCW periodically in-

creases  (from  to )  or  decreases  (from 

down  to ).  FMCW tracking  can  be  conducted  in

two ways. The first way is to measure ToF by using

the  frequency  offset  from the  mixing  of  the  reflected

and transmitted signals, and then to measure the dis-

tance  between  the  source  and  the  reflected  object.

The second way is to measure the change in distance

by the frequency difference between the received and
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Fig.11.  Attenuation curves of electromagnetic wave energy with distance in free space. (a) Fixed A. (b) Fixed n.
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the transmitted signals.

If  the  first  method  is  used  for  distance  measure-

ment, an equipment is required to eliminate the emit-

ted  strong  signal  when  receiving  the  reflected  signal,

so  as  to avoid its  interference to the latter.  The dis-

tance  measurement  by  using  the  second  method  re-

quires  precise  clock  synchronization  between  the

transmitting  and  receiving  devices.  These  two  meth-

ods are difficult to implement in actual scenarios. We

can  avoid  the  precise  time  synchronization  and  ana-

lyze the change in distance by using the FMCW sig-

nal  received  by  the  receiving  device  and  virtually

sending the signal to track the movement.

 3.6.3    Signal Phase Tracking

R(t) = A cos(2πft)
p

dp(t)

Phase  location  tracking  is  a  common  method  in

the positioning and tracking of the Internet of Things.

Especially in recent years, a series of phase-based po-

sitioning and tracking methods have emerged in many

fields  of  research.  The  phase-based  tracking  methods

will be improved continuously, and its basic principle

is  to  measure  the  phase  change  of  a  signal.  Assume

that  the  fixed  frequency  signal  sent  by  the  signal

source  is ,  the  signal  propagates

through  path ,  and  the  length  of  the  propagation

path  changes  with  time  to .  Then,  the  received

sound signal via path p can be expressed as: 

Rp(t) = Ap(t) cos
(
2πft− 2πfdp(t)

c
− θp

)
,

Ap(t)

2πfdp(t)/c
c θp

where  is  the  amplitude  of  the  received  signal,

 is the phase offset caused due to the prop-

agation, and  is the sound speed.  is the phase off-

set  caused  by  hardware  delay,  half-wave  loss  due  to

the reflection, etc.,  which can be considered constant

Rp(t)

dp(t)

and does not change with time. If the phase informa-

tion  can  be  obtained  from  the  received  signal ,

the  change  of  the  propagation  path  length  can

be  obtained,  and  the  receiver's  motion  path  can  be

tracked.

If  multiple  sound  sources  with  different  frequen-

cies  are  used  to  send  sound  waves  at  different  loca-

tions, the spatial position of the device can be calcu-

lated  based  on  the  distance  between  the  device  and

different sound sources over a period of time when the

starting location is known, so as to achieve high-preci-

sion positioning and tracking.

 4    Application

 4.1    Behavior Recognition and Tracking

The  framework  for Subsection 4.1 is  shown  in

Fig.12.

 4.1.1    Daily Activity

Human action recognition is one of the important

research contents in intelligent application.  Daily be-

havior  detection  consists  of  activity  recognition  and

tracking.  Activity  recognition  refers  to  the  classifica-

tion and recognition of human behaviors according to

certain  algorithms,  such  as  the  deep  learning  meth-

ods by measuring certain signal data generated by hu-

man  while  performing  various  actions.  Tracking  is

more about tracking the activity process and trajecto-

ry through physical  methods.  By accurately identify-

ing  and  tracking  the  human behavior,  the  quality  of

human-computer interaction can be improved and the

scope  of  the  intelligent  application  can  be  expanded.

It  is  the  future  development  trend  of  intelligent  life,

Behavior Recognition and Tracking WiFi: Hands-Free Input

Daily Actions

Gestures & Hand 

Movements

WiFi: Activity Recognition

WiFi: Activity Tracking

WiFi: Handwriting Recognition

Acoustic: Gestures & Hand Motion Recognition

Acoustic: Fingers & Hand Motion Tracking

Acoustic: Activity Recognition and Tracking

 
Fig.12.  Behavior recognition and tracking structure diagram.
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which  will  have  great  application  prospects  and  eco-

nomic  value  for  the  research  of  smart  home,  intelli-

gent  teaching,  and  medical  assistance.  According  to

Pedretti  and  Early[116],  daily  behaviors  mainly  in-

clude  eating,  bathing,  dressing,  going  to  the  bath-

room,  walking  and  such  other  behaviors.  Nowadays,

there is a growing trend towards intelligent home, in

which  WiFi  and  acoustic  play  a  crucial  role,  which

makes  many  applications  to  realize  human  behavior

perception emerge. The action recognition and track-

ing  based  on  WiFi  and  acoustic  sensing  are  intro-

duced below respectively.

1) Activity Recognition
In the last decade, activity recognition was one of

the hottest research topics in wireless sensing. Focus-

ing  on  large  human  movements,  activity  recognition

also  facilitates  exciting  applications,  such  as  motion

detection,  fall  detection,  and multi-activity classifica-

tion where multiple activities are combined for detec-

tion. Different activities identify different targets with

different  emphasis.  Next  are  three  common  types  of

applications.

Some  applications  aim  to  detect  the  presence  of

moving  objects.  Traditional  methods,  like  [43],  use  a

predetermined  threshold  to  distinguish  such  motion-

induced burst signals.  However,  since wireless signals

are  sensitive  to  the  environment  and  environmental

changes,  they  require  different  calibrations  for  differ-

ent  environments.  WiDetect[42] uses  statistical  theory

to model the signal state in a scattering-rich environ-

ment.  For example,  WiBorder[44] analyzes CSI conju-

gate  multiplication  in  detail  and  uses  a  sensing

boundary determination method. Therefore, it can ac-

curately determine whether a person has entered into

a given place.

Some applications aim to detect specific actions of

everyday  activities.  Unlike  their  predecessors,  these

applications  need  a  distinction  that  clearly  distin-

guishes between specific actions and others. A typical

example  of  such  an  application  is  the  fall  detection.

Falling is a major threat to the life and health of el-

derly  people.  Timely  detection  and  rescue  of  falling

can greatly reduce the consequences of falling. Han et
al.[9] proposed WiFall, which was the first to propose

a  WiFi-based  fall  detection  mechanism.  In  this  sys-

tem,  the  Local  Outlier  Factor  (LOF)  algorithm  is

used to detect the outlier data in the CSI stream and

the one-class Support Vector Machine (SVM) is used

to  identify  the  descent  action.  After  that,  more  and

more researchers began to pay attention to this prob-

lem.  For  example,  RT-Fall[10],  FallDeFi[12] and

DeFall[13] have  made  use  of  more  powerful  data  pro-

cessing methods and achieved better detection perfor-

mance.  More  recently,  researchers[14– 17] have  pro-

posed  new  solutions  to  solve  the  three  major  chal-

lenges  of  fall  detection:  user-related,  environment-de-

pendent, and motion interference. For example, since

the  AOA  (angle  of  arrival)  reflected  by  the  human

body  does  not  depend  on  the  environment  and  the

subject,  AFall[14] proposes  to  use  the  Dynamic-Music

algorithm[56] to  model  the  relationship  between  hu-

man falls and changes in the AOA of WiFi signals re-

flected by the human body. Therefore, when the envi-

ronment  changes  slightly,  the  performance  of  falling

can remain stable.

There  are  also  applications  that  detect  multiple

activities in daily life. This type of applications is re-

lated to the category of activities. In general, the ex-

tracted  features  are  different  for  different  scenarios

with  different  activity  contents.  TW-See[48] is  a  hu-

man activity recognition method based on wall-pene-

trating passive CSI. The method tracks six human ac-

tivities: walking, sitting, standing, falling, arm swing-

ing,  and  boxing.  The  method  uses  two  key  tech-

niques  for  tracking.  First,  the  inverse  Robust  PCA

(OR-PCA)  method  is  applied  to  obtain  the  correla-

tion between human activities and CSI value changes,

and  then  a  normalized  variance  sliding  window

method is applied to segment the OR-PCA waveform

of  human  actions.  On  the  other  hand,  Wi-Motion[45]

divides a human motion into macroscopic and micro-

scopic  motions.  It  uses  a  human  motion  detection

method  based  on  CSI  amplitude  and  phase  informa-

tion,  which  minimizes  the  random  phase  offset  and

uses  different  signal  processing  methods  to  obtain

clean datasets.

In many previous studies,  machine learning mod-

els  were  used  to  classify  signals  by  directly  compar-

ing them.  For  example,  WiSee[46] and CARM[41] con-

vert  the  wireless  signal  into  the  frequency  domain,

then get environment-independent DFS (Doppler Fre-

quency Shift) (representing motion speed information),

and finally  use  the  model  to  classify.  However,  more

and  more  recent  studies  have  been  done  to  improve

the  robustness  of  the  environment.  EI[38] and  Deep-

MV[39] combine  DNN  with  domain  discriminator  to

extract the general characteristics of activities. Alter-

natively,  in-depth  learning  models  are  also  combined

to identify activities.  For example, DeepSense[37] pro-

poses  a  HAR  method  based  on  CSI  and  in-depth
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learning.  The  proposed  activities  (walking,  standing,

lying, running and empty running) were classified by

using  a  long-term  recursive  convolution  network  of

self-encoders with an accuracy of 97.4%. Chen et al.[40]

proposed  a  CSI  macro  activity  recognition  method

based  on  deep  learning.  This  method  divides  macro-

activities  into  six  categories:  fall,  walk,  sit,  lie  down,

stand  up  and  run,  and  uses  two-way  long  and  short

memories  (ABLSTM)  to  learn  the  representative

characteristics of the original CSI from two directions.

2) Activity Tracking
In WiFi, both the large motion and the small mo-

tion  tracking  take  place.  The  large  motion  tracking

mainly includes the calculation of steps, human posi-

tion tracking, the number of people derived from hu-

man  position  calculation  and  other  activity  tracking

applications. The tracking of minor movements main-

ly  involves  lip  reading.  Location-aware  studies  focus

on  the  coordinates  of  the  target  people,  population

counts, and the number of people in a specific area.

In  the  application  of  step  counting,  the  corre-

sponding signals from legs or feet may be covered by

stronger signals reflected from the trunk. Therefore, it

is difficult to track steps directly. WiStep[55] identifies

walking modes through time-frequency analysis, sepa-

rates  the  leg-induced  signals  from  the  trunk-induced

signals  using  wavelet  transform,  and  calculates  steps

using  a  peak  detection  method.  WiStep's  step  count

accuracy in the two-dimensional space is higher than

87.6%.

Since WiFi sensing enables non-inductive localiza-

tion and tracking, human localization has attracted a

lot  of  researchers'  attention  in  the  field  of  WiFi  hu-

man  sensing.  In  the  application  of  human  position

tracking, many studies have proposed the use of CSI

for  indoor  localization  and  activity  recognition  (see

Subsection  4.3.2  for  details).  As  human  location  has

attracted  more  and  more  attention,  WiFi  wireless

sensing  has  also  emerged  into  applications  derived

from  human  locations.  Examples  include  crowd

counts that focus on the exact number of people in a

particular place. Since CSI provides more fine-grained

channel  information (i.e.,  amplitude and phase  infor-

mation) through multiple subcarriers, it can be known

from  the  work  [35]  that  the  number  of  subjects  has

different impact on the amplitudes of CSI data on dif-

ferent subcarriers. More people can induce higher CSI

variance  through  WiFi  links.  An  integrated  crowd

management system was proposed in [35]. Unlike pre-

vious studies, the proposed system uses existing WiFi

traffic and uses robust semi-supervised learning to es-

timate population density,  population count,  walking

speed  and  direction.  The  method  can  be  easily  ex-

tended  to  new  environments.  The  human  intrusion

described in Subsection 4.4.3 is also a derived applica-

tion of human localization.

In  addition,  human micro-motion tracking is  also

used. For example, the Smokey[47] system uses CSI to

detect smoking by monitoring different smoke-related

actions, such as holding, lifting, sucking, dropping, in-

haling and exhaling. It is also evaluated in an indoor

environment  with  multiple  users  and  achieves  good

performance.  Human  tiny  motion  tracking  based  on

CSI can be extended to sense lip movements. WiHear[33]

uses a directional antenna to send WiFi signals in the

direction  of  the  target  user's  face  and  recognizes  14

syllables  and  32  words  with  an  accuracy  of  91%.

WiTalk[34] obtains  mouth  movement  information  by

measuring  DFS  based  on  the  scene  of  lip  reading

while making a phone call, and uses DTW to classify

the  12  syllables.  The  relative  position  between  the

phone and the mouth is constant where the user is or

which  direction  he/she  is  facing.  The  accuracy  of

WiTalk is higher than 82.5%.

Compared  with  acoustic,  the  current  research  on

WiFi  in  daily  behavior  recognition  is  more  in-depth

and  extensive.  But  the  recognition  and  tracking  of

daily  behavior  based  on  sound  wave  sensing  also  in-

volves some aspects. Early work SoundSense[73] is the

first  general-purpose  sound  sensing  system specifical-

ly  designed  for  mobile  phones  by  modeling  sound

events on mobile phones and monitoring people's dai-

ly  activities,  such as  walking,  driving,  riding  in  cars,

and so on, demonstrating its ability to identify mean-

ingful sound events that occur in the user's daily life.

The  extracted  acoustic  features  are  the  processed

phase, signal strength, and frequency and bandwidth,

which are then classified into specific categories using

decision trees and Markov models. The feature extrac-

tion  relies  on  human  knowledge  and  experience.

BodyScope[74] uses  a  wearable  activity  recognizer

based  on  commercial  headphones,  extracts  MFCC of

the  captured  sound  and  then  uses  SVM  to  classify

and  monitor  oral  movements,  such  as  eating,  laugh-

ing,  talking,  and so  on.  In  EarSense[75],  it  was  found

that the actions of the teeth, i.e., tapping and sliding,

create vibrations in the jaw and skull, and these line-

ups  are  strong  enough  to  propagate  to  the  face  and

create  a  vibrational  signal  at  the  earphones.  Six  dif-

ferent tooth movements can be detected in real  time
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by  analyzing  the  two  headphone  signals.  HearFit[76]

turns  smart  speakers  into active  sonar,  designs  a  fit-

ness  detection  method  based  on  Doppler  frequency

shift,  and  uses  short-term  energy  to  segment  fitness

actions as fitness quality guidance, which can assist to

improve fitness and prevent injuries. It can detect 10

movements with and without dumbbells and give ac-

curate statistics  in various environments.  In a recent

study, Liang and Thomaz[77] proposed an audio-based

activity recognition framework that can leverage mil-

lions  of  embedded  features  from  public  online  video

sound  clips.  Based  on  the  combination  of  oversam-

pling and deep learning methods, this framework does

not require further feature processing or outlier filter-

ing  like  previous  work.  Fifteen  daily  activities  of  14

participants  achieved  an  average  recognition accura-

cy  of  64.2%  and  83.6%  in  Top-1  and  Top-3,  respec-

tively. The work[78] performs unsupervised tracking of

daily household activities  through acoustic sensing,  a

system that uses captured sound to identify shifts  in

typical activities without the need for activity tags. It

relies on sound embedding, through pre-trained mod-

els and a new dimensionality reduction algorithm, and

applies  dynamic  time  warping  for  pattern  matching.

The accuracy reported in this paper reached a preci-

sion of 0.99 and a recall of 0.95.

 4.1.2    Gestures and Hand Movements

Gestures  and  hand  movements  are  the  most  im-

portant ways for human interaction. From the techni-

cal route, gesture recognition is mainly based on ma-

chine  learning  or  deep  learning  after  extracting  the

wireless  signal  characteristics.  Such  applications  are

data-driven  and  focus  on  identifying  the  contents  of

hand  movements.  For  finger-hand  motion  tracking,

physical  modeling  is  the  key  to  its  motion  process

tracking,  and  the  focus  also  includes  the  content  of

the action at each moment in the process itself, which

provides  more  flexible  functions  to  support  a  variety

of human-computer interaction programs. The follow-

ing first  describes  the practical  applications of  WiFi-

based  and  sonic-based  sensing  in  the  areas  of  ges-

tures and hand movements. Gesture/hand movement

recognition  in  WiFi  work  is  mainly  divided  into  two

parts: hands-free input and handwriting recognition.

1) WiFi: Hands-Free Input
The  gesture  recognition  technology  is  an  impor-

tant  means  of  human-computer  interaction,  which  is

crucial  to  the  development  of  human-computer  com-

puting.  Traditional  gesture  recognition  methods  in-

clude computer vision,  infrared recognition and dedi-

cated sensors. However, computer vision methods are

easily  limited  by  light  conditions,  and  infrared  and

sensor  recognition  are  complex  to  deploy,  inconve-

nient  to  carry,  and  expensive  also.  Therefore,  they

cannot well meet the application scene of smart home.

As WiFi-based motion sensing is gradually maturing,

WiFi-based  hand  motion  recognition  has  attracted

widespread attention.

In  the  application  of  recognizing  freely  changing

gestures,  the wireless  signal  changes are  much small-

er than other behavior recognition signals as the hand

and finger  gestures  are  smaller  than the  body move-

ments.  Such  small  signal  changes  can  easily  be

masked  by  strong  signal  changes  caused  by  other

parts of the person's body or moving objects. Extract-

ing these changes is not a simple task. Therefore, re-

searchers often limit the interaction range to a small

space to amplify the hand and finger signals. WiG[20]

is  an  early  work  on  WiFi  gesture  perception,  which

extracts four features from CSI amplitude to train an

SVM  classifier  to  distinguish  four  common  gestures

(i.e.,  right,  left,  push  and  pull).  The  authors  of

WiKey[18] observed that  each keystroke has  a  unique

CSI  pattern  due  to  different  gestures.  Therefore,  the

keystroke  recognition  accuracy  rate  reaches  93.47%.

However,  the  system is  very  sensitive  to  the  relative

position  changes  between  the  user  and  the  device.

Then, Mudra[19] implements accurate detection of fin-

ger-level  gesture  signals  independent  of  the  position.

Mudra  performs  this  with  the  help  of  interference

cancellation techniques based on the differences in re-

ceived signals between antennas at different positions.

In the past two years, researchers[21–29] also proposed

various solutions to the challenges of environment, us-

er or motion interference in gesture recognition in the

WiFi field. For example, WiHF[23] improves the seam

carving  algorithm to  extract  motion  change  patterns

in real time to provide a solution for motion changes.

[25] establishes a WiFi frequency theoretical model to

demonstrate that the commonly-used motion velocity

and motion direction features are position-dependent,

and address  the environment dependence by extract-

ing two position-independent features.

2) WiFi: Handwriting Recognition
Existing  work  on  handwriting  recognition  mainly

uses  wireless  tracking  in  wireless  signals.  WiDraw[30]

uses  an  over-the-air  handwriting  recognition  method.

This method utilizes the AOA of the wireless signal at

the  receiver  and has  an average accuracy of  91% for

multiple writing.
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There  are  some  problems  in  gesture  recognition.

The most important requirement is to distinguish ges-

tures  accurately,  where  a  major  challenge  is  that

hand-induced  signals  are  much  lower  than  those  in

other  parts  of  the  body.  Existing  systems  often  de-

ploy  sensors  near  their  hands.  However,  application

scenarios  are  limited.  With  this  in  mind,  researchers

can  use  the  directional  antenna  and  beamforming

technology to enlarge the hand space like mmASL[117],

or to explore more robust signal models, such as CSI-

quotient[32]. The second challenge is to extract distin-

guishable features. Since gesture modeling is relative-

ly  difficult,  we  expect  to  use  more  data-driven  mod-

els in future.

3) Acoustic:  Gesture  and  Hand  Motion  Recogni-
tion Based on Acoustic

Since  sound  wave  sensing  is  more  fine-grained

than WiFi and other sensing methods, it is more suit-

able  for  more  complex  and  accurate  fine-grained  ac-

tion recognition and tracking, such as gesture recogni-

tion and hand motion tracking. It has been widely in-

vestigated  and  applied.  The  application  and  related

work are introduced below in detail from the two as-

pects  of  gesture  (mainly  finger  motion)  recognition

and hand motion tracking. Human gestures and hand

movements  are  the  main  ways  for  interaction.  The

frequency  shift  caused  by  the  Doppler  effect  is  the

most  common  and  direct  method  in  the  recognition

technology based on sound wave  sensing.  Consider  a

person writing in air next to a smart device, such as a

mobile phone as an example. The speaker of the mo-

bile phone emits modulated ultrasonic waves. Due to

the  Doppler  frequency  shifting  effect  caused  by  the

human  writing,  the  frequency  of  the  sound  wave  re-

ceived  by  the  mobile  phone  microphone  will  change.

Such  systems  usually  include  steps,  such  as  data  ac-

quisition and preprocessing, short-time Fourier trans-

form, feature extraction, and classification and recog-

nition.  In  addition  to  the  Doppler  frequency  offset,

there  are  other  methods  based  on  FMCW  and  CIR

combining  the  distance  between  the  target  and  the

sound  source.  DopLink[79],  AirLink[121],  etc.  are

through the connection or interaction between device

and device, relying on the user to hold the device and

wave it  to complete the pairing,  information transfer

and  action  recognition  between  devices.  Compared

with  relatively  distant  and  coarse-grained  hand  mo-

tion  recognition,  tighter  and  finer-grained  finger  ges-

ture  motion  recognition  is  increasingly  important  in

human-computer interaction. The Dolphin system de-

signed by Yang et al.[80] uses the built-in speaker and

microphone  to  transmit  and  receive  continuous  21

kHz  ultrasonic  signals,  extract  the  frequency-domain

features  related  to  the  Doppler  effect,  and  use  ma-

chine  learning  models  to  achieve  up  to  the  recogni-

tion of 17 volley gestures? SoundWrite[122] and Sound-

Write II[83] describe handwritten features using ampli-

tude  spectral  density  and  some  other  acoustic  fea-

tures,  such  as  MFCC,  and  use KNN  to  match  the

captured  features  with  labeled  features  in  the

database. Using the ZC sequence, a periodic pulse sig-

nal,  as  the  acoustic  signal  for  sensing  gestures,

VSkin[81] enables touch gesture sensing on all surfaces

of  the  mobile  device,  not  just  the  touch screen  area,

by  measuring  the  amplitude  and  phase,  which  use

structure-borne sound (that is, the sound that travels

through  the  structure  of  the  device)  and  air-borne

sound (that is, the sound that travels through air) to

sense  finger  taps  and  movements,  enabling  fine-

grained  gestures  on  the  back  of  the  mobile  devices

based  on  induced  acoustic  signals.  Wang et  al.[123]

proposed a dynamic speed warping (DSW) algorithm,

based on the observation that the gesture type is de-

termined  by  the  trajectory  of  the  hand  component

rather than the movement speed, by dynamically scal-

ing  the  velocity  distribution  and  tracking  the  move-

ment distance of the trajectory. It can match gesture

signals from different domains with ten-fold speed dif-

ferences, achieving 97% accuracy using only one train-

ing  sample  for  each  gesture  type  from  four  trained

users.

Regarding some recent research advances, the ges-

ture recognition pursues more fine-grained, higher ac-

curacy,  smaller  training  set  size,  and  more  goals.

With  the  development  of  techniques,  such  as  the

transfer learning[124], few-shot learning[125], and genera-

tive  adversarial  networks[126],  these  techniques  have

also  been  applied  to  the  field  of  gesture  recognition.

In  [127]  a  transfer  learning  based  convolutional  neu-

ral  network  was  used  for  gesture  recognition,  whose

accuracy is better than those of the existing work on

sign  language  digits  and  Thomas  Moeslund's  gesture

recognition datasets. In [128], EMG was used for the

recognition  of  learning  gesture  of  small  samples.  Al-

though  it  is  different  from  sound-based  sensing,  its

method is easy to reuse on the spectrogram obtained

by  sound-wave  sensing.  In  [129],  a  generative  adver-

sarial  network  GAN was  applied,  and  a  scene  trans-

fer  network  was  developed,  which  not  only  uses  the

real  samples  of  the  scene,  but  also  uses  real  samples
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from another available scene to generate virtual sam-

ples  to  train  and test  a  small  sample  dataset  on  the

mmWave-based data and test platform. Although the

carriers  and  methods  are  different,  the  above  meth-

ods  also  have  some  inspirations  for  gesture  recogni-

tion  based  on  sound  wave  sensing.  Furthermore,  Ul-

tragesture[85] is  based  on  the  channel  impulse  re-

sponse (CIR). CIR measurements can provide a reso-

lution  of  7  mm,  which  is  sufficient  to  identify  slight

finger movements. It encapsulates CIR measurements

into images with better accuracy than Doppler-based

schemes,  and it  can run on commercial  speakers  and

microphones  that  have  already  existed  in  most  mo-

bile devices without requiring any hardware modifica-

tion.  RobuCIR[86] uses  a  frequency-hopping  mecha-

nism  to  avoid  signal  interference  by  mitigating  fre-

quency-selective fading. This high-accuracy CIR work

can recognize 15 gestures. AMT[130] defines a new con-

cept  of  primary  echo  to  better  represent  the  target

motion  by  using  multiple  speaker-microphone  pairs,

which perform multi-point localization of actions, de-

tect  primary  echoes  and  filter  out  secondary  echoes,

eliminate target bulge multipath effects instead of as-

suming them as particles, improve tracking accuracy,

and  achieve  multi-target  tracking  at  the  centimeter

level.  Aimed  at  the  challenge  of  adaptively  respond-

ing  to  expected  movements  instead  of  unexpected

ones in real-time tracking movements systems of ges-

ture  recognition,  Amaging[87] gives  an  independent

sensing  dimension  of  acoustic  two-dimensional  hand

forming  images.  Amaging  has  multiplicative  expan-

sion of sensing capabilities and two-dimensional paral-

lel hand shape and gesture-trajectory recognition, and

its hand shape imaging performance and immunity to

mobile interference have been verified through experi-

ments and simulations.

4) Acoustic:  Finger  and  Hand  Motion  Tracking
Based on Acoustic

The next  issue  is  about  the  finger  and hand mo-

tion  tracking.  Physical  modeling  is  the  key  to  track-

ing its motion process. Motion tracking provides more

flexible  functions  to  support  various  human-comput-

er interaction programs. The system designed by Yun

et al.[131] transforms signals into an inaudible frequen-

cy  band  at  different  frequencies,  and  uses  Doppler

shift  to  estimate  the  speed  and  distance  of  hand

movement.  CAT[132] analyzes  FMCW of  the  acoustic

signal  and converts  the time difference mapping into

frequency shifts for further improving the tracking ac-

curacy without requiring any precise synchronization.

0.5 m× 0.25 m
0.25 m2

EchoTrack[133] measures  the  distance  from  the  hand

to the speaker array embedded in a smart phone via

the  chirp's  Time  of  Flight  (ToF).  A  unique  triangu-

lar geometry is generated from the speaker array and

hand to localize the gesture. Doppler shift compensa-

tion and trajectory correction are used to improve the

trajectory  accuracy.  LLAP[84] uses  a  commercial

smartphone  to  achieve  motion  tracking  at  the  mil-

limeter  level  by  measuring  the  phase  change  in  the

sound  signal  caused  by  the  gesture  movement,  and

converting  the  phase  change  into  the  distance  of

movement.  FingerIO[134] also  uses  commercial  smart-

phones only.  Using the orthogonal  frequency division

multiplexing in wireless  frequency division multiplex-

ing,  the  OFDM technology  enables  finer-grained  fin-

ger  tracking,  and  finally  prototypes  a  smartwatch-

shaped  finger  I/O  device  to  demonstrate  that  it  can

extend  the  interaction  space  to  on

both sides of the device area of . It works well

even when fingers are completely occluded. Strata[135]

estimates the channel impulse effect (CIR) in order to

explicitly  account  for  multipath  propagation,  and  to

select  well-behaved  channels  and  extract  the  phase

change in the selected channel signal to accurately es-

timate  the  distance  change  of  the  finger,  and  uses  a

new optimization framework to estimate the absolute

distance of the finger according to the change in CIR.

The core work of Vernier[82] is calculated with a small

signal  window phase  transition,  whose  number  of  lo-

cal  maxima  corresponds  to  the  number  of  cycles  of

the phase transition, removes complex frequency anal-

ysis  and  long  windows  of  signal  accumulation,  and

significantly  reduces  tracking  delay  and  overhead.

The  evaluated  results  show that  its  tracking  error  is

less  than  4  mm,  and  the  speed  is  also  faster.  The

phase-based approach is improved by a factor of 3. Lu

et al.[136] designed a tracking system for a convention-

al computer without a touch screen, emitting inaudi-

ble acoustic signals from the two speakers of the lap-

top, and then analyzed the energy of the acoustic sig-

nal received by the microphone features and Doppler

shifts to track the hand motion trajectories. For more

complex  indoor  environments,  it  is  sometimes  diffi-

cult  for  acoustic-based  methods  to  achieve  accurate

motion tracking due to the multipath fading and lim-

ited  sampling  rates  of  the  mobile  devices.  PAMT[137]

defines a new parameter, namely the multipath effect

ratio (MER), to represent the effect of the multipath

fading on the received signals at different frequencies,

and develops a new multipath effect mitigation tech-
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nique  based  on  MER  and  the  phase-based  acoustic

motion  tracking  method  PAMT,  by  using  multiple

speakers  to  calculate  the  phase  change  in  the  acous-

tic  signal  and  track  the  corresponding  moving  dis-

tance.  The  measurement  errors  of  one-dimensional

and  two-dimensional  scenes  on  an  Android  smart-

phone are less than 2 mm and 4 mm, respectively.

 4.2    Health Caring

The  framework  of Subsection 4.2 is  shown  in

Fig.13.

Health  concerns  mainly  include  attention  to  hu-

man physiological  indicators and detection of driving

behaviors.  Human  physiological  indicators  include

hundreds of items, such as heart beat, breathing, and

blood pressure, which can reflect the health of the hu-

man  body.  Traditional  methods,  such  as  camera-

based  methods  (e.g.,  distance  PPG[138])  and  sensor-

based methods (e.g., geophone[139, 140]), can accurately

track  vital  signs.  However,  these  methods  require  ei-

ther bright lighting or complex installation and main-

tenance.  In  contrast,  new  sensing  methods  based  on

wireless  signals  have  become  more  attractive  due  to

their low cost, no contact and easy deployment. Next,

we will introduce the related work and applications of

WiFi-based sensing and sound-based sensing for rela-

tive health, driving behavior monitor, and other medi-

cal aspects.

 4.2.1    Health Related

In the monitoring of life signs of human physiolog-

ical indicators, their accurate monitoring is conducive

to  timely  understanding  of  physical  conditions,  espe-

cially for elderly people. Since the detection of breath-

ing and heartbeat in wireless sensing is the detection

of  subtle  chest  movements,  the  work  based  on  WiFi

sensing mainly includes the followings.

Respiratory  monitoring  systems  usually  use  peak

detection  to  calculate  respiratory  rates  based  on

repetitive patterns of chest movements. Wang et al.[49]

designed  a  Fresnel  zone based  model  for  monitoring

human breathing without training, which is robust to

different  locations  and  directions.  Zeng et  al.[32] ex-

tended  the  monitoring  range  to  8  meters  using  the

CSI  quotient  model.  In  the  last  few years,  there  has

been some work on breath detection on smartphones

using  Nexmon  firmware  such  as  WiPhone[50],  Mo-

Breath[51].  On the other hand, with the emergence of

the  COVID-19  disease,  there  are  some  jobs  that  are

also focusing on it. For example, Wi-COVID[141] moni-

tors  COVID-19  patient  respiration  rate  (RR)  via

WiFi and tracks RR for medical providers. Due to the

high  rate  of  transmission  of  the  COVID-19  disease,

healthcare  systems  around  the  world  are  potentially

under-resourced to  help  large  numbers  of  patients  at

once;  non-critical  patients  are  suggested to  self-iso-

late at home. Wi-COVID offers novel, rapid and safe

solution  to  detect  and  rapidly  report  patient  symp-

toms to healthcare providers.

Wu et  al.[5] extended  the  breath  detection  from

sleep  to  standing  position  for  still  body  detection.

WiSleep[4] is  the  first  CSI-based  method  to  monitor

the  respiratory  rate  of  a  person  during  sleep.  Liu et
al.[6] proposed a system to detect vital signs and pos-

ture during sleep by tracking CSI fluctuations caused

by small human movements, and to detect the respi-

ratory  rate  of  one  or  two  people  in  bed.  Similarly,

PhaseBeat[8] uses DWT for exercise separation and si-

multaneously  monitors  breathing  and  heartbeat  with

accuracy of 0.5 bpm and 1 bpm, respectively.
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Fig.13.  Health caring structure diagram.
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Health-related  applications  based  on  acoustic

mainly  rely  on  the  detection  of  physiological  condi-

tions, such as the capture of human breathing, heart-

beat,  and  so  on,  or  some  event  monitoring,  such  as

the  fall  detection,  abnormal  sleep  behaviors,  and  so

on, as well as medical-related assistance control to as-

sist  body  recovery,  etc.  Larson et  al.[88– 91, 142] cap-

tured physiological signals, such as human respiration,

heartbeat, vital capacity, chest wall motion, and some

other  non-voice  sounds,  such  as  swallowing  during

eating. Based on these physiological signals, Nahdaku-

mar et al.[142] turned a cell phone into an active sonar

system  that  emits  modulated  sound  signals  and  de-

tects  breathing-induced  minute  movements  of  the

chest  and  abdomen  from reflexes,  and  developed  the

identification of various types of sleeps from sonar re-

flexes algorithms for apnea events, including obstruc-

tive apneas, central apneas, and hypopneas. In [89] in-

audible acoustic signals were used to accurately moni-

tor  heartbeats,  by  using  only  common  commercially

available  microphones  and  speakers,  through  trans-

mission sound signals and their reflections on the hu-

man body to  identify  the  heart  beat  rate  and heart-

beat  rhythm,  and generate  an acoustic  electrocardio-

gram (ACG).  Based  on  this,  many  subsequent  stud-

ies  also  emphasized  on  capturing  heartbeat  features

by  using  machine  learning  techniques  to  classify  the

required research. The work[91],  continuous multi-per-

son  respiration  tracking  using  an  acoustic-based

COTS  device,  employing  a  two-stage  algorithm  to

separate and recombine respiration signals from mul-

tiple  paths in a short  period of  time,  can distinguish

the respiration of  at  least  four  subjects  within a  dis-

tance  of  three  meters.  SpiroSmart[88] uses  a  built-in

microphone  for  spirometry.  SpiroSonic[90] measures

the  human  chest  wall  motion  through  acoustic  sens-

ing and interprets it as an index of the lung function

based on clinically validated correlations.

Audio equipment can also identify events and per-

form event detection through inaudible sound signals,

such as fall detection[143]. Modulated ultrasonic waves

are  emitted  through  speakers,  reflected  signals  are

recorded  by  microphones  to  detect  Doppler  shifts

caused by events, and features are extracted from the

spectrogram to represent fall patterns that are distin-

guishable  from  normal  activities.  Afterwards,  SVD

(singular  value)  and K-means algorithms are used to

reduce  the  data  feature  dimensions  and cluster  data.

The final  detection and recognition are  accomplished

by  different  methods,  such  as  the  Hidden  Markov

Model for training classification, or modeling each fall

through the Gaussian mixture model. In addition, the

speakers  and  microphones  on  smart  devices,  such  as

smartphones, can also collect specific, but distinguish-

able, body movements and sound signals that accom-

pany each sleep stage of a person. Using the data, it

is possible to construct the sleep and wake state, and

daily  sleep  quality.  A  model  that  can  detect  abnor-

mal  sleep  behaviors  (see  [142]),  and  some  more  de-

tailed  sleep  events,  including  snoring,  coughing,

rolling  over,  getting  up,  etc.  (see  [144]).  The  recent

work  Apnoea-Pi[92] presents  an  open-source  surface

acoustic wave (SAW) platform to monitor and recog-

nize  apnoea  in  patients.  The  authors[92] argued  that

Thin-film SAW devices outperform standard and off-

the-shelf capacitive electronic sensors in response and

accuracy  for  human  respiration  tracking  purposes.

Combined  with  embedded  electronics,  it  provides  a

suitable  platform  for  human  respiratory  monitoring

and sleep disorder identification.

 4.2.2    Driving Behavior Monitor

Driver fatigue is a major cause of road accidents,

which lead to serious injury, and even to death. The

existing  work  on  fatigue  detection  mainly  focuses  on

the visual and electroencephalogram (EEG)-based de-

tection  methods.  However,  vision-based  methods  suf-

fer from visual blocking or visual distortion problems,

while EEG-based systems are intrusive that inherent-

ly bring uncomfortable driving sensations, which may

further  worsen  the  driver  fatigue.  In  addition,  these

systems are expensive to install.

On the  contrary,  the  WiFi  signal  has  the  advan-

tage of being non-invasive and device-free. For specif-

ic  work,  WiDrive[70] discusses  about  the  detection

method  of  dangerous  driving  behaviors.  In  the  driv-

ing scenario, the driver is fixed on the seat and the in-

terior environment is stable. Therefore, WiDrive does

not  need  to  consider  the  robustness  of  any  environ-

mental change. Peng and Jia[71] observed that WiFind

is  a  device-free  system,  which  can  detect  the  fatigue

degree  through  two  modes:  breathing  mode  and

movement  mode  through  WiFi  signal.  The  accuracy

of this method is 89.6%.

The driving behavior  monitoring based on acous-

tic sensing includes the monitoring of the driver's be-

haviors,  such  as  making  and  receiving  calls[145],  inat-

tention[146, 147],  and  identifying  different  driving  be-

haviors through multiple classifiers. Concentration be-
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haviors  are  detected  50%  earlier  and  alerted  in  ad-

vance in order to ensure people's driving safety. Fur-

thermore, as introduced above, the breathing pattern

is one of the key indicators of health status. Breathlis-

tener[148] uses  audio  devices  in  smartphones  to  esti-

mate fine-grained breathing waveforms in driving en-

vironments  by  extracting  the  energy  of  acoustic  sig-

nals spectral density feature (ESD) and further to de-

sign  a  GAN-based  architecture  to  generate  fine-

grained  breathing  waveforms.  Related  experiments

show that it can capture the breathing patterns of the

driving environment in the driving environment. The

resulting  breathing  pattern  can  be  further  used  to

keep  track  of  the  driver's  current  driving  situation.

Additionally, in the medical field, UbiEar[149] was de-

signed,  which  is   a  smartphone-based  acoustic  event

sensing  and  notification  system  for  the  hearing-im-

paired to achieve location-independent acoustic event

recognition.

 4.3    Localization and Navigation

The  common  ranging  methods  are  introduced  in

Subsection 3.5.  ToF,  TDOA,  angle  of  arrival  (AOA)

measurements,  phase  difference,  and  RSSI  attenua-

tion  models  are  used  to  calculate  the  distance  be-

tween the object and the device or between the sender

and  the  receiver.  With  the  distance  information,  we

can gain more information, such as the location of the

object.  In  wireless  sensing,  the  positioning  of  devices

or  objects  is  also  one  of  the  important  issues.  The

four most commonly used methods are trilateral posi-

tioning, triangular positioning, hyperbolic positioning,

and wireless fingerprint positioning. Next, we will de-

scribe them separately.

 4.3.1    Methods

D(x, y)

(x1, y1), (x2, y2), (x3, y3)

d1, d2 d3

1) Trilateral  Positioning. The method is  to  make

a circle  at  three  distances  from the measured object,

and the intersection of the three circles is the coordi-

nates  of  the  measured  object's  position.  Suppose  we

want to locate an object in the room. It is in the ref-

erence  point  of  the  three  known  locations.  The  dis-

tances from the three reference points to the object to

be  measured  are  obtained  by  the  method  as  de-

scribed in Subsection 3.5. In Fig.10, assuming the lo-

cation  node  as ,  the  known  coordinates  of E,

B, C are  respectively. The dis-

tances from them to D are  and  respectively.

The location of D can be obtained by either of the fol-

lowing equations:  
(x− x1)

2 + (y − y1)
2 = d21,

(x− x2)
2 + (y − y2)

2 = d22,

(x− x3)
2 + (y − y3)

2 = d23.

In  practice,  however,  it  is  not  common  for  three

circles to intersect at a single point, which may result

in  an  inaccurate  location  of  the  target  to  be  mea-

sured  using  the  trilateral  positioning.  However,  in

practice,  if  there  are  many  APs  at  the  known  loca-

tions, then we can select the optimal base station by

using the optimal quadratic method, and then use the

weighted  method,  the  centroid  method  and  so  on  to

approximate the coordinates of the measured object.

2) Triangular  Positioning. The  triangular  posi-

tioning algorithm is a common wireless positioning al-

gorithm. Its core idea is to sense the arrival angles of

the  signals  sent  by  other  devices  through  hardware

devices, usually relying on multiple antenna arrays. In

a multi-antenna array, for signals arriving at the an-

tenna array at  different angles,  there remains a time

difference between any two antennas which is  denot-

ed by the angle of arrival. The angle is calculated us-

ing AOA, and then the location of the unknown node

is calculated using geometric methods.

∆t

v

∆d

3) Hyperbolic  Positioning. Trilateral  positioning

requires  knowing  the  distance  between  the  object  to

be measured and multiple APs before it can be used.

However, we can actually locate the object to be mea-

sured  using  a  hyperbolic  positioning  algorithm  that

uses  the  TDOA  algorithm.  Assuming  that  the  time

difference  between  the  objects  to  be  measured  arriv-

ing at different send (receive) periods is , multiply-

ing the speed of signal transmission , we can find the

distance difference between the wireless signals to dif-

ferent base stations . If we know the mileage differ-

ence between the two sending (receiving) ends of the

object to be measured, then on this basis, we can use

geometry knowledge (that is,  hyperbola) to solve the

location of the target.

4) Wireless  Fingerprint  Positioning. This  is  a

common method in the field of WiFi location[58–62, 69].

The  WiFi  fingerprint  positioning  uses  RSSI  or  CSI

signals in the WiFi signal to collect each sample point

in  the  space  for  training,  forming  a  fingerprint

database. If a certain location point needs to be locat-

ed,  its  signal  characteristics  are  collected  and  com-

pared  with  the  fingerprint  database.  The  training

sample  point  in  the  database  closest  to  the  signal

characteristics of the location point is used as the po-
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sitioning  result  for  changing  the  location  point.  For

example,  during  the  offline  training  phase,  deep  fin-

gerprints are generated from all the weights obtained

by in-depth learning in  the  DeepFi[61] system.  In  the

online positioning phase, the system uses a probabili-

ty method based on radial basis functions to estimate

the targeted location.

 4.3.2    Indoor Localization

Today, the popularity of smartphones and a range

of WiFi terminals further promote the rapid develop-

ment of wireless base stations. WiFi is ubiquitous be-

cause of its wide distribution of hot spots, low access

conditions and high flexibility, which make related in-

door  positioning  technology  widely  usable  in  public

safety,  industry,  medical  treatment  and  other  fields.

As  one  of  the  research  directions  of  the  WiFi-based

indoor positioning technology, the related research of

WiFi  indoor  positioning  is  quite  mature,  and  many

achievements have also been made in related fields.

In RSSI-based location applications, a typical pas-

sive location infrastructure includes AP and monitor-

ing  points  (MPs).  MPs  detect  WiFi  signal  changes

from AP to passive locators. For example, Alkandari

et  al.[63] used  one  AP  and  one  MP  to  estimate  the

speed of movement in indoor environments. Similar to

that in [63], one MP was added to the work in [64] to

experiment  for  providing  better  performance.  In  oth-

er  studies,  Oguntala et  al.[65] used  a  ranging  method

of  passive  RFID  reception  signal  strength  to  locate

people.  Particle  filter  algorithms  analyze  and  com-

pute RSSI to obtain targeted locations in indoor envi-

ronments.

Since the results obtained based on RSSI are sus-

ceptible to multipath effects,  FIMD[66] uses CSI tem-

poral stability and frequency diversity in order to re-

duce the multipath effects in the above signal propa-

gation. A false alarm filter and a data fusion scheme

are  also  used  to  improve  the  detection  accuracy.  FI-

LA[67] uses a trilateral measurement method and CSI

to  mitigate  the  multipath  effect  at  the  receiver.  The

Widar series[57, 58] rely on the relationship between the

motion speed and associated DFS to track users in 2D

coordinates  through  two  orthogonal  WiFi  links.

WiDE[68] is  a  WiFi-distance  estimation  based  group

profiling  system  using  LightGBM  to  learn  powerful

hidden  features  automatically.  WiDE  can  automati-

cally  learn  powerful  hidden  features  from  the  pro-

posed  features  for  between-user  distance  estimation,

and  infer  group  membership  with  the  estimated  dis-

tance  in  a  three-floor  campus  building  and  a  shop-

ping center.

Since  each  localization  method  has  certain  disad-

vantages,  some  systems  combine  wireless  fingerprint

localization  methods  to  improve  its  accuracy.  Abdel-

Nasser et al.[60] proposed MonoPHY, a device-free lo-

calization system based on wireless  LAN that  uses  a

single wireless stream. The CSI data at each location

is  modeled  as  a  Gaussian  mixture  and  stored  in  the

fingerprint. Some studies combine the information di-

mension  features  of  multiple  positioning  methods  to

improve  the  accuracy.  Xie et  al.[59] introduced  the

mD-Track,  a  device-free  WiFi  tracking  system.  The

system can jointly fuse information from as many sig-

nal  dimensions  as  possible,  such  as  AOA,  ToF,

Doppler  shift,  and  so  on,  to  overcome  the  resolution

limitation of each dimension. In addition, some stud-

ies have established theoretical models.  Qian et al.[57]

introduced Widar series,  a WiFi-based passive track-

ing system, where the moving speed (speed and direc-

tion)  and  position  of  the  user  are  estimated  at  the

decimeter level.

The  research  on  WiFi-based  indoor  positioning

technology  is  relatively  mature,  and  some  achieve-

ments  have  also  been  made  based  on  sound  wave

sensing. For the specific research on sound waves us-

ing ToA and TDoA for ranging, some studies, such as

the work in [150] used the Doppler shift of the acous-

tic  signal  for  direction finding.  In  addition,  Zhang et
al.[151] developed  the  SwordFight  system using  sound

sensors on mobile devices. Liu et al.[152] also proposed

the  use  of  acoustic  ranging  techniques  to  constrain

the  positional  relationship  between  devices,  thereby

eliminating  the  large  error  problem  in  localization.

The Centaur localization system framework proposed

by Nandakumar et al.[153] uses sound ranging and lo-

calization for Bayesian inference. The algorithm is de-

signed  to  make  sound  ranging  more  robust  in  non-

line-of-sight situations, and to make sound-only rang-

ing  devices  to  participate  in  sonolocation.  Tarzia et
al.[154] proposed  an  Acoustic  Background  Spectrum

(ABS)  ambient  sound  fingerprint,  determined  by

measuring  the  current  room fingerprint  and  then  se-

lecting  the  ``closest''  fingerprint  from  the  database,

adding  ABS  improves  the  localization  accuracy  of

WiFi-only  rooms  from  30%  to  69%.  The  technology

can  be  used  without  WiFi.  GuoGuo[93] localizes  the

target  by  measuring  the  ToA  of  the  acoustic  signal.

This  work  could  increase  the  position  updating  rate
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by  providing  adequate  coverage  by  the  then-ad-

vanced  signal  processing  techniques  and  by  increas-

ing  the  transmission  speed  of  the  acoustic  signal

through  a  symbol-interleaved  signal  structure,  which

can be averaged in normal environments to a localiza-

tion  accuracy  of  0.25  m;  EchoTag[155] actively  gener-

ates  acoustic  features  by  transmitting  the  sound sig-

nal through the mobile phone speaker and sensing its

reflection  with  the  mobile  phone  microphone.  Com-

pared  with  the  widely  used  passive  sensing,  this  ac-

tive  sensing  provides  more  fine-grained  control  over

the  collected  signatures.  Since  the  sensed  signal  is

controlled  by  the  EchoTag,  it  can  be  intentionally

chosen  to  enrich  the  sensed  signature  and  remove

noise  from  useless  reflections.  Swadloon[156] uses  the

smartphone's  acoustic  direction  finding  in  combina-

tion with inertial sensors for fine-grained indoor local-

ization  to  track  the  smartphone's  displacement  rela-

tive  to  the  acoustic  orientation  with  a  resolution  of

less than 1 mm. Orientation is then obtained by com-

bining  the  velocity  from  the  displacement  with  that

from the inertial sensors. Pradhan et al.[95] developed

a  smartphone-based  indoor  space  mapping  system

that  allows  ordinary  users  to  quickly  map  indoor

spaces  by  simply  walking  around  by  carrying  their

mobile  phones.  The  system  accurately  measures  the

distance to the nearby reflectors, estimates the user's

trajectory, and pairs different reflectors that the user

encounters during walking to automatically build con-

tours.  Its  experimental  results,  that  the  median  er-

rors are 1.5 cm for a single wall and 6 cm for multi-

ple walls, show that the median error of 30 cm and a

90-percentile  error  of  1  m for  the  entire  system out-

perform  the  previous  best-performing  BatMapper[94].

The  constructed  indoor  profile  can  also  be  used  to

predict the wireless RSS. In some recent work related

to  localization,  CARACAL[96] is  a  low-cost,  custom-

designed  hardware  and software  system that  can  ex-

tract and locate weak acoustic signals and apply them

to  gunshot  location,  prey  location,  animal  call  loca-

tion, etc. The system is open source and can be cus-

tomized to suit a variety of wildlife research applica-

tions.  In  [97],  a  method  (Structures  Containing  Un-

known  Empty  Areas,  SUEA)  is  proposed  to  identify

the shape, size and position of the hollow area in the

unknown  area  by  activating  the  active  AE  (acoustic

emission)  source  and  using  the  collected  AE  arrival

signals.  Then,  the  unknown  AE source  is  located  by

combining  the  identified  void.  This  method  can  pro-

vide a more accurate solution for the AE source loca-

tion of complex structures including unknown void ar-

eas  such  as  tunnels,  bridges,  railways  and  caves  in

practical  engineering.  [98]  uses  the  active  acoustic

wave method to  locate  cracks  in  water  supply  pipes,

and proposes an active detection and location method

based on low-frequency acoustic wave propagation in

water  pipes  to  detect  and  locate  leaks  in  water  sup-

ply systems. To overcome the major difficulty of sta-

tistical processing of time delays associated with mul-

tiple  sound  paths  in  reverb  environments,  two  ap-

proaches are used in this paper: 1) the classical signal

decomposition  technique  (Prony's  method)  and  2)  a

clustering  pre-processing  approach  called  Spectral

Mean-Shift Clustering.

 4.4    Privacy and Security

The  framework  of Subsection 4.4 is  shown  in

Fig.14.

With the smart devices and mobile devices becom-

ing important parts of our daily lives, they are often

used to store important information, including person-

al  identity and other sensitive data.  They bring con-

venience, but become threats also to potential securi-

ty  and  privacy  issues.  As  the  most  common  built-in

device  in  mobile  phones,  microphones  and  speakers

can be used to potentially disrupt privacy attacks or

enhance  user  security.  This  subsection  addresses  the

privacy  and  security  issues  of  WiFi-based  and  sonic-

based sensings. It introduces the work related to pri-

vacy  security  of  new sensings  from two  perspectives:

offense and defense. It mainly involves keystroke spy-

Privacy and Security

Offense

Defense

Keystroke Monitoring—WIFI/Acoustic

Voice Spoofing Attack—Acoustic

User Authentification—WIFI/Acoustic

Voice Assistant Protection—Acoustic
 

Fig.14.  Privacy and security structure diagram.
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ing  attacks,  voice  spoofing  attacks,  user  authentica-

tion and voice assistant protection.

 4.4.1    Keystroke Sniffing Attack

Among all kinds of sound-based attacks, keystroke

monitoring  is  one  of  the  most  common  forms  at

present.  Since  finger  tracking  systems  can  locate  the

coordinates of a finger on a two-dimensional plane, re-

searchers can reconstruct keyboards based on the like-

lihood  of  keyboard  strokes.  As  a  result,  keystroke

tracking exposes privacy issues about keystroke eaves-

dropping.

Based  on  WiFi  sensing,  Ali et  al.[18] proposed  a

keystroke  recognition  scheme  based  on  WiFi  signal

CSI,  namely  WiKey.  They  believed  that  when  the

hand  is  typing  on  the  keyboard,  WiKey  detects  the

keys  that  are  pressed  as  the  target  user's  hands  and

fingers form a unique shape and direction that results

in  a  unique  pattern  in  the  received  CSI.  They  used

threshold-based  segmentation,  DWT  feature  extrac-

tion,  and the KNN classifier  to  identify  37  keystroke

types,  achieving  97.5%  keystroke  detection  rate  and

96.4% one-key accuracy. However, the system is very

sensitive  to  relative  position  changes  between  users

and devices.

Based  on  acoustic,  the  pink  keys  on  the  physical

keyboard  are  used  to  monitor  the  physical  keyboard

with sound wave signals. Based on the physical loca-

tion  relationship,  the  attack  mainly  uses  TDOA  to

process  the  signal  obtained  in  the  time  domain,  ac-

cording  to  the  acoustic  characteristics,  and  uses  the

mobile  phone  to  monitor  the  keyboard  to  type.  Ac-

cording to the short-term energy value, the audio in-

formation is used to check the records and endpoints.

After that, the key audio in the separated audio infor-

mation  segment  is  mainly  extracted  from  the  audio

feature parameters on the frequency domain.

Recently active research has been extended to sig-

nal  processing  for  keystroke  monitoring.  In  addition

to  frequency  domain  features,  Ubik[99] improves  the

accuracy  of  keystrokes  on  solid  surfaces  and  enables

fingerprinting  of  acoustic  differences  due  to  multi-

path  fading.  Zhu et  al.[157] disclosed  a  context-inde-

pendent keystroke listening attack based on keystroke

sound  wave  spillover,  using  three  cooperative  mobile

phones to locate possible keystroke areas according to

the TDoA localization principle described above. But

it  requires  three  mobile  phones  that  cooperate  with

each  other  to  limit  its  application  in  real  scenarios.

Liu et  al.[158] used  a  192  KHz  mobile  phone  with  a

high sampling rate to obtain a millimeter-level sound

wave  ranging  function.  Only  one  mobile  phone  is

needed to monitor the keystroking. The mobile phone

is  placed after  the  keyboard  and  the  two  micro-

phones  are  connected  in  parallel  to  the  long  side  of

the keyboard. TDoA is measured at this moment, and

the two microphones of the mobile phone are used to

monitor the keyboard tapping. There is a difference in

the  time  when  the  key  audio  signal  reaches  the  two

microphones.  At  this  moment,  the  keys  on  the  same

half of the hyperbola can be aggregated. Liu et al.[159]

combined accelerometer sensors  and keystroke acous-

tic  waves  to  improve  the  recognition  performance.

The  recent  work  of  FANG[160] demonstrated  a  posi-

tion-independent  keystroke  monitoring,  using  TDoA

and acoustic signatures, to determine the relative po-

sition of  the keyboard to the phone and the possible

keystroke  area,  achieving  93%  accuracy.  And  the

work[109] shows  the  possibility  of  reconstructing  the

acoustic  side  channel  attack  of  a  PIN  (called  Pin-

Drop) by analyzing the acoustic signature of individu-

al keys on a PIN plate. Its attack on ATM is at a dis-

tance of 2 meters and can recover up to 57% of 4-dig-

it PINs and 39% of 5-digit PINs in three attempts.

 4.4.2    Voice Spoofing Attack

Voice  spoofing  attacks  are  aimed  at  applications

based  on  sound  wave  sensing.  In  this  subsection,  we

introduce the relevant contents of current voice spoof-

ing  attacks.  Existing  voice  spoofing  is  mainly  aimed

at recognition systems, including voice assistants. Al-

though  there  are  differences  in  attack  methods,  the

goal is to generate a voice signal, which can be recog-

nized  by  the  speech  recognition  system  as  the  voice

signal  of  the  attacked  user,  and  then  controls  the

speech recognition system and performs specific mali-

cious  operations.  At  present,  the  existing  main  voice

spoofing  attacks  can  be  divided  into  identifiable  at-

tacks,  such  as  the  imitation  attacks,  replay  attacks,

speech  synthesis  attacks  and  speech  conversion  at-

tacks according to whether the generated or used sig-

nals  can  be  understood  or  perceived  by  users,  and

those that are not easily identifiable, such as the ad-

versarial  example  based  attacks  and  silent  attacks.

The voice signal used by the identified attack can be

heard and understood by the attacked user. When the

user  hears  the  voice  signal  that  does  not  belong  to

him/her, he/she can know that his/her voice recogni-
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tion system has been attacked. Among them, the imi-

tation  attack  is  the  simplest  type  of  attacks  against

the  speech  recognition  system.  The  attacker  controls

the smart device to perform related operations by imi-

tating  the  voice  of  the  victim[161].  This  kind  of  at-

tacks  is  easy  to  be  detected.  Due  to  the  limited  de-

gree of imitation, it is a threat to the device. Replay

attacks are also limited, which refer to the possibility

that the attacker may obtain the target user's speech

samples  through  eavesdropping,  recording,  etc.  and

replay  them  through  speakers[162].  Due  to  their  easy

detection, their actual impact is limited. But there are

also  more  advanced  and  dangerous  basis  of  attacks.

Based  on  this  idea,  there  are  speech  synthesis  meth-

ods,  in  which  the  attacker  synthesizes  the  target

user's speech from text input and plays it through the

speaker[100] and speech conversion methods. In such a

case, the attacker converts a piece of voice input into

the target user's voice and plays it through the speak-

er[163] enabling  the  attacker  to  generate  fake  sen-

tences, and the similarity with the target user's voice

is  determined  by  using  synthesis  and  transformation

techniques.

The  above-mentioned  attacks  that  can  be  identi-

fied,  such  as  the  imitation  attacks,  replay  attacks,

speech  synthesis  attacks  and  speech  conversion  at-

tacks, have limited attack effects when the attacker is

present  or  under  surveillance.  Recent  studies  have

shown  that  the  recognition  model  of  a  deep  neural

network  is  likely  to  classify  some  samples  wrongly

with  little  disturbance  to  other  samples.  When  such

small  disturbance  samples  are  artificially  generated,

adversarial  sample  attacks  can be carried out on the

network.  These  adversarial  samples  might  sound like

ordinary  speech  content,  like  ``Excuse  me''  to  a  hu-

man, but the tiny perturbations contained in it might

make the whole speech be recognized as ``Do it''. Af-

ter a major breakthrough in the generative adversari-

al  network  (GAN),  researchers,  such  as  Carlini et
al.[164], studied the use of the GAN's generator to gen-

erate malicious attack signals doped with tiny noises,

so that they retain enough acoustics features, but it is

difficult  for  humans  to  understand  them.  Comman-

derSong[103] embeds  a  given  voice  command  into  a

randomly  selected  song  that  sounds  perfectly  normal

to the user, but it is recognized by the speech system

as  a  specific  voice  command.  Carlini  and Wagner[165]

combined  the  contents  of  [164]  and  [103]  to  make  it

possible  to  generate  an  audio  very  similar  to  the

waveform from any  given  voice  command  waveform,

and the newly generated audio  can be recognized by

the speech recognition system for voice commands. In

addition to the attacks based on adversarial samples,

there are also some silent attacks, such as DolphinAt-

tack[102].  DolphinAttack[102] proposes a new and effec-

tive attacking method for speech recognition systems,

which modulates any audible voice command into the

ultrasonic  frequency band,  and uses  the  non-commu-

nication  of  the  microphone  circuit.  This  ``dolphin

sound attack'' can silently inject voice commands in-

to  the  microphone  circuit,  and  then  the  voice  signal

will be demodulated and recovered, so as to be recog-

nized  by  the  voice  assistant,  and  finally  control  the

smart device to perform corresponding operations, in-

cluding  silent  activation  of  Siri,  and  initiate  calls  on

the  iPhone,  etc.  Kasmi  and  Esteves[166] achieved  a

silent attack on speech recognition systems by inject-

ing  voice  commands  modulated  in  electromagnetic

signals  into  smart  devices  with  earphones  or  power

cords.  The  recent  work[167] has  identified  two  new

acoustic features to improve the performance of spoof-

ing  attacks.  The  first  feature  consists  of  two  cep-

strum  coefficients  and  a  LogSpec  feature  extracted

from  the  linear  prediction  (LP)  residual  signal.  The

second feature is the subband ratio feature of harmon-

ic noise, which can reflect the difference of the inter-

active  motion  of  the  sound  tract  and  glottic  airflow

between the real speech and the spoofed speech.

 4.4.3    User Authentication

Authentication  refers  to  the  confirmation  of  the

user's identity through certain technology. In real life,

identity authentication plays a role in protecting per-

sonal privacy and property security. However, the au-

thentication  technology  is  still  a  huge  challenge.  On

the one hand, human beings can recognize people, and

they are familiar with not only by their facial charac-

teristics,  but  also  by  voice  and  even  gait  behavioral

characteristics. On the other hand, humans may need

a token to identify strangers. Similar challenges arise:

how can computers identify legitimate users while re-

jecting  deceivers?  As  the  first  level  of  defense  for

smart and mobile devices, user authentication can be

divided  into  three  modes/factors.  1)  What  do  you

know  (password,  etc.)?  2)  What  do  you  have  (keys,

PIN  cards,  specific  devices,  etc.)?  3)  Who  are  you

(fingerprint,  iris,  voiceprint,  etc.)?  The  first  two

modes/factors  are  obviously  more  vulnerable  to  at-

tackers when they are single. As long as they have the

50 J. Comput. Sci. & Technol., Jan. 2023, Vol.38, No.1



corresponding content, they can be attacked and can-

not  be  distinguished  if  they  are  used  by  the  users

themselves. Therefore, the third mode, especially bio-

metric-based solutions, such as fingerprints, faces, iris,

gait,  sound,  and  so  on,  is  becoming  the  key  to  user

authentication. The identification process requires dif-

ferent types of sensors and supporting schemes: cam-

era, inertial measurement unit IMU, WiFi, RFID, and

microphone.  The  methods  based  on  camera,  user

voice,  and IMU may have intrusive behaviors or pri-

vacy  issues.  The  RFID-based  and  WiFi-based  meth-

ods  require  the  deployment  of  sensors  or  devices.

These  problems  more  or  less  limit  their  applications

to  real-world  scenarios.  In  contrast,  WiFi-based  and

sound-wave based authentications have attracted con-

siderable attention from researchers due to their low-

cost  nature  and  widespread  deployment  of  speakers

and microphones in mobile devices.

The WiFi-based authentication is divided into two

main categories, one is to use the unique gait to iden-

tify a specific user, and the other is to use the unique-

ness  of  life  characteristics  to  identify  specific  users.

Firstly, the gait recognition provides a silent authenti-

cation solution when the target user passes through a

specific sensing area. WiWho[53] uses gait characteris-

tics  to  distinguish  different  people  by  perceiving  the

human movement gait. It can identify up to six peo-

ple  at  a  time.  When  the  number  of  total  identifiers

changes  from  two  to  six,  the  corresponding  recogni-

tion  rate  for  WiWho becomes  92%–80%.  Unlike  Wi-

Who,  WiFi-ID[54] does  not  extract  specific  gait  fea-

tures, but directly analyzes the entire walking behav-

ior. WiFi-ID selects a 20 Hz–80 Hz frequency band for

analyzing and transforming WiFi  signal  (CSI)  into  a

time-frequency  combined  domain  by  continuous

Fourier  transform.  The  recognition  rate  is  93%–77%

for two to six people. Secondly, the user's life charac-

teristics  are  unique.  FingerPass[72] collects  WiFi  sig-

nals  of  continuous  finger  movements,  extracts  ges-

tures,  movements  and  user  characteristics,  identifies

finger movements through LSTM models, and identi-

fies  the  executor.  The  recognition  accuracy  of  this

method is 91.4%.

In  recent  years,  the  identity  authentication  pro-

cess based on sound wave perception has used a vari-

ety  of  different  technologies  and  activities,  ranging

from  individual  breathing  differences,  ear  canal  echo

differences,  acoustic  face echoes,  oral  teeth occlusion,

lip  reading,  and  acoustic  signal  detection  gait.  Re-

searches  on  acoustic  signal  detection  signatures  and

various  two-factor  authentications  are  carried  out,

which are both practical and highly accurate. Breath-

Print[101] uses  GFCC  (gammatone  frequency  cepstral

coefficients) to extract human breath sounds from the

human breath sounds that may be heard at three lev-

els: sniffing, normal breathing, and deep breathing by

extracting human acoustic features. EchoPrint[168] ac-

tively  emits  a  barely  audible  sound  signal  from  the

earpiece  speaker,  combined  with  the  facial  landmark

position. Since the echo features depend on the 3D fa-

cial  geometry,  it  is  not  easily  attacked  by  2D visual

images or video spoofing attacks. BiLock[169] uses hu-

man tooth occlusion, i.e., tooth clicks, for identity au-

thentication,  and  achieves  an  average  false  rejection

rate of less than 5% and an average false acceptance

rate  of  0.95%  in  actual  experimental  evaluation.  It

has advantages in terms of robustness to noise and se-

curity against replay attacks. LipPass[105] is based on

lip  reading,  where  the  Doppler  curve  of  the  acoustic

signal  changes  from  the  smartphone's  built-in  audio

device  caused  by  the  user's  speaking  lips.  According

to  the  unique  lip  motion  pattern  that  exists  in  each

individual,  effective  features  are  extracted  from

Doppler contours with deep learning. EarEcho[104] us-

es  ear  canal  echo  for  wearable  authentication,  which

is 95.16% accurate with one-time authentication. The

accuracy  rate  of  97.57%  and  continuous  authentica-

tion  reflects  that  the  unique  physical  and  geometric

features of the human ear canal can be used in identi-

ty authentication. AcousticID[170] uses commercial off-

the-shelf  equipment  to  generate  acoustic  signals,  and

analyzes how much each part of the human body re-

sponds  to  acoustic  signals  during  walking.  Puller  ef-

fect proves the feasibility of gait recognition, and then

extracts  fine-grained  gait  features  that  can  distin-

guish different people from both macroscopic and mi-

croscopic dimensions. ASSV[171] is a device-free online

handwritten  signature  verification  system  that  pro-

vides  paper-based  handwritten  signature  authentica-

tion. It uses a novel chord-based method to estimate

phase-dependent  changes  induced  by  minute  move-

ments.  Then,  based on the estimation,  frequency do-

main  features  are  extracted  by  the  discrete  cosine

transform  (DCT).  In  addition,  a  deep  convolutional

neural  network (CNN) model  with a distance matrix

is  designed to verify the signature.  SilentSign[106] uti-

lizes  the  speaker  in  the  smart  device  to  emit  sound,

and  the  microphone  receives  the  reflected  frequency-

shifted  sound  waves  to  measure  the  distance  change

in  the  pen  tip  during  signing.  EarGate[107] observes
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gait-based  recognition  from  walking-induced  sounds,

utilizes an in-ear microphone to detect the user's gait

from  within  the  ear  canal  through  the  occlusion  ef-

fect of the headset, and achieves a balanced accuracy

(BAC) of 97.26%.

In addition to the methods mentioned above, with

the popularity of mobile devices in recent years, two-

factor  authentication  (2FA)  has  received  more  and

more  attention.  The  three  modes  mentioned  above

can verify a person's identity. If three factors namely

the secret information, personal items and physiologi-

cal  characteristics,  need  to  be  provided  at  the  same

time during authentication, then it is called the two-

factor authentication. The bank card is the most com-

mon  two-factor  authentication,  that  is,  users  must

provide both the bank card and the password to get

cash. At present, password and mobile phone verifica-

tion  code  have  become  the  most  common  two-factor

authentication  scheme.  But  short  messages,  SIM

cards and ID cards are all at risk of forgery. Acoustic-

based  two-factor  authentications  include  Home

Alone[172] that uses active notification sounds generat-

ed by the user's smartphone to measure proximity to

browsers. Listening Watch[173] uses human speech as a

sound factor to detect proximity to smartwatches and

browsers,  both  of  which  are  authenticated  by  a  sec-

ond  factor  with  a  randomly  selected  acoustic  signal.

The  recent  Proximity-Echo[108] utilizes  the  proximity

of the user's registered mobile phone and the logged-

in  device  as  a  second-factor  authentication  without

user interaction or pre-built device fingerprints. It de-

rives  location  features  from  alternating  beep  signals

from two devices and senses echoes with microphones,

and  compares  the  extracted  signatures  for  proximity

detection. Given the received beep signal, the system

designs a period selection scheme to accurately identi-

fy two sound segments: the chirp period which is the

sound segment propagating directly from the speaker

to the microphone,  and the echo period which is  the

sound segment reflected back by surrounding objects.

In two pieces of related work in the last year, Teeth-

Pass[110] uses  earplugs  to  collect  bite  sounds  in  the

binaural  canal  to  achieve  authentication,  extracting

unique characteristics from three aspects: bone struc-

ture, bite position, and bite sound. Based on an incre-

mental learning based Siamese network, the classifier

has  an  accuracy  of  96.8% and  can  resist  nearly  99%

spoofing  attacks  through  a  large  number  of  experi-

ments.  ToothSonic[111] uses  toothmarks  induced  by

users performing tooth gestures for audibility authen-

tication. It designs a representative tooth gesture that

produces  an  effective  sound  wave  carrying  acoustic

fingerprint information. Toothprint is caught via a us-

er's  private  teeth-ear  channel,  which  modulates  and

encrypts sound waves and is resistant to spoofing at-

tacks. The related work involved is shown in Table 1.

 4.4.4    Voice Assistant Protection

The  voice  assistant  protection  problem  is  also

aimed at  the  sensing  method based  on sound waves.

Regarding the protection problem of voice assistants,

the  research  mainly  focuses  in  two  directions:  attack

detection by using deception to attack its own acous-

tic  defects  and the difference in living body informa-

tion  between  humans  and  speakers.  Acoustic  flaws

Table  1.   Comparison of Acoustic-Based User Authentication Work

Work Year Type Evaluation Technology and Content

BreathPrint[101] 2017 Passive ACC: 94% Sniffing, normal breathing and deep breathing; extracting the acoustic
feature GFCC as a voiceprint distinction

EchoPrint[168] 2018 Active ACC: 98.05% Acoustic face echo & visual face recognition

BiLock[169] 2018 Passive FRR: 5%; FAR: 0.95% Teeth bite

LipPass[105] 2018 Active ACC: 93.1% Lip reading

EarEcho[104] 2019 Passive ACC: 97.57% Ear canal echo

AcousticID[170] 2019 Active ACC: 96.6% Gait-based acoustic signal

ASSV[171] 2019 Active AUC: 98.7%; EER: 5.5% Phase emits an acoustic signal to estimate phase-dependent changes
caused by tiny movements, DCT frequency-domain signatures

SilentSign[106] 2020 Active AUC: 98.2%; EER: 1.25% Phase sends an acoustic signal to measure changes in pen tip distance

EarGate[107] 2021 Passive FAR: 3.23%; EER: 2.25% In-ear microphone detects gait from the ear canal

Proximity-
Echo[108]

2021 Active EER: 4.3% Two-factor authentication (2FA): the two devices emit a beep signal
alternately and the location features are derived through the microphone
inductive echoes, and the extracted signatures are compared

TeethPass[110] 2022 Passive ACC: 96.8% Use the sound wave effect produced by the tooth structure

ToothSonic[111] 2022 Passive ACC: 95% The main working principle is similar to the above one tooth gesture
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in  spoofing  attacks  may  exist  in  both  hardware  and

software.  With  the  development  of  more  advanced

microphones  and  speakers  on  hardware,  speech  syn-

thesis  and  conversion  tools,  recordings  that  do  not

distinguish  between  living  bodies,  such  as  users  and

spoofing  attackers  only,  are  likely  to  be  difficult  to

achieve.

Another research direction is to find the living dif-

ference  between  human  and  speaker  vocalizations.

Even if the acoustic defect is very weak, the way peo-

ple and speakers vocalize is completely different, even

the user's  own human vocalization and its recording,

by  distinguishing  the  way  the  mouth  moves.  Vibra-

tion  with  diaphragms  is  also  achievable.  Feng et
al.[174] proposed  the  use  of  wearable  devices,  such  as

glasses,  to  measure  the  human  body  conduction  of

sound. In addition, some studies have explored speak-

ers  or  other  properties  unique  to  humans.  Chen et
al.[175] proposed  to  use  the  magnetometer  in  the  mo-

bile  phone  to  detect  the  magnetic  field  generated  by

the speaker, and Wang et al.[176] proposed to identify

living  users  by  detecting  the  noise  produced  by  hu-

mans in exhaling while speaking. In addition, the re-

cent review[177] has conducted a comprehensive study

and  summary  on  the  countermeasures  of  voice  assis-

tant  against  various  attacks,  aiming  at  the  problem

that  various  attacks  and  independent  defense  in  the

literature  often  lack  a  systematic  perspective,  which

makes  it  difficult  for  designers  to  correctly  identify,

understand  and  mitigate  the  security  threats  against

voice assistant.

 5    Limitations and Open Issues

Although  researchers  have  conducted  extensive

studies in WiFi and acoustic sensing, there still  exist

some limitations  in  existing  work  and open  issues  to

be explored in the future.

 5.1    Limitations

Hardware  Restriction. Although  CSI  outperforms

RSSI in sensing granularity and precision, it can only

be  extracted  from  specific  NICs  (such  as  Intel  5300,

Atheros  series,  AX210,  and so  on)  at  present.  More-

over,  the  CSI  sampling  rate  depends  on  the  selected

WiFi  working  mode,  which  indicates  that  CSI  data

can easily be affected by the parameters of  the com-

munication  equipment.  The  hardware  restriction  has

affected  the  development  of  WiFi  sensing  applica-

tions, which requires joint efforts of chip manufactur-

ers  to  facilitate  the  acquisition of  CSI  from commer-

cial hardware. Although acoustic sensors are common-

ly  equipped  in  smart  devices,  some model-based  mo-

tion tracking applications require multiple pairs of the

microphone  and speaker  which  are  not  supported  by

existing commercial devices.

Sensing Robustness. Due to the well-known multi-

path  effect,  both  WiFi  and  acoustic  signals  are  rela-

tively sensitive to external environments, such as the

layout of different objects and random human move-

ments.  They  vary  with  different  environments  and

may exhibit different patterns even for the same kind

of  gestures  or  activities.  Consequently,  a  WiFi  or

acoustic  sensing  system  is  easily  interfered  by  exter-

nal  factors  such  as  locations,  layouts,  and  other  ob-

jects'  presence  or  movements.  This  makes  a  well-de-

signed  sensing  system  fail  to  work  in  diverse  real-

world  scenarios  and  hinders  the  deployment  of  such

systems in real world.

Domain Shift Problem.  Most existing sensing sys-

tems follow a machine learning approach which relies

on collecting massive data dependent of specific tasks

in the model training stage. However, considering the

complexity  of  practical  usage  scenarios,  the  trained

model  probably  fails  to  work  in  the  environments  or

settings  different  from  those  in  the  training  stage.

This  is  the  so-called  domain  shift  problem  which

weakens  sensing  scalability  to  various  scenarios  and

adds  the  overhead  of  retraining  models.  Although

some  domain  adaptation  and  generalization  tech-

niques  have  been  proposed  by  recent  work,  they  are

application-specific  and  lack  generalization  ability  to

different applications.

 5.2    Open Issues

Cross-Modal  Sensing:  With  the  increasing  rich-

ness of sensing modalities,  it  is worth trying to com-

bine  them  and  explore  cross-modal  learning  tech-

niques  to  improve  the  performance  of  WiFi  and

acoustic  sensing  systems.  Person-in-WiFi[178] tries

body  segmentation  and  posture  estimation  based  on

commercial  WiFi  hardware  with  the  aid  of  annota-

tions  of  RGB  videos.  WiSIA[179] is  a  multifunctional

system  which  simultaneously  accomplishes  low-cost

WiFi  imaging,  multi-target  segmentation,  and  fine-

grained  contrast  enhancement.  Through  these  exam-

ples, we envision that multimodal learning can be uti-

lized  to  enhance  the  sensing  capability  of  wireless
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sensing systems in more applications.

Integrated  Sensing  and  Communication  (ISAC).
Recently,  ISAC  is  a  hotspot  in  the  community  of

wireless  sensing  and  communication  which  aims  at

optimizing communication and sensing capabilities si-

multaneously of radio frequency signals[180–182]. To ach-

ieve this goal, there are some enabling techniques in-

cluding  the  design  of  transmit  waveform,  the  model-

ing  of  propagation  environment,  signal  processing

methods,  etc.  Nevertheless,  there  exist  multiple  chal-

lenges to realize ISAC including diverse sensing appli-

cations,  varied  performance  requirements,  and  mas-

sive  data  to  be  processed  in  real  time.  There  are

many open issues for ISAC research such as collabora-

tive  sensing  among  multiple  devices  and  sensing-as-

sisted communication[182].

 6    Conclusions

In this paper, we conducted a comprehensive sur-

vey of WiFi and acoustic sensing in terms of the prin-

ciples,  technologies,  and applications,  in  order  to  en-

able  readers  to  obtain  a  good  understanding  of  this

promising  area.  Specifically,  we  introduced  the  basic

principles,  fundamental  techniques,  and  significant

applications  of  wireless  sensing  based  on  WiFi  and

acoustic signals. We also discussed several key limita-

tions of existing research work and put forward open

issues  remaining  to  deal  with  in  the  future.  Accord-

ing to the survey, we held the viewpoint that wireless

sensing based on WiFi, acoustic, or other kinds of sig-

nals  opens  up  a  new  paradigm  of  intelligent  sensing

and  shows  promising  potential  in  touch-free  human-

computer  interaction  applications.  However,  before

making  it  come  true,  researchers  need  to  overcome

several critical limitations such as sensing granularity,

robustness, and cross-domain problems.

We expect that our survey attracts more people to

pay  attention  to  this  area  and  acts  as  a  valuable

guide for them.
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