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Abstract    Mixed reality technologies provide real-time and immersive experiences, which bring tremendous opportuni-

ties in entertainment, education, and enriched experiences that are not directly accessible owing to safety or cost. The re-

search in this field has been in the spotlight in the last few years as the metaverse went viral. The recently emerging omni-

directional video streams, i.e., 360° videos, provide an affordable way to capture and present dynamic real-world scenes. In

the last decade, fueled by the rapid development of artificial intelligence and computational photography technologies, the

research interests in mixed reality systems using 360° videos with richer and more realistic experiences are dramatically in-

creased to unlock the true potential of the metaverse. In this survey, we cover recent research aimed at addressing the

above issues in the 360° image and video processing technologies and applications for mixed reality. The survey summa-

rizes the contributions of the recent research and describes potential future research directions about 360° media in the

field of mixed reality.

Keywords    360° image, mixed reality, 360° image processing, virtual reality scene reconstruction, virtual reality con-

tent manipulation

  

1    Introduction

Advances in computer graphics and mixed reality

(MR)  have  allowed  people  to  virtually  teleport  to  a

safari  park  on  the  other  side  of  the  real  world  or

watch sports games with the feeling of being right in

the  middle  of  the  action[1, 2].  This  real-time,  immer-

sive  experience  provides  tremendous  opportunities  in

entertainment,  education,  and  enriched  experiences

that  are  not  directly  accessible  owing  to  safety  or

cost.  The research in this  field has been in the spot-

light in the last few years as the metaverse went viral.

The  recently  emerging  omnidirectional  video  strea-

ms[3],  i.e.,  360° videos,  provide  an  affordable  way  to

capture  and  present  dynamic  real-world  scenes.  Re-

cent  research  has  successfully  established  theoretical

and algorithmic foundations to capture[4], interpret[5, 6],

stabilize[7, 8],  and  present  360° videos[9–12],  which  en-

able  delivering  astonishingly-good-quality,  immersive,

and panoramic content. Early MR applications based

on 360° images and videos allow only limited interac-

tion  with  the  dynamically-captured  real-world  con-

tent[2, 13, 14]. For example, when enjoying sports games

in a VR (virtual reality) headset, users are restricted

to fixed virtual positions, and their interaction is lim-

ited to  turning their  head.  In the last  decade,  fueled

by the rapid development of artificial intelligence and

computational  photography  technologies,  the  re-
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search interest in MR systems using 360° videos with

richer  and  more  realistic  experiences  is  dramatically

increased  to  unlock  the  true  potential  of  the  meta-

verse.  In  this  field,  the  following  two  research  prob-

lems have been attracting a lot of attention.

• How to leverage the full  field-of-view (FoV) in-

formation  for  better  scene  understanding  and  recon-

struction?

• How  to  reconstruct  an  immersive  and  interac-

tive environment for MR applications from real-world

captures?

In  this  survey,  we  cover  recent  researches  aimed

at addressing the above issues in the 360° image and

video  processing  technologies  and  applications  for

mixed  reality. Section 2 describes  the  methodology

used to conduct this survey. As a special kind of im-

ages,  360° images  capture  every  single  point  around

the camera in every possible viewing direction, which

can be naturally defined on a sphere. However, to be

compatible  with  the  conventional  2D  imaging

pipelines,  the  raw  360° images  need  to  be  trans-

formed into 2D planar representations preserving the

omnidirectional  information[10] (as  shown  in Fig.1).

However,  the  methods  designed  for  normal  2D  im-

ages cannot be trivially extended to work for 360° im-

ages.  In Section 3,  we  cover  the  current  research  ef-

forts in 360° scene analysis and processing, where we

first briefly introduce the different ways of effectively

representing  the  spherical  domain  data  to  support

360° image  processing  (Subsection 3.1),  followed  by

the review of the methods in semantic understanding

(Subsection 3.2),  depth  estimation  (Subsection 3.3),

and  temporal  domain  analysis  (Subsection 3.4).  The

understanding  and  analysis  methods  of  real-world

360° images are fundamental  building blocks for  MR

applications introduced in Section 4. We describe the

recent  advances  in  building  a  more  realistic  virtual

space from 360° content by allowing 6-degree-of-free-

dom navigation (Subsection 4.1),  recovering the light

condition  (Subsection 4.2),  and  AR content  mapping

and localization (Subsection 4.3).  We also review the

recent advances in 360° content manipulation that al-

lows  more  interactive  MR  applications.  Finally,  we

conclude  the  survey  and  highlight  open  problems  in

this field in Section 5. 

2    Methodology

We  began  the  survey  by  conducting  a  literature

search using keywords, followed by a literature selec-

tion based on the article types and their relevance to

the defined research problems.

We first identified the related papers using Google

Scholar  for  searching  the  literature  such  as  papers,

chapters,  technical  reports,  theses,  reviews,  and

books.  Considering  that  the  researchers  have  used  a

range  of  terms  to  refer  to  360° images/videos  and

VR/MR applications, the initial keywords we used in

searching are: “Augmented Reality” OR “Mixed Real-

ity” OR “Virtual Reality” OR “VR” AND “Omnidi-

rectional  Video” OR “Panoramic Video” OR “Virtu-

al  Reality  Video” OR “Immersive  Video” OR

“Panoramic  Image” OR “360” OR “Omnidirectional

Image”.  We  searched  for  matched  keywords  appear-

ing in everything in the article. The initial search re-

sulted  in 1 010 papers  published  between  1970  and

January 2023.

Second,  we defined exclusion criteria  to  filter  out

irrelevant documents for our survey. In this paper, we

intended to focus on applied research studies and the

exclusion  criteria  were  set  as  follows:  theses,  mono-

graphs, books, theoretical  papers,  duplicated publica-

tions,  and  review  papers.  For  the  remaining  articles,

we  removed  the  articles  with  titles  that  are  clearly

(c) (b) (a)

Fig.1.  Different projections used in [10]. (a) Equirectangular projection. (b) Tri-cylindrical projection. (c) Cube-Padding projection.
It has been demonstrated that utilizing different projection methods can provide complementary information to improve the perfor-
mance of optical flow estimation using deep neural networks.
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not relevant to the aforementioned research problems.

For example, we removed the papers about 360° video

streaming, 360° video acquisition, and VR sickness al-

leviation.  We  then  further  evaluated  whether  to  in-

clude  the  articles  by  reading  the  abstract.  The  key-

word search may not return all  of  the relevant stud-

ies,  because  we  required  the  360° related  words  and

VR/MR related words appear simultaneously. Conse-

quently, we discovered more studies by tracing the ar-

ticles  that  cite  the  relevant  articles  we  selected  from

our search. To limit the range of the research fields in

the papers citing the relevant articles, we only traced

the citations of the papers that are published in ma-

jor  computer  graphics  and  VR  venues,  including

ACM  SIGGRAPH,  ACM  TOG,  IEEE  VR,  IEEE

TVCG, IEEE ISMAR, EuroGraphics,  Pacific  Graph-

ics and CHI. Finally, 128 papers were collected. 

3    360° Content Analysis and Understanding

Research on the next-generation MR applications

based  on  360° media  relies  heavily  on  the  develop-

ment  of  advanced  content  understanding  and  analy-

sis algorithms to enable more functionalities. This sec-

tion first reviews the fundamental representation used

for  properly  processing  360° media  defined  in  the

spherical  domain,  and  covers  the  methods  specially

designed  for  extracting  both  low-level  and  semantic-

level scene information from 360° images and videos. 

3.1    360° Image Representation

360° images,  also  known  as  omnidirectional  im-

ages,  were  first  introduced  in  1970[15–18].  360° images

have  a  field  of  view  that  covers  the  entire  sphere.

Naturally,  it  is  defined  as  a  signal  distributed  on  a

sphere and thus can be considered as a spherical im-

age.  Each pixel  or  point  of  a  spherical  image  is  nor-

mally described by the view direction from the center

of this sphere to the point itself. Note that this repre-

sentation  can  satisfy  the  need  for  image-based  light-

ing  technology  (IBL)[19],  where  360° images  are  used

as Environment Maps[19] to provide light rays from all

directions. However, to adapt to the existing conven-

tional 2D image processing pipeline, the spherical im-

ages  have  to  be  converted  to  a  2D  plane  while  pre-

serving the omnidirectional information. As shown in

Fig.1(a),  the  equirectangular  projection  is  the  most

common approach to mapping pixels from a sphere to

a 2D rectangle. But similar to other projections, such

as  cube  map[20] and  cylindrical  projection[21],  there  is

no projection that can map the spherical surface to a

2D  plane  that  is  both  an  equal-area  and  conformal

(angle-preserving) map. The reason is that the sphere

is  not  developable[22].  Considering  this  mathematical

fact,  several  classical  researches[23, 24] attempted  to

find  a  trade-off  between  the  competing  goals  of  pre-

serving  angle  and  area  when  mapping  textures  on

spherical surfaces.

Equirectangular  Projection. Equirectangular  pro-

jection  maps  meridians  to  vertical  straight  lines  of

constant spacing, and circles of latitude to horizontal

straight  lines  of  constant  spacing.  It  has  become  a

standard for many datasets[25–27] due to the simple re-

lationship  between  a  pixel  in  a  rectangular  map and

its corresponding location on the sphere. But this pro-

jection is neither equal-area nor conformal because of

the distortions introduced by the direct mapping from

view  angles  to  2D  positions.  Therefore,  when  using

this  equirectangular  representation  to  process  360°
images,  researchers usually use a set of  local  tangent

images  of  sampled  points  on  the  spherical  surface

when extracting spatial features[28]. Coors et al.[28] and

Zhao et  al.[29] deformed  their  convolutional  filters  by

projecting  the  pixels  of  a  patch  in  local  tangent  im-

ages  back  to  the  equirectangular  image  to  get  the

sampled points that have the equivalent spherical dis-

tance. In this way, the convolutional networks retain

the original pixel connectivity and enable the transfer

of perspective models to 360° images.

Tangent  Image  and  Icosahedron. Eder et  al.[30]

proposed  using  a  set  of  tangent  images  to  represent

an  omnidirectional  image,  facilitating  transferable

360° image and video processing tasks. They generat-

ed  a  few  distortion-mitigated  planar  images  tangent

to a subdivided icosahedron to ensure that tradition-

al computer vision methods like sparse feature detec-

tion  and  Simultaneous  Localization  and  Mapping

(SLAM)[31] can be applied to spherical images. Such a

tangent image solution is effective in other important

vision tasks such as optical flow estimation[31]. To fur-

ther reduce the variance of spatial resolving power in

representing  360° images,  Lee et  al.[32] developed  a

spherical  polyhedron-based  representation,  Sphere-

PHD,  for  deep  omnidirectional  image  learning.  They

also  designed  a  convolutional  kernel  on  the  polyhe-

dron grid and an associated pooling strategy. In con-

current  work,  Zhang et  al.[33] converted the spherical

input to an unfolded icosahedron mesh and proposed

Hexagonal  filters  to  fit  the  existing  deep  neural  net-
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works  for  2D  image  analysis.  More  recently,  to  en-

sure  such  a  representation  can  be  applied  to  higher-

resolution images,  Yoon et  al.[34] proposed a continu-

ous  representation  where  each  pixel  is  defined  as  a

subdivided  icosahedron.  Wu et  al.[35] provided  a  se-

ries of operations defined on such dense spherical tri-

angle image elements.

Cube-Padding. A cube map is  another traditional

approach  to  mapping  a  spherical  image  to  a  2D

plane[20, 36].  Although  it  has  the  disadvantage  of  dis-

continuity along face boundaries, as shown in Fig.2, it

can map the sphere to standard 2D images, and thus

can  reuse  the  well-trained  2D  deep  neural  networks.

To alleviate the issues when processing the objects ly-

ing  across  the  cube  map  face  boundaries,  Cheng et
al.[37] introduced  Cube-Padding  tailor-made  for  360°
videos,  where  each face  is  extended by considering  a

wider FoV. As shown in Fig.2, the padding operation

is also performed on the spatial feature maps. A simi-

lar strategy is also utilized in [38].
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Fig.2.   (a)  Cube-Padding  layout  used  in  [37].  (b)  The  feature
maps  are  also  padded  in  different  layers  to  ensure  the  spatial
connectivity along the face boundaries.
 

Fusion  of  Different  Projections. Since  no  such

projection can fully preserve the original spatial rela-

tionships among the pixels distributed on a sphere, re-

searchers[10, 39] proposed  to  learn  to  fuse  the  comple-

mentary information that can be obtained from differ-

ent  projections  into  a  single  final  result.  Li et  al.[10]

leveraged  the  fusion  of  results  from  different  projec-

tions  to  estimate  360° optical  flows  and  demonstrat-

ed that the performance consistently outperforms the

single-projection  optical  flows  that  were  fused.  As

shown in Fig.1,  besides  the  standard  equirectangular

projection,  they  also  used  cylindrical  and  cube  map

projection  to  fuse.  A  new  projection  method  called

spherical padding was proposed in [39, 40], where the

padding  is  fused  with  equirectangular  projection  for

learning  tasks.  Geometric  embeddings  that  directly

use  spherical  coordinates  as  descriptors  can  also  be

fused with planar projections. In [41], the feature ex-

tracted from the two different domains is successfully

combined for the depth estimation task. 

3.2    Semantic Understanding

Semantic  Segmentation.  The  usability  of  existing

deep neural networks for semantic 2D image segmen-

tation is limited by the distortion of the spatial rela-

tionships  in  the  spherical  image  representation.  We

have  reviewed  different  representations  of  360° im-

ages to facilitate the use of the newest deep learning

models in Section 2. Based on the delicately designed

icosahedron-based representation for image segmenta-

tion networks, Zhang et al.[33] introduced how to per-

form  fast  interpolation  for  orientation-aware  filter

convolutions  on  the  sphere  and  presented  a  weight

transfer  scheme  from  classical  convolutional  layers.

Holistic  scene  modeling  is  a  specialized  problem  in

360° image  understanding,  since  the  image  captures

the complete FoV in one shot to provide a wide range

of  context.  Sun et  al.[42] developed  a  deep  learning

based  method,  HoHoNet,  with  a  horizon-to-dense

module  for  recovering 2D per-pixel  modalities,  which

effectively  encodes  the  spatial  features  of  spherical

pixels and leads to a good performance in the holistic

scene  segmentation  task.  Based  on  the  observation

that  most  real-life  360° images  have  similar  spatial

layouts due to the common camera position and ori-

entation when capturing 360° images (Fig.3), Yang et
al.[43] considered  the  omnidirectional  semantic  seg-

mentation  from  the  context-aware  perspective  and

proposed  to  leverage  inherent  long-range  contextual

priors  when  predicting  the  semantic  information  for

all  the  pixels.  The self-attention learning scheme has

been  successfully  applied  to  omnidirectional  segmen-

tation. Zhang et al.[44] modified the original structure

of the transformer encoder to adapt to the spatial re-

lationship among the pixels in an equirectangular im-
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age.  Graph  CNNs  have  the  freedom of  defining  con-

nectivities  between elements,  which were used in the

work of Defferrard et al.[45] for climate event segmen-

tation. To provide datasets for evaluating the omnidi-

rectional  image  segmentation  methods,  Armeni et
al.[27] and  Ros et  al.[46] rendered  equirectangular  im-

ages  and  semantic  segmentation  maps  from  3D

scenes. Yang et al.[47] provided a manually annotated

semantic segmentation dataset, including 400 panora-

mas with annotations.

Object  Detection.  Object  detection  is  a  classical

computer vision task. To transfer the 2D methods to

the  spherical  domain,  Coors et  al.[28] and  Su  and

Grauman[48] directly  integrated  the  deformed  kernels

to  existing  2D  convolutional  network  architectures.

Their method significantly increases the object detec-

tion  accuracy.  The  criteria  for  measuring  2D  object

detection accuracy are either inaccurate or inefficient

for the 360° object detection. Spherical criteria includ-

ing  both spherical  bounding boxes  and spherical  IoU

(SphIoU)  were  introduced  in  [49].  To  solve  the  bias

due  to  the  sphere-to-plane  projection  while  detecting

objects  using  2D-based  convolutional  networks,  Cao

et  al.[50] proposed  a  data  augmentation  scheme  that

randomly  rotates  the  spherical  images  before  projec-

tion. They also introduced the FoV-IoU criterion that

computes  the  intersection-over-union  of  two  field-of-

view  bounding  boxes  in  a  spherical  image  for  super-

vising  the  training  of  the  network.  Compared  with

outdoor data, indoor 360° images and videos are more

common because of the prevalent room-scale VR/MR

applications.  Indoor  360° object  detection  datasets[51]

are built to support the training of deep object detec-

tion models for indoor scenes[52].

Saliency.  When  watching  360° videos,  although

the content has a full FoV, users are only able to see

a limited view range by rotating their head. Saliency

detection can provide guidance to help the users con-

centrate  on  important  events  and  content,  and  thus

plays a key role in improving MR experiences. Cheng

et al. built a convolutional network to predict salien-

cy regions in 360° videos based on their special cube-

padding  representation[37].  In  their  model,  they  em-

ployed  convolutional  Long  Short-Term  Memory

(LSTM) modules to process temporal cues. The work

of  [53]  adopts  Vision  Transformer  along  with  de-

formable  convolution  to  encode  the  omnidirectional

imagery to predict temporally continuous saliency re-

sults.  This method alleviates geometric projection er-

rors  and outperforms other  methods  designed for  2D

saliency  by  a  large  margin.  Cubemap  representation

was directly used in convolutional networks in [38] for

saliency value prediction. Ma et al. obtained a higher

accuracy  in  saliency  prediction  using  their  two-stage

deep  learning  framework[54].  They  first  coarsely  pre-

dicted salient candidate regions via semantical salien-

cy  and  then  projected  the  regions  to  distortion-free

image patches to conduct semantical saliency ranking

to  accurately  locate  salient  objects.  Zhang et  al.[53]

provided  a  dynamic  saliency  dataset  by  annotating

the  360° videos  from  the  Sports-360  dataset[55],  and

used  a  spherical  convolutional  kernel  defined  on  a

spherical  crown  in  their  deep  network.  Attention-

based  methods  have  shown  promising  results  in  the

360° saliency  detection  task.  In  Dahou et  al.'s
work[56],  attention-based  learning  is  performed  on

equirectangular  images  and  then  fused  with  the

learned  features  from  cubemap  faces  for  the  final

saliency estimation. Considering the special character-

istics  of  360° video-based  applications,  Qiao et  al.[57]

produced  a  viewport-based  saliency  dataset  (Fig.4)

and trained a deep model to predict fixations in a giv-

en  view  window.  Chao et  al.[58] utilized  a  multi-FoV

solution and adaptive losses to solve the salient map

prediction  problem,  which  is  similar  to  the  fixation

prediction problem. The audio information is another

important  factor  for  users'  attention  when  watching

360° videos. [59], one of the pioneer studies, could be

a  starting  point  for  advancing  saliency  detection  im-

mersive media. 

3.3    Depth Estimation

Monocular.  When 2D depth estimation deep neu-

Road Sidewalk Car Person

Crosswalk Curb Truck Bus

Fig.3.   Panoramic segmentations results  of  [43]  for scenes con-
taining similar class labels.
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ral networks are applied on 360° images, their perfor-

mance usually suffers from the distortion of equirect-

angular  projection.  Therefore,  researchers  proposed

architectures  that  can  eliminate  the  inaccuracy  of

depth  estimation  caused  by  spherical-to-2D  projec-

tions[40].  Bifuse  and  Bifuse++[39, 40] are  end-to-end

two-branch  networks,  which  incorporate  both

equirectangular  and  cubemap  projections.  In  both  of

the two methods, to share the information, bi-projec-

tion fusion blocks with learnable masks to balance the

information are used as the bridge across two projec-

tions  when  learning  to  predict  depth  values  of  360°
pixels.  Differing  from  Bifuse,  Unifuse[60] only  per-

forms  fusion  in  an  unidirectional  manner  where  the

distortion-free  cubemap  features  are  only  fused  with

equirectangular features in its encoder, since the final

result needs to be an equirectangular map. Zhuang et
al.[61] proposed  to  use  dilated  convolution  kernels  to

extend  the  receptive  field  and  an  adaptive  channel-

wise  fusion  module  to  obtain  diverse  attention  areas

along  different  channels.  The  geometric  features  can

be  a  good  complementary  to  the  convolutional  fea-

tures.  In  the  work  of  OmniFusion[41],  geometric  em-

beddings are learned to help the depth estimation. It

also uses the powerful Transformer Encoder to global-

ly aggregate patch-wise and geometric information. A

photorealistic  synthetic  dataset,  SynDepth360,  was

built  to  evaluate  the  360° depth  estimation

method[62].  To  address  the  challenge  in  high-resolu-

tion  360° depth  estimation,  Rey-Area et  al.[63] used

state-of-the-art  perspective  monocular  depth  estima-

tors  on icosahedron faces  and then optimally  aligned

individual  depth  maps  to  generate  the  high-quality

360° depth map. To mitigate the discontinuities along

object boundaries on the depth maps, Serrano et al.[64]

proposed  to  make  use  of  a  layered  representation  to

fix  the  issues  of  missing  information  and  jagged  sil-

houettes  using  the  raw  depths  captured  by  RGBD

camera.  It  successfully  improved  the  quality  of  their

6-DoF application.

Stereoscopic.  Stereoscopic  omnidirectional  images

are  difficult  to  capture  and  produce.  Different  from

monocular  depth  estimation,  stereoscopic  depth  esti-

mation heavily relies on the matching information be-

tween the left and right views. Won et al.[65] built an

omnidirectional  wide-baseline  stereo  system  that  can

estimate 360° dense depth maps. Their hardware con-

figuration of a few cameras using ultrawide FOV lens-

es is flexible and effective in capturing a 360° 3D en-

vironment. Wang et al.[66] proposed to use a top-down

layout  of  two  cameras  to  capture  stereo  images  and

provided  a  deep  neural  network  based  on  cost  vol-

umes to estimate depth values using the vertical dis-

parity. However, such stereo images cannot be direct-

ly  used  in  MR  systems  due  to  their  different  view-

points. 

3.4    Temporal Domain Analysis

Optical  Flow. Despite  the  success  of  2D  optical

flow estimation methods such as RAFT[67] and PWC-

Net[68],  generalizing  these  methods  beyond  narrow

FOV videos  remains  challenging.  Due  to  the  lack  of

ground truth 360° optical flow data, Bhandari et al.[69]

projected existing 2D optical flow to an equirectangu-

lar  image  to  generate  pseudo-ground  truth  data  to

train the neural networks. Yuan and Christian[31] rep-

resented the  spherical  image  by a  set  of  tangent  im-

ages and their method can adopt any 2D optical flow

estimation method for  each tangent image.  However,

their  final  combined  result  suffers  from  the  disconti-

nuity  along  the  image  boundaries.  Most  recently,  Li

et  al.[10] proposed  a  multi-projection  fusion  frame-

work  that  learns  to  fuse  the  complementary  motion

information  under  the  equirectangular,  cube-padding

and cylindrical projections. The first large-scale omni-

directional optical flow dataset is also provided in this

work for the evaluation of panoramic optical flow esti-

mation methods.

Gaze  Prediction  and  Scanpath. Research  on  the

temporal dynamics of eye gaze in omnidirectional im-

ages/videos  is  crucial  to  understand how people  per-

ceive  and  interact  with  this  kind  of  immersive  con-

tent.  Gaze  prediction  can  benefit  the  data  compres-

sion for 360° video transmission[70, 71] and improve the

watching  experience  by  tailoring  the  interactions  for

specific  users[72].  Some  scanpaths  generated  by  the

method of [70] are shown in Fig.5. The gaze data col-

Turn Viewport

Viewport Saliency Map Viewport Saliency Map

Fig.4.   Viewport-based  saliency  detection[57] © IEEE.  The
saliency results  consider  not  only  the  global  scene information
but also the content in the users' viewing window.
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lection  in  360° videos  needs  a  large  amount  of  time

and effort. Jin et al.[25] built a dataset containing syn-

chronized  head  and  gaze  behaviors  while  watching

360° videos in the VR headset, which has a strong di-

versity covering different types of content and behav-

iors  and  outperforms  the  earlier  smaller  dataset  pro-

posed in [26]. In a pioneering work in this field[73], Xu

et  al. tackled  the  gaze  prediction  task  in  dynamic

360° videos  by  learning  from  video  frames  and  their

saliency maps at different scales by CNNs. Then the

LSTM features  are  combined together  to  predict  the

gaze displacement from one moment to the next mo-

ment. The head movements can be an approximation

of where the users are watching in VR-headset based

applications. Yang et al.[74] proposed an approach, Hi-

Bayes-LSTM, integrating  hierarchical  Bayesian  infer-

ence into the LSTM network to generate a head mo-

tion  trajectory  by  learning  from  their  large-scale

dataset.  Rondon et  al.[75] considered  both  past  posi-

tions and video content and used Structural-RNNs to

model  the  related  information  as  a  spatio-temporal

graph.  Successive eye movements of  users  when they

are watching 360° images are called visual scanpaths,

which are a temporal-aware description of saliency. In

some  early  attempts,  saliency  volumes[76] were  pro-

posed  to  capture  the  temporal  nature  of  eye-gaze

scanpaths  in  a  single  image,  on  which  a  sampling

strategy can be applied to generate a predicted scan-

path.  de  Belen et  al.[77] leveraged  convolutional

LSTMs  to  model  the  temporal  dependencies  of  gaze

positions.  By  sequentially  sampling  their  output,  a

reasonable  scanpath  can  be  produced.  ScanpathNet

shows  promising  performance  in  several  eye-tracking

benchmark  datasets.  To  address  the  challenge  of  ac-

quiring  a  large  number  of  scanpaths,  a  GAN-based

model was introduced by Martin et al.[70] for mimick-

ing  virtual  observers  to  reproduce  human  watching

behaviors. To enable the instant feedback on the con-

tent editing for 6-DoF videos, Griffin et al.[78] built a

pipeline  to  support  immersive  editing  in  a  VR head-

set.  Specifically,  they used 360° RGBD videos as the

data to be edited in a 6-DoF way in their implemen-

tation  and  developed  interaction  techniques  for  this

paradigm.

The  assessment  of  360° video  quality  based  on

both spatial and temporal features is an important re-

search  topic.  We  recommend  readers  to  refer  to  [79]

for  a  complete  survey  on  the  360° video  perception

and assessment. 

4    Applications of 360° Content for MR

We have  been witnessing  the  beginning of  a  new

paradigm  for  highly-realistic  mixed  reality  experi-

ences. As one of the most important resources of MR

content, a key to enabling a higher degree of freedom

of  interaction  is  the  image/video  generation  algo-

rithms given user inputs.  This  section introduces the

recent progress in reconstructing a more vivid MR en-

vironment that allows richer interactions. 

4.1    6-DoF Panoramic Video

Recent  research  on  6-degrees-of-freedom  (6-DoF)

media  focuses  on  generating  images  for  novel  view-

points and view directions from a given image/video.

Using  the  360° camera  for  capturing  the  source  me-

dia  can  greatly  simplify  the  process,  due  to  its  com-

plete  view  of  the  environment.  Although  the  newest

NeRF-based  method[80] has  been  able  to  reconstruct

360° unbounded  scenes,  the  current  neural  radiance

fields  are  built  upon  perspective  images  and  are  not

able to generate large-scope locomotion for MR appli-

cations  yet.  Grid-based  warping[81] is  a  conventional

way  to  produce  images  for  novel  viewpoints  from  a

set  of  360° images.  With a  delicately  designed struc-

ture-from-motion  method  working  on  360° images[82]

proposed  by  Baker et  al.,  the  geometric  information

can be better reconstructed to support the 6-DoF gen-

eration. To satisfy the framerate required in MR ap-

plications while synthesizing novel panoramic frames,

Chen et  al.[83] proposed  to  directly  synthesize  360°
RGB images  using  the  recovered  depth  from the  in-

put  360° videos  (see Fig.6).  A  ray-marching  based

depth  interpolation  and  refinement  scheme  using  se-

lected existing views ensures their high visual quality

(a)

(b)

Fig.5.   Scanpaths  generated  for  two  given  360° images  by  the
method  introduced  in  [70].  (a)  and  (b)  are  two  examples.©

IEEE.
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and  fast  view  synthesis.  View  prediction  from  single

panoramic  images  is  more  challenging.  Waidhofer et
al.[84] proposed a lightweight method to generate a 6-

DoF  experience  from  only  one  single  panoramic  im-

age, which can be captured with consumer-grade 360

cameras. They introduced a multi-cylinder image rep-

resentation  that  can  be  produced  using  their  CNN-

based model and synthesized novel views by blending

the  cylindrical  layers  for  the  novel  viewpoint.  Their

method  has  been  extensively  evaluated  in  a  user

study.  They  developed  and  presented  a  concept  for

editing 6-DoF immersive videos in VR. 

4.2    360° Environment Map Estimation

A 360° environment map is often used to store the

high  dynamic  range  (HDR)  environment  lighting  in-

formation for illuminating virtual objects into a pho-

tograph for MR. The high quality of an environment

map is crucial to realize the seamless blending of the

virtual  object  with  the  real-world  background.  An

earlier attempt was presented in the work of DiVerdi

et  al.[85].  They  combined  landmarks  and  frame-to-

frame  components  in  the  vision-based  orientation

tracking  to  map  the  video  frames  to  a  cubemap  for

environment  map  estimation.  Recent  methods  use

deep  learning  to  estimate  environment  maps  from

photographs,  which  is  a  lightweight  replacement  of

traditional environment map capturing methods, e.g.,

using a 360° omnidirectional camera or light probe to

obtain  high-fidelity  lighting  information.  To  address

this  challenge,  physically-inspired  deep  learning  ap-

proaches have been explored[86–88]. They often input a

foreground object with unknown geometry or materi-

al as a reference, and then intrinsically decompose in-

to properties defining its appearance (geometry, mate-

rial,  and  lighting).  Environment  maps[86, 88],  or  both

reflectance and environment maps[87] are  reconstruct-

ed  from  sequential  deep  neural  network  models  that

are  designed  based  on  these  intrinsic  decomposition

schemes.

As  an  alternative,  in  the  absence  of  an  exemplar

object  in  the  captured  photograph,  the  typical  light-

ing cues such as shadow, highlight, and shading rela-

tionship are  taken into consideration instead to  infer

the environment lighting. A significant amount of re-

search[89–94] has  been  conducted  in  this  direction  due

to  its  unconstrained and flexible  setting  without  any

specific reference object required, making it a rapidly

developing research topic.

Various  deep-learning  solutions  were  proposed  to

address different critical  issues arising from the envi-

ronment map reconstruction from limited field-of-view

(FoV)  photographs.  Some  researchers  studied  on  ei-

ther  outdoor[89–94] and/or  indoor[95–103] scenes,  begin-

ning with the seminal work by Hold-Geoffroy et al.[89]

and Gardner et al.[95] to estimate outdoor and indoor

lighting, respectively. Fig.7 shows some results of the

work  of  [96].  Besides,  some  studies  customized  the

deep  learning  methods  specifically  for  mobile  mixed

reality[99, 104].

Outdoor  environment  map  estimation  focuses  on

recovering outdoor daytime lighting,  which is  mainly

influenced  by  sun  position,  atmospheric  conditions,

and  weather.  The  early  studies[89, 90] often  presup-

posed an analytical sky model and trained CNN mod-

els  to  regress  its  parameters  from  the  FoV  image.

Hold-Geoffroy et al.[91],  for the first  time, proposed a

Offline Online

Depth Fusion

Depth Correction

Forward Projection

Depth Fusion

(a) RGB Panorama

(b) Camera Registration

(c) Depth Estimation (d) View Synthesis

Novel View

Existing Existing

Fig.6.   Workflow of  the  method proposed in  [83].  Its  offline  stage  processes  the  input  panoramic  images  and estimates  the  depth
maps. The online stage uses an efficient depth generation method to guide the view synthesis.
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data-driven deep sky model trained end-to-end across

multiple datasets and was successfully used to recon-

struct  a  plausible  HDR  outdoor  environment  map.

The  model  was  improved  lately  by  Yu et  al.[92] with

HDSky,  which  conducts  a  hierarchical  disentangle-

ment of sun and sky representation learning, to gener-

ate  more  realistic  and  diverse  outdoor  environment

map for all-weather conditions and enables light edit-

ing (see Fig.8). The spatial-varying (local) effects are

also  considered  in  this  area  and  investigated  by  [93,

94]  to  realize  location-dependent  outdoor  environ-

ment map estimation by either integrating geometric

information estimated from intrinsics[93] or dedicated-

ly  disentangling  global  and  local  lighting  representa-

tions[94] for the associated predictions.

Within the space of indoor environment map esti-

mation, the quality of the reconstruction map, includ-

ing accuracy of lighting directions and intensity, am-

bient  tones,  and realistic  high-resolution  texture,  has

been improved progressively with the advancement of

neural  network  design  and  training  schemes.

Chalmers et al.[98] proposed a novel stacked CNN that

is  trained  with  a  progressive  training  scheme  from

high to low roughness,  allowing the generation of re-

flectance maps with varying materials  roughness and

improving high-frequency texture recovery. The same

framework of [98] is also applicable to outdoor scenar-

ios. Zhao et al.[99] proposed to use the dynamic filter-

ing  technology  in  the  deep  network  architecture,  to

adaptively  learn  sample-specific  lighting  features  and

improve  the  generalization  to  wide  variations  caused

by either  indoor  environments  or  sensor/lens  charac-

teristics  of  the  (mobile)  capturing  device  (see Fig.9).

Zhan et al.[100] and Xu et al.[102] proposed to combine

lighting parameter (e.g., spherical gaussian+/harmon-

ics) regression and environment map generation into a

uniform framework, leveraging lighting parameters in-

to guiding environment map generation to produce a

high-realistic  reconstruction.  Somanath  and  Kurz[104]

customized the deep learning methods specifically for

mobile MR using a light-weight end-to-end EnvMap-

Net network with an efficient clustering-based adver-

sarial  training loss and mask-based projection loss to

produce the HDR environment map in real  time.  To
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Fig.8.   Flowchart  of  HDSky  proposed  by  Yu et  al.[92].  The
learned  latent  space  is  disentangled  into  several  independent
factors to help improve environment map reconstruction for all-
weather conditions and allow light editing.  are
learned latent code vectors.

(a) (b) (c)

Fig.7.  Spatially varying environment map reconstruction in [96].
(a)  Input  image.  (b)  Inferred  spatially  varying  environment
maps conditioned on a selected position.  (c)  Another group of
results.©IEEE
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obtain high-resolution and diverse environment maps

for both indoor and outdoor scenes, Akimoto et al.[103]

proposed  a  multi-module  ensemble  deep  learning

framework  with  the  CompletionNets  module  to  per-

form  diverse  completions  and  the  AdjustmentNet

module  to  match the  input  image's  color  and realize

outpainting at arbitrary image sizes.

Moreover, the spatial variation of indoor environ-

ments  with  fixed  positions  has  been  given  particular

attention (as opposed to outdoor scenes, in which the

sun is  assumed to  be  infinitely  far  away).  The prob-

lem  was  initially  addressed  by  spatially  warping  the

photograph[95], but extended by considering depth es-

timates in the training process[96, 101]. A stereo pair of

photographs  with  parallax  information  was  also  em-

ployed to address this issue[97]. 

4.3    AR Content Mapping

Since the panoramic images carry omnidirectional

scene information, they can be leveraged to help mo-

bile  AR  applications  by  mapping  the  content  cap-

tured by a local view to the representations of the en-

tire  real-world scene.  Researchers  proposed panoram-

ic  tracking  and  mapping  systems  to  model  the  envi-

ronment  while  determining  the  pose  of  the  camera.

Envisor[85] is  an  early  real-time  system  that  aims  to

map  2D  video  content  to  a  cube  map  for  environ-

ment  map  generation.  Wagner et  al.[105] described  a

system that is able to robustly run in real time on a

mobile device. They first registered cameras based on

image features and then extended the map with new

features from new viewing directions. Compared with

SLAM,  their  approach  is  able  to  create  a  dense

panoramic map of features, which are mapped during

their first observation and do not need to refine again.

However,  it  only  works  for  3-dimensional  rotations.

Gauglitz et al.[106, 107] presented real-time tracking and

mapping approaches that support any type of camera

motions  in  3D  environments,  including  parallax-in-

ducing and degenerate rotation-only motions, and ef-

fectively  generalize  both  a  panorama  mapping  and

tracking system and a keyframe-based SLAM system,

seamlessly  switching  between  the  rotation-based

panorama  mapping  system  and  the  keyframe-based

SLAM  system  depending  on  the  camera  movement.

Pirchheim et al.[108] proposed a hybrid keyframe-based

system that can track and localize in a combination of

fully  triangulated  content  as  well  as  360° keyframes

with only rotational  constraints.  More recently,  Bak-

er et al.[109] proposed a localization and tracking solu-

tion  that  combines  spherical  Structure-from-Motion

(SfM) and 2D tracking, which is suitable for real-time

AR  applications.  Particularly,  they  introduced  a

method for computing the absolute pose with a spher-

ical constraint for 360° scene representation.

By  mapping  the  real-world  content  captured  by

mobile  devices  with  a  360° image  of  the  same scene,

better AR services are enabled on consumer-grade de-

vices. Pan et al. proposed a cheap online space carv-

ing approach based on Delaunay triangulation to ob-

tain a polygonal textured representation from a set of

panoramic  images[110].  In  their  system,  a  robust  fea-

ture  correspondence  estimation  component  for  align-

ing  individual  360° images  based  on  bundle  adjust-

ment  provides  essential  support  for  the  subsequent

triangulation  and  reconstruction.  Arth et  al.[111] pro-

posed a system for self-localization on mobile  phones

using  a  GPS  prior  by  matching  captured  content  to

an online-generated 360° image. It delivers high-quali-

ty  self-tracking  across  a  wide  area  (such  as  a  whole

city) with six degrees of freedom for an outdoor user.

To  provide  panoramic  images  more  efficiently,

Reinisch et  al.[112] solved  the  issues  of  real-time

panorama  generation  for  mobile  devices.  The  pixel-

mapping process is transferred from CPU to GPU by

their  shader-based  mapping  approach.  Their  applica-

tion is implemented for Android phones.

The content placement was also applied in telep-

resence  applications,  such  as  teleconference  and  re-

mote education. PanoInserts[113] is a system that uses

smartphone cameras to create a surround representa-

tion  of  all  the  users'  meeting  places.  Pece et  al.[113]

took a static 360° image of a location into which they

combined all the users' live videos from smartphones.

In  their  implementation,  a  combination  of  marker-

and image-based tracking methods is employed for in-

serting  videos  at  proper  places  and  they  transmitted

this representation to a remote viewer. For online AR

education, 360Anywhere[114] was developed by Speich-

er et  al.,  which  is  a  framework  for  360  video  based

multi-user collaboration. It not only allows collabora-

tors to view and annotate a 360 live stream but also

supports  the  projection  of  annotations  in  the  360

stream  back  into  the  real-world  environment  in  real

time.  Piumsomboon et  al.[115] presented  a  system

where  VR users  can  collaborate  with  local  AR users

by being immersed in a 360-video through a tangible

interface,  a  combined  360  camera  with  a  6-DOF

tracker.  Similar  systems  are  also  proposed  in  [116].
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For  more  remote  collaborations  using  360 videos,  we

suggest  that  readers  refer  to  the  survey  of  Wang et
al.[117].  Nebeling and Madier[118] also explored how to

conduct AR/VR application prototyping by mapping

the  hand-drawn  paper-based  content  to  the  virtual

space.  They  proposed  a  system  to  rapidly  create

AR/VR  prototypes  from  the  content  drawn  on

equirectangular paper maps and bring them to life on

AR/VR devices. 

4.4    360° Content Manipulation

With the rise of MR applications, it has been in-

creasingly important to manipulate 360° media in an

intuitive  and  efficient  way.  Common  360° image/vi-

deo manipulations refer  to the editing of  colors,  con-

tent,  motion,  direction,  etc.,  which  aim  to  improve

the  visual  quality  and  meet  individual  requirements.

Recent years have witnessed great success in content

manipulation  on  2D  images  and  videos,  but  these

techniques  cannot  be  directly  applied  to  360° media,

due  to  their  differences  in  geometry  structure,  dis-

tance metrics, etc. As a pioneer work in content edit-

ing,  an  inpainting  method  was  proposed  by  Zhu et
al.[119] to  complete  holes  in  360° images  for  applica-

tions  such  as  Google  Street  View.  To  deal  with  the

distortions,  they performed structure-rectifying warp-

ing  and  completed  the  holes  using  2D  completion

methods[120].  Although effective in many examples,  it

is specially designed to complete holes in the bottom

regions.  To  remove  occlusions  in  360° videos,  Xu et
al.[121] proposed a coarse-to-fine optimization to itera-

tively  complete  missing  pixels  and  motion  informa-

tion  while  considering  the  geometric  properties  of

spherical  images.  Zhao et  al.[122] addressed  the  360°
panorama  cloning  problem  using  a  coordinate-based

method in the spherical domain. Huang et al.[123] fur-

ther  explored  the  composition  of  360° stereo  images,

where they ensured the fundamental geometry of the

inserted  objects  by  using  the  estimated  depth  infor-

mation to guide the content manipulation in 3D space

(see Fig.10).

Video  correction  and  stabilization  have  been  ex-

ploited to improve the sense of immersion and visual

comfort.  Jung et  al.[124] proposed  an  automatic

method  for  upright  adjustment  of  360° panoramas

(see Fig.11). With the Atlanta world assumption and

line  constraints,  the  updated  north  pole  direction  is

estimated by iterative optimization, and the adjusted

image  can  be  obtained  by  resampling  the  image

(Fig.11).  Kopf[7] proposed  a  hybrid  3D-2D  method

and  a  new  deformed-rotation  motion  model  to  re-

move the shakeness in 360° videos. To remove unde-

sired  camera  motion  while  obtaining  a  smooth  and

redirected  camera  path,  Tang et  al.[8] further  pro-

posed  a  joint  optimization  for  stabilization  and  redi-

rection.  Compared  with  [7],  [8]  can  handle  rotation,

translation,  and  strong  parallax  well,  and  can  pro-

duce  smoother  feature  trajectories  due  to  its  3D

spherical warping model.

To  efficiently  edit  the  visual  appearance  of  360°
panoramas, Zhang et al.[125] proposed the first stroke-

based  edit  propagation  on  360° panoramas.  To  pro-

duce seam-free and visually pleasing results, they con-

structed  the  manifold  structure  with  a  spherical  dis-

tance  metric  for  each  pixel.  Zhang et  al.[126] further

accelerated the edit propagation using the function in-

terpolation with an adaptive sampling strategy in the

spherical domain (see Fig.12). To enhance the details

of  360° panoramas,  Wong[127] proposed  a  view-adap-

tive  asymmetric  detail  enhancement  solution,  which

improves  the  panoramic  viewing  experience  with  a

less  computational  cost.  For  better  360° video  view-

ing experiences, friendly user interactions are very im-
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portant.  Kang  and  Cho[14] proposed  interactive  and

automatic  navigation  for  360° video  playback,  which

enables  users  to watch interesting events without in-

tensive  adjustment  of  viewing  directions.  However,

their  method  only  calculates  a  single  camera  path,

which  may  ignore  other  regions  of  interest.  To  fur-

ther improve the navigation and playback experience,

Wang et  al.[128] designed  a  novel  diverse  constraint,

which  helps  to  compute  diverse  content-aware  nor-

mal field-of-view (NFoV) virtual camera paths using a

coarse-to-fine dynamic programming optimization (see

Fig.13).  In  their  system,  the  user  watches  an  NFoV

video  extracted  from a  360° video  and  changes  their

view  during  playback.  All  NFoV  camera  paths  are

precomputed  by  the  proposed  content-aware  and  di-

verse virtual camera path optimization. The user can

continue  to  watch  using  the  new camera  path.  Li et
al.[129] introduced  the  recently  popular  bullet  com-

ment function into 360° videos. They designed sever-

al  bullet  comment  display  methods  and  controller-

based  methods  for  bullet  comment  insertion,  which

help  to  add  more  interactivity  and  sociability  to  the

360° viewing experience. 

5    Conclusions and Discussions

There  have  been  great  advances  in  360° media-

based  mixed  reality  technologies  in  the  last  decade.

This paper reviews the recent methods in 360° image

representation,  understanding,  and  reconstruction,

and their applications in immersive visual technology.

This  paper  is  expected  to  contribute  to  the  develop-

ment of the algorithms in the field of 360° image pro-

cessing  and  applications  and  deepen  the  understand-

ing  of  mixed  reality  techniques  based  on  real-world

content.

360° media  based  mixed  reality  technology  is  an

emerging  research  field.  The  challenges  of  realizing

highly  realistic  immersive  experiences  using  360° im-

ages  have  not  been  fully  addressed.  The  remaining

open problems for future research in this field include

the followings:

• Holistic  Scene  Understanding  and  3D  Recon-
struction.  The  current  image  understanding  and  3D

reconstruction  methods  designed  for  2D  videos  can-

not be trivially applied to 360° videos due to the om-

nidirectional  representation.  How  to  reconstruct  the

full-FoV 3D information accurately and extract glob-

ally-consistent visual features needs to be addressed.

• Friendly  User-Content  Interactions.  Although

the  existing  content  manipulation  method  is  able  to

provide basic content operations on 2D images/videos

(b)(a)

(c) (d)

Fig.11.  Overall process[124] © Springer. (a) Input image. (b) De-
tected  vertical  and horizontal  lines.  (c)  Great  circles  from the
classified lines. (d) Adjustment result.

(b)(a) (c)

(d) (e) (f)

Fig.12.  Flow chart of the method in [126]. (a) Input image. (b) (c) The input image is first quantized and the samples are adaptive-
ly collected. (d) RBF interpolation. (e) Edit for each pixel. (f) Final result.
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such as inpainting and reshuffling, it is still challeng-

ing to generate photo-realistic results efficiently espe-

cially for dynamics objects.

• 360° Video  Capture  and  Rendering.  The  cap-

tured  omnidirectional  content  is  the  basis  of  a  high-

quality immersive experience. There have been a vari-

ety of 360° camera prototypes and products. However,

the  available  solutions  still  come  with  artifacts  such

as  distortions  and  visible  seams  along  stitching

boundaries between the frames captured by neighbor-

ing cameras. A better capture and rendering model is

needed in this field.
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