
JCST Papers

Only for academic and non-commercial use

Thanks for reading!

Survey

Computer Architecture and Systems

Artificial Intelligence and Pattern Recognition

Computer Graphics and Multimedia

Data Management and Data Mining

Software Systems

Computer Networks and Distributed Computing

Theory and Algorithms

Emerging Areas

JCST URL: https://jcst.ict.ac.cn

SPRINGER URL: https://www.springer.com/journal/11390

E-mail: jcst@ict.ac.cn

Online Submission: https://mc03.manuscriptcentral.com/jcst

JCST WeChat

Subscription Account

Twitter: JCST_Journal

LinkedIn: Journal of Computer Science and Technology

https://jcst.ict.ac.cn/en/topic?id=79684b89-287a-47c3-9c35-6f4a15b3caa4
https://jcst.ict.ac.cn/en/topic?id=2fce0d7a-174e-4fa4-bf9b-0d14aa471c0e
https://jcst.ict.ac.cn/en/topic?id=bb373f9b-f826-46dd-a7d1-b8f591d71d51
https://jcst.ict.ac.cn/en/topic?id=90aac8ff-cc19-44f5-ba42-8f3be3fc0492
https://jcst.ict.ac.cn/en/topic?id=ff0ad243-fab9-43e4-9630-25eb75b7758d
https://jcst.ict.ac.cn/en/topic?id=637ca798-2d4b-4a87-bd30-184d64d9e882
https://jcst.ict.ac.cn/en/topic?id=29ea894f-e9b6-476d-9d42-8d9311fc9527
https://jcst.ict.ac.cn/en/topic?id=aaa047b5-d195-43b7-a34c-18e3f5fceaa5
https://jcst.ict.ac.cn/en/topic?id=9d67e5e4-0460-4a25-aca2-4c9f7523bacc
https://jcst.ict.ac.cn
https://www.springer.com/journal/11390
mailto:jcst@ict.ac.cn
https://mc03.manuscriptcentral.com/jcst

A Survey and Experimental Review on Data Distribution Strategies
for Parallel Spatial Clustering Algorithms

Jagat Sesh Challa1, Navneet Goyal1, Amogh Sharma2, Nikhil Sreekumar3, Sundar Balasubramaniam1

and Poonam Goyal1, *

1 Advanced Data Analytics and Parallel Technologies Laboratory, Birla Institute of Technology and Science
Pilani 333031, India

2 Uber, New York 11101, U.S.A.
3 Computer Science and Engineering Department, University of Minnesota, Minneapolis 55455, U.S.A.

E-mail: jagatsesh@pilani.bits-pilani.ac.in; goel@pilani.bits-pilani.ac.in; amogh@uber.com; sreek012@umn.edu
sundar.b@wilp.bits-pilani.ac.in; poonam@pilani.bits-pilani.ac.in

Received August 24, 2022; accepted March 13, 2024.

Abstract The advent of Big Data has led to the rapid growth in the usage of parallel clustering algorithms that work

over distributed computing frameworks such as MPI, MapReduce, and Spark. An important step for any parallel cluster-

ing algorithm is the distribution of data amongst the cluster nodes. This step governs the methodology and performance of

the entire algorithm. Researchers typically use random, or a spatial/geometric distribution strategy like kd-tree based par-

titioning and grid-based partitioning, as per the requirements of the algorithm. However, these strategies are generic and

are not tailor-made for any specific parallel clustering algorithm. In this paper, we give a very comprehensive literature

survey of MPI-based parallel clustering algorithms with special reference to the specific data distribution strategies they

employ. We also propose three new data distribution strategies namely Parameterized Dimensional Split for parallel densi-

ty-based clustering algorithms like DBSCAN and OPTICS, Cell-Based Dimensional Split for dGridSLINK, which is a grid-

based hierarchical clustering algorithm that exhibits efficiency for disjoint spatial distribution, and Projection-Based Split,

which is a generic distribution strategy. All of these preserve spatial locality, achieve disjoint partitioning, and ensure good

data load balancing. The experimental analysis shows the benefits of using the proposed data distribution strategies for al-

gorithms they are designed for, based on which we give appropriate recommendations for their usage.

Keywords parallel data mining, data distribution, parallel clustering, spatial locality preservation

1 Introduction

Data clustering is one of the most commonly used

data mining techniques for knowledge discovery. Clus-

tering partitions the data into meaningful groups,

known as clusters, such that the dissimilarity be-

tween the objects belonging to the same cluster is

minimized and the dissimilarity between the objects

from different clusters is maximized[1]. Clustering al-

gorithms are classified into multiple categories. Algo-

rithms such as k-means[2], K-medoids[3], Bisecting k-
means[4], and so on, fall in the category of partition-

ing-based clustering. Algorithms such as DBSCAN[5],

OPTICS[6], SNN[7], DENCLUE[8], and so on, fall in

the category of density-based clustering. Algorithms

such as SLINK[9], CLINK[1], Average LINK[1], and so

on, fall in the category of hierarchical clustering. Al-

gorithms such as CLIQUE[10], MAFIA[11], ENCLUS[12],

PROCLUS[13], ORCLUS[14], FINDIT[15], and so on,

fall in the category of subspace clustering. Algo-

rithms such as STING[16], CLIQUE[10], MAFIA[11],

and so on, fall in the category of grid-based cluster-

ing. These algorithms are used in many applications

such as satellite image segmentation[17], noise filtering

and outlier detection[18], bio-informatics[19], prediction

of stock prices[20], and so on.

Survey
*Corresponding Author

Challa JS, Goyal N, Sharma A et al. A survey and experimental review on data distribution strategies for parallel spatial

clustering algorithms. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 39(3): 610−636 May 2024. DOI:

10.1007/s11390-024-2700-0

©Institute of Computing Technology, Chinese Academy of Sciences 2024

https://doi.org/10.1007/s11390-024-2700-0
https://doi.org/10.1007/s11390-024-2700-0
https://doi.org/10.1007/s11390-024-2700-0
https://doi.org/10.1007/s11390-024-2700-0
https://doi.org/10.1007/s11390-024-2700-0
https://doi.org/10.1007/s11390-024-2700-0
https://doi.org/10.1007/s11390-024-2700-0

The advent of big data systems has led to genera-

tion of data at a faster pace and at a cheaper cost,

creating a data deluge. To discover knowledge from

such data, parallel clustering algorithms have been

proposed to work over distributed memory architec-

tures. A few such solutions include parallel partition-

ing-based clustering algorithms[21–23], parallel density-

based clustering algorithms[24–30], parallel subspace

clustering algorithms[31–33], parallel hierarchical clus-

tering algorithms[34, 35], etc. These solutions are typi-

cally based on parallel frameworks such as MPI,

MapReduce or Spark, and are executed over a dis-

tributed memory architecture, which typically com-

prises a cluster of computing nodes. A few of the

above approaches also work for shared memory and

GP-GPU-based architectures. All of the above paral-

lel algorithms are data parallel, i.e., data is distribut-

ed to the processors using a suitable partitioning tech-

nique and the same set of instructions/code is execut-

ed over each partition.

A typical data-parallel clustering algorithm has its

workflow as the following steps.

● Step 1—Data Distribution. In this step, the da-

ta is distributed amongst all the computing nodes of a

cluster. The kind of distribution used depends upon

the design and requirements of the algorithm. The

distribution of data enables each computing node to

process the data chunk allocated to it in parallel. Da-

ta load balancing is an important criterion to be con-

sidered while distributing the data for parallel algo-

rithms. Commonly used data distribution strategies

are random partitioning and spatial partitioning (e.g.,

kd-tree based partitioning, grid-based partitioning).

● Step 2—Local Computations. In this step, each

computing node executes local computations for the

chunk of data allocated to it and produces an inter-

mediate result, e.g., local clustering. This step might

require inter-node communication to fetch extra data

(required for local computations) from other comput-

ing nodes of the cluster depending upon the design of

the algorithm. Some algorithms do not require to

fetch any data from other computing nodes, some al-

gorithms fetch during the execution of local computa-

tions as and when required, and some (recent) algo-

rithms fetch before beginning the local computations

step, making minimum inter-node communication

possible. For example, parallel k-means[21] does not re-

quire data from other computing nodes for local com-

putations. It is an embarrassingly parallel algorithm.

The dGridSLINK algorithm[35] is a re-designed paral-

ϵ

lel SLINK that fetches data during the local computa-

tions for merging two clusters. And, parallel DB-

SCAN fetches data from other computing nodes be-

fore beginning the local computations[24, 28], for accu-

rately computing the -neighborhoods of all the

points.

● Step 3—Merging of Local Results. In this step,

the intermediate/local clustering results from all the

computing nodes are merged either sequentially or in

parallel to give a global clustering result. This step

again requires inter-node communication. An algo-

rithm may iterate over step 2 and step 3 if required

by its design to obtain final clustering (e.g., dGrid-

SLINK[35]).

ϵ

In the above workflow, data distribution plays

a pivotal role in reducing the cost of inter-node com-

munication incurred in step 2 and step 3, thus in-

fluencing the overall performance of the algorithm.

Some parallel algorithms simply use random distribu-

tion[34, 36, 37] and some parallel algorithms that exe-

cute spatial queries (like -neighborhood and k-near-

est neighbor queries) use a distribution that pre-

serves spatial locality of the data points either partial-

ly or fully[24, 28, 35, 38–40]. By preservation of spatial lo-

cality, we mean that for a given data point p, the da-

ta points neighboring p are available locally in the

same computing node. Spatial locality helps in reduc-

ing the overlap in the search space of different com-

puting nodes. Fig.1 shows three different kinds of da-

ta distributions. Each part of the figure shows a spa-

tial arrangement of data points that are distributed to

four different computing nodes, A, B, C, and D.

Fig.1(a) depicts a random distribution where the

search space of all the nodes overlap. In Fig.1(b), the

data points are somewhat spatially organized with

some overlap in their search space. In Fig.1(c), the

data points are organized in a perfectly disjoint man-

ner with zero overlap in the search space of the com-

puting nodes.

Consider the case of parallel DBSCAN[24, 28]. In

Node  Node  Node  Node 

(b)(a) (c)

Fig.1. Spatial locality preservation. (a) None for random distri-
bution. (b) Moderate for partially disjoint. (c) High for fully
disjoint[41].

Jagat Sesh Challa et al.: Survey and Experimental Review on Data Distribution for Spatial Clustering 611

ϵ

ϵ

ϵ

∈

ϵ

∈

the local computations step, the algorithm executes -

neighborhood queries for all the points in every com-

puting node. To compute - neighborhood correctly

for all the points in it, we shall require to fetch extra

data points from all the other computing nodes in the

case of random distribution in Fig.1(a), as -bound-

aries of points A are overlapping with the search

spaces of all the other computing nodes. We can see

that no spatial locality is preserved in this distribu-

tion. For distribution shown in Fig.1(b), a lesser num-

ber points shall be needed to be retrieved from other

nodes for performing -neighborhood queries for all

the points A as the overlap is lesser, and still fewer

points in the case of disjoint distribution shown in

Fig.1(c). This is because spatial locality is best pre-

served in the last case. Thus, a good spatial distribu-

tion helps reduce inter-node communication of step 2

and step 3, thus reducing the overall computation

cost of the underlying algorithm.

Literature reveals only very few distribution

strategies used in parallel clustering algorithms. They

include random partitioning[34, 36, 37], kd-tree partition-

ing[24, 28, 38, 39] and grid/cell-based partitioning[27, 35, 40, 42].

1.1 Research Gap and Motivation

Although the above distribution schemes are be-

ing used for parallel data mining algorithms, they are

not specifically designed for such use. Also, they do

not capture any specific data access patterns associat-

ed with the clustering algorithm (or a class of algo-

rithms). Tailor-made partitioning strategies can be

designed for specific parallel clustering algorithms

that specifically capture their respective design re-

quirements.

Also, there is no specific work reported in the lit-

erature that addresses or reviews the data distribu-

tion problem, describes the current approaches, or

presents new distribution techniques.

1.2 Our Contributions

● In this paper, we give a very comprehensive sur-

vey of MPI-based parallel clustering algorithms,

specifically discussing their workflow and the data

distribution strategies they employ. To the best of our

knowledge, this paper presents the first such discus-

sion.

● Then, we propose three new spatial data distri-

bution strategies: Parameterized Dimensional Split

(PD-Split), Cell-Based Dimensional Split (CD-Split),

and Projection-Based Split (Pbased-Split). These

strategies are variations of kd-tree based partitioning.

● We also demonstrate how these data distribu-

tion strategies, including the existing and the pro-

posed three strategies, can be used to distribute very

large datasets within the constraints of limited hard-

ware resources. We describe approximate variants of

the above strategies that use sampling to mitigate the

issue of limited hardware resources.

● We present experimental analysis on the appli-

cability of the above data distribution strategies over

the existing parallel spatial clustering algorithms for

various large and high-dimensional datasets and give

recommendations for their appropriate usage.

The rest of the paper is organized as follows. Sec-

tion 2 gives a comprehensive literature review of MPI-

based parallel clustering algorithms with specific ref-

erence to the data distribution strategies they use.

Section 3 explains various data distribution strategies

proposed in this work. Section 4 gives experimental

results and analysis. Section 5 summarizes the infer-

ences drawn from experimentation and gives appro-

priate recommendations for the usage of the pro-

posed data distribution strategies. Section 6 con-

cludes this paper and gives recommendations for fu-

ture work.

2 Survey of MPI-Based Parallel Clustering

Algorithms

In this section, we give a comprehensive survey of

MPI-based parallel clustering algorithms and a brief

insight into their data distribution strategies. Table 1

summarizes the data distribution strategies used by

each parallel algorithm described in this section.

2.1 Parallel Partitioning-Based Clustering

Partitioning-based clustering algorithms are those

algorithms that create k partitions of the data (called

clusters) while reducing the inter-cluster similarity

and increasing intra-cluster similarity of the data

points of each cluster. The clustering is performed it-

eratively until it converges to the expected thresholds

on the distances specified above. The most basic par-

titioning-based clustering algorithm is k-means[2]. It

starts with k randomly picked seeds as centroids and

assigns all the points in the dataset to their nearest

centroids. Then, the centroids are updated with re-

612 J. Comput. Sci. & Technol., May 2024, Vol.39, No.3

spect to the membership obtained. The above steps

are iteratively repeated, wherein we get new cen-

troids after every iteration. The iterations continue

until a threshold is reached on the inter-cluster simi-

larity. Variations of k-means clustering include k-me-

dian[62], k-medoids[3], bisecting k-means[4], k-modes[1],

k-prototype[1], etc. k-median computes median at ev-

ery iteration instead of mean. k-medoids identifies a

new set of medoids, which are actual points in the

dataset, by replacing a medoid with a non-medoid

point to reduce the cost. This makes it more robust to

noise and outliers than k-means. Bisecting k-means is

a hybrid of divisive hierarchical clustering and k-
means. k-mode is a variant of k-means specifically

suitable for clustering categorical data, and k-proto-

type is a hybrid of k-means and k-modes to work up-

on data that has a mixture of categorical and numer-

ic attributes.

2.1.1 Parallel k-Means

Parallelization of k-means is very straightforward

for a distributed memory architecture. Initially, data

is randomly distributed to each computing node and a

list of initial centroids is chosen randomly. These cen-

troids are known to every computing node of the clus-

ter. Now, in every computing node, the distance be-

tween the data points and centroids are calculated

and the points are assigned to the nearest centroid.

Then a new set of centroids is computed for each

node. These sets of new centroids from each node are

then averaged into a new set of global centroids, us-

Table 1. Data Distribution Strategies Used by Various MPI-Based Parallel Clustering Algorithms

Algorithm Type Year kd-Tree Random Others

Dhillon et al.[43] Partitioning-based 2002 ✔

MKmeans[21, 44] Partitioning-based 2011 ✔

Kumar et al.[45] Partitioning-based 2011 ✔

Kerdprasop et al.[46] Partitioning-based 2012 ✔

Balcan et al.[47] Partitioning-based 2013 ✔

Gursoy et al.[48] Partitioning-based 2004 Quad-tree based

Di Fatta et al.[49] Partitioning-based 2010 ✔

Kumari et al.[22] Partitioning-based 2015 ✔

Arbelaez et al.[50] Partitioning-based 2013 Space-filling curves

PBKP[51] Partitioning-based 2007 ✔

PDBSCAN[52] Density-based 1999 ✔

Zhou et al.[53] Density-based 2000 ✔

Arlia et al.[54] Density-based 2001 ✔

Coppola et al.[55] Density-based 2002 ✔

Brecheisen et al.[56] Density-based 2006 OPTICS-based

P-DBSCAN[57] Density-based 2010 Projection-based

PDSDBSCAN-D[24] Density-based 2012 ✔

Pardicle[25] Density-based 2014 ✔

BD-CATS[26] Density-based 2015 ✔

HPDBSCAN[27] Density-based 2015 Grid-based

GridDBSCAN-D[28] Density-based 2017 ✔

DBSCAN-MS[58] Density-based 2019 ✔

POpticsD[38] Density-based 2013 ✔

DOPTICS[39] Density-based 2015 ✔

dR-SNN[40] Density-based 2016 ✔

CLUMP[37] Hierarchical 2009 ✔

Rajasekharan et al.[59] Hierarchical 2005 Grid-based

pPoP[60] Hierarchical 2007 Partially overlapping partitioning

PINK[34] Hierarchical 2013 ✔

GridSLINK[35] Hierarchical 2016 CD-Split

PMAFIA[61] Subspace 2000 ✔

Goyal et al.[33] Subspace 2016 ✔

Jagat Sesh Challa et al.: Survey and Experimental Review on Data Distribution for Spatial Clustering 613

ing which the next iteration begins. In this way, the

algorithm goes on until the threshold criterion is met.

A few implementations of MPI-based k-means al-

gorithm that have been proposed include [21, 43–47].

[21, 43, 44] present variants of parallel k-means clus-

tering that have a similar workflow as explained

above. [45] uses parallel k-means on massively paral-

lel systems to cluster large remote sensing data. [46]

presents approximate parallel k-means (APKM) us-

ing sampling-based techniques. [47] presents parallel

k-means and parallel k-median algorithms using core-

sets. All of the parallel k-means variants use random

data distribution.

Apart from these, a few variants of parallel k-
means have also been presented that use spatial parti-

tioning techniques. The parallel version presented in

[48] uses quad-tree based data distribution. The local

computations phase uses kd-trees within each comput-

ing node to reduce the total number of distance com-

putations of the k-means algorithm. Another ap-

proach was presented in [49] that uses kd-tree based

data distribution. The workflow of these algorithms

remains the same as that of parallel k-means, with-

out any requirement of additional data from other

computing nodes. However, these approaches make

use of locality achieved in distribution to reduce the

overhead in terms of distance computations per-

formed within each node.

A few shared memory based parallel k-means have

also been presented[63, 64]. A few implementations have

also been presented to work over MapReduce/Hadoop

that include [65–67]. A novel data distribution strate-

gy for MapReduce-based parititional clustering algo-

rithms has also been proposed in [68]. This partition-

ing strategy can be applied to multiple variants of

partitioning-based clustering. It attains performance

by distributing the dataset and avoids iterative

MapReduce jobs. The experiments show that their

approach performs better than the state-of-the-art

that do not use this distribution strategy. A few app-

roaches have also been proposed for Spark/RDDs[69, 70],

which use random distribution.

2.1.2 Parallel k-Means with Seed Selection

Initial seed selection is an important decision to

improve the overall performance of the k-means algo-

rithm. Various parallel seed selection algorithms have

been proposed in the literature. One of them is the

Scalable k-means++[71], which has been proposed for

the MapReduce framework. A more recent approach

was proposed in [22] for MPI-based systems. This ap-

proach not only gives an efficient parallel approach

for seed selection but also efficiently pre-processes the

data in parallel to make the parallel k-means efficient.

Both the above approaches typically employ random

data distribution. This is because, like k-means, these

are also embarrassingly parallel and do not require

fetching of extra points from other computing nodes.

2.1.3 Parallel k-Medoids and Bisecting k-Means

There is one MPI-based implementation for paral-

lel k-medoids[50] that uses a similar workflow as that

of parallel k-means. However, it uses space-filling

curves such as the Hilbert Curve and Dimension-Sort

Curve for partitioning the data amongst the comput-

ing nodes. These curves induce an ordering among the

data points, which is used for packing the points into

multiple computing nodes of the cluster. The induced

ordering achieves the preservation of spatial locality,

but not completely disjoint partitioning. Overall, the

algorithm's performance improves with the usage of

these curves.

A few MapReduce-based implementations of par-

allel k-medoids clustering include [72, 73]. A few

Spark-based implementations include [23, 74]. These

approaches usually employ random data distribution.

One variant of parallel bisecting-k-means (PBKP)

was proposed in the literature for MPI-based

systems[51]. This algorithm also uses random data dis-

tribution. Again, the overall workflow remains simi-

lar to that of parallel k-means, except that the num-

ber of clusters/centroids increases as more bisections

are performed.

2.2 Parallel Density-Based Clustering

2.2.1 Parallel DBSCAN

ϵ

ϵ

ϵ

DBSCAN is the most commonly used density-

based clustering algorithm[5]. It finds clusters of data

points with respect to two parameters (> 0) and

min_pts (> 0). It computes -neighborhood for each

point in the dataset and labels the point as core, bor-
der, or noise. A core point initiates a cluster and the

cluster is expanded by computing neighborhoods for

points in the -neighborhood of the above core point,

which is recursively repeated until no core point is

found. This completes the expansion of the cluster.

The next random point from the remaining unpro-

614 J. Comput. Sci. & Technol., May 2024, Vol.39, No.3

O(N logN)

cessed points is visited to extract another cluster and

this process continues until all the points are pro-

cessed. The time complexity of the DBSCAN algo-

rithm that uses R-tree for neighborhood queries, is

, where N is the size of the dataset.

O(N 2)

Early approaches to the parallelization of DB-

SCAN adopt the master-slave model for computa-

tion[52–57]. All these approaches simply distribute data

to the slave computing nodes randomly, while main-

taining data load balancing. The first such approach

is PDBSCAN[52], which uses dR*-tree for region

queries. dR*-tree is a variant of R*-tree[75] in which

R*-tree is replicated over multiple computing nodes

for efficient data access on a distributed system. The

local clusterings from all the slave nodes are aggregat-

ed to form global clustering in the master node. The

next approach presented in [53] proposes various opti-

mizations to DBSCAN and proposes a parallel ver-

sion, which follows a similar workflow as explained

above. The next approach given in [54] gives a paral-

lel DBSCAN algorithm in which, DBSCAN is divid-

ed into two major operations: clustering assignment

and neighborhood querying. The master node per-

forms clustering assignment while all slaves perform

neighborhood queries in parallel for their respective

partition of data obtained by random partitioning.

The next approach proposed in [55] also presents a

similar master-slave model-based parallel DBSCAN in

which each slave keeps a copy of an R*-tree to exe-

cute neighborhood queries. The major drawback of

such master-slave approaches is the serialized compu-

tation at the master node, which limits their scalabili-

ty to a larger number of computing nodes. Another

client-server model-based parallel DBSCAN has been

presented in [56], which uses OPTICS[6] for data par-

titioning to assign adjacent enumeration values to

similar objects. This is computationally expensive as

the cost of OPTICS itself is larger than . Ap-

proximate clustering is obtained as lower-bounding

distance values conservatively approximating the ex-

act clustering. The next approach[57] proposes a paral-

lel DBSCAN, named P-DBSCAN, which distributes

the data among several nodes, builds Priority R-tree

(R-tree variant) on each node, runs local DBSCAN,

and aggregates the local results to get global cluster-

ing results. It uses a kind of projection-based spatial

partitioning, where the data points are projected over

coordinate axes and the partitions are created in an

order exhibited by the projection (say from left to

right). This distribution ensures that the partitions

are spatially disjoint.

All the approaches described above incur high

communication cost between master and slave nodes.

Most of them have a sequential data access pattern.

Moreover, the parallelization during the merging

phase, in many cases, is limited due to the random

partitioning. And most importantly, they do not ex-

ploit the spatial locality required by neighborhood

queries used in DBSCAN during the data distribu-

tion phase. All of the above reasons render the mas-

ter-slave model inefficient for DBSCAN.

ϵ

ϵ

The first approach to DBSCAN that breaks the

sequential data access pattern solidly is PDSDB-

SCAN[24]. It uses union-find (UF) data structure,

which also makes it amenable to parallelization and

achieves better scalability. The authors presented the

parallel versions PDSDBSCAN-D and PDSDBSCAN-

S for distributed and shared memory systems, respec-

tively. PDSDBSCAN-D uses kd-tree based partition-

ing for data distribution, giving a completely disjoint

partitioning (see Fig.2). After partitioning, local clus-

tering is performed at each computing node, followed

by merging of the local clusterings into a global clus-

tering output. Before performing local clustering, each

computing node additionally fetches data lying in its

-extended boundary from the other nodes to com-

pute fully accurate -neighborhoods (see Subsection

3.4 for details). The completely disjoint nature of the

kd-tree based partitioning makes sure that this extra

data fetched is minimal, thereby reducing the commu-

nication overhead to a great extent.

A couple of heuristic-based approximate DB-

SCAN clustering algorithms—Pardicle[25] and BD-CA-

TS[26] were also proposed in the literature, which are

First Split Second Split Third Split






















 





Fig.2. kd-tree based data partitioning or KD-Split[24, 28].

Jagat Sesh Challa et al.: Survey and Experimental Review on Data Distribution for Spatial Clustering 615

based on PDSDBSCAN-D[24]. These two algorithms

are capable of processing massive datasets with some

approximation in the results. These algorithms use

density-based sampling for achieving efficient execu-

tion. Both the algorithms claim a high value of

omega-index (0.99), which shows that the clustering is

close to the actual clustering produced by that of tra-

ditional DBSCAN. Both the above algorithms also

use kd-tree based partitioning for data distribution

and have a similar workflow like that of PDSDB-

SCAN-D.

Recently, a grid-based parallel implementation of

DBSCAN, HPDBSCAN[27], has been proposed. This

approach uses a grid/cell-based data distribution ap-

proach. First, equal-size data is read by all p proces-

sors. A grid is overlaid on all the data, and then the

cells thus formed are re-distributed among the com-

puting nodes based on load-balancing cost heuristics.

The partitioning obtained is completely disjointed.

Then local computations are performed on each com-

puting node and then the results are merged into

global clustering. Another grid-based DBSCAN, Grid-

DBSCAN[28], has been proposed recently, which re-

duces the total number of neighbourhood queries as

well as the search space for each query while produc-

ing exact DBSCAN clustering output. It uses a vari-

ant of R-tree known as Grid-R-tree[76] that supports

efficient querying of cell-wise neighborhoods. GridDB-

SCAN is parallelized for distributed memory, shared

memory, and hybrid architectures. The distributed

memory version, GridDBSCAN-D, also uses kd-tree

based partitioning for data distribution, performs lo-

cal GridDBSCAN clustering on each node, and

merges the local clusterings in a tree-parallel way.

The experimental results claim better scalability and

run-time performance than the previous approaches.

Another approach is DBSCAN-MS[58], which is

specifically designed to work over general metric

spaces rather than conventional Euclidean spaces.

This uses kd-tree based partitioning for data distribu-

tion across multiple nodes, performs local clustering in

each of the nodes and then merges the local cluster-

ings to get a global clustering output. In the local

clustering phase, this algorithm uses pivot filtering

and the sliding window techniques for pruning the

search space. The experiments show better efficiency

when compared with the state-of-the-art.

Another approach presented in [77] proposes an it-

erative framework for distributed clustering of at-

tributed graphs using Personalized PageRank (PPR)

for distance computation and DBSCAN. The pro-

posed method is based on Blogel, a distributed frame-

work for iterative graph query processing. The paper

presents efficient strategies for iteratively updating at-

tribute weights and a game theory based approach to

refine clustering results for better effectiveness. The

paper also uses certain optimisations to reduce the re-

computation and communication costs. The experi-

mental results on real datasets indicate the method's

scalability, efficiency, and effectiveness.

ϵ× ϵ

Apart from MPI-based solutions, there are a few

solutions for GPGPU-based systems, MapReduce/

Hadoop, Spark, and hybrid systems. Mr. Scan algo-

rithm[42] was first introduced for GPGPU-based sys-

tems. It is an approximate algorithm that uses a tree-

parallel approach for merging of local DBSCAN clus-

terings. This algorithm divides the dataset into cells

of size (for 2D) and then packs the cells into the

computing nodes while achieving spatially disjoint

partitioning. It also gives good load balancing, al-

though not perfect. Then few representative points

from each cell are used to perform actual clustering,

which results in approximation. Mr. Scan was also

implemented on a hybrid (CPU+GPGPU) system. A

few other GPU-based parallel DBSCAN algorithms

proposed include [78, 79]. They employ random data

distribution.

A few MapReduce-based implementations for DB-

SCAN have also been proposed[80, 81]. Similarly, a few

Spark-based implementations have also been pro-

posed[29, 82, 83]. All of these use random data distribu-

tion.

Another novel parallel Density Peaks Clustering

algorithm has been proposed in [84], which is based

on MapReduce paradigm. The proposed LSH-DDP,

an approximate algorithm, exploits locality sensitive

hashing for partitioning data, performs local computa-

tion, and aggregates local results to approximate the

final results. Experiments show that it has good

speed-up without much compromise on the quality of

clustering.

2.2.2 Parallel OPTICS

OPTICS (Ordering Points To Identify the Clus-

tering Structure) is a hierarchical density-based clus-

tering algorithm[6]. OPTICS addresses DBSCAN\tex-

tquotesingle s major limitation: the problem of detect-

ing meaningful clusters of varying density. OPTICS

provides an overview of the cluster structure of a

616 J. Comput. Sci. & Technol., May 2024, Vol.39, No.3

ϵ min_pts

ϵ ⩽ ϵ

dataset with respect to density and contains informa-

tion about every cluster level of the dataset. To do so,

OPTICS generates a linear order of points where spa-

tially closest points become neighbors. Additionally,

for each point, a spatial distance (known as reachabil-

ity distance) is computed, which governs the density.

Once the order and the reachability distances are

computed using and , we can query for the

clusters at a particular value of ' ().

The first parallel version of OPTICS clustering is

POPTICSD[38], which first presents MST-OPTICS,

which is a re-engineered version of the original OP-

TICS algorithm. MST-OPTICS breaks the sequential

data access pattern of OPTICS and makes it

amenable to parallelization. POPTICSD is its paral-

lelization for distributed memory and uses random

data distribution. On each partition, a local MST is

constructed in the local computations phase, and all

those MSTs are merged into a global MST. The clus-

tering results obtained by this approach are compara-

ble but not exactly the same as those obtained by the

classical OPTICS algorithm. This is because the local

MSTs constructed for each partition are not fully cor-

rect as all the data required for the computation is

not locally available due to random partitioning. The

deviation from the actual clustering increases with the

increase in the number of processing elements. Their

experiments establish the algorithm's scalability with

increasing processing elements.

ϵ

ϵ

DOPTICS is another parallel approach[39] that us-

es kd-tree based data partitioning. The computing

nodes store their respective data partitions locally in

R-trees[85] over which OPTICS is run locally to ob-

tain local orderings. Each computing node fetches ex-

tra data lying in the -extended boundaries from oth-

er computing nodes before performing local OPTICS.

This extra data is required for computing fully accu-

rate -neighborhoods of points lying in the bound-

aries. Then, the local orderings obtained are hierarchi-

cally merged into a global final cluster ordering. The

final clustering obtained by DOPTICS is identical to

that by classical OPTICS. The experimental results

show significant speed-up and scalability with increas-

ing processing cores.

2.2.3 Parallel Shared Nearest Neighbor Clustering

Shared Nearest Neighbor Clustering (or SNN) is a

density-based clustering algorithm that uses two simi-

larity measures known as SNN-similarity and SNN-

ϵ

density[86]. SNN-similarity for two points is defined as

the number of shared neighbors if they are in each

other's nearest neighbors lists. SNN-density of a point

is the number of points that have SNN-similarity of

or greater to it. SNN clustering uses a DBSCAN-like

algorithm applied over the core points (using

SNNDensity and a min_pts threshold over it) to iden-

tify clusters of an arbitrary size and shape to filter

noise/outliers. It is especially suited for high-dimen-

sional data.

To the best of our knowledge, there is the only at-

tempt of parallelization of SNN for MPI-based clus-

ters[40]. It first presents the R-SNN algorithm, which

is a modification to the classical SNN algorithm, us-

ing R-tree for efficient nearest neighbors computa-

tions and is more optimized in terms of memory re-

quirement. Its parallelization is the Parallel R-SNN

that uses kd-tree partitioning in step 1, then local

computations are performed over each partition, and

then the local results are merged into a global cluster-

ing. The spatial partitioning ensures good load bal-

ancing and makes the merging step efficient. The ex-

perimental analysis shows the scalability of the pro-

posed approach.

A parallel JP-Clustering algorithm (that uses on-

ly SNN-similarity for clustering) for the MapReduce

framework has also been proposed[87]. A MapReduce

based SNN has also been presented in [88].

2.3 Parallel Hierarchical Clustering

Hierarchical clustering is also one of the popular

techniques of clustering. There are two kinds of hier-

archical clustering algorithms proposed in the litera-

ture.

1) Top-down, Also Known as Hierarchical Divi-
sive Clustering (HDC). It starts with considering all

the points in a single cluster and then recursively

splits the clusters until some criterion is met[1], which

could be a limit on the inter-cluster distances or the

number of clusters.

2) Bottom-up, Also Known as Hierarchical Ag-
glomerative Clustering (HAC). It starts with consider-

ing individual points as clusters and then repeatedly

merges the closest pairs of clusters until one of the

above criteria is met.

The result of any of the above clustering tech-

niques is a dendrogram, which is a tree-like structure

showing the clusters agglomerated at each level (refer

to [1] for details). There are many variants of HAC

Jagat Sesh Challa et al.: Survey and Experimental Review on Data Distribution for Spatial Clustering 617

O(n2) O(n2)

O(n2) O(n)

such as SLINK[9], AverageLINK[1], CLINK[1] and, Ge-

nie[89]. These variants differ from each other in terms

of the way the proximity distance between a pair of

clusters is defined. The most popular and widely used

variant is the single-linkage or SLINK algorithm that

has time and space complexity. Sibson's

variant of SLINK[9] is the best-known variant that has

 time and space complexity. This algo-

rithm merges a pair of clusters with minimum inter-

cluster distance at each iteration. It has reduced space

complexity by storing only a single row of the dis-

tance matrix at a time.

O(n2)

The early approaches of parallel hierarchical clus-

tering are based on similarity matrix[90–92]. The first

parallel hierarchical algorithm was presented in [90].

It has a time complexity of and was based on

the single instruction multiple data model (SIMD)

that uses a shuffle exchange network to access simi-

larity matrix and input data. The next approach was

presented in [91], which uses reconfigurable optical

buses (AROB) architecture. The limitations of the

above two approaches is that they are designed for

specialized parallel architectures. In 2005, an MPI-

based approach was presented[92]. In this approach,

the similarity matrix along with the data points is

distributed across multiple nodes and then synchro-

nized at each merging step. The clustering quality is

dependent on the chosen input parameter threshold.

The above similarity matrix based approaches incur a

high communication cost for iteratively updating the

similarity matrix. This limits their performance and

scalability, and renders them unfit for processing large

datasets. Note that the above approaches use ran-

dom distribution, and the use of spatial partitioning

has no effect on their performance.

An approximate parallel SLINK algorithm was

presented by Johnson and Kargupta[93] for distribut-

ed memory systems. In this algorithm, data communi-

cation is lowered by using lower and upper bounds for

the distances between any two given points. The up-

per and the lower bound refer to maximum possible

distance between two points and the distance value

stored in the lowest root of the subtree connecting the

two leaves in the dendrogram, respectively. Local den-

drograms using these bounds are merged to get the

global dendrogram.

Among more recent approaches, the SLINK algo-

rithm has been viewed as a Minimum Spanning Tree

(MST) problem[34]. This is because SLINK has ``the

same agglomerative nearest neighbor property" by

virtue of which, if a cluster has its nearest neighbor as

cluster i or cluster j, the merged agglomerative clus-

ter i+j will be the nearest neighbor of that cluster[37].

Many researchers have attempted to solve parallel

SLINK as a parallel MST construction problem. [94]

presents two parallel solutions for SLINK specific to

the shared memory PRAM model and distributed

memory parallel machine with butterfly architecture.

Then, an MPI-based distributed memory parallel clus-

tering algorithm, known as CLUMP was proposed[37].

They consider whole data as a graph, which is parti-

tioned randomly into smaller sub-graphs composed of

complete bipartite graphs. Then an MST is comput-

ed for each sub-graph. They also compute MSTs for

self-edges and cross-edges by distributing the load

among multiple nodes. These local MSTs are then

merged to get the final MST. The basic idea is to

minimize the communication cost at the expense of

redundant computations. Another approach was pre-

sented in [59], which gave an efficient parallel hierar-

chical algorithm using parallel Euclidean Minimum

Spanning Tree (EMST). This approach assumes that

the data points are uniformly distributed, allowing for

partitioning of the data space into uniform grids.

(
k

2

)

The next parallel MPI-based algorithm was

PINK[34], which is similar to CLUMP. They also mini-

mize the communication cost by decomposing the

problem into sub-problems that removes redundant

computations at the same time. This approach parti-

tions the data into k equal partitions randomly and

assign each possible combinations to various

nodes for cross-edge and self-edge computations. At

each node, a local clustering is performed where an

MST is computed locally. Then these MSTs are

merged into a global MST resulting in the final den-

drogram. The major drawback of this technique is

that, for increasing k (and so p), redundant data will

keep on increasing exponentially which may affect the

scalability of the algorithm. A similar algorithm

known as SHRINK[36] was also proposed for shared

memory systems. Both the above approaches use the

Union-Find data structure for merging clusters at

each iteration.

The Sibson's SLINK algorithm does not take into

account spatial locality of data. And thus all its par-

allelizations (discussed above) use random data distri-

bution. The data partitioning scheme has no affect on

the performance of the algorithm. An efficient HAC

algorithm known as Partially Overlapping Partition-

ing (POP) has been proposed which exploits spatial

618 J. Comput. Sci. & Technol., May 2024, Vol.39, No.3

δ

δ

locality[95]. The pPOP algorithm[60] is a parallel imple-

mentation of the POP algorithm for shared memory

architectures. pPOP is an HAC algorithm that has

two phases. Data is partitioned into p overlapping

cells, in the first phase. In each iteration, the closest

pair in each cell is found to obtain the overall closest

pair. If the overall closest pair is less than an overlap

threshold, , those pairs are merged. If the distance of

the closest pair exceeds , phase 2 performs hierarchi-

cal clustering. The authors also proposed the design of

a data structure called a hyper-plane clustering tree

(hpc-tree) for indexing higher-dimensional data.

The most recent parallel version of SLINK is

dGridSLINK[35]. It is a parallel version of the Grid-

SLINK algorithm (proposed by the same authors).

GridSLINK exploits spatial locality of data while pro-

cessing, and reduces the number of distance calcula-

tions while producing the exact dendrogram as that of

classical SLINK. GridSLINK has been parallelized for

distributed memory (dGridSLINK), shared memory

(sGridSLINK) and hybrid architectures (hGrid-

SLINK). dGridSLINK ensures load-balancing by spa-

tially distributing equal amounts of data to multiple

nodes using a spatial distribution and adaptive grid-

ding (referring to Subsection 3.5 for details). After da-

ta distribution, at each node GridSLINK is executed

leading to local MSTs. Local computations in Grid-

SLINK are more optimal than in PINK as this ex-

ploits spatial locality attained by the grid. Then the

local MSTs are merged into a global MST in a tree-

parallel way to get the final dendrogram.

Apart from these a few MapReduce and Spark-

based implementations have also been proposed[96, 97].

They employ random distribution. Recently, another

Spark-based parallel hierarchical clustering algorithm

for complete linkage, known as PACk has been pro-

posed in [98]. PACk uses distance-aware partitioning

to partition the data to include a set of nearest neigh-

bours in the same partition for each item. It thereby

allows more merges to happen within each partition.

This algorithm also uses a distance-aware merging al-

gorithm that computes distance bounds to safely

merge as many mutual nearest neighbours as possible

inside a partition. The experimental results show its

better performance when compared with the state-of-

the-art.

2.4 Parallel Subspace Clustering

Subspace clustering algorithms are specifically de-

signed for processing high-dimensional datasets. It is

δ

possible that data points might have been drawn from

multiple subspaces and the membership of points to

those subspaces is unknown. Another problem associ-

ated with the processing of high-dimensional data is

the curse of dimensionality. The conventional similari-

ty measures become unfit for processing such high-di-

mensional data. Subspace clustering algorithms are a

solution to the above problems. They cluster data in-

to multiple subspaces and find a low-dimensional sub-

space fitting each cluster. There are two kinds of sub-

space clustering algorithms, top-down and bottom-up.

The top-down subspace clustering algorithms pro-

duce highly disjoint clusters using partitioning-based

clustering approaches. A few top-down subspace algo-

rithms include PROCLUS[13], ORCLUS[14], FINDIT[15],

-Clusters[99], COSA[100], and LAC[101]. Bottom-up

subspace clustering is similar to finding frequent item-

sets using the apriori principle. Clusters are first

found for every single dimension, and then dimen-

sions are added to find clusters in higher dimensions

in the same way as that of apriori. Dimensions are

added until cluster quality is preserved. The anti-

monotonic property is used to prune away infrequent

or irrelevant subspaces. Commonly used grid-based

bottom-up subspace clustering algorithms include

CLIQUE[10], MAFIA[11], ENCLUS[12], SCHISM[102],

and CBF[103]. Also, there are a few density-based bot-

tom-up subspace clustering algorithms that include

SUBCLUE[104], FIRES[105], DUSC[106], INSCY[107], and

SUBSCALE[108].

Literature reveals very few approaches to parallel

subspace clustering on distributed memory architec-

tures. The first such approach is the parallelization of

MAFIA known as PMAFIA[61]. This algorithm uses

random distribution, and then performs local compu-

tations on each node, whose results are then merged

into a global output. A GPU-based parallelization of

MAFIA has also been presented in [32].

More recently a parallel framework[33] has been

presented for grid-based bottom-up subspace cluster-

ing algorithms like CLIQUE, MAFIA, ENCLUS,

SCHISM, and CBF. This framework has five major

steps: 1) gridding, 2) finding dense units, 3) candi-

date unit/subspace generation for the next iteration,

4) steps 2 and 3 are repeated until no dense units are

found, and 5) cluster extraction. These steps are com-

mon to the above bottom-up subspace clustering algo-

rithms. The parallel framework first distributes the

data randomly over the computing nodes, and then

every node executes steps 1–3 iteratively. At each it-

Jagat Sesh Challa et al.: Survey and Experimental Review on Data Distribution for Spatial Clustering 619

eration, a local trie is generated at every node, which

is communicated to the master to form a global trie

for dense unit identification. This is repeated until the

algorithm converges. Finally, the clusters are extract-

ed at the master node from the aggregates received.

The above approaches use random data distribu-

tion and do not rely on spatial locality by their de-

sign. Hence, we do not consider them for experimen-

tation in Section 4.

Apart from the above, the top-down subspace

clustering algorithm LAC has been parallelized for

shared memory architecture, known as PLAC[31]. A

spark-based parallelization of the SUBCLUE algo-

rithm, known as CLUS, is also presented in [109].

More recently, a grid-based parallel subspace cluster-

ing algorithm known as PSCEG[110] has also been pre-

sented for Spark. A MapReduce-based parallel sub-

space clustering is presented in [111]. All of these ap-

proaches employ random data distribution.

3 Data Distribution Strategies

We now describe the data distribution strategies,

including existing strategies (Random, KD-Split,

Quad-Split) and proposed strategies (PD-Split, CD-

Split, and Pbased-Split), and their impact on parallel

clustering algorithms. Most of the illustrated

existing/proposed distribution strategies are only

slightly different in their approach to partitioning.

However, they cause a considerable effect on the over-

all performance of the parallel clustering algorithms,

which can be evidently seen from experiments pre-

sented in Section 4.

Let N and d be the size and dimensionality of the

dataset, respectively, and p be the total number of

computing nodes or processing elements in the clus-

ter.

3.1 Random Partitioning

N/p

In random partitioning, data points are randomly

distributed to the computing nodes of the cluster. In

practice, the first chunk of data points are as-

signed to the first computing node, the next chunk to

the second node, and so on. Data load balancing is

maintained in the distribution to achieve better per-

formance, i.e., each computing node gets an equal

number of data points. A few examples of the algori-

thms that use random partitioning include [21, 34, 38].

In general, random partitioning is suitable for algo-

rithms that are embarrassingly parallel (like k-means).

When used for density-based or hierarchical cluster-

ing algorithms, we are not making the best use of the

algorithm's inherent spatial pattern of execution,

which degrades their performance. Instead, it is bet-

ter to use one of the spatial partitioning schemes (ex-

plained below), which captures such inherent spatial

patterns.

3.2 kd-Tree Based Split

kd-tree based split or KD-Split is the most com-

monly used spatial partitioning technique for data

distribution[24, 28, 33, 39, 40]. This technique recursively

divides data amongst the computing nodes based on

an axis-aligned split (see Fig.2). For every division,

the axis that has the largest spread is chosen and the

split is performed based on the median for perfect da-

ta load balancing. The recursive division continues

until the total number of partitions is equal to the to-

tal number of computing nodes. Since load balancing

is maintained at each split, each computing node gets

an equal number of data points. Fig.2 illustrates KD-

Split for p=8. It shows stage-by-stage splitting, where

the median for each split is chosen across the dimen-

sion that has the largest spread.

3.3 Quad-Tree Based Split

2d

Quad-tree based split or Quad-Split is a spatial

partitioning technique that employs the splitting

method used by quad-trees (used in [48]). For each

split, the data is split in partitions of equal sizes as

shown in Fig.3. The partitioning continues recursive-

ly until the number of partitions is equal to the num-

ber of computing nodes. This kind of data distribu-

tion produces spatial disjointed partitions but does

not guarantee data load balancing, especially when

applied over skewed datasets. Hence, quad-tree is not

commonly used for data distribution. kd-tree based

distribution is better than that of quad-tree as it

achieves good load balancing.

First Split Second Split









   

   

   

   

Fig.3. Quad-tree based data partitioning or Quad-Split[48].

620 J. Comput. Sci. & Technol., May 2024, Vol.39, No.3

3.4 Parameterized Dimensional Split

Parameterized Dimensional Split or PD-Split is

the first proposed partitioning scheme (Fig.4). This is

specifically designed for parallel density-based cluster-

ing algorithms[24, 28, 39]. This partitioning scheme

strives to minimize the communication overhead re-

quired during their execution. A typical parallel densi-

ty-based clustering algorithm has the following execu-

tion layout.

● In step 1, data is distributed to the computing

nodes using a spatial partitioning scheme (typically

KD-Split).

ϵ

ϵ

M212

M121 M122 M211 M222

ϵ

● In step 2, every computing node requests for da-

ta points from other nodes, which are lying within -

extended boundaries of a local node. is a user-de-

fined density parameter. This is depicted in Fig.5 for

kd-tree partitioning, where node requests data

points from nodes , , , and . These

data points are required for computing exact -neigh-

borhoods for the points lying near the boundaries of

the local computing node. After every computing

node fetches data from the other nodes, local compu-

tations are performed where DBSCAN is performed

on the local data with the help of additionally re-

trieved data.

● In step 3, local clusterings are merged into a

global clustering output.

Exploiting this execution layout, we try to mini-

⩽ 2ϵ

M11

2ϵ

mize the communication overhead that occurs during

step 2 of the algorithm by modifying the kd-tree par-

titioning scheme. Instead of computing a new axis for

each division, we let the division happen across the

initially chosen dimension until a threshold is reached.

The threshold is on the width of the cell along the

chosen splitting axis. If a division is causing a cell's

width to be a threshold , we then choose the next

dimension that has the largest spread for the division.

Fig.4 illustrates this. In the first and the second

splits, the division has occurred only along the x-axis.

However, in the third recursive split, partition

was divided along y-axis. This is because the width of

one of the cells resultant of splitting this partition

along the x-axis, was becoming lesser than . There-

fore, the axis for the division was changed.

ϵ

M212

Figs.5 and 6 illustrate the the -extended strips

(also known as halo region) for partition for KD-

Split and PD-Split, respectively. It is clear from the

figure that the halo region spawns four partitions in

the case of KD-Split and only two partitions in the

case of PD-Split. When the dimensionality of the

dataset increases, the number of nodes overlapping

can even be more in KD-Split partitioning as the axis

for split keeps changing for every division. Therefore,

PD-Split reduces the data required to be communicat-

ed in steps 2 and 3 of a parallel density-based cluster-

ing algorithm as it reduces the number of nodes to be

approached for acquiring extra data points.

First Split Second Split Third Split

     









 






























Fig.4. PD-Split data partitioning.

  












ϵ M212Fig.5. -extended regions for computing node in case of
KD-Split.

     





ϵ M212Fig.6. -extended regions for computing node in case of
PD-Split.

Jagat Sesh Challa et al.: Survey and Experimental Review on Data Distribution for Spatial Clustering 621

2ϵ

ϵ ϵ

M121 ϵ ϵ

M112 M122

M121

M122

2ϵ

Note that the threshold on the width of each re-

sultant partition has been chosen to be . This is be-

cause if the width of the partition becomes less than

, the -extended strip might spawn to multiple parti-

tions across the same axis. For example, in Fig.6, if

the width of partition is lesser than , the -ex-

tended strip of can spawn to machine as

well, which means that we are including all of

and some portion of as well. This becomes a

huge communication cost. Therefore, we restrict the

width of each cell to be larger than and whenever

a split can cause the width to go less than this value,

we change our splitting axis.

3.5 Cell-Based Dimensional Split

Cell-based Dimensional Split or CD-Split is our

second proposed partitioning scheme. This scheme has

been specifically designed for grid-based parallel

SLINK (dGridSLINK) algorithm and has been intro-

duced in [35]. dGridSLINK is the only MPI-based

parallel variant of SLINK that uses the spatial distri-

bution of data points.

CellSizeinit/r

d
√

RegionSize× τ/N

τ

The CD-Split partitioning is performed using grid-

ding and median-based split. It is similar to PD-Split,

and additionally uses gridding. Initially, a uniform

virtual grid is overlaid on the entire data space, with

an initially chosen cell size: . Cell-
Sizeinit is the cell size parameter of the GridSLINK

algorithm and r (> 1) is a constant. For example,

CellSizeinit is calculated using the formula

, where RegionSize is the vol-

ume of the data-space occupied by the points in the

dataset, N is the size of the dataset and is a user-

defined threshold on the maximum number of points

we wish to keep in a cell. After gridding, we recursive-

ly split the data space into equal partitions by first

splitting along one dimension, similar to PD-Split.

Each split is a median-based split. However every

time, the splitting axis is aligned with the nearest cell

boundary as illustrated in Fig.7. The change in the

dimension for splitting in case of CD-Split, however,

ϵis triggered by the cell size threshold, instead of -

threshold like in PD-Split. The dimension for split-

ting is changed when the partition width can fit in

only one cell across the current dimension. The total

number of dimensions across which splitting is per-

formed usually remains small, similar to PD-Split.

As mentioned before, CD-Split is designed for the

dGridSLINK algorithm, but can be used for many

grid based parallel aglorithms. The dGridSLINK algo-

rithm internally performs local gridding in the local

computations phase and performs the SLINK cluster-

ing using the internal grid info. The local computa-

tions phase also makes use of the global gridding and

partitioning performed (with axis alignment to the

grid) during the data distribution phase. This makes

the local computations faster as the partitioning is

in accordance with gridding. One can use KD-Split

or Pbased-Split (to be explained next) instead of

CD-Split as well. However, the algorithm is expected

to run slower for them as they do not do the split-ax-

is alignment. This is substantiated by experiments

presented in Subsection 4.3 (for more details, refer

to [35]).

3.6 Projection-Based Split

α α

Projection-based split, or Pbased Split, is our

third proposed partitioning scheme. This is a generic

strategy and is not designed for any specific algo-

rithm. In this partitioning, the axis with the largest

spread is chosen, and the data is recursively divided

into partitions based on the median. Each division is

done along the same axis. The recursive division con-

tinues until each partition (or cell) contains a total

number of points smaller than , where is the pa-

rameter threshold. Fig.8 illustrates this split.

After the division is complete, all the cells formed

are projected onto the axis chosen for splitting. The

cells formed in Fig.8(a) are projected over x-axis. This

results in an ordering (increasing order) among the

cells over their x-coordinate values. Following this in-

creasing order, contiguous cells are packed together

Gridding First Split Split Adjusted

Fig.7. Sample division in CD-Split.

622 J. Comput. Sci. & Technol., May 2024, Vol.39, No.3

⌈N/p⌉

α

into non-overlapping groups (or partitions) in such a

way that each group does not contain more than

 points (Fig.8(b)). This scheme results in load

balancing, which is very close to perfect load balanc-

ing. We can observe that the smaller the value of

is, the better the load balancing would be.

3.7 Analyzing PD-Split and Pbased-Split

ϵ

We observe that PD-Split and Pbased-Split fol-

low similar principles while partitioning, except that

the splitting axis never changes in Pbased-Split. Both

of these distribution strategies are intended to reduce

the number of nodes communicated during steps 2

and 3 of the parallel clustering algorithm, and thus

reduce the communication overhead when compared

with KD-Split. This is achieved by minimizing the

number of computing nodes that overlap with the -

extended boundaries of data present in any given

computing node. The benefit is more tangible while

processing high-dimensional datasets as they signifi-

cantly reduce the number of overlapping computing

nodes when compared with KD-Split. This is substan-

tiated by the results presented in Figs.9 and 10.

ϵ

ϵ

However, in certain circumstances, both these

strategies could increase the total number of data

points transferred, despite accessing less computing

nodes. This could happen when the perimeter of the

-extended region increases, which in turn can arise

with an increase in the value of . This problem could

be more severe in the case of Pbased-Split, as the di-

viding axis is never changed. All of this is substantiat-

ed by the results presented in Fig.11.

Also, note that PD-Split and Pbased-Split are ex-

pected to give better performance than KD-Split in

case of heterogeneous architectures and parallel se-

tups with low-bandwidth interconnect, as they signifi-

cantly reduce the number of computing nodes to be

communicated.

3.8 Data Distribution Strategies for Very

Large Datasets

The distribution strategies described in Subsec-

tions 3.1–3.7, load the entire data into main memory

for computing the partitioning splits. However, while

processing very large datasets (billions of floating

points), the memory associated with the node per-

forming the partitioning may not be sufficient to load

the entire dataset. This makes those methods unfit for

distributing very large datasets. To handle such sce-

narios one can use sampling-based techniques for da-

ta distribution. One such technique has been pro-

posed in [26, 41], which is named as A-KD-Split.

1) All the data points are randomly distributed to

all the computing nodes in the cluster.

2) A small fraction of data points are randomly

selected from each computing node and are broadcast-

ed to all other nodes in the cluster.

xm ym

3) Every computing node has the same data sam-

ple now. Each computing node now computes the first

median for splitting over that global sample. The me-

dians computed across all the nodes would be exactly

the same (say (,) for a 2-D dataset).

xm ym

xm

xm

4) Every computing node now partitions the data

it has into two partitions, with respect to the median

(,). The axis that has the maximum spread is

chosen for splitting (say x-axis for illustration purpos-

es). One partition would contain data objects that lie

on the left side of the median (objects whose x-coordi-

nate value is less than). The other partition con-

tains data objects that lie on the right side of the me-

dian (objects whose x-coordinate value is greater than

or equal to).

(a) (b)

     

     

Fig.8. Pbased-Split. (a) Initial partitioning into cells. (b) Final partitioning after packing.

Jagat Sesh Challa et al.: Survey and Experimental Review on Data Distribution for Spatial Clustering 623

5) Then in a pair of 2, computing nodes exchange

their left and right partitions such that one comput-

ing node gets the entire left half and the other gets

the entire right half, with respect to the global medi-

an and the axis chosen to split. This has created two

global partitions amongst the computing nodes of the

cluster. Half of the nodes contain data lying towards

the left of the median and the other half of the nodes

contain data lying towards the right of the median.

6) Now for all the machines that contain data of

the left partition, steps 2–4 are repeated recursively.

They are also recursively repeated for machines in the

right partition. In this way, at the end of the parti-

tioning procedure, data contained in each computing

node would be completely disjoint.

log p
7) Thus, this algorithm achieves disjoint partition-

ing in iterations.

Note that this partitioning scheme may not lead

to perfect load balancing. However, it is experimental-

ly observed to give reasonably good load balancing

(see Subsection 4.2). Also, note that the approximate

versions of PD-Split (A-PD-Split) and CD-Split (A-

CD-Split), are also designed similarly. In the case of

A-PD-Split, the nodes shall also have to additionally

keep track of and communicate the dimension of the

split. In the case of A-CD-Split, the initial virtual grid

is to be calculated globally by inter-node communica-

tion, and a copy of the gridding information is to be

broadcasted to each node. Then the splitting starts

similarly to that of A-KD-Split, except that the di-

mension across with the split has to happen shall

change as per the cell size. Also, at every split, the

split-axis is aligned with the nearest cell boundary of

the global grid. For the case of Pbased-Split, such an

iterative distribution is not possible. The entire parti-

tioning has to happen on the first taken sample and

the data points are eventually distributed to their re-

spective partitions, without any kind of iterative re-

0

50

100

150

200

250

300

350

400

450

500

4 8 16 32 64 128

Number of Computing Nodes

(b)(a)

4 8 16 32 64 128

Number of Computing Nodes

(c)

0

1

2

3

4

5

6

7

8

4 8 16 32 64 128

Number of Computing Nodes

(d)

0

50

100

150

200

250

300

350

400

450

4 8 16 32 64 128

Number of Computing Nodes

(e)

4 8 16 32 64 128

Number of Computing Nodes

(f)

0

2

4

6

8

10

12

14

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

4 8 16 32 64 128

E
x
e
c
u
ti
o
n
 T

im
e
 (

s)
E
x
e
c
u
ti
o
n
 T

im
e
 (

s)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s)
E
x
e
c
u
ti
o
n
 T

im
e
 (

s)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s)
E
x
e
c
u
ti
o
n
 T

im
e
 (

s)
0

2

4

6

8

10

12

14

Number of Computing Nodes

KD-Split

Pbased-Split

PD-Split

KD-Split

Pbased-Split

PD-Split

KD-Split

Pbased-Split

PD-Split

KD-Split

Pbased-Split

PD-Split

KD-Split

Pbased-Split

PD-Split

KD-Split

Pbased-Split

PD-Split

103

103

103

103

Fig.9. Performance of the GridDBSCAN-D algorithm for various data distribution strategies with various number of computing
nodes of the cluster, over the (a) 3DSRN, (b) Bertone8M3D, (c) MPAHALO2.8M9D, (d) MPAGD100M3D, (e) SBus8M2D, and (f)
MPAGD7M30D datasets.

624 J. Comput. Sci. & Technol., May 2024, Vol.39, No.3

E
x
e
c
u
ti
o
n
 T

im
e
 (

s)
E
x
e
c
u
ti
o
n
 T

im
e
 (

s)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s)
E
x
e
c
u
ti
o
n
 T

im
e
 (

s)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s)
E
x
e
c
u
ti
o
n
 T

im
e
 (

s)
0

2

4

6

8

10

12

14

16
103103

0

1

2

3

4

5

6

4 8 16 32 64 128

Number of Computing Nodes

(a)

0

50

100

150

200

250

300

350

4 8 16 32 64 128

Number of Computing Nodes

(b)

0

100

200

300

400

500

600

700

800

4 8 16 32 64 128

Number of Computing Nodes

(c)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

4 8 16 32 64 128 4 8 16 32 64 128

Number of Computing Nodes

(d)

0

50

100

150

200

250

300

350

400

450

500

Number of Computing Nodes

(e)

4 8 16 32 64 128

Number of Computing Nodes

(f)

KD-Split

Pbased-Split

PD-Split

KD-Split

Pbased-Split

PD-Split

KD-Split

Pbased-Split

PD-Split

KD-Split

Pbased-Split

PD-Split

KD-Split

Pbased-Split

PD-Split

KD-Split

Pbased-Split

PD-Split

Fig.10. Performance of the PDSDBSCAN-D algorithm for various data distribution strategies with various number of computing
nodes of the cluster, over the (a) 3DSRN, (b) Bertone8M3D, (c) MPAHALO2.8M9D, (d) MPAGD100M3D, (e) SBus8M2D, and (f)
MPAGD7M30D datasets.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.6 0.8 1.0 1.2 1.4 1.6 1.8

Epsilon ()

(a)

0.0

0.4

0.8

1.2

1.6

2.0

0.6 0.8 1.0 1.2 1.4 1.6 1.8

Epsilon ()

(b)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s)

103103

KD-Split

Pbased-Split

PD-Split

KD-Split

Pbased-Split

PD-Split

ϵFig.11. Performance of (a) GridDBSCAN-D and (b) PDSDBSCAN-D with variation in for various distribution strategies over 32
computing nodes for the MPAGD100M3D dataset.

Jagat Sesh Challa et al.: Survey and Experimental Review on Data Distribution for Spatial Clustering 625

finement. This may not result in good load balancing

and hence we omit it for further discussion.

4 Experiments

4.1 Experimental Setup

All experiments are conducted on a cluster of 32

computing nodes, which are IBM x3250 m4 servers

that are connected via gigabit ethernet. Each server

has an Intel Xeon (64-bit) processor and 32 GB

RAM. All implementations are in C/C++ with MPI.

The details of the datasets used for experimentation

are given in Table 2. The 3DSRN[112] dataset con-

tains geographical information (latitude, longitude,

and altitude) of road networks in Denmark. The

MPAGD, Bertone, MPAHALO, and FOF datasets

are taken from Millennium data repository[113] that

contains astronomical data of galaxies. The SBus

dataset① contains GPS traces of buses in Shanghai.

We synthetically generate the SR10M3D, SU10M3D,

and SN10M3D datasets, whose description is given in

Subsection 4.4.

MPI_Wtime()
α

The execution time for each experiment has been

measured using of the MPI library. The

default value of is chosen to be 1 000 for Pbased-

Split. This is small enough for handling data of mil-

lions scale to achieve good load balancing. For ap-

proximate distributions based on sampling, we choose

10% points of the dataset as the sample. Note that for

datasets of size larger than 20M, we use approximate

sampling-based distributions.

We evaluate the proposed data distribution

strategies in terms of 1) data load balancing achieved,

and 2) performance of various parallel spatial cluster-

ing algorithms. The results are presented as follows.

4.2 Data Load Balancing Achieved

Table 3 shows the data load balancing achieved

for each of the distribution strategies for the

FOF57M3D dataset. Each value in the table denotes

the number of data points received per computing

node. As explained earlier, random partitioning, KD-

Split, and PD-Split achieve perfect load balancing.

Pbased-split achieves near perfect load balancing be-

cause of the packing techniques it employs as ex-

plained in Subsection 3.6. Similarly, CD-Split also

achieves near perfect load balancing as the splitting

boundaries get aligned with grid/cell boundaries (as

explained in Subsection 3.5). Please note that a simi-

lar load balancing has been observed for the other

datasets as well.

4.3 Performance of Parallel Spatial

Clustering Algorithms

4.3.1 Parallel DBSCAN

ϵ

We compare the performance of PDSDBSCAN-

D[24] and GridDBSCAN-D[28] for various distribution

strategies. The value for each dataset has been giv-

en in Table 2. The value of min_pts has been set to 5.

Fig.9 and Fig.10 present the performance of GridDB-

SCAN-D and PDSDBSCAN-D respectively, for KD-

Split, Pbased-Split, and PD-Split distributions for

Table 2. Details of Datasets Used for Experimentation and Their Experimental Parameters

Dataset Size Number of
Dimensions

Parameter for PDSDBSCAN-D
and GridDBSCAN-D

3DSRN[112] 434K 3 ϵ=0.01, min_pts=5

Bertone8M3D[113] 8M 3 ϵ=2, min_pts=5

MPAHALO2.8M9D[113] 2.8M 9 ϵ=30, min_pts=5

MPAGD100M3D[113] 100M 3 ϵ=1, min_pts=5

SBus8M2D* 8M 2 ϵ=1, min_pts=5

MPAGD7M30D[113] 7M 30 ϵ=6, min_pts=5

MPAGD2M30D[113] 2M 30 ϵ=6, min_pts=5

MPAGD16M3D[113] 16M 3 ϵ=2, min_pts=5

FOF57M3D[113] 57M 3 ϵ=3, min_pts=5

SR10M3D 10M 3 ϵ=0.01, min_pts=5

SU10M3D 10M 3 ϵ=0.01, min_pts=5

SN10M3D 10M 3 ϵ=0.01, min_pts=5

626 J. Comput. Sci. & Technol., May 2024, Vol.39, No.3

①SUVN trace data. http://wirelesslab.sjtu.edu.cn/, Sept. 2015.

http://wirelesslab.sjtu.edu.cn/

various datasets executed over an increasing number

of computing nodes. The results show that PD-Split

and KD-Split are competitive in execution perfor-

mance. We can observe that for a smaller number of

computing nodes, PD-Split is better than KD-Split.

However, with the increase in the number of comput-

ing nodes, both of them give almost the same perfor-

mance. For high-dimensional datasets (MPAGD7M-

30D and MPAHALO2.8M9D), PD-Split works much

better than KD-Split, even at more computing nodes.

This is because of the reduced communication over-

head in steps 2 and 3 of both the algorithms, as ex-

plained in Subsection 3.4. This is also substantiated

by the split-up time of various steps of the algo-

rithms presented in Table 4 and Table 5. PD-Split

improves overall execution time as well as the execu-

tion time of each step of the algorithm. The results of

the 3DSRN dataset are erratic at a higher number of

computing nodes, because of insufficient data to be

processed for such a large number of processors.

Next, we conduct an experiment to measure the

performance of both the parallel algorithms with vari-

ϵ

ϵ

ϵ

ϵ

ation in value. Figs.11(a) and 11(b) present the re-

sults, which show that PD-Split works better for low-

er values of . Whereas, KD-Split is found to domi-

nate for higher values of . This is because, at higher

values of , the communication cost of Pbased-Split

and PD-Split becomes higher as explained in Subsec-

tion 3.7.

4.3.2 Parallel SNN

ϵ

min_pts ϵ

In this subsection, we evaluate the performance of

the dR-SNN algorithm[40]. The values of the parame-

ters chosen for experimentation are: k=30, =12, and

=15, for all datasets. Note that of SNN is

different from that of DBSCAN. It is a threshold on

the number of data points in the case of SNN and a

threshold on the distance in the case of DBSCAN.

Fig.12 presents the execution time of dR-SNN for

KD-Split and Pbased-Split distributions for various

datasets executed over an increasing number of com-

puting nodes. The results clearly show that KD-Split

has always been better than Pbased-Split. This is be-

cause: 1) kNN queries work better in the case of glob-

ular regions, and 2) KD-Split produces more cubical-

shaped regions in comparison with Pbased-Split.

Therefore, the merging step in dR-SNN requires more

communication in the case of Pbased-Split. This is be-

cause, in the case of Pbased-Split, the number of

points that participate in the merging step is large.

Both these arguments are substantiated by the split-

up values presented in Table 6, which clearly shows

the difference in the local computations step, as well

as the merging step.

4.3.3 Parallel SLINK

τ = 300

τ

Fig.13 presents the performance of dGridSLINK[35]

(with parameter) for KD-Split, Pbased-Split,

and CD-Split distributions for various datasets exe-

cuted over an increasing number of computing nodes.

The value of , dictating the initial cell size, has been

set to 300 as per the recommendations given in [35].

The results clearly show that CD-Split has always

been better. This is because of the time reduction in

the global merging step, which was made possible by

adjusting the partition boundaries to align with grid

boundaries. The split-up of the execution time of vari-

ous algorithm steps is presented in Table 7 for the

MPAGD16M3D dataset. The results clearly show

that CD-Split takes more time to distribute data, due

to the extra load of aligning splits with grid/cell

Table 3. Number of Data Points Received by Each Comput-
ing Node for Various Data Distribution Strategies with Vari-
ous Number of Computing Nodes (p), for Dataset FOF57M3D

Distribution
Strategy

p=16 p=32

Random 3 561 887 1 780 944

KD-Split 3 561 887 1 780 944

PD-Split 3 561 887 1 780 944

Pbased-Split 3 541 062 to 3 571 329 1 721 712 to 1 813 961

CD-Split 3 498 032 to 3 638 541 1 597 254 to 1 862 171

A-KD-Split 3 397 251 to 3 795 134 1 584 754 to 1 922 658

A-PD-Split 3 344 652 to 3 786 249 1 571 113 to 1 911 904

A-CD-Split 3 285 412 to 3 799 763 1 523 624 to 1 924 521

Table 4. Split-up of Execution Time (s) of Various Steps of
GridDBSCAN-D for Dataset MPAGD100M3D

Step KD-Split Pbased-Split PD-Split

Data distribution +
retrieval of extra points

26.58 37.23 19.33

Local computations 1 174.91 1 673.60 1 023.45

Merging 167.92 287.34 149.34

Total time 1 369.43 1 998.23 1 192.12

Table 5. Split-up of Execution Time (s) of Various Steps of
PDSDBSCAN-D for Dataset MPAGD100M3D

Step KD-Split Pbased-Split PD-Split

Data distribution +
retrieval of extra points

26.58 37.23 19.33

Local computations 376.23 508.72 305.53

Merging 92.51 138.01 79.23

Total time 468.72 683.95 404.09

Jagat Sesh Challa et al.: Survey and Experimental Review on Data Distribution for Spatial Clustering 627

boundaries. However, the time saved in local compu-

tations and merging steps compensates for it. The

merging time is especially very low for CD-Split for

the above reasons. On the whole, CD-Split is better.

4.4 Experiments on Synthetic Data

In this subsection, we analyze the performance of

parallel clustering algorithms on synthetic datasets of

various characteristics. We specifically use three

datasets: SR10M3D, SU10M3D, and SN10M3D. All

three datasets contain 10M data points with three nu-

µ

σ

merical dimensions. All coordinate values of data

points lie in the range [–1, 1]. SR10M3D has its data

objects randomly distributed, whereas SU10M3D con-

tains data objects that are uniformly distributed

across the space. The SN10M3D dataset contains da-

ta objects in a normal distribution with =(0, 0, 0)

and =0.2. The parameter values of these datasets

chosen for experimentation are depicted in Table 2.

We execute all four parallel clustering algorithms

(PDS-DSBCAN-D, Grid-DBSCAN-D, dR-SNN, and

dGridSLINK) for 16 and 32 nodes over various data

distributions, and measure their running time. The re-

sults presented in Table 8 show that the algorithms

run faster for the random and uniform distributions,

with uniform distribution being the fastest. However,

for the normal distribution dataset, the execution

time is very high for all algorithms and all data distri-

butions. This is because, the density of data objects in

each node varies a lot, which leads to very high local

0

5

10

15

20

25

4 8 16 32 64 128

(a)

0

1

2

3

4

5

6

7

4 8 16 32 64 128

(b)

0

1

2

3

4

5

4 8 16 32 64 128

(c)

0

1

2

3

4

4 8 16 32 64 128

(d)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s)

105

105104

KD-Split
Pbased-Split

KD-Split
Pbased-Split

KD-Split
Pbased-Split

KD-Split
Pbased-Split

Number of Computing Nodes Number of Computing Nodes

Number of Computing Nodes Number of Computing Nodes

Fig.12. Performance of parallel dR-SNN for various data distribution strategies with variation in the number of computing nodes of
the cluster for the (a) 3DSRN, (b) MPAGD7M30D, (c) MPAGD16M3D, and (d) FOF57M3D datasets.

Table 6. Execution Time (s) for Various Steps of Algorithm
dR-SNN for Dataset MPAGD16M3S

Step KD-Split Pbased-Split

Data distribution 49.81 63.84

Local computations 171.86 5 192.13

Merging 27.40 1 661.48

Total time 249.07 6 917.45

628 J. Comput. Sci. & Technol., May 2024, Vol.39, No.3

computations time for nodes containing high-density

data objects and low local computation time for nodes

containing data with lower density. In the local com-

putation step of these algorithms, local spatial queries

(neighbourhood and nearest neighbour queries) are

used. For the same, they employ indexing structures

(such as R-tree, kd-tree, and Grid-R-tree). These

structures have a larger overlap amongst its nodes,

when the data is very dense, due to which their query

performance suffers. And that is why the local compu-

tation step takes longer time for computing nodes

that contain dense data objects. This variation in

computation time is also depicted in Table 9, where-

in the range of local computation time for uniform

distribution is very small when compared with the

normal distribution, indicating that some nodes (con-

taining less dense data) finish their local computation

step much quickly than a few nodes (containing high-

ly dense data).

5 Discussion and Recommendations

Based on the above experimentation and results,

we give the following recommendations regarding the

usage of appropriate distribution strategies for each of

the above parallel clustering algorithms.

● For parallel DBSCAN (and algorithms involv-

ing neighborhood computations), PD-Split and KD-

Split are competitive. PD-Split is more suitable for

0

5

10

15

20

25

4 8 16 32 64 128

Number of Computing Nodes

(a)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

4 8 16 32 64 128

Number of Computing Nodes

(b)

0

1

2

3

4

5

6

7

8

9

4 8 16 32 64 128

Number of Computing Nodes

(c)

3.5

4 8 16 32 64 128

Number of Computing Nodes

(d)

KD-Split
Pbased-Split
CD-Split

KD-Split
Pbased-Split
CD-Split

KD-Split
Pbased-Split
CD-Split

KD-Split
Pbased-Split
CD-Split

E
x
e
c
u
ti
o
n
 T

im
e
 (

s)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s)

104

103 103

(τ = 300)Fig.13. Performance of the dGridSLINK algorithm for various data distributions with variation in the number of comput-
ing nodes of the cluster for (a) 3DSRN; (b) MPAGD2M30D; (c) MPAGD16M3D; (d) FOF57M3D datasets.

Table 7. Execution Time (s) for Various Steps of dGrid-
SLINK Algorithm for MPAGD16M3D Dataset

Step KD-Split Pbased-Split CD-Split

Data distribution 49.81 63.84 59.23

Local computations 1 459.09 1 961.98 1 250.35

Merging 273.23 401.34 99.30

Total time 1 782.13 2 427.17 1 408.88

Jagat Sesh Challa et al.: Survey and Experimental Review on Data Distribution for Spatial Clustering 629

ϵ

ϵ

smaller values of and high-dimensional datasets.

KD-Split is recommended to be used for larger values

of .

● For dR -SNN and algorithms that use kNN

queries, KD-Split always works better.

● For dGridSLINK, CD -Split has always been

better than KD-Split and Pbased-Split.

● One can use Pbased-Split as a generic distribu-

tion scheme, free from parameters, when one wants to

split across one dimension only. Pbased-Split also

works well for high-dimensional data in some cases

(see Fig.10(f)).

● Both PD -Split and Pbased-Split are recom-

mended to be used for heterogeneous architectures

and low-bandwidth network interconnects as they

minimize the area of the halo regions.

6 Conclusions

This paper discusses an important aspect of paral-

lel clustering algorithms, the data distribution step.

To the best of our knowledge, it is a first-of-its-kind

paper that gives a comprehensive review and a com-

parative study of the data distribution strategies used

in parallel clustering algorithms, along with three new

strategies namely PD-Split, CD-Split, and Pbased-

Split. PD-Split has been designed for parallel density-

based clustering algorithms like DBSCAN and OP-

TICS, CD-Split has been designed for grid-based algo-

rithms like dGridSLINK, and Pbased-Split is a gener-

ic distribution strategy. These new strategies were ex-

perimentally shown to improve the performance of

their respective algorithms when compared with the

state-of-the-art methods, as illustrated in Section 4.

The paper also gives a very comprehensive review of

MPI-based parallel clustering algorithms with specific

discussion on the data distribution strategy they use.

A hybrid design of grid and PD-Split can be de-

veloped to work more efficiently for GridDBSCAN-D.

More such tailor-made distribution strategies can be

developed for other classes of parallel clustering algo-

rithms like subspace and grid-based clustering.

Conflict of Interest The authors declare that

they have no conflict of interest.

References

 Tan P N, Steinbach M, Kumar V. Introduction to Data[1]

Table 8. Execution Time (s) of Various Parallel Clustering Algorithms for Datasets SR10M3D, SU10M3D, and SN10M3D While
Using 16 and 32 Computing Nodes of the Cluster for Various Data Distributions

Algorithm Dataset 16 Nodes 32 Nodes

KD-Split PD-Split PBased-Split CD-Split KD-Split PD-Split Pbased-Split CD-Split

PDS-DBSCAN-D SR10M3D 296 238 260 – 213 154 160 –

SU10M3D 272 226 235 – 196 142 147 –

SN10M3D 958 870 1 125 – 684 617 844 –

Grid-DBSCAN-D SR10M3D 199 346 698 – 154 273 428 –

SU10M3D 183 307 639 – 143 239 381 –

SN10M3D 439 730 1 521 – 358 582 956 –

dR-SNN SR10M3D 290 – 8 784 – 162 – 5 183 –

SU10M3D 278 – 8 138 – 150 – 4 639 –

SN10M3D 784 – 17 948 – 408 – 8 795 –

dGridSLINK SR10M3D 997 – 1 303 849 718 – 925 594

SU10M3D 914 – 1 214 816 676 – 850 569

SN10M3D 2 784 – 3 777 2 463 1 949 – 2 833 1 847

Table 9. Variation in Computational Load Measured as Execution Time (s) of the Local Clustering Step at Each Computing
Node for Various Parallel Clustering Algorithms over Datasets SU10M3D and SN10M3D for 16 Computing Nodes in the Cluster

Dataset Algorithm KD-Split PD-Split PBased-Split

SU10M3D PDS-DBSCAN-D 218 to 248 189 to 201 187 to 204

Grid-DBSCAN-D 117 to 139 221 to 247 502 to 513

dR-SNN 198 to 217 – 6 100 to 6 900

SN10M3D PDS-DBSCAN-D 310 to 874 423 to 770 584 to 1 080

Grid-DBSCAN-D 123 to 370 374 to 670 876 to 1 420

dR-SNN 365 to 590 – 5 738 to 14 679

630 J. Comput. Sci. & Technol., May 2024, Vol.39, No.3

Mining. Addison-Wesley Longman Publishing Co., Inc.,

2005.

 MacQueen J. Some methods for classification and analy-

sis of multivariate observations. In Proc. the 5th Berke-

ley Symposium on Mathematical Statistics and Probabil-

ity, Jan. 1967, pp.281–297.

[2]

 Park H S, Jun C H. A simple and fast algorithm for K-

medoids clustering. Expert Systems with Applications,

2009, 36(2): 3336–3341. DOI: 10.1016/j.eswa.2008.01.039.

[3]

 Steinbach M, Karypis G, Kumar V. A comparison of

document clustering techniques. Technical Report, TR

00-034, University of Minnesota, 2000. https://conser-

vancy.umn.edu/handle/11299/215421, Mar. 2024.

[4]

 Ester M, Kriegel H P, Sander J, Xu X W. A density-

based algorithm for discovering clusters in large spatial

databases with noise. In Proc. the 2nd International

Conference on Knowledge Discovery and Data Mining,

Aug. 1996, pp.226–231. DOI: 10.5555/3001460.3001507.

[5]

 Ankerst M, Breunig M M, Kriegel H P, Sander J. OP-

TICS: Ordering points to identify the clustering struc-

ture. In Proc. the 1999 ACM SIGMOD International

Conference on Management of Data, Jun. 1999,

pp.49–60. DOI: 10.1145/304182.304187.

[6]

 Jarvis R A, Patrick E. Clustering using a similarity mea-

sure based on shared near neighbors. IEEE Trans. Com-

puters, 1973, C-22(11): 1025–1034. DOI: 10.1109/T-C.

1973.223640.

[7]

 Hinneburg A, Keim D A. An efficient approach to clus-

tering in large multimedia databases with noise. In Proc.

the 4th Int. Conf. Knowledge Discovery and Data Min-

ing, Aug. 1998, pp.58–65. DOI: 10.5555/3000292.3000

302.

[8]

 Sibson R. SLINK: An optimally efficient algorithm for

the single-link cluster method. The Computer Journal,

1973, 16(1): 30–34. DOI: 10.1093/comjnl/16.1.30.

[9]

 Agrawal R, Gehrke J, Gunopulos D, Raghavan P. Auto-

matic subspace clustering of high dimensional data for

data mining applications. ACM SIGMOD Record, 1998,

27(2): 94–105. DOI: 10.1145/276305.276314.

[10]

 Goil S, Nagesh H, Choudhary A. MAFIA: Efficient and

scalable subspace clustering for very large data sets.

Technical Report, CPDC-TR-9906-010, Northwestern

University, 1999. https://grid.cs.gsu.edu/~wkim/indes-

files/papers/mafia.pdf, Mar. 2024.

[11]

 Cheng C H, Fu A W, Zhang Y. Entropy-based subspace

clustering for mining numerical data. In Proc. the 5th

ACM SIGKDD Int. Conf. Knowledge Discovery and Da-

ta Mining, Aug. 1999, pp.84–93. DOI: 10.1145/312129.

312199.

[12]

 Aggarwal C C, Wolf J L, Yu P S, Procopiuc C, Park J

S. Fast algorithms for projected clustering. In Proc. the

1999 ACM SIGMOD Int. Conf. Management of Data,

Jun. 1999, pp.61–72. DOI: 10.1145/304182.304188.

[13]

 Aggarwal C C, Yu P S. Finding generalized projected

clusters in high dimensional spaces. In Proc. the 2000

ACM SIGMOD Int. Conf. Management of Data, May

[14]

2000, pp.70–81. DOI: 10.1145/342009.335383.

 Woo K G, Lee J H, Kim M H, Lee Y J. FINDIT: A fast

and intelligent subspace clustering algorithm using di-

mension voting. Information and Software Technology,

2004, 46(4): 255–271. DOI: 10.1016/j.infsof.2003.07.003.

[15]

 Wang W, Yang J, Muntz R R. STING: A statistical in-

formation grid approach to spatial data mining. In Proc.

the 23rd Int. Conf. Very Large Data Bases. Aug. 1997,

pp.186–195. DOI: 10.5555/645923.758369.

[16]

 Mukhopadhyay A, Maulik U. Unsupervised satellite im-

age segmentation by combining SA based fuzzy cluster-

ing with support vector machine. In Proc. the 7th Int.

Conf. Advances in Pattern Recognition, Feb. 2009,

pp.381–384. DOI: 10.1109/ICAPR.2009.50.

[17]

 Thang T M, Kim J. The anomaly detection by using

DBSCAN clustering with multiple parameters. In Proc.

the 2011 Int. Conf. Information Science and Applica-

tions, Apr. 2011. DOI: 10.1109/ICISA.2011.5772437.

[18]

 Madeira S C, Oliveira A L. Biclustering algorithms for

biological data analysis: A survey. IEEE/ACM Trans.

Computational Biology and Bioinformatics, 2004, 1(1):

24–45. DOI: 10.1109/TCBB.2004.2.

[19]

 Huo S. Detecting self-correlation of nonlinear, lognormal,

time-series data via DBSCAN clustering method, using

stock price data as example [Ph.D. Thesis]. Ohio State

University, Columbus, 2011.

[20]

 Zhang J, Wu G Q, Hu X G, Li S Y, Hao S L. A parallel

k-means clustering algorithm with MPI. In Proc. the 4th

International Symposium on Parallel Architectures, Al-

gorithms and Programming, Dec. 2011, pp.60–64. DOI:

10.1109/PAAP.2011.17.

[21]

 Kumari S, Maheshwari A, Goyal P, Goyal N. Parallel

framework for efficient k-means clustering. In Proc. the

8th Annual ACM India Conference, Oct. 2015, pp.63–71.

DOI: 10.1145/2835043.2835060.

[22]

 Song H, Lee J G, Han W S. PAMAE: Parallel k-medoids

clustering with high accuracy and efficiency. In Proc. the

23rd ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining, Aug. 2017, pp.1087–

1096. DOI: 10.1145/3097983.3098098.

[23]

 Patwary M A, Palsetia D, Agrawal A, Liao W K, Manne

F, Choudhary A. A new scalable parallel DBSCAN algo-

rithm using the disjoint-set data structure. In Proc. the

2012 International Conference on High Performance

Computing, Networking, Storage and Analysis, Nov.

2012, Article No. 62. DOI: 10.5555/2388996.2389081.

[24]

 Patwary M M A, Satish N, Sundaram N, Manne F,

Habib S, Dubey P. Pardicle: Parallel approximate densi-

ty-based clustering. In Proc. the 2014 Int. Conf. for High

Performance Computing, Networking, Storage and Anal-

ysis, Nov. 2014, pp.560–571. DOI: 10.1109/SC.2014.51.

[25]

 Patwary M M A, Byna S, Satish N R et al. BD-CATS:

Big data clustering at trillion particle scale. In Proc. the

2015 Int. Conf. for High Performance Computing, Net-

working, Storage and Analysis, Nov. 2015, Article No. 6.

DOI: 10.1145/2807591.2807616.

[26]

Jagat Sesh Challa et al.: Survey and Experimental Review on Data Distribution for Spatial Clustering 631

https://doi.org/10.1016/j.eswa.2008.01.039
https://conservancy.umn.edu/handle/11299/215421
https://conservancy.umn.edu/handle/11299/215421
https://conservancy.umn.edu/handle/11299/215421
https://conservancy.umn.edu/handle/11299/215421
https://conservancy.umn.edu/handle/11299/215421
https://dl.acm.org/doi/10.5555/3001460.3001507
https://doi.org/10.1145/304182.304187
https://doi.org/10.1109/T-C.1973.223640
https://doi.org/10.1109/T-C.1973.223640
https://doi.org/10.1109/T-C.1973.223640
https://doi.org/10.1109/T-C.1973.223640
https://dl.acm.org/doi/10.5555/3000292.3000302
https://dl.acm.org/doi/10.5555/3000292.3000302
https://doi.org/10.1093/comjnl/16.1.30
https://doi.org/10.1145/276305.276314
https://grid.cs.gsu.edu/~wkim/indes-files/papers/mafia.pdf
https://grid.cs.gsu.edu/~wkim/indes-files/papers/mafia.pdf
https://grid.cs.gsu.edu/~wkim/indes-files/papers/mafia.pdf
https://grid.cs.gsu.edu/~wkim/indes-files/papers/mafia.pdf
https://grid.cs.gsu.edu/~wkim/indes-files/papers/mafia.pdf
https://doi.org/10.1145/312129.312199
https://doi.org/10.1145/312129.312199
https://doi.org/10.1145/304182.304188
https://doi.org/10.1145/304182.304188
https://doi.org/10.1145/304182.304188
https://doi.org/10.1145/342009.335383
https://doi.org/10.1145/342009.335383
https://doi.org/10.1145/342009.335383
https://doi.org/10.1016/j.infsof.2003.07.003
https://dl.acm.org/doi/10.5555/645923.758369
https://doi.org/10.1109/ICAPR.2009.50
https://doi.org/10.1109/ICISA.2011.5772437
https://doi.org/10.1109/TCBB.2004.2
https://doi.org/10.1109/PAAP.2011.17
https://doi.org/10.1145/2835043.2835060
https://doi.org/10.1145/3097983.3098098
https://dl.acm.org/doi/10.5555/2388996.2389081
https://doi.org/10.1109/SC.2014.51
https://doi.org/10.1145/2807591.2807616

 Götz M, Bodenstein C, Riedel M. HPDBSCAN: Highly

parallel DBSCAN. In Proc. the 2015 Workshop on Ma-

chine Learning in High-Performance Computing Envi-

ronments, Nov. 2015, Article No. 2. DOI: 10.1145/

2834892.2834894.

[27]

 Kumari S, Goyal P, Sood A, Kumar D, Balasubramani-

am S, Goyal N. Exact, fast and scalable parallel DB-

SCAN for commodity platforms. In Proc. the 18th Int.

Conf. Distributed Computing and Networking, Jan.

2017, Article No. 14. DOI: 10.1145/3007748.3007773.

[28]

 Song H, Lee J G. RP-DBSCAN: A superfast parallel

DBSCAN algorithm based on random partitioning. In

Proc. the 2018 Int. Conf. Management of Data, May

2018, pp.1173–1187. DOI: 10.1145/3183713.3196887.

[29]

 Sarma A, Goyal P, Kumari S, Wani A, Challa J S, Is-

lam S, Goyal N. μDBSCAN: An exact scalable DB-

SCAN algorithm for big data exploiting spatial locality.

In Proc. the 2019 IEEE International Conference on

Cluster Computing, Sept. 2019. DOI: 10.1109/CLUS-

TER.2019.8891020.

[30]

 Nazerzadeh H, Ghodsi M, Sadjadian S. Parallel sub-

space clustering. In Proc. the 10th Annual Conference of

Computer Society of Iran, Feb. 2005.

[31]

 Adinetz A, Kraus J, Meinke J, Pleiter D. GPUMAFIA:

Efficient subspace clustering with MAFIA on GPUs. In

Proc. the 19th Int. Conf. Parallel Processing, Aug. 2013,

pp.838–849. DOI: 10.1007/978-3-642-40047-6_83.

[32]

 Goyal P, Kumari S, Singh S, Kishore V, Balasubramani-

am S S, Goyal N. A parallel framework for grid-based

bottom-up subspace clustering. In Proc. the 2016 IEEE

Int. Conf. Data Science and Advanced Analytics, Oct.

2016, pp.331–340. DOI: 10.1109/DSAA.2016.42.

[33]

 Hendrix W, Palsetia D, Patwary M M A, Agrawal A,

Liao W K, Choudhary A. A scalable algorithm for sin-

gle-linkage hierarchical clustering on distributed-memo-

ry architectures. In Proc. the 2013 IEEE Symposium on

Large-Scale Data Analysis and Visualization, Oct. 2013,

pp.7–13. DOI: 10.1109/LDAV.2013.6675153.

[34]

 Goyal P, Kumari S, Sharma S, Kumar D, Kishore V,

Balasubramaniam S, Goyal N. A fast, scalable SLINK al-

gorithm for commodity cluster computing exploiting spa-

tial locality. In Proc. the 18th Int. Conf. High Perfor-

mance Computing and Communications, Dec. 2016,

pp.268–275. DOI: 10.1109/HPCC-SmartCity-DSS.2016.

0047.

[35]

 Hendrix W, Patwary M M A, Agrawal A, Liao W K,

Choudhary A. Parallel hierarchical clustering on shared

memory platforms. In Proc. the 19th International Con-

ference on High Performance Computing, Dec. 2012.

DOI: 10.1109/HiPC.2012.6507511.

[36]

 Olman V, Mao F L, Wu H W, Xu Y. Parallel clustering

algorithm for large data sets with applications in bioin-

formatics. IEEE/ACM Trans. Computational Biology

and Bioinformatics, 2009, 6(2): 344–352. DOI: 10.1109/

TCBB.2007.70272.

[37]

 Patwary M A, Palsetia D, Agrawal A, Liao W K, Manne[38]

F, Choudhary A. Scalable parallel OPTICS data cluster-

ing using graph algorithmic techniques. In Proc. the 2013

International Conference on High Performance Comput-

ing, Networking, Storage and Analysis, Nov. 2013, Arti-

cle No. 49. DOI: 10.1145/2503210.2503255.

 Goyal P, Kumari S, Kumar D, Balasubramaniam S,

Goyal N, Islam S, Challa J S. Parallelizing OPTICS for

commodity clusters. In Proc. the 16th International Con-

ference on Distributed Computing and Networking, Jan.

2015, Article No. 33. DOI: 10.1145/2684464.2684477.

[39]

 Kumari S, Maurya S, Goyal P, Balasubramaniam S S,

Goyal N. Scalable parallel algorithms for shared nearest

neighbor clustering. In Proc. the 23rd International Con-

ference on High Performance Computing, Dec. 2016,

pp.72–81. DOI: 10.1109/HiPC.2016.018.

[40]

 Challa J S, Goyal P, Nikhil S, Mangla A, Balasubrama-

niam S S, Goyal N. DD-Rtree: A dynamic distributed

data structure for efficient data distribution among clus-

ter nodes for spatial data mining algorithms. In Proc.

the 2016 IEEE International Conference on Big Data,

Dec. 2016, pp.27–36. DOI: 10.1109/BigData.2016.7840586.

[41]

 Welton B, Miller B P. Mr. Scan: A hybrid/hybrid ex-

treme scale density based clustering algorithm. Techni-

cal Report, Northwestern University, 2015. https://www.

paradyn.org/papers/Welton15MrScan.pdf, Mar. 2024.

[42]

 Dhillon I S, Modha D S. A data-clustering algorithm on

distributed memory multiprocessors. In Large-Scale Par-

allel Data Mining, Zaki M J, Ho C T (eds.), Springer-

Verlag, 2000, pp.245–260. DOI: 10.1007/3-540-46502-2_13.

[43]

 Zhang J, Wu G Q, Hu X G, Li S Y, Hao S L. A parallel

clustering algorithm with MPI-MKmeans. Journal of

Computers, 2013, 8(1): 10–17. DOI: 10.4304/jcp.8.1.10-17.

[44]

 Kumar J, Mills R T, Hoffman F M, Hargrove W W.

Parallel k-means clustering for quantitative ecoregion de-

lineation using large data sets. Procedia Computer Sci-

ence, 2011, 4: 1602–1611. DOI: 10.1016/j.procs.2011.04.173.

[45]

 Kerdprasop K, Taokok S, Kerdprasop N. Declarative

parallelized techniques for K-means data clustering. In-

ternational Journal of Mathematics and Computers in

Simulation, 2012, 6(5): 483–495.

[46]

 Balcan M F, Ehrlich S, Liang Y Y. Distributed k-means

and k-median clustering on general topologies. In Proc.

the 26th International Conference on Neural Informa-

tion Processing Systems, Dec. 2013, pp.1995–2003. DOI:

10.5555/2999792.2999835.

[47]

 Gursoy A. Data decomposition for parallel K-means clus-

tering. In Proc. the 5th International Conference on Par-

allel Processing and Applied Mathematics, Sept. 2003,

pp.241–248. DOI: 10.1007/978-3-540-24669-5_31.

[48]

 Di Fatta G, Pettinger D. Dynamic load balancing in par-

allel KD-tree k-means. In Proc. the 10th IEEE Int. Conf.

Computer and Information Technology, Jul. 2010,

pp.2478–2485. DOI: 10.1109/CIT.2010.424.

[49]

 Arbelaez A, Quesada L. Parallelising the k-Medoids clus-

tering problem using space-partitioning. In Proc. the 6th

International Symposium on Combinatorial Search, Jul.

[50]

632 J. Comput. Sci. & Technol., May 2024, Vol.39, No.3

https://doi.org/10.1145/2834892.2834894
https://doi.org/10.1145/2834892.2834894
https://doi.org/10.1145/3007748.3007773
https://doi.org/10.1145/3183713.3196887
https://doi.org/10.1109/CLUSTER.2019.8891020
https://doi.org/10.1109/CLUSTER.2019.8891020
https://doi.org/10.1109/CLUSTER.2019.8891020
https://doi.org/10.1007/978-3-642-40047-6_83
https://doi.org/10.1007/978-3-642-40047-6_83
https://doi.org/10.1007/978-3-642-40047-6_83
https://doi.org/10.1007/978-3-642-40047-6_83
https://doi.org/10.1007/978-3-642-40047-6_83
https://doi.org/10.1007/978-3-642-40047-6_83
https://doi.org/10.1007/978-3-642-40047-6_83
https://doi.org/10.1007/978-3-642-40047-6_83
https://doi.org/10.1007/978-3-642-40047-6_83
https://doi.org/10.1007/978-3-642-40047-6_83
https://doi.org/10.1007/978-3-642-40047-6_83
https://doi.org/10.1109/DSAA.2016.42
https://doi.org/10.1109/LDAV.2013.6675153
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0047
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0047
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0047
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0047
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0047
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0047
https://doi.org/10.1109/HiPC.2012.6507511
https://doi.org/10.1109/TCBB.2007.70272
https://doi.org/10.1109/TCBB.2007.70272
https://doi.org/10.1145/2503210.2503255
https://doi.org/10.1145/2684464.2684477
https://doi.org/10.1109/HiPC.2016.018
https://doi.org/10.1109/BigData.2016.7840586
https://www.paradyn.org/papers/Welton15MrScan.pdf
https://www.paradyn.org/papers/Welton15MrScan.pdf
https://doi.org/10.1007/3-540-46502-2_13
https://doi.org/10.1007/3-540-46502-2_13
https://doi.org/10.1007/3-540-46502-2_13
https://doi.org/10.1007/3-540-46502-2_13
https://doi.org/10.1007/3-540-46502-2_13
https://doi.org/10.1007/3-540-46502-2_13
https://doi.org/10.1007/3-540-46502-2_13
https://doi.org/10.1007/3-540-46502-2_13
https://doi.org/10.1007/3-540-46502-2_13
https://doi.org/10.4304/jcp.8.1.10-17
https://doi.org/10.4304/jcp.8.1.10-17
https://doi.org/10.4304/jcp.8.1.10-17
https://doi.org/10.1016/j.procs.2011.04.173
https://dl.acm.org/doi/10.5555/2999792.2999835
https://doi.org/10.1007/978-3-540-24669-5_31
https://doi.org/10.1007/978-3-540-24669-5_31
https://doi.org/10.1007/978-3-540-24669-5_31
https://doi.org/10.1007/978-3-540-24669-5_31
https://doi.org/10.1007/978-3-540-24669-5_31
https://doi.org/10.1007/978-3-540-24669-5_31
https://doi.org/10.1007/978-3-540-24669-5_31
https://doi.org/10.1007/978-3-540-24669-5_31
https://doi.org/10.1007/978-3-540-24669-5_31
https://doi.org/10.1007/978-3-540-24669-5_31
https://doi.org/10.1007/978-3-540-24669-5_31
https://doi.org/10.1109/CIT.2010.424

2013, pp.20–28. DOI: 10.1609/socs.v4i1.18282.

 Li Y J, Chung S M. Parallel bisecting k-means with pre-

diction clustering algorithm. The Journal of Supercom-

puting, 2007, 39(1): 19–37. DOI: 10.1007/s11227-006-

0002-7.

[51]

 Xu X W, Jäger J, Kriegel H P. A fast parallel clustering

algorithm for large spatial databases. Data Mining and

Knowledge Discovery, 1999, 3(3): 263–290. DOI: 10.1023/

A:1009884809343.

[52]

 Zhou A Y, Zhou S G, Cao J, Fan Y, Hu Y F. Approach-

es for scaling DBSCAN algorithm to large spatial

databases. Journal of Computer Science and Technology,

2000, 15(6): 509–526. DOI: 10.1007/BF02948834.

[53]

 Arlia D, Coppola M. Experiments in parallel clustering

with DBSCAN. In Proc. the 7th International Euro-Par

Conference Manchester on Parallel Processing, Aug.

2001, pp.326–331. DOI: 10.5555/646666.699596.

[54]

 Coppola M, Vanneschi M. High-performance data min-

ing with skeleton-based structured parallel programming.

Parallel Computing, 2002, 28(5): 793–813. DOI: 10.1016/

S0167-8191(02)00095-9.

[55]

 Brecheisen S, Kriegel H P, Pfeifle M. Parallel density-

based clustering of complex objects. In Proc. the 10th

Pacific-Asia Conference on Advances in Knowledge Dis-

covery and Data Mining, Apr. 2006, pp.179–188. DOI:

10.1007/11731139_22.

[56]

 Chen M, Gao X D, Li H F. Parallel DBSCAN with pri-

ority R-tree. In Proc. the 2nd IEEE International Con-

ference on Information Management and Engineering,

Apr. 2010, pp.508–511. DOI: 10.1109/ICIME.2010.

5477926.

[57]

 Yang K Y, Gao Y J, Ma R, Chen L, Wu S, Chen G.

DBSCAN-MS: Distributed density-based clustering in

metric spaces. In Proc. the 35th International Confer-

ence on Data Engineering, Apr. 2019, pp.1346–1357.

DOI: 10.1109/ICDE.2019.00122.

[58]

 Rajasekaran S. Efficient parallel hierarchical clustering

algorithms. IEEE Trans. Parallel and Distributed Sys-

tems, 2005, 16(6): 497–502. DOI: 10.1109/TPDS.2005.72.

[59]

 Dash M, Petrutiu S, Scheuermann P. pPOP: Fast yet

accurate parallel hierarchical clustering using partition-

ing. Data & Knowledge Engineering, 61(3): 563-578.

DOI: 10.1016/j.datak.2006.07.004.

[60]

 Nagesh H S, Goil S, Choudhary A. A scalable parallel

subspace clustering algorithm for massive data sets. In

Proc. the 2000 International Conference on Parallel Pro-

cessing, Aug. 2000, pp.477–484. DOI: 10.1109/ICPP.2000.

876164.

[61]

 Bradley P S, Mangasarian O L, Street W N. Clustering

via concave minimization. In Proc. the 9th International

Conference on Neural Information Processing Systems,

Dec. 1996, pp.368–374. DOI: 10.5555/2998981.2999033.

[62]

 Deb B, Srirama S N. Parallel K-Means clustering for

gene expression data on SNOW. International Journal of

Computer Applications, 2013, 71(24): 26–30. DOI: 10.

5120/12691-9486.

[63]

 Torti E, Florimbi G, Castelli F, Ortega S, Fabelo H,

Callicó G M, Marrero-Martin M, Leporati F. Parallel K-

means clustering for brain cancer detection using hyper-

spectral images. Electronics, 2018, 7(11): 283. DOI: 10.

3390/electronics7110283.

[64]

 Sardar T H, Ansari Z. An analysis of MapReduce effi-

ciency in document clustering using parallel K-means al-

gorithm. Future Computing and Informatics Journal,

2018, 3(2): 200–209. DOI: 10.1016/j.fcij.2018.03.003.

[65]

 Zhou G J. Improved optimization of canopy-Kmeans

clustering algorithm based on Hadoop platform. In Proc.

the 2018 International Conference on Information Tech-

nology and Electrical Engineering, Dec. 2018, Article No.

19. DOI: 10.1145/3148453.3306258.

[66]

 Megarchioti S, Mamalis B. The BigKClustering ap-

proach for document clustering using Hadoop MapRe-

duce. In Proc. the 22nd Pan-Hellenic Conference on In-

formatics, Nov. 2018, pp.261–266. DOI: 10.1145/3291533.

3291546.

[67]

 Bousbaci A, Kamel N. Efficient data distribution and re-

sults merging for parallel data clustering in MapReduce

environment. Applied Intelligence, 2018, 48(8): 2408–2428.

DOI: 10.1007/s10489-017-1089-7.

[68]

 Santhi V, Jose R. Performance analysis of parallel K-

means with optimization algorithms for clustering on

Spark. In Proc. the 14th International Conference on

Distributed Computing and Internet Technology, Jan.

2018, pp.158–162. DOI: 10.1007/978-3-319-72344-0_12.

[69]

 Chitrakar A S, Petrović S. Efficient k-means using trian-

gle inequality on spark for cyber security analytics. In

Proc. the 2019 ACM International Workshop on Securi-

ty and Privacy Analytics, Mar. 2019, pp.37–45. DOI: 10.

1145/3309182.3309187.

[70]

 Bahmani B, Moseley B, Vattani A, Kumar R, Vassilvit-

skii S. Scalable k-means++. Proceedings of the VLDB

Endowment, 2012, 5(7): 622–633. DOI: 10.14778/2180912.

2180915.

[71]

 Shafiq M O, Torunski E. A parallel K-Medoids algo-

rithm for clustering based on MapReduce. In Proc. the

15th Int. Conf. Machine Learning and Applications, Dec.

2016, pp.502–507. DOI: 10.1109/ICMLA.2016.0089.

[72]

 Yue X, Man W, Yue J, Liu G C. Parallel K-Medoids++

spatial clustering algorithm based on MapReduce. arXiv:

1608.06861, 2016. https://doi.org/10.48550/arXiv.1608.

06861, Mar. 2024.

[73]

 Martino A, Rizzi A, Frattale Mascioli F M. Efficient ap-

proaches for solving the large-scale k-medoids problem:

Towards structured data. In Proc. the 9th International

Joint Conference on Computational Intelligence, Nov.

2017, pp.199–219. DOI: 10.1007/978-3-030-16469-0_11.

[74]

 Beckmann N, Kriegel H P, Schneider R, Seeger B. The

R*-tree: An efficient and robust access method for points

and rectangles. In Proc. the 1990 ACM SIGMOD Inter-

national Conference on Management of Data, May 1990,

pp.322–331. DOI: 10.1145/93597.98741.

[75]

 Goyal P, Challa J S, Kumar D, Balasubramaniam S,[76]

Jagat Sesh Challa et al.: Survey and Experimental Review on Data Distribution for Spatial Clustering 633

https://doi.org/10.1609/socs.v4i1.18282
https://doi.org/10.1007/s11227-006-0002-7
https://doi.org/10.1007/s11227-006-0002-7
https://doi.org/10.1007/s11227-006-0002-7
https://doi.org/10.1007/s11227-006-0002-7
https://doi.org/10.1007/s11227-006-0002-7
https://doi.org/10.1007/s11227-006-0002-7
https://doi.org/10.1007/s11227-006-0002-7
https://doi.org/10.1023/A:1009884809343
https://doi.org/10.1023/A:1009884809343
https://doi.org/10.1007/BF02948834
https://dl.acm.org/doi/10.5555/646666.699596
https://doi.org/10.1016/S0167-8191(02)00095-9
https://doi.org/10.1016/S0167-8191(02)00095-9
https://doi.org/10.1016/S0167-8191(02)00095-9
https://doi.org/10.1016/S0167-8191(02)00095-9
https://doi.org/10.1016/S0167-8191(02)00095-9
https://doi.org/10.1016/S0167-8191(02)00095-9
https://doi.org/10.1007/11731139_22
https://doi.org/10.1007/11731139_22
https://doi.org/10.1007/11731139_22
https://doi.org/10.1109/ICIME.2010.5477926
https://doi.org/10.1109/ICIME.2010.5477926
https://doi.org/10.1109/ICDE.2019.00122
https://doi.org/10.1109/TPDS.2005.72
https://doi.org/10.1016/j.datak.2006.07.004
https://doi.org/10.1109/ICPP.2000.876164
https://doi.org/10.1109/ICPP.2000.876164
https://dl.acm.org/doi/10.5555/2998981.2999033
https://doi.org/10.5120/12691-9486
https://doi.org/10.5120/12691-9486
https://doi.org/10.5120/12691-9486
https://doi.org/10.5120/12691-9486
https://doi.org/10.3390/electronics7110283
https://doi.org/10.3390/electronics7110283
https://doi.org/10.1016/j.fcij.2018.03.003
https://doi.org/10.1145/3148453.3306258
https://doi.org/10.1145/3291533.3291546
https://doi.org/10.1145/3291533.3291546
https://doi.org/10.1007/s10489-017-1089-7
https://doi.org/10.1007/s10489-017-1089-7
https://doi.org/10.1007/s10489-017-1089-7
https://doi.org/10.1007/s10489-017-1089-7
https://doi.org/10.1007/s10489-017-1089-7
https://doi.org/10.1007/s10489-017-1089-7
https://doi.org/10.1007/s10489-017-1089-7
https://doi.org/10.1007/978-3-319-72344-0_12
https://doi.org/10.1007/978-3-319-72344-0_12
https://doi.org/10.1007/978-3-319-72344-0_12
https://doi.org/10.1007/978-3-319-72344-0_12
https://doi.org/10.1007/978-3-319-72344-0_12
https://doi.org/10.1007/978-3-319-72344-0_12
https://doi.org/10.1007/978-3-319-72344-0_12
https://doi.org/10.1007/978-3-319-72344-0_12
https://doi.org/10.1007/978-3-319-72344-0_12
https://doi.org/10.1007/978-3-319-72344-0_12
https://doi.org/10.1007/978-3-319-72344-0_12
https://doi.org/10.1145/3309182.3309187
https://doi.org/10.1145/3309182.3309187
https://doi.org/10.14778/2180912.2180915
https://doi.org/10.14778/2180912.2180915
https://doi.org/10.1109/ICMLA.2016.0089
https://doi.org/10.48550/arXiv.1608.06861
https://doi.org/10.48550/arXiv.1608.06861
https://doi.org/10.1007/978-3-030-16469-0_11
https://doi.org/10.1007/978-3-030-16469-0_11
https://doi.org/10.1007/978-3-030-16469-0_11
https://doi.org/10.1007/978-3-030-16469-0_11
https://doi.org/10.1007/978-3-030-16469-0_11
https://doi.org/10.1007/978-3-030-16469-0_11
https://doi.org/10.1007/978-3-030-16469-0_11
https://doi.org/10.1007/978-3-030-16469-0_11
https://doi.org/10.1007/978-3-030-16469-0_11
https://doi.org/10.1007/978-3-030-16469-0_11
https://doi.org/10.1007/978-3-030-16469-0_11
https://doi.org/10.1145/93597.98741

Goyal N. Grid-R-tree: A data structure for efficient

neighborhood and nearest neighbor queries in data min-

ing. International Journal of Data Science and Analytics,

2020, 10(1): 25–47. DOI: 10.1007/s41060-020-00208-2.

 Chen L, Gao Y J, Huang X R, Jensen C S, Zheng B L.

Efficient distributed clustering algorithms on star-

schema heterogeneous graphs. IEEE Trans. Knowledge

and Data Engineering, 2022, 34(10): 4781–4796. DOI: 10.

1109/TKDE.2020.3047631.

[77]

 Andrade G, Ramos G, Madeira D, Sachetto R, Ferreira

R, Rocha L. G-DBSCAN: A GPU accelerated algorithm

for density-based clustering. Procedia Computer Science,

2013, 18: 369–378. DOI: 10.1016/j.procs.2013.05.200.

[78]

 Chen C C, Chen M S. HiClus: Highly scalable density-

based clustering with heterogeneous cloud. Procedia

Computer Science, 2015, 53: 149–157. DOI: 10.1016/j.

procs.2015.07.289.

[79]

 Hu X J, Liu L, Qiu N J, Yang D, Li M. A MapReduce-

based improvement algorithm for DBSCAN. Journal of

Algorithms & Computational Technology, 2018, 12(1):

53–61. DOI: 10.1177/1748301817735665.

[80]

 Gu Y H, Ye X Y, Zhang F, Du Z H, Liu R Y, Yu L F. A

parallel varied density-based clustering algorithm with

optimized data partition. Journal of Spatial Science,

2018, 63(1): 93–114. DOI: 10.1080/14498596.2017.1352542.

[81]

 Han D W, Agrawal A, Liao W K, Choudhary A. A nov-

el scalable DBSCAN algorithm with Spark. In Proc. the

2016 IEEE International Parallel and Distributed Pro-

cessing Symposium Workshops, May 2016, pp.1393–1402.

DOI: 10.1109/IPDPSW.2016.57.

[82]

 Huang F, Zhu Q, Zhou J, Tao J, Zhou X C, Jin D, Tan

X C, Wang L Z. Research on the parallelization of the

DBSCAN clustering algorithm for spatial data mining

based on the spark platform. Remote Sensing, 2017,

9(12): 1301. DOI: 10.3390/rs9121301.

[83]

 Zhang Y F, Chen S M, Yu G. Efficient distributed densi-

ty peaks for clustering large data sets in MapReduce.

IEEE Trans. Knowledge and Data Engineering, 2016,

28(12): 3218–3230. DOI: 10.1109/TKDE.2016.2609423.

[84]

 Guttman A. R-trees: A dynamic index structure for spa-

tial searching. In Proc. the 1984 ACM SIGMOD Interna-

tional Conference on Management of Data, Jun. 1984,

pp.47–57. DOI: 10.1145/602259.602266.

[85]

 Ertöz L, Steinbach M, Kumar V. Finding clusters of dif-

ferent sizes, shapes, and densities in noisy, high dimen-

sional data. In Proc. the 2003 SIAM International Con-

ference on Data Mining, Jan. 2003, pp.47–58. DOI: 10.

1137/1.9781611972733.5.

[86]

 Cao Z W, Zhou Y. Parallel text clustering based on

MapReduce. In Proc. the 2nd International Conference

on Cloud and Green Computing, Nov. 2012, pp.226–229.

DOI: 10.1109/CGC.2012.128.

[87]

 Wang S J, Eick C F. MR-SNN: Design of parallel shared

nearest neighbor clustering algorithm using MapReduce.

In Proc. the 2nd International Conference on Big Data

Analysis, Mar. 2017, pp.312–315. DOI: 10.1109/ICBDA.

[88]

2017.8078831.

 Gagolewski M, Bartoszuk M, Cena A. Genie: A new,

fast, and outlier-resistant hierarchical clustering algo-

rithm. Information Sciences, 2016, 363: 8–23. DOI: 10.

1016/j.ins.2016.05.003.

[89]

 Li X. Parallel algorithms for hierarchical clustering and

cluster validity. IEEE Trans. Pattern Analysis and Ma-

chine Intelligence, 1990, 12(11): 1088–1092. DOI: 10.

1109/34.61708.

[90]

 Wu C H, Horng S J, Tsai H R. Efficient parallel algo-

rithms for hierarchical clustering on arrays with reconfig-

urable optical buses. Journal of Parallel and Distributed

Computing, 2000, 60(9): 1137–1153. DOI: 10.1006/jpdc.

2000.1644.

[91]

 Du Z, Lin F. A novel parallelization approach for hierar-

chical clustering. Parallel Computing, 2005, 31(5):

523–527. DOI: 10.1016/j.parco.2005.01.001.

[92]

 Johnson E, Kargupta H. Collective, hierarchical cluster-

ing from distributed, heterogeneous data. In Proc. the

2000 Large-Scale Parallel Data Mining, Feb. 2000,

pp.221–244. DOI: 10.1007/3-540-46502-2_12.

[93]

 Olson C F. Parallel algorithms for hierarchical cluster-

ing. Parallel Computing, 1995, 21(8): 1313–1325. DOI:

10.1016/0167-8191(95)00017-I.

[94]

 Dash M, Liu H, Scheuermann P, Tan K L. Fast hierar-

chical clustering and its validation. Data & Knowledge

Engineering, 2003, 44(1): 109–138. DOI: 10.1016/S0169-

023X(02)00138-6.

[95]

 Jin C, Liu R Q, Chen Z Z, Hendrix W, Agrawal A,

Choudhary A. A scalable hierarchical clustering algo-

rithm using Spark. In Proc. the 1st Int. Conf. Big Data

Computing Service and Applications, Mar. 30–Apr. 2,

2015, pp.418–426. DOI: 10.1109/BigDataService.2015.67.

[96]

 Mazzeo G, Zanilo C. The parallelization of a complex hi-

erarchical clustering algorithm: Faster unsupervised

learning on larger data sets. Technical Report, Universi-

ty of California, Los Angeles, 2016.

[97]

 Wang Y, Narasayya V, He Y Y, Chaudhuri S. PACk:

An efficient partition-based distributed agglomerative hi-

erarchical clustering algorithm for deduplication. Pro-

ceedings of the VLDB Endowment, 2022, 15(6): 1132–

1145. DOI: 10.14778/3514061.3514062.

[98]

 Yang J, Wang W, Wang H X, Yu P. δ-Clusters: Captur-

ing subspace correlation in a large data set. In Proc. the

18th Int. Conf. Data Engineering, Feb. 26–Mar. 1, 2002,

pp.517–528. DOI: 10.1109/ICDE.2002.994771.

[99]

 Friedman J H, Meulman J J. Clustering objects on sub-

sets of attributes. Journal of the Royal Statistical Soci-

ety Series B: Statistical Methodology, 2004, 66(4):

815–849. DOI: 10.1111/j.1467-9868.2004.02059.x.

[100]

 Domeniconi C, Papadopoulos D, Gunopulos D, Ma S.

Subspace clustering of high dimensional data. In Proc.

the 2004 SIAM Int. Conf. Data Mining, Apr. 2004,

pp.517–521. DOI: 10.1137/1.9781611972740.58.

[101]

 Sequeira K, Zaki M. SCHISM: A new approach for inter-

esting subspace mining. In Proc. the 4th IEEE Interna-

[102]

634 J. Comput. Sci. & Technol., May 2024, Vol.39, No.3

https://doi.org/10.1007/s41060-020-00208-2
https://doi.org/10.1007/s41060-020-00208-2
https://doi.org/10.1007/s41060-020-00208-2
https://doi.org/10.1007/s41060-020-00208-2
https://doi.org/10.1007/s41060-020-00208-2
https://doi.org/10.1007/s41060-020-00208-2
https://doi.org/10.1007/s41060-020-00208-2
https://doi.org/10.1109/TKDE.2020.3047631
https://doi.org/10.1109/TKDE.2020.3047631
https://doi.org/10.1016/j.procs.2013.05.200
https://doi.org/10.1016/j.procs.2015.07.289
https://doi.org/10.1016/j.procs.2015.07.289
https://doi.org/10.1177/1748301817735665
https://doi.org/10.1080/14498596.2017.1352542
https://doi.org/10.1109/IPDPSW.2016.57
https://doi.org/10.3390/rs9121301
https://doi.org/10.1109/TKDE.2016.2609423
https://doi.org/10.1145/602259.602266
https://doi.org/10.1137/1.9781611972733.5
https://doi.org/10.1137/1.9781611972733.5
https://doi.org/10.1109/CGC.2012.128
https://doi.org/10.1109/ICBDA.2017.8078831
https://doi.org/10.1109/ICBDA.2017.8078831
https://doi.org/10.1016/j.ins.2016.05.003
https://doi.org/10.1016/j.ins.2016.05.003
https://doi.org/10.1109/34.61708
https://doi.org/10.1109/34.61708
https://doi.org/10.1006/jpdc.2000.1644
https://doi.org/10.1006/jpdc.2000.1644
https://doi.org/10.1016/j.parco.2005.01.001
https://doi.org/10.1007/3-540-46502-2_12
https://doi.org/10.1007/3-540-46502-2_12
https://doi.org/10.1007/3-540-46502-2_12
https://doi.org/10.1007/3-540-46502-2_12
https://doi.org/10.1007/3-540-46502-2_12
https://doi.org/10.1007/3-540-46502-2_12
https://doi.org/10.1007/3-540-46502-2_12
https://doi.org/10.1007/3-540-46502-2_12
https://doi.org/10.1007/3-540-46502-2_12
https://doi.org/10.1016/0167-8191(95)00017-I
https://doi.org/10.1016/0167-8191(95)00017-I
https://doi.org/10.1016/0167-8191(95)00017-I
https://doi.org/10.1016/0167-8191(95)00017-I
https://doi.org/10.1016/0167-8191(95)00017-I
https://doi.org/10.1016/S0169-023X(02)00138-6
https://doi.org/10.1016/S0169-023X(02)00138-6
https://doi.org/10.1016/S0169-023X(02)00138-6
https://doi.org/10.1016/S0169-023X(02)00138-6
https://doi.org/10.1016/S0169-023X(02)00138-6
https://doi.org/10.1109/BigDataService.2015.67.
https://doi.org/10.14778/3514061.3514062
https://doi.org/10.1109/ICDE.2002.994771.
https://doi.org/10.1111/j.1467-9868.2004.02059.x
https://doi.org/10.1111/j.1467-9868.2004.02059.x
https://doi.org/10.1111/j.1467-9868.2004.02059.x
https://doi.org/10.1137/1.9781611972740.58.
https://doi.org/10.1137/1.9781611972740.58.
https://doi.org/10.1137/1.9781611972740.58.

tional Conference on Data Mining, Nov. 2004, pp.186–

193. DOI: 10.1109/ICDM.2004.10099.

 Chang J W, Jin D S. A new cell-based clustering method

for large, high-dimensional data in data mining applica-

tions. In Proc. the 2002 ACM Symposium on Applied

Computing, Mar. 2002, pp.503–507. DOI: 10.1145/508791.

508886.

[103]

 Kailing K, Kriegel H P, Kröger P. Density-connected

subspace clustering for high-dimensional data. In Proc.

the 4th SIAM International Conference on Data Mining,

Apr. 2004, pp.246–256. DOI: 10.1137/1.9781611972740.23.

[104]

 Kriegel H P, Kroger P, Renz M, Wurst S. A generic

framework for efficient subspace clustering of high-di-

mensional data. In Proc. the 5th IEEE Int. Conf. Data

Mining, Nov. 2005, pp.250–257. DOI: 10.1109/ICDM.

2005.5.

[105]

 Assent I, Krieger R, Müller E, Seidl T. DUSC: Dimen-

sionality unbiased subspace clustering. In Proc. the 7th

IEEE International Conference on Data Mining, Oct.

2007, pp.409–414. DOI: 10.1109/ICDM.2007.49.

[106]

 Assent I, Krieger R, Müller E, Seidl T. INSCY: Index-

ing subspace clusters with in-process-removal of redun-

dancy. In Proc. the 8th IEEE Int. Conf. Data Mining,

Dec. 2008, pp.719–724. DOI: 10.1109/ICDM.2008.46.

[107]

 Kaur A, Datta A. A novel algorithm for fast and scal-

able subspace clustering of high-dimensional data. Jour-

nal of Big Data, 2015, 2(1): Article No. 17. DOI: 10.

1186/s40537-015-0027-y.

[108]

 Zhu B, Mara A, Mozo A. CLUS: Parallel subspace clus-

tering algorithm on Spark. In Proc. the 2015 Short Pa-

pers and Workshops on New Trends in Databases and

Information Systems, Sept. 2015, pp.175–185. DOI: 10.

1007/978-3-319-23201-0_20.

[109]

 Zhu B, Mozo A, Ordozgoiti B. PSCEG: An unbiased

parallel subspace clustering algorithm using exact grids.

In Proc. the 24th European Symposium on Artificial

Neural Networks, Apr. 2016, pp.581–586.

[110]

 Gao Z P, Fan Y D, Niu K, Ying Z Y. MR-Mafia: Paral-

lel subspace clustering algorithm based on MapReduce

for large multi-dimensional datasets. In Proc. the 2018

IEEE International Conference on Big Data and Smart

Computing, Jan. 2018, pp.257–262. DOI: 10.1109/Big-

Comp.2018.00045.

[111]

 Kaul M, Yang B, Jensen C S. Building accurate 3D spa-

tial networks to enable next generation intelligent trans-

portation systems. In Proc. the 14th International Con-

ference on Mobile Data Management, Jun. 2013, pp.137–

146. DOI: 10.1109/MDM.2013.24.

[112]

 Springel V, White S D M, Jenkins A et al. Simulations

of the formation, evolution and clustering of galaxies and

quasars. Nature, 2005, 435(1): 629–636. DOI: 10.1038/

nature03597.

[113]

Jagat Sesh Challa got his M.Sc.

(Tech.) degree in information systems

in 2010, his M.E. degree in software

system in 2012, and his Ph.D. degree

in computer science in 2019, all from

the Birla Institute of Technology and

Science (BITS), Pilani Campus. Since

Feb. 2021, he has been employed as an assistant profes-

sor at BITS Pilani. His current research interests in-

clude big data analytics, high performance computing,

stream analytics, computer vision, materials informatics,

human-computer interaction, and federated learning.

Navneet Goyal got his M.Sc. de-

gree in mathematics from

H.N.Bahuguna University, Srinagar

(U.P) in 1988, his M.Phil. degree in

mathematics in 1989 and his Ph.D. de-

gree in applied mathematics in 1995

from the University of Roorkee (now

IIT, Roorkee) Roorkee. Since 1995, he has been working

as a faculty of various designations (assistant professor,

associate professor, professor, senior professor) at Birla

Institute of Technology and Science (BITS), Pilani

Campus. Currently, he is also the head of the CSIS De-

partment at BITS Pilani, Pilani Campus. His current re-

search interests include big data analytics, AI/ML, earth

observation, satellite image analytics, IoT data analyt-

ics, data provenance, databases and warehousing, etc.

Amogh Sharma got his B.E. de-

gree in computer science from BITS

Pilani in 2019. Since July 2019, he has

been working with Uber (India and

USA) as a software engineer (July

2019–Jan. 2022) and senior software

engineer (since Feb 2022). His re-

search interests include data mining and parallel algo-

rithms.

Jagat Sesh Challa et al.: Survey and Experimental Review on Data Distribution for Spatial Clustering 635

https://doi.org/10.1109/ICDM.2004.10099
https://doi.org/10.1145/508791.508886
https://doi.org/10.1145/508791.508886
https://doi.org/10.1137/1.9781611972740.23
https://doi.org/10.1109/ICDM.2005.5
https://doi.org/10.1109/ICDM.2005.5
https://doi.org/10.1109/ICDM.2007.49
https://doi.org/10.1109/ICDM.2008.46
https://doi.org/10.1186/s40537-015-0027-y
https://doi.org/10.1186/s40537-015-0027-y
https://doi.org/10.1186/s40537-015-0027-y
https://doi.org/10.1186/s40537-015-0027-y
https://doi.org/10.1186/s40537-015-0027-y
https://doi.org/10.1186/s40537-015-0027-y
https://doi.org/10.1186/s40537-015-0027-y
https://doi.org/10.1186/s40537-015-0027-y
https://doi.org/10.1007/978-3-319-23201-0_20
https://doi.org/10.1007/978-3-319-23201-0_20
https://doi.org/10.1007/978-3-319-23201-0_20
https://doi.org/10.1007/978-3-319-23201-0_20
https://doi.org/10.1007/978-3-319-23201-0_20
https://doi.org/10.1007/978-3-319-23201-0_20
https://doi.org/10.1007/978-3-319-23201-0_20
https://doi.org/10.1007/978-3-319-23201-0_20
https://doi.org/10.1007/978-3-319-23201-0_20
https://doi.org/10.1007/978-3-319-23201-0_20
https://doi.org/10.1007/978-3-319-23201-0_20
https://doi.org/10.1007/978-3-319-23201-0_20
https://doi.org/10.1109/BigComp.2018.00045
https://doi.org/10.1109/BigComp.2018.00045
https://doi.org/10.1109/BigComp.2018.00045
https://doi.org/10.1109/MDM.2013.24
https://doi.org/10.1038/nature03597
https://doi.org/10.1038/nature03597

Nikhil Sreekumar got his B.Tech.

degree in CSE from TKM College of

Engineering, Kollam in 2014, his M.E.

degree in CS from BITS Pilani in

2016, and currently is pursuing his

Ph.D. degree from the University of

Minnesota. His current research inter-

ests include big data and distributed computing.

Sundar Balasubramaniam complet-

ed his B.E. degree in electronics and

communication from the College of

Engineering, Anna University, Chen-

nai, in 1988, his M.Tech. degree in

computer science from NIT Warangal

in 1990, and his M.S. degree in com-

puter science from Indiana University Bloomington in

1998. Since 2019, he has been working as an indepen-

dent consultant and product designer for higher educa-

tion in Bengaluru, India. His research interests include

HPC, compilers, cloud computing, parallel algorithms,

big data, etc.

Poonam Goyal is a professor in the

Computer Science Department at

BITS Pilani, Pilani Campus, Pilani.

She completed her post-graduation in

mathematics in 1989, and got her

Ph.D. degree in applied mathematics

in 1995, both from the University of

Roorkee (now IIT, Roorkee), Roorkee, India, and her

M.E. degree in software systems from the CSIS Depart-

ment, BITS Pilani, Pilani Campus, in 2001. Her re-

search has contributed to various social and scientific

domains like social media analytics, multi-modal knowl-

edge graphs, HPC for AI, etc.

636 J. Comput. Sci. & Technol., May 2024, Vol.39, No.3

	1 Introduction
	1.1 Research Gap and Motivation
	1.2 Our Contributions

	2 Survey of MPI-Based Parallel Clustering Algorithms
	2.1 Parallel Partitioning-Based Clustering
	2.1.1 Parallel k-Means
	2.1.2 Parallel k-Means with Seed Selection
	2.1.3 Parallel k-Medoids and Bisecting k-Means

	2.2 Parallel Density-Based Clustering
	2.2.1 Parallel DBSCAN
	2.2.2 Parallel OPTICS
	2.2.3 Parallel Shared Nearest Neighbor Clustering

	2.3 Parallel Hierarchical Clustering
	2.4 Parallel Subspace Clustering

	3 Data Distribution Strategies
	3.1 Random Partitioning
	3.2 kd-Tree Based Split
	3.3 Quad-Tree Based Split
	3.4 Parameterized Dimensional Split
	3.5 Cell-Based Dimensional Split
	3.6 Projection-Based Split
	3.7 Analyzing PD-Split and Pbased-Split
	3.8 Data Distribution Strategies for Very Large Datasets

	4 Experiments
	4.1 Experimental Setup
	4.2 Data Load Balancing Achieved
	4.3 Performance of Parallel Spatial Clustering Algorithms
	4.3.1 Parallel DBSCAN
	4.3.2 Parallel SNN
	4.3.3 Parallel SLINK

	4.4 Experiments on Synthetic Data

	5 Discussion and Recommendations
	6 Conclusions
	Conflict of Interest
	References

