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Abstract    The advent of Big Data has led to the rapid growth in the usage of parallel clustering algorithms that work

over distributed computing frameworks such as MPI, MapReduce, and Spark. An important step for any parallel cluster-

ing algorithm is the distribution of data amongst the cluster nodes. This step governs the methodology and performance of

the entire algorithm. Researchers typically use random, or a spatial/geometric distribution strategy like kd-tree based par-

titioning and grid-based partitioning, as per the requirements of the algorithm. However, these strategies are generic and

are not tailor-made for any specific parallel clustering algorithm. In this paper, we give a very comprehensive literature

survey of MPI-based parallel clustering algorithms with special reference to the specific data distribution strategies they

employ. We also propose three new data distribution strategies namely Parameterized Dimensional Split for parallel densi-

ty-based clustering algorithms like DBSCAN and OPTICS, Cell-Based Dimensional Split for dGridSLINK, which is a grid-

based hierarchical clustering algorithm that exhibits efficiency for disjoint spatial distribution, and Projection-Based Split,

which is a generic distribution strategy. All of these preserve spatial locality, achieve disjoint partitioning, and ensure good

data load balancing. The experimental analysis shows the benefits of using the proposed data distribution strategies for al-

gorithms they are designed for, based on which we give appropriate recommendations for their usage.

Keywords    parallel data mining, data distribution, parallel clustering, spatial locality preservation

  

1    Introduction

Data clustering is one of the most commonly used

data mining techniques for knowledge discovery. Clus-

tering  partitions  the  data  into  meaningful  groups,

known  as  clusters,  such  that  the  dissimilarity  be-

tween  the  objects  belonging  to  the  same  cluster  is

minimized  and  the  dissimilarity  between  the  objects

from  different  clusters  is  maximized[1].  Clustering  al-

gorithms are classified into multiple categories. Algo-

rithms  such  as k-means[2], K-medoids[3],  Bisecting k-
means[4],  and so  on,  fall  in  the category of  partition-

ing-based  clustering.  Algorithms such as  DBSCAN[5],

OPTICS[6],  SNN[7],  DENCLUE[8],  and  so  on,  fall  in

the  category  of  density-based  clustering.  Algorithms

such as SLINK[9],  CLINK[1],  Average LINK[1],  and so

on,  fall  in the category of  hierarchical  clustering.  Al-

gorithms such as CLIQUE[10], MAFIA[11], ENCLUS[12],

PROCLUS[13],  ORCLUS[14],  FINDIT[15],  and  so  on,

fall  in  the  category  of  subspace  clustering.  Algo-

rithms  such  as  STING[16],  CLIQUE[10],  MAFIA[11],

and  so  on,  fall  in  the  category  of  grid-based  cluster-

ing.  These  algorithms  are  used  in  many  applications

such as satellite image segmentation[17], noise filtering

and outlier  detection[18],  bio-informatics[19],  prediction

of stock prices[20], and so on.
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The advent of big data systems has led to genera-

tion  of  data  at  a  faster  pace  and  at  a  cheaper  cost,

creating  a  data  deluge.  To  discover  knowledge  from

such  data,  parallel  clustering  algorithms  have  been

proposed  to  work  over  distributed  memory  architec-

tures. A few such solutions include parallel partition-

ing-based clustering  algorithms[21–23],  parallel  density-

based  clustering  algorithms[24–30],  parallel  subspace

clustering  algorithms[31–33],  parallel  hierarchical  clus-

tering  algorithms[34, 35],  etc.  These  solutions  are  typi-

cally  based  on  parallel  frameworks  such  as  MPI,

MapReduce  or  Spark,  and  are  executed  over  a  dis-

tributed  memory  architecture,  which  typically  com-

prises  a  cluster  of  computing  nodes.  A  few  of  the

above  approaches  also  work  for  shared  memory  and

GP-GPU-based architectures.  All  of the above paral-

lel algorithms are data parallel, i.e., data is distribut-

ed to the processors using a suitable partitioning tech-

nique and the same set of instructions/code is execut-

ed over each partition.

A typical data-parallel clustering algorithm has its

workflow as the following steps.

● Step 1—Data Distribution. In this step, the da-

ta is distributed amongst all the computing nodes of a

cluster.  The  kind  of  distribution  used  depends  upon

the  design  and  requirements  of  the  algorithm.  The

distribution  of  data  enables  each  computing  node  to

process the data chunk allocated to it in parallel. Da-

ta load balancing is an important criterion to be con-

sidered  while  distributing  the  data  for  parallel  algo-

rithms.  Commonly  used  data  distribution  strategies

are random partitioning and spatial partitioning (e.g.,

kd-tree based partitioning, grid-based partitioning).

● Step 2—Local Computations.  In this step, each

computing  node  executes  local  computations  for  the

chunk of  data  allocated  to  it  and  produces  an  inter-

mediate  result,  e.g.,  local  clustering.  This  step might

require inter-node communication to fetch extra data

(required for local computations) from other comput-

ing nodes of the cluster depending upon the design of

the  algorithm.  Some  algorithms  do  not  require  to

fetch any data from other computing nodes, some al-

gorithms fetch during the execution of local computa-

tions  as  and  when  required,  and  some  (recent)  algo-

rithms  fetch  before  beginning  the  local  computations

step,  making  minimum  inter-node  communication

possible. For example, parallel k-means[21] does not re-

quire data from other computing nodes for local com-

putations.  It  is  an  embarrassingly  parallel  algorithm.

The dGridSLINK algorithm[35] is a re-designed paral-

ϵ

lel SLINK that fetches data during the local computa-

tions  for  merging  two  clusters.  And,  parallel  DB-

SCAN  fetches  data  from  other  computing  nodes  be-

fore  beginning the local  computations[24, 28],  for  accu-

rately  computing  the -neighborhoods  of  all  the

points.

● Step 3—Merging of Local Results.  In this step,

the  intermediate/local  clustering  results  from  all  the

computing nodes are merged either sequentially or in

parallel  to  give  a  global  clustering  result.  This  step

again  requires  inter-node  communication.  An  algo-

rithm may iterate  over  step 2  and step 3  if  required

by  its  design  to  obtain  final  clustering  (e.g.,  dGrid-

SLINK[35]).

ϵ

In  the  above  workflow,  data  distribution  plays

a pivotal role in reducing the cost of inter-node com-

munication  incurred  in  step  2  and  step  3,  thus  in-

fluencing  the  overall  performance  of  the  algorithm.

Some parallel algorithms simply use random distribu-

tion[34, 36, 37] and  some  parallel  algorithms  that  exe-

cute  spatial  queries  (like -neighborhood  and k-near-

est  neighbor  queries)  use  a  distribution  that  pre-

serves spatial locality of the data points either partial-

ly or fully[24, 28, 35, 38–40]. By preservation of spatial lo-

cality, we mean that for a given data point p, the da-

ta  points  neighboring p are  available  locally  in  the

same computing node. Spatial locality helps in reduc-

ing  the  overlap in  the  search space  of  different  com-

puting nodes. Fig.1 shows three different kinds of da-

ta distributions. Each part of the figure shows a spa-

tial arrangement of data points that are distributed to

four  different  computing  nodes, A, B, C,  and D.

Fig.1(a)  depicts  a  random  distribution  where  the

search space of all the nodes overlap. In Fig.1(b), the

data  points  are  somewhat  spatially  organized  with

some  overlap  in  their  search  space.  In Fig.1(c),  the

data points are organized in a perfectly disjoint man-

ner with zero overlap in the search space of the com-

puting nodes.

Consider  the  case  of  parallel  DBSCAN[24, 28].  In
 

Node  Node  Node  Node 

(b)(a) (c)

Fig.1.  Spatial locality preservation. (a) None for random distri-
bution.  (b)  Moderate  for  partially  disjoint.  (c)  High  for  fully
disjoint[41].
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the local computations step, the algorithm executes -

neighborhood queries for all the points in every com-

puting  node.  To  compute - neighborhood  correctly

for all the points in it, we shall require to fetch extra

data points from all the other computing nodes in the

case  of  random  distribution  in Fig.1(a),  as -bound-

aries  of  points  A are  overlapping  with  the  search

spaces  of  all  the other  computing nodes.  We can see

that  no  spatial  locality  is  preserved  in  this  distribu-

tion. For distribution shown in Fig.1(b), a lesser num-

ber points shall be needed to be retrieved from other

nodes  for  performing -neighborhood  queries  for  all

the points  A as the overlap is lesser, and still fewer

points  in  the  case  of  disjoint  distribution  shown  in

Fig.1(c).  This  is  because  spatial  locality  is  best  pre-

served in the last case. Thus, a good spatial distribu-

tion helps reduce inter-node communication of step 2

and  step  3,  thus  reducing  the  overall  computation

cost of the underlying algorithm.

Literature  reveals  only  very  few  distribution

strategies used in parallel clustering algorithms. They

include random partitioning[34, 36, 37], kd-tree partition-

ing[24, 28, 38, 39] and grid/cell-based partitioning[27, 35, 40, 42]. 

1.1    Research Gap and Motivation

Although  the  above  distribution  schemes  are  be-

ing used for parallel data mining algorithms, they are

not  specifically  designed  for  such  use.  Also,  they  do

not capture any specific data access patterns associat-

ed  with  the  clustering  algorithm  (or  a  class  of  algo-

rithms).  Tailor-made  partitioning  strategies  can  be

designed  for  specific  parallel  clustering  algorithms

that  specifically  capture  their  respective  design  re-

quirements.

Also, there is no specific work reported in the lit-

erature  that  addresses  or  reviews  the  data  distribu-

tion  problem,  describes  the  current  approaches,  or

presents new distribution techniques. 

1.2    Our Contributions

● In this paper, we give a very comprehensive sur-

vey  of  MPI-based  parallel  clustering  algorithms,

specifically  discussing  their  workflow  and  the  data

distribution strategies they employ. To the best of our

knowledge,  this  paper  presents  the  first  such  discus-

sion.

● Then, we propose three new spatial data distri-

bution  strategies:  Parameterized  Dimensional  Split

(PD-Split),  Cell-Based  Dimensional  Split  (CD-Split),

and  Projection-Based  Split  (Pbased-Split).  These

strategies are variations of kd-tree based partitioning.

● We  also  demonstrate  how  these  data  distribu-

tion  strategies,  including  the  existing  and  the  pro-

posed three strategies, can be used to distribute very

large datasets within the constraints of limited hard-

ware  resources.  We  describe  approximate  variants  of

the above strategies that use sampling to mitigate the

issue of limited hardware resources.

● We present experimental analysis on the appli-

cability of the above data distribution strategies over

the  existing  parallel  spatial  clustering  algorithms  for

various  large  and high-dimensional  datasets  and give

recommendations for their appropriate usage.

The rest of the paper is organized as follows. Sec-

tion 2 gives a comprehensive literature review of MPI-

based  parallel  clustering  algorithms  with  specific  ref-

erence  to  the  data  distribution  strategies  they  use.

Section 3 explains various data distribution strategies

proposed  in  this  work. Section 4 gives  experimental

results  and  analysis. Section 5 summarizes  the  infer-

ences  drawn  from  experimentation  and  gives  appro-

priate  recommendations  for  the  usage  of  the  pro-

posed  data  distribution  strategies. Section 6 con-

cludes  this  paper  and  gives  recommendations  for  fu-

ture work. 

2    Survey of MPI-Based Parallel Clustering

Algorithms

In this section, we give a comprehensive survey of

MPI-based  parallel  clustering  algorithms  and  a  brief

insight into their data distribution strategies. Table 1

summarizes  the  data  distribution  strategies  used  by

each parallel algorithm described in this section. 

2.1    Parallel Partitioning-Based Clustering

Partitioning-based clustering algorithms are those

algorithms that create k partitions of the data (called

clusters)  while  reducing  the  inter-cluster  similarity

and  increasing  intra-cluster  similarity  of  the  data

points of each cluster. The clustering is performed it-

eratively until it converges to the expected thresholds

on the distances specified above. The most basic par-

titioning-based  clustering  algorithm  is k-means[2].  It

starts with k randomly picked seeds as centroids and

assigns  all  the  points  in  the  dataset  to  their  nearest

centroids.  Then,  the  centroids  are  updated  with  re-

612 J. Comput. Sci. & Technol., May 2024, Vol.39, No.3



spect  to  the  membership  obtained.  The  above  steps

are  iteratively  repeated,  wherein  we  get  new  cen-

troids  after  every  iteration.  The  iterations  continue

until a threshold is reached on the inter-cluster simi-

larity.  Variations of k-means clustering include k-me-

dian[62], k-medoids[3],  bisecting k-means[4], k-modes[1],

k-prototype[1],  etc. k-median  computes  median  at  ev-

ery  iteration  instead  of  mean. k-medoids  identifies  a

new  set  of  medoids,  which  are  actual  points  in  the

dataset,  by  replacing  a  medoid  with  a  non-medoid

point to reduce the cost. This makes it more robust to

noise and outliers than k-means. Bisecting k-means is

a  hybrid  of  divisive  hierarchical  clustering  and k-
means. k-mode  is  a  variant  of k-means  specifically

suitable  for  clustering  categorical  data,  and k-proto-

type is a hybrid of k-means and k-modes to work up-

on data that has a mixture of categorical and numer-

ic attributes. 

2.1.1    Parallel k-Means

Parallelization  of k-means  is  very  straightforward

for  a  distributed memory architecture.  Initially,  data

is randomly distributed to each computing node and a

list of initial centroids is chosen randomly. These cen-

troids are known to every computing node of the clus-

ter.  Now,  in  every  computing  node,  the  distance  be-

tween  the  data  points  and  centroids  are  calculated

and  the  points  are  assigned  to  the  nearest  centroid.

Then  a  new  set  of  centroids  is  computed  for  each

node. These sets of new centroids from each node are

then averaged into a new set of  global  centroids,  us-

 

Table  1.    Data Distribution Strategies Used by Various MPI-Based Parallel Clustering Algorithms

Algorithm Type Year kd-Tree Random Others

Dhillon et al.[43] Partitioning-based 2002 ✔

MKmeans[21, 44] Partitioning-based 2011 ✔

Kumar et al.[45] Partitioning-based 2011 ✔

Kerdprasop et al.[46] Partitioning-based 2012 ✔

Balcan et al.[47] Partitioning-based 2013 ✔

Gursoy et al.[48] Partitioning-based 2004 Quad-tree based

Di Fatta et al.[49] Partitioning-based 2010 ✔

Kumari et al.[22] Partitioning-based 2015 ✔

Arbelaez et al.[50] Partitioning-based 2013 Space-filling curves

PBKP[51] Partitioning-based 2007 ✔

PDBSCAN[52] Density-based 1999 ✔

Zhou et al.[53] Density-based 2000 ✔

Arlia et al.[54] Density-based 2001 ✔

Coppola et al.[55] Density-based 2002 ✔

Brecheisen et al.[56] Density-based 2006 OPTICS-based

P-DBSCAN[57] Density-based 2010 Projection-based

PDSDBSCAN-D[24] Density-based 2012 ✔

Pardicle[25] Density-based 2014 ✔

BD-CATS[26] Density-based 2015 ✔

HPDBSCAN[27] Density-based 2015 Grid-based

GridDBSCAN-D[28] Density-based 2017 ✔

DBSCAN-MS[58] Density-based 2019 ✔

POpticsD[38] Density-based 2013 ✔

DOPTICS[39] Density-based 2015 ✔

dR-SNN[40] Density-based 2016 ✔

CLUMP[37] Hierarchical 2009 ✔

Rajasekharan et al.[59] Hierarchical 2005 Grid-based

pPoP[60] Hierarchical 2007 Partially overlapping partitioning

PINK[34] Hierarchical 2013 ✔

GridSLINK[35] Hierarchical 2016 CD-Split

PMAFIA[61] Subspace 2000 ✔

Goyal et al.[33] Subspace 2016 ✔

Jagat Sesh Challa et al.: Survey and Experimental Review on Data Distribution for Spatial Clustering 613



ing which the next iteration begins.  In this  way,  the

algorithm goes on until the threshold criterion is met.

A few implementations of  MPI-based k-means al-

gorithm that have been proposed include [21, 43–47].

[21, 43, 44]  present variants of  parallel k-means clus-

tering  that  have  a  similar  workflow  as  explained

above.  [45]  uses  parallel k-means  on  massively  paral-

lel  systems  to  cluster  large  remote  sensing  data.  [46]

presents  approximate  parallel k-means  (APKM)  us-

ing  sampling-based  techniques.  [47]  presents  parallel

k-means and parallel k-median algorithms using core-

sets.  All  of the parallel k-means variants use random

data distribution.

Apart  from  these,  a  few  variants  of  parallel k-
means have also been presented that use spatial parti-

tioning  techniques.  The  parallel  version  presented  in

[48] uses quad-tree based data distribution. The local

computations phase uses kd-trees within each comput-

ing node to reduce the total number of distance com-

putations  of  the k-means  algorithm.  Another  ap-

proach  was  presented  in  [49]  that  uses kd-tree  based

data  distribution.  The  workflow  of  these  algorithms

remains  the  same  as  that  of  parallel k-means,  with-

out  any  requirement  of  additional  data  from  other

computing  nodes.  However,  these  approaches  make

use  of  locality  achieved  in  distribution  to  reduce  the

overhead  in  terms  of  distance  computations  per-

formed within each node.

A few shared memory based parallel k-means have

also been presented[63, 64]. A few implementations have

also been presented to work over MapReduce/Hadoop

that include [65–67]. A novel data distribution strate-

gy  for  MapReduce-based  parititional  clustering  algo-

rithms has also been proposed in [68]. This partition-

ing  strategy  can  be  applied  to  multiple  variants  of

partitioning-based  clustering.  It  attains  performance

by  distributing  the  dataset  and  avoids  iterative

MapReduce  jobs.  The  experiments  show  that  their

approach  performs  better  than  the  state-of-the-art

that do not use this distribution strategy. A few app-

roaches have also been proposed for Spark/RDDs[69, 70],

which use random distribution. 

2.1.2    Parallel k-Means with Seed Selection

Initial  seed  selection  is  an  important  decision  to

improve the overall performance of the k-means algo-

rithm. Various parallel seed selection algorithms have

been  proposed  in  the  literature.  One  of  them  is  the

Scalable k-means++[71],  which  has  been  proposed  for

the  MapReduce  framework.  A  more  recent  approach

was proposed in [22] for MPI-based systems. This ap-

proach  not  only  gives  an  efficient  parallel  approach

for seed selection but also efficiently pre-processes the

data in parallel to make the parallel k-means efficient.

Both the  above  approaches  typically  employ random

data distribution. This is because, like k-means, these

are  also  embarrassingly  parallel  and  do  not  require

fetching of extra points from other computing nodes. 

2.1.3    Parallel k-Medoids and Bisecting k-Means

There is one MPI-based implementation for paral-

lel k-medoids[50] that  uses  a  similar  workflow as  that

of  parallel k-means.  However,  it  uses  space-filling

curves such as the Hilbert Curve and Dimension-Sort

Curve for partitioning the data amongst the comput-

ing nodes. These curves induce an ordering among the

data points, which is used for packing the points into

multiple computing nodes of the cluster. The induced

ordering  achieves  the  preservation  of  spatial  locality,

but  not  completely  disjoint  partitioning.  Overall,  the

algorithm's  performance  improves  with  the  usage  of

these curves.

A few MapReduce-based  implementations  of  par-

allel k-medoids  clustering  include  [72, 73].  A  few

Spark-based  implementations  include  [23, 74].  These

approaches usually employ random data distribution.

One variant of parallel bisecting-k-means (PBKP)

was  proposed  in  the  literature  for  MPI-based

systems[51]. This algorithm also uses random data dis-

tribution.  Again,  the  overall  workflow  remains  simi-

lar to that of parallel k-means, except that the num-

ber  of  clusters/centroids  increases  as  more  bisections

are performed. 

2.2    Parallel Density-Based Clustering
 

2.2.1    Parallel DBSCAN

ϵ

ϵ

ϵ

DBSCAN  is  the  most  commonly  used  density-

based clustering algorithm[5].  It  finds clusters of  data

points  with  respect  to  two  parameters  (> 0)  and

min_pts (> 0).  It  computes -neighborhood  for  each

point in the dataset and labels the point as core, bor-
der, or noise. A core point initiates a cluster and the

cluster  is  expanded  by  computing  neighborhoods  for

points in the -neighborhood of the above core point,

which  is  recursively  repeated  until  no  core  point  is

found.  This  completes  the  expansion  of  the  cluster.

The  next  random  point  from  the  remaining  unpro-

614 J. Comput. Sci. & Technol., May 2024, Vol.39, No.3



O(N logN)

cessed points is visited to extract another cluster and

this  process  continues  until  all  the  points  are  pro-

cessed.  The  time  complexity  of  the  DBSCAN  algo-

rithm  that  uses  R-tree  for  neighborhood  queries,  is

, where N is the size of the dataset.

O(N 2)

Early  approaches  to  the  parallelization  of  DB-

SCAN  adopt  the  master-slave  model  for  computa-

tion[52–57]. All these approaches simply distribute data

to  the  slave  computing  nodes  randomly,  while  main-

taining data  load balancing.  The first  such approach

is  PDBSCAN[52],  which  uses  dR*-tree  for  region

queries.  dR*-tree  is  a  variant  of  R*-tree[75] in  which

R*-tree  is  replicated  over  multiple  computing  nodes

for efficient data access on a distributed system. The

local clusterings from all the slave nodes are aggregat-

ed to form global clustering in the master node. The

next approach presented in [53] proposes various opti-

mizations  to  DBSCAN  and  proposes  a  parallel  ver-

sion,  which  follows  a  similar  workflow  as  explained

above. The next approach given in [54] gives a paral-

lel  DBSCAN algorithm in  which,  DBSCAN is  divid-

ed  into  two  major  operations:  clustering  assignment

and  neighborhood  querying.  The  master  node  per-

forms  clustering  assignment  while  all  slaves  perform

neighborhood  queries  in  parallel  for  their  respective

partition  of  data  obtained  by  random  partitioning.

The  next  approach  proposed  in  [55]  also  presents  a

similar master-slave model-based parallel DBSCAN in

which  each  slave  keeps  a  copy  of  an  R*-tree  to  exe-

cute  neighborhood  queries.  The  major  drawback  of

such master-slave approaches is the serialized compu-

tation at the master node, which limits their scalabili-

ty  to  a  larger  number  of  computing  nodes.  Another

client-server  model-based parallel  DBSCAN has  been

presented in [56], which uses OPTICS[6] for data par-

titioning  to  assign  adjacent  enumeration  values  to

similar  objects.  This  is  computationally  expensive  as

the  cost  of  OPTICS itself  is  larger  than .  Ap-

proximate  clustering  is  obtained  as  lower-bounding

distance  values  conservatively  approximating  the  ex-

act clustering. The next approach[57] proposes a paral-

lel  DBSCAN,  named  P-DBSCAN,  which  distributes

the  data  among several  nodes,  builds  Priority  R-tree

(R-tree  variant)  on  each  node,  runs  local  DBSCAN,

and aggregates the local results to get global cluster-

ing  results.  It  uses  a  kind of  projection-based spatial

partitioning, where the data points are projected over

coordinate  axes  and  the  partitions  are  created  in  an

order  exhibited  by  the  projection  (say  from  left  to

right).  This  distribution  ensures  that  the  partitions

are spatially disjoint.

All  the  approaches  described  above  incur  high

communication cost between master and slave nodes.

Most  of  them have  a  sequential  data  access  pattern.

Moreover,  the  parallelization  during  the  merging

phase,  in  many  cases,  is  limited  due  to  the  random

partitioning.  And  most  importantly,  they  do  not  ex-

ploit  the  spatial  locality  required  by  neighborhood

queries  used  in  DBSCAN  during  the  data  distribu-

tion phase.  All  of  the above reasons render the mas-

ter-slave model inefficient for DBSCAN.

ϵ

ϵ

The  first  approach  to  DBSCAN  that  breaks  the

sequential  data  access  pattern  solidly  is  PDSDB-

SCAN[24].  It  uses  union-find  (UF)  data  structure,

which  also  makes  it  amenable  to  parallelization  and

achieves better scalability. The authors presented the

parallel versions PDSDBSCAN-D and PDSDBSCAN-

S for distributed and shared memory systems, respec-

tively.  PDSDBSCAN-D  uses kd-tree  based  partition-

ing for data distribution, giving a completely disjoint

partitioning (see Fig.2). After partitioning, local clus-

tering is performed at each computing node, followed

by merging of the local clusterings into a global clus-

tering output. Before performing local clustering, each

computing node additionally fetches data lying in its

-extended  boundary  from  the  other  nodes  to  com-

pute  fully  accurate -neighborhoods  (see  Subsection

3.4 for details). The completely disjoint nature of the

kd-tree based partitioning makes sure that this  extra

data fetched is minimal, thereby reducing the commu-

nication overhead to a great extent.

A  couple  of  heuristic-based  approximate  DB-

SCAN clustering algorithms—Pardicle[25] and BD-CA-

TS[26] were also proposed in the literature,  which are
 

First Split Second Split Third Split 

 

  






















 





Fig.2.  kd-tree based data partitioning or KD-Split[24, 28].
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based  on  PDSDBSCAN-D[24].  These  two  algorithms

are capable of processing massive datasets with some

approximation  in  the  results.  These  algorithms  use

density-based  sampling  for  achieving  efficient  execu-

tion.  Both  the  algorithms  claim  a  high  value  of

omega-index (0.99), which shows that the clustering is

close to the actual clustering produced by that of tra-

ditional  DBSCAN.  Both  the  above  algorithms  also

use kd-tree  based  partitioning  for  data  distribution

and  have  a  similar  workflow  like  that  of  PDSDB-

SCAN-D.

Recently,  a  grid-based  parallel  implementation  of

DBSCAN,  HPDBSCAN[27],  has  been  proposed.  This

approach uses  a  grid/cell-based data distribution ap-

proach. First, equal-size data is read by all p proces-

sors. A grid is overlaid on all the data, and then the

cells  thus  formed  are  re-distributed  among  the  com-

puting nodes based on load-balancing cost heuristics.

The  partitioning  obtained  is  completely  disjointed.

Then local computations are performed on each com-

puting  node  and  then  the  results  are  merged  into

global clustering. Another grid-based DBSCAN, Grid-

DBSCAN[28],  has  been  proposed  recently,  which  re-

duces  the  total  number  of  neighbourhood  queries  as

well as the search space for each query while produc-

ing exact DBSCAN clustering output. It uses a vari-

ant  of  R-tree  known  as  Grid-R-tree[76] that  supports

efficient querying of cell-wise neighborhoods. GridDB-

SCAN is  parallelized  for  distributed  memory,  shared

memory,  and  hybrid  architectures.  The  distributed

memory  version,  GridDBSCAN-D,  also  uses kd-tree

based  partitioning  for  data  distribution,  performs  lo-

cal  GridDBSCAN  clustering  on  each  node,  and

merges  the  local  clusterings  in  a  tree-parallel  way.

The experimental  results  claim better  scalability  and

run-time performance than the previous approaches.

Another  approach  is  DBSCAN-MS[58],  which  is

specifically  designed  to  work  over  general  metric

spaces  rather  than  conventional  Euclidean  spaces.

This uses kd-tree based partitioning for data distribu-

tion across multiple nodes, performs local clustering in

each of  the  nodes  and then merges  the  local  cluster-

ings  to  get  a  global  clustering  output.  In  the  local

clustering  phase,  this  algorithm  uses  pivot  filtering

and  the  sliding  window  techniques  for  pruning  the

search  space.  The  experiments  show better  efficiency

when compared with the state-of-the-art.

Another approach presented in [77] proposes an it-

erative  framework  for  distributed  clustering  of  at-

tributed  graphs  using  Personalized  PageRank  (PPR)

for  distance  computation  and  DBSCAN.  The  pro-

posed method is based on Blogel, a distributed frame-

work for iterative graph query processing. The paper

presents efficient strategies for iteratively updating at-

tribute weights and a game theory based approach to

refine  clustering  results  for  better  effectiveness.  The

paper also uses certain optimisations to reduce the re-

computation  and  communication  costs.  The  experi-

mental results on real datasets indicate the method's

scalability, efficiency, and effectiveness.

ϵ× ϵ

Apart  from MPI-based  solutions,  there  are  a  few

solutions  for  GPGPU-based  systems,  MapReduce/

Hadoop,  Spark,  and  hybrid  systems.  Mr.  Scan  algo-

rithm[42] was  first  introduced  for  GPGPU-based  sys-

tems. It is an approximate algorithm that uses a tree-

parallel approach for merging of local DBSCAN clus-

terings.  This  algorithm divides  the  dataset  into  cells

of size  (for 2D) and then packs the cells into the

computing  nodes  while  achieving  spatially  disjoint

partitioning.  It  also  gives  good  load  balancing,  al-

though  not  perfect.  Then  few  representative  points

from each  cell  are  used  to  perform actual  clustering,

which  results  in  approximation.  Mr.  Scan  was  also

implemented on a hybrid (CPU+GPGPU) system. A

few  other  GPU-based  parallel  DBSCAN  algorithms

proposed include [78, 79].  They employ random data

distribution.

A few MapReduce-based implementations for DB-

SCAN have also been proposed[80, 81]. Similarly, a few

Spark-based  implementations  have  also  been  pro-

posed[29, 82, 83]. All of these use random data distribu-

tion.

Another  novel  parallel  Density  Peaks  Clustering

algorithm  has  been  proposed  in  [84],  which  is  based

on  MapReduce  paradigm.  The  proposed  LSH-DDP,

an  approximate  algorithm,  exploits  locality  sensitive

hashing for partitioning data, performs local computa-

tion,  and aggregates  local  results  to approximate the

final  results.  Experiments  show  that  it  has  good

speed-up without much compromise on the quality of

clustering. 

2.2.2    Parallel OPTICS

OPTICS  (Ordering  Points  To  Identify  the  Clus-

tering Structure)  is  a hierarchical  density-based clus-

tering algorithm[6].  OPTICS addresses DBSCAN\tex-

tquotesingle s major limitation: the problem of detect-

ing  meaningful  clusters  of  varying  density.  OPTICS

provides  an  overview  of  the  cluster  structure  of  a
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dataset with respect to density and contains informa-

tion about every cluster level of the dataset. To do so,

OPTICS generates a linear order of points where spa-

tially  closest  points  become  neighbors.  Additionally,

for each point, a spatial distance (known as reachabil-

ity distance) is computed, which governs the density.

Once  the  order  and  the  reachability  distances  are

computed using  and , we can query for the

clusters at a particular value of ' ( ).

The first parallel version of OPTICS clustering is

POPTICSD[38],  which  first  presents  MST-OPTICS,

which  is  a  re-engineered  version  of  the  original  OP-

TICS algorithm. MST-OPTICS breaks the sequential

data  access  pattern  of  OPTICS  and  makes  it

amenable  to  parallelization.  POPTICSD  is  its  paral-

lelization  for  distributed  memory  and  uses  random

data  distribution.  On  each  partition,  a  local  MST is

constructed  in  the  local  computations  phase,  and  all

those MSTs are merged into a global MST. The clus-

tering results obtained by this approach are compara-

ble but not exactly the same as those obtained by the

classical OPTICS algorithm. This is because the local

MSTs constructed for each partition are not fully cor-

rect  as  all  the  data  required  for  the  computation  is

not locally available due to random partitioning. The

deviation from the actual clustering increases with the

increase  in  the  number  of  processing elements.  Their

experiments establish the algorithm's scalability with

increasing processing elements.

ϵ

ϵ

DOPTICS is another parallel approach[39] that us-

es kd-tree  based  data  partitioning.  The  computing

nodes  store  their  respective  data partitions  locally  in

R-trees[85] over  which  OPTICS  is  run  locally  to  ob-

tain local orderings. Each computing node fetches ex-

tra data lying in the -extended boundaries from oth-

er computing nodes before performing local OPTICS.

This extra data is required for computing fully accu-

rate -neighborhoods  of  points  lying  in  the  bound-

aries. Then, the local orderings obtained are hierarchi-

cally merged into a global final cluster ordering. The

final clustering obtained by DOPTICS is identical to

that  by  classical  OPTICS.  The  experimental  results

show significant speed-up and scalability with increas-

ing processing cores. 

2.2.3    Parallel Shared Nearest Neighbor Clustering

Shared Nearest Neighbor Clustering (or SNN) is a

density-based clustering algorithm that uses two simi-

larity  measures  known  as  SNN-similarity  and  SNN-

ϵ

density[86]. SNN-similarity for two points is defined as

the  number  of  shared  neighbors  if  they  are  in  each

other's nearest neighbors lists. SNN-density of a point

is the number of points that have SNN-similarity of 

or greater to it. SNN clustering uses a DBSCAN-like

algorithm  applied  over  the  core  points  (using

SNNDensity and a min_pts threshold over it) to iden-

tify  clusters  of  an  arbitrary  size  and  shape  to  filter

noise/outliers.  It  is  especially  suited  for  high-dimen-

sional data.

To the best of our knowledge, there is the only at-

tempt  of  parallelization  of  SNN  for  MPI-based  clus-

ters[40].  It  first  presents  the  R-SNN algorithm,  which

is  a  modification  to  the  classical  SNN algorithm,  us-

ing  R-tree  for  efficient  nearest  neighbors  computa-

tions  and  is  more  optimized  in  terms  of  memory  re-

quirement.  Its  parallelization  is  the  Parallel  R-SNN

that  uses kd-tree  partitioning  in  step  1,  then  local

computations  are  performed over  each partition,  and

then the local results are merged into a global cluster-

ing.  The  spatial  partitioning  ensures  good  load  bal-

ancing and makes the merging step efficient. The ex-

perimental  analysis  shows  the  scalability  of  the  pro-

posed approach.

A parallel  JP-Clustering algorithm (that uses on-

ly  SNN-similarity  for  clustering)  for  the  MapReduce

framework  has  also  been  proposed[87].  A  MapReduce

based SNN has also been presented in [88]. 

2.3    Parallel Hierarchical Clustering

Hierarchical  clustering  is  also  one  of  the  popular

techniques of clustering. There are two kinds of hier-

archical  clustering  algorithms  proposed  in  the  litera-

ture.

1) Top-down,  Also  Known  as  Hierarchical  Divi-
sive  Clustering (HDC).  It  starts  with  considering  all

the  points  in  a  single  cluster  and  then  recursively

splits the clusters until some criterion is met[1], which

could be a limit  on the inter-cluster  distances  or  the

number of clusters.

2) Bottom-up,  Also  Known  as  Hierarchical  Ag-
glomerative Clustering (HAC). It starts with consider-

ing  individual  points  as  clusters  and  then  repeatedly

merges  the  closest  pairs  of  clusters  until  one  of  the

above criteria is met.

The  result  of  any  of  the  above  clustering  tech-

niques is a dendrogram, which is a tree-like structure

showing the clusters agglomerated at each level (refer

to  [1]  for  details).  There  are  many  variants  of  HAC
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such as SLINK[9], AverageLINK[1], CLINK[1] and, Ge-

nie[89]. These variants differ from each other in terms

of  the  way the  proximity  distance  between a  pair  of

clusters is defined. The most popular and widely used

variant is the single-linkage or SLINK algorithm that

has  time and  space complexity. Sibson's

variant of SLINK[9] is the best-known variant that has

 time  and  space  complexity.  This  algo-

rithm merges  a  pair  of  clusters  with minimum inter-

cluster distance at each iteration. It has reduced space

complexity  by  storing  only  a  single  row  of  the  dis-

tance matrix at a time.

O(n2)

The early approaches of parallel hierarchical clus-

tering  are  based  on  similarity  matrix[90–92].  The  first

parallel  hierarchical  algorithm  was  presented  in  [90].

It has a time complexity of  and was based on

the  single  instruction  multiple  data  model  (SIMD)

that  uses  a  shuffle  exchange  network  to  access  simi-

larity matrix and input data. The next approach was

presented  in  [91],  which  uses  reconfigurable  optical

buses  (AROB)  architecture.  The  limitations  of  the

above  two  approaches  is  that  they  are  designed  for

specialized  parallel  architectures.  In  2005,  an  MPI-

based  approach  was  presented[92].  In  this  approach,

the  similarity  matrix  along  with  the  data  points  is

distributed  across  multiple  nodes  and  then  synchro-

nized at each merging step.  The clustering quality is

dependent  on  the  chosen  input  parameter  threshold.

The above similarity matrix based approaches incur a

high communication cost  for  iteratively  updating the

similarity  matrix.  This  limits  their  performance  and

scalability, and renders them unfit for processing large

datasets.  Note  that  the  above  approaches  use  ran-

dom distribution,  and  the  use  of  spatial  partitioning

has no effect on their performance.

An  approximate  parallel  SLINK  algorithm  was

presented  by  Johnson  and  Kargupta[93] for  distribut-

ed memory systems. In this algorithm, data communi-

cation is lowered by using lower and upper bounds for

the distances between any two given points. The up-

per  and  the  lower  bound  refer  to  maximum possible

distance  between  two  points  and  the  distance  value

stored in the lowest root of the subtree connecting the

two leaves in the dendrogram, respectively. Local den-

drograms  using  these  bounds  are  merged  to  get  the

global dendrogram.

Among more recent approaches,  the SLINK algo-

rithm has been viewed as a Minimum Spanning Tree

(MST)  problem[34].  This  is  because  SLINK  has  ``the

same  agglomerative  nearest  neighbor  property"  by

virtue of which, if a cluster has its nearest neighbor as

cluster i or  cluster j,  the  merged  agglomerative  clus-

ter i+j will be the nearest neighbor of that cluster[37].

Many  researchers  have  attempted  to  solve  parallel

SLINK as  a  parallel  MST construction  problem.  [94]

presents  two  parallel  solutions  for  SLINK specific  to

the  shared  memory  PRAM  model  and  distributed

memory parallel  machine with butterfly  architecture.

Then, an MPI-based distributed memory parallel clus-

tering algorithm, known as CLUMP was proposed[37].

They consider whole data as a graph, which is parti-

tioned randomly into smaller sub-graphs composed of

complete  bipartite  graphs.  Then  an  MST is  comput-

ed  for  each  sub-graph.  They  also  compute  MSTs  for

self-edges  and  cross-edges  by  distributing  the  load

among  multiple  nodes.  These  local  MSTs  are  then

merged  to  get  the  final  MST.  The  basic  idea  is  to

minimize  the  communication  cost  at  the  expense  of

redundant  computations.  Another  approach was  pre-

sented in [59], which gave an efficient parallel hierar-

chical  algorithm  using  parallel  Euclidean  Minimum

Spanning Tree (EMST). This approach assumes that

the data points are uniformly distributed, allowing for

partitioning of the data space into uniform grids.

(
k

2

)

The  next  parallel  MPI-based  algorithm  was

PINK[34], which is similar to CLUMP. They also mini-

mize  the  communication  cost  by  decomposing  the

problem  into  sub-problems  that  removes  redundant

computations at the same time. This approach parti-

tions  the  data  into k equal  partitions  randomly  and

assign  each  possible  combinations  to  various

nodes  for  cross-edge  and  self-edge  computations.  At

each  node,  a  local  clustering  is  performed  where  an

MST  is  computed  locally.  Then  these  MSTs  are

merged into a global MST resulting in the final den-

drogram.  The  major  drawback  of  this  technique  is

that, for increasing k (and so p), redundant data will

keep on increasing exponentially which may affect the

scalability  of  the  algorithm.  A  similar  algorithm

known  as  SHRINK[36] was  also  proposed  for  shared

memory systems. Both the above approaches use the

Union-Find  data  structure  for  merging  clusters  at

each iteration.

The Sibson's SLINK algorithm does not take into

account spatial locality of data. And thus all its par-

allelizations (discussed above) use random data distri-

bution. The data partitioning scheme has no affect on

the  performance  of  the  algorithm.  An  efficient  HAC

algorithm  known  as  Partially  Overlapping  Partition-

ing  (POP)  has  been  proposed  which  exploits  spatial
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locality[95]. The pPOP algorithm[60] is a parallel imple-

mentation  of  the  POP algorithm for  shared  memory

architectures.  pPOP  is  an  HAC  algorithm  that  has

two  phases.  Data  is  partitioned  into p overlapping

cells,  in the first  phase.  In each iteration,  the closest

pair in each cell is found to obtain the overall closest

pair. If the overall closest pair is less than an overlap

threshold, , those pairs are merged. If the distance of

the closest pair exceeds , phase 2 performs hierarchi-

cal clustering. The authors also proposed the design of

a  data  structure  called  a  hyper-plane  clustering  tree

(hpc-tree) for indexing higher-dimensional data.

The  most  recent  parallel  version  of  SLINK  is

dGridSLINK[35].  It  is  a  parallel  version  of  the  Grid-

SLINK  algorithm  (proposed  by  the  same  authors).

GridSLINK exploits spatial locality of data while pro-

cessing,  and  reduces  the  number  of  distance  calcula-

tions while producing the exact dendrogram as that of

classical SLINK. GridSLINK has been parallelized for

distributed  memory  (dGridSLINK),  shared  memory

(sGridSLINK)  and  hybrid  architectures  (hGrid-

SLINK). dGridSLINK ensures load-balancing by spa-

tially  distributing  equal  amounts  of  data  to  multiple

nodes  using  a  spatial  distribution  and adaptive  grid-

ding (referring to Subsection 3.5 for details). After da-

ta  distribution,  at  each node GridSLINK is  executed

leading  to  local  MSTs.  Local  computations  in  Grid-

SLINK  are  more  optimal  than  in  PINK  as  this  ex-

ploits  spatial  locality  attained  by the  grid.  Then the

local  MSTs are merged into a global  MST in a tree-

parallel way to get the final dendrogram.

Apart  from  these  a  few  MapReduce  and  Spark-

based implementations have also been proposed[96, 97].

They  employ  random distribution.  Recently,  another

Spark-based  parallel  hierarchical  clustering  algorithm

for  complete  linkage,  known  as  PACk has  been  pro-

posed in [98].  PACk uses  distance-aware partitioning

to partition the data to include a set of nearest neigh-

bours in the same partition for each item. It thereby

allows more merges  to  happen within each partition.

This algorithm also uses a distance-aware merging al-

gorithm  that  computes  distance  bounds  to  safely

merge as many mutual nearest neighbours as possible

inside  a  partition.  The  experimental  results  show  its

better performance when compared with the state-of-

the-art. 

2.4    Parallel Subspace Clustering

Subspace clustering algorithms are specifically de-

signed  for  processing  high-dimensional  datasets.  It  is

δ

possible that data points might have been drawn from

multiple  subspaces  and  the  membership  of  points  to

those subspaces is unknown. Another problem associ-

ated  with  the  processing  of  high-dimensional  data  is

the curse of dimensionality. The conventional similari-

ty measures become unfit for processing such high-di-

mensional  data.  Subspace clustering algorithms are a

solution to the above problems. They cluster data in-

to multiple subspaces and find a low-dimensional sub-

space fitting each cluster. There are two kinds of sub-

space clustering algorithms, top-down and bottom-up.

The  top-down  subspace  clustering  algorithms  pro-

duce  highly  disjoint  clusters  using  partitioning-based

clustering approaches. A few top-down subspace algo-

rithms include PROCLUS[13], ORCLUS[14], FINDIT[15],

-Clusters[99],  COSA[100],  and  LAC[101].  Bottom-up

subspace clustering is similar to finding frequent item-

sets  using  the  apriori  principle.  Clusters  are  first

found  for  every  single  dimension,  and  then  dimen-

sions  are  added to  find clusters  in  higher  dimensions

in  the  same  way  as  that  of  apriori.  Dimensions  are

added  until  cluster  quality  is  preserved.  The  anti-

monotonic property is used to prune away infrequent

or  irrelevant  subspaces.  Commonly  used  grid-based

bottom-up  subspace  clustering  algorithms  include

CLIQUE[10],  MAFIA[11],  ENCLUS[12],  SCHISM[102],

and CBF[103]. Also, there are a few density-based bot-

tom-up  subspace  clustering  algorithms  that  include

SUBCLUE[104],  FIRES[105],  DUSC[106],  INSCY[107],  and

SUBSCALE[108].

Literature reveals very few approaches to parallel

subspace  clustering  on  distributed  memory  architec-

tures. The first such approach is the parallelization of

MAFIA  known  as  PMAFIA[61].  This  algorithm  uses

random distribution, and then performs local compu-

tations  on each node,  whose  results  are  then merged

into a global  output.  A GPU-based parallelization of

MAFIA has also been presented in [32].

More  recently  a  parallel  framework[33] has  been

presented  for  grid-based  bottom-up  subspace  cluster-

ing  algorithms  like  CLIQUE,  MAFIA,  ENCLUS,

SCHISM,  and  CBF.  This  framework  has  five  major

steps:  1)  gridding,  2)  finding  dense  units,  3)  candi-

date  unit/subspace  generation  for  the  next  iteration,

4) steps 2 and 3 are repeated until no dense units are

found, and 5) cluster extraction. These steps are com-

mon to the above bottom-up subspace clustering algo-

rithms.  The  parallel  framework  first  distributes  the

data  randomly  over  the  computing  nodes,  and  then

every node executes steps 1–3 iteratively. At each it-
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eration, a local trie is generated at every node, which

is  communicated  to  the  master  to  form a  global  trie

for dense unit identification. This is repeated until the

algorithm converges. Finally, the clusters are extract-

ed at the master node from the aggregates received.

The  above  approaches  use  random data  distribu-

tion  and  do  not  rely  on  spatial  locality  by  their  de-

sign.  Hence,  we do not consider them for experimen-

tation in Section 4.

Apart  from  the  above,  the  top-down  subspace

clustering  algorithm  LAC  has  been  parallelized  for

shared  memory  architecture,  known  as  PLAC[31].  A

spark-based  parallelization  of  the  SUBCLUE  algo-

rithm,  known  as  CLUS,  is  also  presented  in  [109].

More recently, a grid-based parallel subspace cluster-

ing algorithm known as PSCEG[110] has also been pre-

sented  for  Spark.  A  MapReduce-based  parallel  sub-

space clustering is presented in [111]. All of these ap-

proaches employ random data distribution. 

3    Data Distribution Strategies

We now describe the data distribution strategies,

including  existing  strategies  (Random,  KD-Split,

Quad-Split)  and  proposed  strategies  (PD-Split,  CD-

Split, and Pbased-Split), and their impact on parallel

clustering  algorithms.  Most  of  the  illustrated

existing/proposed  distribution  strategies  are  only

slightly  different  in  their  approach  to  partitioning.

However, they cause a considerable effect on the over-

all  performance  of  the  parallel  clustering  algorithms,

which  can  be  evidently  seen  from  experiments  pre-

sented in Section 4.

Let N and d be the size and dimensionality of the

dataset,  respectively,  and p be  the  total  number  of

computing  nodes  or  processing  elements  in  the  clus-

ter. 

3.1    Random Partitioning

N/p

In random partitioning, data points are randomly

distributed to the computing nodes of the cluster.  In

practice,  the  first  chunk  of  data  points  are  as-

signed to the first computing node, the next chunk to

the  second  node,  and  so  on.  Data  load  balancing  is

maintained  in  the  distribution  to  achieve  better  per-

formance,  i.e.,  each  computing  node  gets  an  equal

number of data points. A few examples of the algori-

thms that use random partitioning include [21, 34, 38].

In  general,  random  partitioning  is  suitable  for  algo-

rithms that are embarrassingly parallel (like k-means).

When  used  for  density-based  or  hierarchical  cluster-

ing algorithms, we are not making the best use of the

algorithm's  inherent  spatial  pattern  of  execution,

which  degrades  their  performance.  Instead,  it  is  bet-

ter to use one of the spatial partitioning schemes (ex-

plained  below),  which  captures  such  inherent  spatial

patterns. 

3.2    kd-Tree Based Split

kd-tree  based  split  or  KD-Split  is  the  most  com-

monly  used  spatial  partitioning  technique  for  data

distribution[24, 28, 33, 39, 40].  This  technique  recursively

divides  data  amongst  the  computing  nodes  based  on

an  axis-aligned  split  (see Fig.2).  For  every  division,

the axis that has the largest spread is chosen and the

split is performed based on the median for perfect da-

ta  load  balancing.  The  recursive  division  continues

until the total number of partitions is equal to the to-

tal number of computing nodes. Since load balancing

is maintained at each split, each computing node gets

an equal number of data points. Fig.2 illustrates KD-

Split for p=8. It shows stage-by-stage splitting, where

the median for each split is chosen across the dimen-

sion that has the largest spread. 

3.3    Quad-Tree Based Split

2d

Quad-tree  based  split  or  Quad-Split  is  a  spatial

partitioning  technique  that  employs  the  splitting

method  used  by  quad-trees  (used  in  [48]).  For  each

split, the data is split in  partitions of equal sizes as

shown in Fig.3.  The partitioning continues recursive-

ly until the number of partitions is equal to the num-

ber  of  computing  nodes.  This  kind  of  data  distribu-

tion  produces  spatial  disjointed  partitions  but  does

not  guarantee  data  load  balancing,  especially  when

applied over skewed datasets. Hence, quad-tree is not

commonly  used  for  data  distribution. kd-tree  based

distribution  is  better  than  that  of  quad-tree  as  it

achieves good load balancing. 

 

First Split Second Split 









   

   

   

   

Fig.3.  Quad-tree based data partitioning or Quad-Split[48].

620 J. Comput. Sci. & Technol., May 2024, Vol.39, No.3



3.4    Parameterized Dimensional Split

Parameterized  Dimensional  Split  or  PD-Split  is

the first proposed partitioning scheme (Fig.4). This is

specifically designed for parallel density-based cluster-

ing  algorithms[24, 28, 39].  This  partitioning  scheme

strives  to  minimize  the  communication  overhead  re-

quired during their execution. A typical parallel densi-

ty-based clustering algorithm has the following execu-

tion layout.

● In step 1, data is distributed to the computing

nodes  using  a  spatial  partitioning  scheme  (typically

KD-Split).

ϵ

ϵ

M212

M121 M122 M211 M222

ϵ

● In step 2, every computing node requests for da-

ta points from other nodes, which are lying within -

extended  boundaries  of  a  local  node.  is  a  user-de-

fined density parameter. This is depicted in Fig.5 for

kd-tree  partitioning,  where  node  requests  data

points from nodes , , , and . These

data points are required for computing exact -neigh-

borhoods  for  the  points  lying  near  the  boundaries  of

the  local  computing  node.  After  every  computing

node fetches data from the other nodes, local compu-

tations  are  performed  where  DBSCAN  is  performed

on  the  local  data  with  the  help  of  additionally  re-

trieved data.

● In  step  3,  local  clusterings  are  merged  into  a

global clustering output.

Exploiting  this  execution  layout,  we  try  to  mini-

⩽ 2ϵ

M11

2ϵ

mize the communication overhead that occurs during

step 2 of the algorithm by modifying the kd-tree par-

titioning scheme. Instead of computing a new axis for

each  division,  we  let  the  division  happen  across  the

initially chosen dimension until a threshold is reached.

The  threshold  is  on  the  width  of  the  cell  along  the

chosen  splitting  axis.  If  a  division  is  causing  a  cell's

width to be a threshold , we then choose the next

dimension that has the largest spread for the division.

Fig.4 illustrates  this.  In  the  first  and  the  second

splits, the division has occurred only along the x-axis.

However,  in  the  third  recursive  split,  partition 

was divided along y-axis. This is because the width of

one  of  the  cells  resultant  of  splitting  this  partition

along the x-axis, was becoming lesser than . There-

fore, the axis for the division was changed.

ϵ

M212

Figs.5 and 6 illustrate  the  the -extended  strips

(also known as halo region) for partition  for KD-

Split  and  PD-Split,  respectively.  It  is  clear  from  the

figure  that  the  halo  region  spawns  four  partitions  in

the  case  of  KD-Split  and  only  two  partitions  in  the

case  of  PD-Split.  When  the  dimensionality  of  the

dataset  increases,  the  number  of  nodes  overlapping

can even be more in KD-Split partitioning as the axis

for split keeps changing for every division. Therefore,

PD-Split reduces the data required to be communicat-

ed in steps 2 and 3 of a parallel density-based cluster-

ing algorithm as it reduces the number of nodes to be

approached for acquiring extra data points.
 

First Split Second Split Third Split 
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

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





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

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











Fig.4.  PD-Split data partitioning.

 

   












ϵ M212Fig.5.   -extended regions for computing node  in case of
KD-Split.

 

   

 

     





ϵ M212Fig.6.   -extended regions for computing node  in case of
PD-Split.
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Note that  the threshold on the width of  each re-

sultant partition has been chosen to be . This is be-

cause if  the width of the partition becomes less than

, the -extended strip might spawn to multiple parti-

tions  across  the  same  axis.  For  example,  in Fig.6,  if

the width of partition  is lesser than , the -ex-

tended  strip  of  can  spawn  to  machine  as

well,  which  means  that  we  are  including  all  of 

and  some  portion  of  as  well.  This  becomes  a

huge  communication  cost.  Therefore,  we  restrict  the

width of each cell to be larger than  and whenever

a split can cause the width to go less than this value,

we change our splitting axis. 

3.5    Cell-Based Dimensional Split

Cell-based  Dimensional  Split  or  CD-Split  is  our

second proposed partitioning scheme. This scheme has

been  specifically  designed  for  grid-based  parallel

SLINK (dGridSLINK) algorithm and has been intro-

duced  in  [35].  dGridSLINK  is  the  only  MPI-based

parallel variant of SLINK that uses the spatial distri-

bution of data points.

CellSizeinit/r

d
√

RegionSize× τ/N

τ

The CD-Split partitioning is performed using grid-

ding and median-based split. It is similar to PD-Split,

and  additionally  uses  gridding.  Initially,  a  uniform

virtual grid is overlaid on the entire data space, with

an  initially  chosen  cell  size: . Cell-
Sizeinit is  the  cell  size  parameter  of  the  GridSLINK

algorithm  and r (> 1)  is  a  constant.  For  example,

CellSizeinit is  calculated  using  the  formula

,  where RegionSize is  the  vol-

ume of  the  data-space  occupied  by the  points  in  the

dataset, N is the size of the dataset and  is a user-

defined threshold on the maximum number of points

we wish to keep in a cell. After gridding, we recursive-

ly  split  the  data  space  into  equal  partitions  by  first

splitting  along  one  dimension,  similar  to  PD-Split.

Each  split  is  a  median-based  split.  However  every

time, the splitting axis is aligned with the nearest cell

boundary  as  illustrated  in Fig.7.  The  change  in  the

dimension  for  splitting  in  case  of  CD-Split,  however,

ϵis  triggered  by  the  cell  size  threshold,  instead  of -

threshold  like  in  PD-Split.  The  dimension  for  split-

ting  is  changed  when  the  partition  width  can  fit  in

only one cell  across the current dimension. The total

number  of  dimensions  across  which  splitting  is  per-

formed usually remains small, similar to PD-Split.

As mentioned before, CD-Split is designed for the

dGridSLINK  algorithm,  but  can  be  used  for  many

grid based parallel aglorithms. The dGridSLINK algo-

rithm  internally  performs  local  gridding  in  the  local

computations phase and performs the SLINK cluster-

ing  using  the  internal  grid  info.  The  local  computa-

tions phase also makes use of the global gridding and

partitioning  performed  (with  axis  alignment  to  the

grid) during the data distribution phase.  This  makes

the  local  computations  faster  as  the  partitioning  is

in  accordance  with  gridding.  One  can  use  KD-Split

or  Pbased-Split  (to  be  explained  next)  instead  of

CD-Split as well. However, the algorithm is expected

to run slower for them as they do not do the split-ax-

is  alignment.  This  is  substantiated  by  experiments

presented  in Subsection 4.3 (for  more  details,  refer

to [35]). 

3.6    Projection-Based Split

α α

Projection-based  split,  or  Pbased  Split,  is  our

third proposed partitioning scheme. This is  a generic

strategy  and  is  not  designed  for  any  specific  algo-

rithm.  In  this  partitioning,  the  axis  with  the  largest

spread  is  chosen,  and  the  data  is  recursively  divided

into partitions based on the median. Each division is

done along the same axis. The recursive division con-

tinues  until  each  partition  (or  cell)  contains  a  total

number of points smaller than , where  is the pa-

rameter threshold. Fig.8 illustrates this split.

After the division is complete, all the cells formed

are  projected  onto  the  axis  chosen  for  splitting.  The

cells formed in Fig.8(a) are projected over x-axis. This

results  in  an  ordering  (increasing  order)  among  the

cells over their x-coordinate values. Following this in-

creasing  order,  contiguous  cells  are  packed  together
 

       

       

       

       

Gridding First Split Split Adjusted 

       

       

       

       

       

       

       

       

 

Fig.7.  Sample division in CD-Split.
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⌈N/p⌉

α

into non-overlapping groups (or partitions) in such a

way  that  each  group  does  not  contain  more  than

 points  (Fig.8(b)).  This  scheme results  in  load

balancing, which is very close to perfect load balanc-

ing.  We can observe that  the smaller  the value of 

is, the better the load balancing would be. 

3.7    Analyzing PD-Split and Pbased-Split

ϵ

We  observe  that  PD-Split  and  Pbased-Split  fol-

low  similar  principles  while  partitioning,  except  that

the splitting axis never changes in Pbased-Split. Both

of these distribution strategies are intended to reduce

the  number  of  nodes  communicated  during  steps  2

and  3  of  the  parallel  clustering  algorithm,  and  thus

reduce  the  communication  overhead  when  compared

with  KD-Split.  This  is  achieved  by  minimizing  the

number of computing nodes that overlap with the -

extended  boundaries  of  data  present  in  any  given

computing  node.  The  benefit  is  more  tangible  while

processing  high-dimensional  datasets  as  they  signifi-

cantly  reduce  the  number  of  overlapping  computing

nodes when compared with KD-Split. This is substan-

tiated by the results presented in Figs.9 and 10.

ϵ

ϵ

However,  in  certain  circumstances,  both  these

strategies  could  increase  the  total  number  of  data

points  transferred,  despite  accessing  less  computing

nodes.  This  could  happen when the  perimeter  of  the

-extended  region  increases,  which  in  turn  can  arise

with an increase in the value of . This problem could

be more severe in the case of Pbased-Split, as the di-

viding axis is never changed. All of this is substantiat-

ed by the results presented in Fig.11.

Also, note that PD-Split and Pbased-Split are ex-

pected  to  give  better  performance  than  KD-Split  in

case  of  heterogeneous  architectures  and  parallel  se-

tups with low-bandwidth interconnect, as they signifi-

cantly  reduce  the  number  of  computing  nodes  to  be

communicated. 

3.8    Data  Distribution  Strategies  for  Very

Large Datasets

The  distribution  strategies  described  in Subsec-

tions 3.1–3.7, load the entire data into main memory

for computing the partitioning splits.  However,  while

processing  very  large  datasets  (billions  of  floating

points),  the  memory  associated  with  the  node  per-

forming the partitioning may not be sufficient to load

the entire dataset. This makes those methods unfit for

distributing  very  large  datasets.  To  handle  such  sce-

narios one can use sampling-based techniques for da-

ta  distribution.  One  such  technique  has  been  pro-

posed in [26, 41], which is named as A-KD-Split.

1) All the data points are randomly distributed to

all the computing nodes in the cluster.

2)  A  small  fraction  of  data  points  are  randomly

selected from each computing node and are broadcast-

ed to all other nodes in the cluster.

xm ym

3) Every computing node has the same data sam-

ple now. Each computing node now computes the first

median for splitting over that global sample. The me-

dians computed across all the nodes would be exactly

the same (say ( , ) for a 2-D dataset).

xm ym

xm

xm

4) Every computing node now partitions the data

it has into two partitions, with respect to the median

( , ).  The  axis  that  has  the  maximum spread is

chosen for splitting (say x-axis for illustration purpos-

es). One partition would contain data objects that lie

on the left side of the median (objects whose x-coordi-

nate value is less than ). The other partition con-

tains data objects that lie on the right side of the me-

dian (objects whose x-coordinate value is greater than

or equal to ).

 

(a) (b) 

     

     

Fig.8.  Pbased-Split. (a) Initial partitioning into cells. (b) Final partitioning after packing.
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5) Then in a pair of 2, computing nodes exchange

their  left  and right partitions such that one comput-

ing  node  gets  the  entire  left  half  and  the  other  gets

the entire right half, with respect to the global medi-

an and the axis chosen to split. This has created two

global partitions amongst the computing nodes of the

cluster.  Half  of the nodes contain data lying towards

the left of the median and the other half of the nodes

contain data lying towards the right of the median.

6) Now for all  the machines that contain data of

the  left  partition,  steps  2–4  are  repeated  recursively.

They are also recursively repeated for machines in the

right  partition.  In  this  way,  at  the  end  of  the  parti-

tioning procedure,  data  contained in  each computing

node would be completely disjoint.

log p
7) Thus, this algorithm achieves disjoint partition-

ing in  iterations.

Note  that  this  partitioning  scheme  may  not  lead

to perfect load balancing. However, it is experimental-

ly  observed  to  give  reasonably  good  load  balancing

(see Subsection 4.2). Also, note that the approximate

versions  of  PD-Split  (A-PD-Split)  and  CD-Split  (A-

CD-Split),  are  also  designed  similarly.  In  the  case  of

A-PD-Split,  the nodes shall  also have to additionally

keep track of and communicate the dimension of the

split. In the case of A-CD-Split, the initial virtual grid

is to be calculated globally by inter-node communica-

tion, and a copy of the gridding information is to be

broadcasted  to  each  node.  Then  the  splitting  starts

similarly  to  that  of  A-KD-Split,  except  that  the  di-

mension  across  with  the  split  has  to  happen  shall

change  as  per  the  cell  size.  Also,  at  every  split,  the

split-axis is aligned with the nearest cell boundary of

the global grid. For the case of Pbased-Split, such an

iterative distribution is not possible. The entire parti-

tioning has  to  happen on the  first  taken sample  and

the data points are eventually distributed to their re-

spective  partitions,  without  any  kind  of  iterative  re-
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Fig.9.   Performance  of  the  GridDBSCAN-D algorithm for  various  data  distribution  strategies  with  various  number  of  computing
nodes of the cluster, over the (a) 3DSRN, (b) Bertone8M3D, (c) MPAHALO2.8M9D, (d) MPAGD100M3D, (e) SBus8M2D, and (f)
MPAGD7M30D datasets.
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finement. This may not result in good load balancing

and hence we omit it for further discussion. 

4    Experiments
 

4.1    Experimental Setup

All  experiments  are  conducted  on  a  cluster  of  32

computing  nodes,  which  are  IBM  x3250  m4  servers

that  are  connected  via  gigabit  ethernet.  Each  server

has  an  Intel  Xeon  (64-bit)  processor  and  32  GB

RAM. All implementations are in C/C++ with MPI.

The  details  of  the  datasets  used  for  experimentation

are  given  in Table 2.  The  3DSRN[112] dataset  con-

tains  geographical  information  (latitude,  longitude,

and  altitude)  of  road  networks  in  Denmark.  The

MPAGD,  Bertone,  MPAHALO,  and  FOF  datasets

are  taken  from  Millennium  data  repository[113] that

contains  astronomical  data  of  galaxies.  The  SBus

dataset① contains  GPS  traces  of  buses  in  Shanghai.

We synthetically  generate  the  SR10M3D,  SU10M3D,

and SN10M3D datasets, whose description is given in

Subsection 4.4.

MPI_Wtime()
α

The execution time for each experiment has been

measured using  of the MPI library. The

default  value  of  is  chosen  to  be 1 000 for  Pbased-

Split.  This  is  small  enough for  handling  data  of  mil-

lions  scale  to  achieve  good  load  balancing.  For  ap-

proximate distributions based on sampling, we choose

10% points of the dataset as the sample. Note that for

datasets of size larger than 20M, we use approximate

sampling-based distributions.

We  evaluate  the  proposed  data  distribution

strategies in terms of 1) data load balancing achieved,

and 2) performance of various parallel spatial cluster-

ing algorithms. The results are presented as follows. 

4.2    Data Load Balancing Achieved

Table 3 shows  the  data  load  balancing  achieved

for  each  of  the  distribution  strategies  for  the

FOF57M3D dataset. Each value in the table denotes

the  number  of  data  points  received  per  computing

node. As explained earlier,  random partitioning, KD-

Split,  and  PD-Split  achieve  perfect  load  balancing.

Pbased-split  achieves  near  perfect  load  balancing  be-

cause  of  the  packing  techniques  it  employs  as  ex-

plained  in Subsection 3.6.  Similarly,  CD-Split  also

achieves  near  perfect  load  balancing  as  the  splitting

boundaries  get  aligned  with  grid/cell  boundaries  (as

explained in Subsection 3.5). Please note that a simi-

lar  load  balancing  has  been  observed  for  the  other

datasets as well. 

4.3    Performance of Parallel Spatial

Clustering Algorithms
 

4.3.1    Parallel DBSCAN

ϵ

We  compare  the  performance  of  PDSDBSCAN-

D[24] and  GridDBSCAN-D[28] for  various  distribution

strategies. The  value for each dataset has been giv-

en in Table 2. The value of min_pts has been set to 5.

Fig.9 and Fig.10 present the performance of GridDB-

SCAN-D  and  PDSDBSCAN-D  respectively,  for  KD-

Split,  Pbased-Split,  and  PD-Split  distributions  for
 

Table  2.    Details of Datasets Used for Experimentation and Their Experimental Parameters

Dataset Size Number of
Dimensions

Parameter for PDSDBSCAN-D
and GridDBSCAN-D

3DSRN[112] 434K 3 ϵ=0.01, min_pts=5

Bertone8M3D[113] 8M 3 ϵ=2, min_pts=5

MPAHALO2.8M9D[113] 2.8M 9 ϵ=30, min_pts=5

MPAGD100M3D[113] 100M 3 ϵ=1, min_pts=5

SBus8M2D* 8M 2 ϵ=1, min_pts=5

MPAGD7M30D[113] 7M 30 ϵ=6, min_pts=5

MPAGD2M30D[113] 2M 30 ϵ=6, min_pts=5

MPAGD16M3D[113] 16M 3 ϵ=2, min_pts=5

FOF57M3D[113] 57M 3 ϵ=3, min_pts=5

SR10M3D 10M 3 ϵ=0.01, min_pts=5

SU10M3D 10M 3 ϵ=0.01, min_pts=5

SN10M3D 10M 3 ϵ=0.01, min_pts=5
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①SUVN trace data. http://wirelesslab.sjtu.edu.cn/, Sept. 2015.

http://wirelesslab.sjtu.edu.cn/


various  datasets  executed  over  an  increasing  number

of  computing  nodes.  The  results  show  that  PD-Split

and  KD-Split  are  competitive  in  execution  perfor-

mance. We can observe that for a smaller number of

computing  nodes,  PD-Split  is  better  than  KD-Split.

However, with the increase in the number of comput-

ing nodes, both of them give almost the same perfor-

mance.  For  high-dimensional  datasets  (MPAGD7M-

30D and  MPAHALO2.8M9D),  PD-Split  works  much

better than KD-Split, even at more computing nodes.

This  is  because  of  the  reduced  communication  over-

head in steps 2 and 3 of  both the algorithms,  as  ex-

plained  in Subsection 3.4.  This  is  also  substantiated

by  the  split-up  time  of  various  steps  of  the  algo-

rithms  presented  in Table 4 and Table 5.  PD-Split

improves overall execution time as well as the execu-

tion time of each step of the algorithm. The results of

the 3DSRN dataset are erratic at a higher number of

computing  nodes,  because  of  insufficient  data  to  be

processed for such a large number of processors.

Next,  we  conduct  an  experiment  to  measure  the

performance of both the parallel algorithms with vari-

ϵ

ϵ

ϵ

ϵ

ation in  value. Figs.11(a) and 11(b) present the re-

sults, which show that PD-Split works better for low-

er  values  of .  Whereas,  KD-Split  is  found  to  domi-

nate for higher values of . This is because, at higher

values  of ,  the  communication  cost  of  Pbased-Split

and PD-Split becomes higher as explained in Subsec-

tion 3.7. 

4.3.2    Parallel SNN

ϵ

min_pts ϵ

In this subsection, we evaluate the performance of

the dR-SNN algorithm[40].  The values of the parame-

ters chosen for experimentation are: k=30, =12, and

=15, for all  datasets.  Note that  of  SNN is

different from that of  DBSCAN. It  is  a threshold on

the number of data points in the case of SNN and a

threshold  on  the  distance  in  the  case  of  DBSCAN.

Fig.12 presents  the  execution  time  of  dR-SNN  for

KD-Split  and  Pbased-Split  distributions  for  various

datasets executed over an increasing number of com-

puting nodes. The results clearly show that KD-Split

has always been better than Pbased-Split. This is be-

cause: 1) kNN queries work better in the case of glob-

ular regions, and 2) KD-Split produces more cubical-

shaped  regions  in  comparison  with  Pbased-Split.

Therefore, the merging step in dR-SNN requires more

communication in the case of Pbased-Split. This is be-

cause,  in  the  case  of  Pbased-Split,  the  number  of

points  that  participate  in  the  merging  step  is  large.

Both these arguments are substantiated by the split-

up  values  presented  in Table 6,  which  clearly  shows

the difference in the local  computations step,  as well

as the merging step. 

4.3.3    Parallel SLINK

τ = 300

τ

Fig.13 presents the performance of dGridSLINK[35]

(with parameter ) for KD-Split, Pbased-Split,

and  CD-Split  distributions  for  various  datasets  exe-

cuted over an increasing number of computing nodes.

The value of , dictating the initial cell size, has been

set  to 300 as per the recommendations given in [35].

The  results  clearly  show  that  CD-Split  has  always

been better.  This is  because of  the time reduction in

the global merging step, which was made possible by

adjusting  the  partition  boundaries  to  align  with  grid

boundaries. The split-up of the execution time of vari-

ous  algorithm  steps  is  presented  in Table 7 for  the

MPAGD16M3D  dataset.  The  results  clearly  show

that CD-Split takes more time to distribute data, due

to  the  extra  load  of  aligning  splits  with  grid/cell

 

Table  3.    Number of Data Points Received by Each Comput-
ing  Node  for  Various  Data  Distribution  Strategies  with  Vari-
ous Number of Computing Nodes (p), for Dataset FOF57M3D

Distribution
Strategy

p=16 p=32

Random 3 561 887 1 780 944

KD-Split 3 561 887 1 780 944

PD-Split 3 561 887 1 780 944

Pbased-Split 3 541 062 to 3 571 329 1 721 712 to 1 813 961

CD-Split 3 498 032 to 3 638 541 1 597 254 to 1 862 171

A-KD-Split 3 397 251 to 3 795 134 1 584 754 to 1 922 658

A-PD-Split 3 344 652 to 3 786 249 1 571 113 to 1 911 904

A-CD-Split 3 285 412 to 3 799 763 1 523 624 to 1 924 521

 

Table  4.    Split-up of Execution Time (s) of Various Steps of
GridDBSCAN-D for Dataset MPAGD100M3D

Step KD-Split Pbased-Split PD-Split

Data distribution +
retrieval of extra points

26.58 37.23 19.33

Local computations 1 174.91 1 673.60 1 023.45

Merging 167.92 287.34 149.34

Total time 1 369.43 1 998.23 1 192.12

 

Table  5.    Split-up of Execution Time (s) of Various Steps of
PDSDBSCAN-D for Dataset MPAGD100M3D

Step KD-Split Pbased-Split PD-Split

Data distribution +
retrieval of extra points

26.58 37.23 19.33

Local computations 376.23 508.72 305.53

Merging 92.51 138.01 79.23

Total time 468.72 683.95 404.09
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boundaries. However, the time saved in local compu-

tations  and  merging  steps  compensates  for  it.  The

merging  time  is  especially  very  low  for  CD-Split  for

the above reasons. On the whole, CD-Split is better.
 

4.4    Experiments on Synthetic Data

In this subsection, we analyze the performance of

parallel clustering algorithms on synthetic datasets of

various  characteristics.  We  specifically  use  three

datasets:  SR10M3D,  SU10M3D,  and  SN10M3D.  All

three datasets contain 10M data points with three nu-

µ

σ

merical  dimensions.  All  coordinate  values  of  data

points lie in the range [–1, 1]. SR10M3D has its data

objects randomly distributed, whereas SU10M3D con-

tains  data  objects  that  are  uniformly  distributed

across the space. The SN10M3D dataset contains da-

ta  objects  in  a  normal  distribution  with =(0,  0,  0)

and =0.2.  The  parameter  values  of  these  datasets

chosen for experimentation are depicted in Table 2.

We execute  all  four  parallel  clustering algorithms

(PDS-DSBCAN-D,  Grid-DBSCAN-D,  dR-SNN,  and

dGridSLINK) for  16  and 32  nodes  over  various  data

distributions, and measure their running time. The re-

sults  presented  in Table 8 show  that  the  algorithms

run faster  for  the  random and uniform distributions,

with uniform distribution being the fastest. However,

for  the  normal  distribution  dataset,  the  execution

time is very high for all algorithms and all data distri-

butions. This is because, the density of data objects in

each node varies a lot, which leads to very high local
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Table  6.    Execution Time (s) for Various Steps of Algorithm
dR-SNN for Dataset MPAGD16M3S

Step KD-Split Pbased-Split

Data distribution 49.81 63.84

Local computations 171.86 5 192.13

Merging 27.40 1 661.48

Total time 249.07 6 917.45
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computations  time  for  nodes  containing  high-density

data objects and low local computation time for nodes

containing data with lower density. In the local com-

putation step of these algorithms, local spatial queries

(neighbourhood  and  nearest  neighbour  queries)  are

used.  For  the  same,  they employ indexing  structures

(such  as  R-tree, kd-tree,  and  Grid-R-tree).  These

structures  have  a  larger  overlap  amongst  its  nodes,

when the data is very dense, due to which their query

performance suffers. And that is why the local compu-

tation  step  takes  longer  time  for  computing  nodes

that  contain  dense  data  objects.  This  variation  in

computation time is  also depicted in Table 9,  where-

in  the  range  of  local  computation  time  for  uniform

distribution  is  very  small  when  compared  with  the

normal distribution, indicating that some nodes (con-

taining less dense data) finish their local computation

step much quickly than a few nodes (containing high-

ly dense data).
 

5    Discussion and Recommendations

Based  on  the  above  experimentation  and  results,

we give the following recommendations regarding the

usage of appropriate distribution strategies for each of

the above parallel clustering algorithms.

● For  parallel  DBSCAN  (and  algorithms  involv-

ing  neighborhood  computations),  PD-Split  and  KD-

Split  are  competitive.  PD-Split  is  more  suitable  for
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Table   7.      Execution  Time  (s)  for  Various  Steps  of  dGrid-
SLINK Algorithm for MPAGD16M3D Dataset

Step KD-Split Pbased-Split CD-Split

Data distribution 49.81 63.84 59.23

Local computations 1 459.09 1 961.98 1 250.35

Merging 273.23 401.34 99.30

Total time 1 782.13 2 427.17 1 408.88
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ϵ

ϵ

smaller  values  of  and  high-dimensional  datasets.

KD-Split is recommended to be used for larger values

of .

● For  dR -SNN  and  algorithms  that  use kNN

queries, KD-Split always works better.

● For  dGridSLINK,  CD -Split  has  always  been

better than KD-Split and Pbased-Split.

● One can use Pbased-Split as a generic distribu-

tion scheme, free from parameters, when one wants to

split  across  one  dimension  only.  Pbased-Split  also

works  well  for  high-dimensional  data  in  some  cases

(see Fig.10(f)).

● Both  PD -Split  and  Pbased-Split  are  recom-

mended  to  be  used  for  heterogeneous  architectures

and  low-bandwidth  network  interconnects  as  they

minimize the area of the halo regions. 

6    Conclusions

This paper discusses an important aspect of paral-

lel  clustering  algorithms,  the  data  distribution  step.

To the best  of  our  knowledge,  it  is  a  first-of-its-kind

paper that gives  a comprehensive review and a com-

parative study of the data distribution strategies used

in parallel clustering algorithms, along with three new

strategies  namely  PD-Split,  CD-Split,  and  Pbased-

Split. PD-Split has been designed for parallel density-

based  clustering  algorithms  like  DBSCAN  and  OP-

TICS, CD-Split has been designed for grid-based algo-

rithms like dGridSLINK, and Pbased-Split is a gener-

ic distribution strategy. These new strategies were ex-

perimentally  shown  to  improve  the  performance  of

their  respective  algorithms  when  compared  with  the

state-of-the-art  methods,  as  illustrated  in Section 4.

The paper also gives a very comprehensive review of

MPI-based parallel clustering algorithms with specific

discussion on the data distribution strategy they use.

A hybrid  design  of  grid  and PD-Split  can  be  de-

veloped to work more efficiently for GridDBSCAN-D.

More  such  tailor-made  distribution  strategies  can  be

developed for other classes of parallel clustering algo-

rithms like subspace and grid-based clustering. 
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