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Abstract    Recommendation has been widely used in business scenarios to provide users with personalized and accurate

item lists by efficiently analyzing complex user-item interactions. However, existing recommendation methods have signifi-

cant shortcomings in capturing the dynamic preference changes of users and discovering their true potential intents. To

address these problems, a novel framework named Intent-Aware Graph-Level Embedding Learning (IaGEL) is proposed

for recommendation. In this framework, the potential user interest is explored by capturing the co-occurrence of items in

different periods, and then user interest is further improved based on an adaptive aggregation algorithm, forming generic

intents  and specific  intents.  In addition,  for  better  representing the intents,  graph-level  embedding learning is  designed

based on the mutual information comparison among positive intents and negative intents. Finally, an intent-based recom-

mendation strategy is designed to further mine the dynamic changes in user preferences. Experiments on three public and

industrial datasets demonstrate the effectiveness of the proposed IaGEL in the task of recommendation.

Keywords    recommendation system, graph embedding learning, graph neural network, intent-aware

  

1    Introduction

Recommendation methods, which can provide per-

sonalized  content  and  products  to  users  based  on

their  past  behavior,  interest,  social  network  relation-

ships, and other information, have become increasing-

ly  important  in  business  platforms.  In  recent  years,

there has been a growing number of recommendation

approaches. They can be divided into two categories.

1)  One  is  collaborative  filtering  based  recommenda-

tion[1, 2], which analyzes users' historical behavior da-

ta  (e.g.,  ratings,  clicks)  to  infer  users'  interest,  and

then makes  similarity  matches  based on users'  inter-

est  and  the  characteristics  of  items  to  make  recom-

mendations.  2)  The  other  is  graph-based  recommen-

dation[3–5],  which  constructs  graphs  according  to  the

interactions between users and items, and then graph

neural networks are explored to learn the representa-

tions of user nodes and item nodes. Based on the rep-

resentations of users and items, matrix factorization is

always  used  to  get  the  recommendation  lists.  The

graph-based recommendations can better handle com-

plex user-item interactions and can easily add user at-

tributes, item attributes, and other auxiliary informa-

tion to the graph structure to improve the accuracy of

recommendation.

However,  there  are  still  some problems in  recom-

mendations.  1)  Users'  interest  and  preferences  are

complex  and  varied.  Even  the  same  user  may  pur-

chase the same item for different purposes. Therefore,

a  user's  potential  intents  is  often  not  reflected  by  a

single item. For example, when coke and popcorn are

purchased  together,  the  user  may  be  planning  to

watch  a  movie.  Existing  methods  such  as  collabora-

tive  filtering  tend  to  recommend  food-related  items

based  on  item-similarity  rather  than  movie-related

items. 2) User preferences can change over time. For

example, a user initially buys a few pairs of sneakers
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because he/she likes to run.  However,  over time,  the

user may become less interested in running and more

interested  in  tennis.  Conventional  recommendation

methods  such  as  matrix  decomposition  often  assume

that user preferences are static, but in real-world sce-

narios, recommendation systems need to capture long-

term dynamic trends and ignore some temporarily ex-

hibited noise.

To solve the above problems, we propose to learn

user  intents.  User  intents  usually  has  two  kinds  of

characteristics:  generality and personality.  Generality

represents the aggregation of a large number of simi-

lar  behaviors  among  users,  which  is  applicable  to  a

wide range of scenarios and user groups, and not de-

pendent on specific contexts and scenarios. Personali-

ty  is  based on a specific  scenario  or  context  to  meet

more specific  and personalized user  needs.  Therefore,

in this paper, two kinds of intents are generated and

explored.  One  is  user  generic  intents  that  means  the

common interest and interrelated items among users,

which is explored by discovering the stable structures

among  items.  The  other  one  is  user  specific  intents

that  means  the  special  interested  items  of  users,

which is explored based on users' behavior over a pe-

riod of time.

According  to  the  above  ideas,  a  novel  framework

named  Intent-Aware  Graph-Level  Embedding  Learn-

ing (IaGEL①) is proposed for recommendation in this

paper.  This  framework  mainly  includes  capturing  in-

tents,  learning  intent-oriented  graph  embedding,  and

intent-based  recommendation.  To  mine  the  potential

intents  and  the  changes  of  preferences  for  users,  the

co-occurrence  graph  is  constructed  based  on  the  fre-

quent co-occurrence relationships among items gener-

ated  by  users  (e.g.,  click,  purchase).  Then,  basic

generic intents and specific intents of users are gener-

ated from the co-occurrence graph. For deeply explor-

ing  the  real  motivations  and  potential  preferences  of

users, adaptive aggregation is designed to generate di-

verse  user  generic  intents  and  user  specific  intents.

After  that,  contrastive  sampling  is  designed  to  cap-

ture positive samples and negative samples of specific

intents. Specifically, positive samples are randomly se-

lected from generic intents, and negative samples are

constructed  based  on  the  graph  corrosion  of  generic

intents.  Then,  graph-level  embedding  learning  is  de-

signed  according  to  the  mutual  information  loss  be-

tween  specific  intents  with  positive  generic  intent

samples  and  negative  generic  intent  samples,  result-

ing in the representations of user generic intents and

specific intents. Finally, for further mining users' pref-

erence  changes,  an  intent-based  recommendation  is

designed  based  on  an  exploration  and  exploitation

strategy[6], to capture dynamic trends in user interest

by  dynamically  updating  the  weights  of  intents  dur-

ing  the  recommendation  process.  Experiments  con-

ducted  on  three  public  datasets  show  that  the  pro-

posed  IaGEL  significantly  outperforms  the  advanced

recommended  algorithms.  The  main  contributions  of

this paper can be summarized as follows.

1)  A novel  framework is  proposed for  recommen-

dation,  which  captures  the  diverse  user  intents  and

learns  their  embedding,  and  makes  a  recommenda-

tion  from the  aspect  of  communities  instead  of  from

the aspect of nodes themselves.

2) A community-oriented adaptive aggregation al-

gorithm is designed, which discovers not only the dif-

ferences  but  also  their  relationships  among users'  in-

tents.

3)  An  intent-based  recommendation  is  designed

based  on  mutual  information  calculation  among  in-

tents,  which  further  explores  the  users'  interest  and

preferences, resulting in accurate recommendations.

The following content is organized as follows. Sec-

tion 2 summarizes  the  related  work  on  recommenda-

tion methods  and graph embedding learning. Section

3 shows the details of the proposed IaGEL. Section 4

analyzes  the  extensive  experiments,  and Section 5

concludes this work. 

2    Related Work
 

2.1    Recommendation Methods

In recent years, recommendation has attracted in-

creasing  attention  in  both  academia  and  industry.

Collaborative filtering (CF)[1, 2, 7],  as one of the most

traditional  approaches,  has  been  widely  studied  and

applied  in  various  domains.  Its  basic  idea  is  to  ana-

lyze  the  similarity  between  users  to  predict  the  rat-

ing  or  preference  of  users  for  items.  In  the  recent

years, the combination of traditional collaborative fil-

tering  and  neural  network  have  presented  the  main-

stream of the innovation in collaborative filtering ap-

proaches. For example, He et al.[8] proposed a general

framework  for  collaborative  filtering  based  on  neural

networks.  Wang et  al.[7] proposed  a  vector  quantiza-

tion auto-encoder  for  collaborative  filtering.  Wang et
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al.[9] improved the performance of collaborative filter-

ing  by  systematically  profiling  the  design  space  of

graph neural networks.

On the other hand, with the rapid development of

graph  neural  networks,  graph-based  recommenda-

tions are also popular. Meta-path[3, 4, 10–13] is common-

ly  used  for  mining  potential  association  patterns  in

heterogeneous  networks.  For  example,  Dong et  al.[3]

proposed  a  meta-path  based  random  walk  to  con-

struct heterogeneous neighborhoods of nodes. Yang et
al.[11] proposed an architecture of hierarchical aggrega-

tion  to  provide  useful  meta-paths  for  each  object  at

different  levels.  Some  scholars  proposed  the  idea  of

converting heterogeneous networks into homogeneous

networks  by  using  the  co-occurrence  graph[5, 14, 15].

For example, Li et al.[14] proposed a multi-layer diffu-

sion method on a co-occurrence graph to enrich user

behavior.  Jiang et  al.[15] used  an  attention-based

mechanism  in  the  co-occurrence  graph.  However,

these methods are still based on the matrix factoriza-

tion framework, which can only solve specific applica-

tions  and  cannot  provide  a  generalized  learning

framework for complex scenarios.

Additionally,  most  graph-based  recommendation

approaches fail  to  take into account the dynamic in-

teractions  between  users  and  items.  Recently,  some

approaches have been proposed to capture the inten-

tions  of  users.  For  example,  Chen et  al.[16] modeled

user intentions as a tuple of action type and product

category.  Yang et  al.[17] encoded  sequential  patterns

and  modeled  user  behavior  by  unifying  the  latent

item-wise relatedness and item-specific behavior corre-

lations. Wang et al.[18] captured user intents based on

the  category  information  of  the  items.  Guo et  al.[19]

extracted consecutive intent units and fused the rep-

resentations  of  all  intent  units  to  get  the  recommen-

dation  results.  In  [20],  intents  were  presented  as  a

heterogeneous  network  for  recommendation.  In  [21],

user intents were treated as purposes for which a us-

er  purchases  the  product,  and  a  ranking  model  was

adopted  to  aggregate  ranking  lists  for  recommenda-

tion.  Although  such  researches  have  the  concept  of

user  intents,  they  always  consider  the  intents  from

the categories  of  items,  and a lot  of  work focuses  on

how to fuse the lists based on the ranking results. In

comparison, our work tends to analyze the generality

of different people and the personality of the specific

person, which captures general intents and specific in-

tents  of  users  through  adaptive  aggregation,  and

adopts an intent-based method for recommendation. 

2.2    Graph Embedding Learning

Graph  embedding  learning  focuses  on  learning

low-dimensional  vector  representations  of  graph enti-

ties,  such as  nodes,  edges.  Graph embedding is  com-

monly  used  in  a  lot  of  graph-related  tasks,  such  as

node  classification,  link  prediction,  and recommenda-

tion.  One  of  the  main  approaches  is  random

walk[22–24],  where each node is  mapped into a low-di-

mensional vector by using the path of random walk as

a  corpus.  Auto-encoder  algorithms  are  also  widely

used in graph embedding learning. Kipf et al.[25] pro-

posed the  variation graph auto-encoders  to  learn the

embedding of nodes in a graph, in which the encoder

maps  the  node  feature  vectors  to  a  low-dimensional

space  and  the  decoder  reverts  the  embedding  to  the

original space. Petar et al.[26] proposed the deep graph

infomax to learn the embedding of nodes by maximiz-

ing the information entropy of local neighbors.

In recent years, graph embedding learning via graph

neural  networks  has  also  emerged.  Welling et  al.[27]

proposed  Graph  Convolutional  Network  (GCN)  to

update  the  features  of  nodes  by  convolving  the  fea-

tures  of  neighboring  nodes  with  those  of  their  own

nodes.  Velickovic et  al.[28] proposed  Graph  Attention

Network  (GAT),  in  which  weights  are  calculated  by

adding  the  features  of  a  center  node's  neighboring

nodes the weighted features of  the center node when

updating the features of the nodes. Hamilton et al.[29]

proposed GraphSAGE, in which the features of neigh-

boring  nodes  are  aggregated  based  on  sampling,  and

the features of the nodes are updated through a fully

connected  network.  Xu et  al.[30] proposed  Graph Iso-

morphism Network (GIN), in which the feature repre-

sentations  of  the  substructures  in  a  graph  are

summed  based  on  the  graph  isomorphism  property,

and  then  the  features  of  the  nodes  are  updated

through a multi-layer fully connected network. In our

work,  the  purpose  is  to  learn  the  representations  of

intents instead of the nodes themselves, therefore the

subgraph  level  embedding  should  be  learnt  rather

than the node level embedding. 

3    Proposed Method
 

3.1    Problem Description

m

n ut St = ct1 → ct2 → . . .

→ ct|St|

cti (1 ⩽ i ⩽ |St|)
i ut

Suppose the original data consists of  users and

 items. Each user  has a sequence 

 including  the  user's  historical  behaviors  in

chronological  order,  where  denotes

the -th item that  has interacted with. Each item

1140 J. Comput. Sci. & Technol., Sept. 2024, Vol.39, No.5



d

H ∈ Rn×d

contains different attributes such as review, price, and

brand,  which  have  rich  semantic  information.  Using

word2vec[31] and  one-hot  encoding,  the  attributes  of

all  items  are  projected  into  a -dimensional  feature

matrix , where each row represents the ini-

tial feature of one item. The goal is to explore the us-

er's  potential  interest  and  preference  changes,  and

then recommend items that the user is most likely to

interact  with in  the  future.  This  paper  gives  a  novel

framework  for  implementing  this  goal,  as  shown  in

Fig.1. The explanations of main notations are given in

Table 1. 

3.2    Co-Occurrence Graph Generation

G = (V,E,W ) V

To model  time-related relationships  for  items,  we

construct  a  co-occurrence  graph . 

E

denotes  the  set  of  nodes  containing  all  items  in  the

dataset.  is  described  as  the  adjacency  matrix  of

nodes, which is given as follows:
 

E =


e11 e12 · · · e1n
e21 e22 · · · e2n
...

... eij
...

en1 en2 · · · enn

 ,

eij
vi vj St vi → vj vj → vi

W = (w1, w2, . . . , wn)

G

where  denotes  the  number  of  adjacent  relations

between  and  in ,  like  or .

 denotes  the  weights  of  the

nodes in . Here PageRank[32] is used to calculate the

weights of nodes. 

3.3    User Generic Intents Generation

To capture the universal interest across users, the
 

Co-Occurrence Graph 

Initialization After Adaptive Aggregation

After Adaptive Aggregation

Contrastive Sampling

Specific Intent 


Positive Samples

Delete Edge

Add Edge

Change Node

Specific Intent 


Negative Samples Positive Samples

Negative Samples

Generic Intents Generation

Specific Intents Generation
Co-Occurrence

Graph    

User Behavior
Sequence

Initialization

Generic Intent Embedding

Specific Intent
Embedding

Graph-Level  

Embedding Learning

Intent-Based Recommendation

Explore

Recommended Items

Exploit
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p
d
a
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U
p
d
a
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Fig.1.  Framework of IaGEL for recommendation.
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G
GΦ = {Gφ1 , Gφ2 , . . . , Gφp} p

G

high-frequency  items  are  mined  from  the  co-occur-

rence  graph ,  resulting  in  a  set  of  generic  intents

,  is  the  total  number  of

generic intents generated from . 

3.3.1    Triangular Structure Capture

G

Gφx

GΦ Gφx (V φx ,Eφx ,W φx) V φx =

{vi, vj, vk}
Eφx

W φx

The triangle is an important structure in complex

graph analysis.  Existing study[15] has  shown that  the

triangular  structure  has  the  property  of  internal  ho-

mogeneity that can effectively reduce the noise infor-

mation contained in large-scale commodity data, and

the  property  of  external  heterogeneity  that  reflects

different  aspects  of  user  interest.  Based  on  such  two

properties,  the  triangle  structures  are  captured  from

the  co-occurrence  graph  as  the  most  basic  generic

intents.  To  clearly  explain  the  generation  of  user

generic intents, we use  to denote a generic intent

from .  is initialized as . 

 is  a  node  set  with  a  triangular  structure,

 is  an  adjacency  matrix  of  this  triangular  struc-

ture,  and  includes  the  weights  of  the  corre-

sponding nodes. 

3.3.2    Adaptive Aggregation

Discovering the basic generic intents based on the

triangular structure is  a crucial  step in exploring the

potential  intents  of  a  user.  However,  the  triangular

structure  does  not  adequately  reflect  the  user's  in-

tents and often neglects isolated nodes, leading to dis-

ruptions.  Inspired  by  community  diffusion  metho-

ds[33–35],  an  adaptive  aggregation  approach  is  design-

ed here to improve the acquisition process of intents.

To  ensure  that  the  aggregated  results  retain  the

high degree of relevance that comes from the triangu-

lar  structure,  homogeneity,  an important property of

intents, is defined as:
 

H(Gφx) =
∑

vi∈V φx

∑
vj∈V φx

wiwjsim(vi, vj)

|V φx|2
, (1)

wi wj vi
vj G sim(vi, vj)

hi vi hj

vj

where  and  denote the weights of nodes  and

 in , respectively,  denotes the similari-

ty  between  attributes  of  node  and  of  node

. Here the cosine similarity is used, which is calcu-

lated as:
 

sim(vi, vj) =
hihj

∥hi∥∥hj∥
.

Gφx ∈ GΦ

γ Nγ(G
φx)

Homogeneity  measures  the  degree  of  similarity

among item features within a community. Higher val-

ues  indicate  greater  internal  consistency  and  homo-

geneity.  For  each  basic  generic  intent ,  we

choose the node with the maximum homogeneity gain

from the node's -order neighbors  for aggre-

gation, which is defined as follows:
 

argmax
vi∈Nγ(Gφx )

{
H(Gφx + {vi})−H(Gφx)

}
. (2)

At  the  same  time,  the  homogeneity  metric  may

lead to popularity bias, where the model may focus on

more popular products and lack the exposure of long-

tail  products.  Therefore,  we  need  a  metric  to  assess

the overall quality of the user's generic intents. Modu-

larity[35] regularizes  long-tailed  and  popular  products

by adding popularity penalty scores of product nodes

to  encourage  the  model  to  actively  give  exposure  to

cold products, which is defined as follows:
 

Q(GΦ) =
1

τ

n∑
i=1

n∑
j=1

(
eij −

gigj
τ

)
δ(i, j), (3)

eij
vi vj G gi gj

vi vj τ

E δ(i, j)

vi vj
Gφx

where  represents  the  weight  of  the  edge  between

nodes  and  in ,  and  represent the degrees

of  nodes  and ,  respectively.  is  the sum of  the

weights  of  all  the  edges  in ,  is  a  function,

which  equals  1  if  and  belong  to  a  same  intent

, otherwise 0.

GΦ
′

GΦ

After each aggregation, the difference between the

new aggregation scheme  and the previous aggre-

gation scheme  is calculated as follows:
 

∆Q(GΦ
′

, GΦ) = Q(GΦ
′

)−Q(GΦ). (4)

∆Q(GΦ
′

, GΦ) > 0

GΦ GΦ
′

∆Q(GΦ
′

, GΦ) < 0

GΦ

When ,  the  aggregation  scheme

 is updated to be , and a new iteration is start-

ed  until .  Finally  the  best  aggrega-

tion  scheme  is  obtained. Algorithm 1 shows  the

whole  process  of  adaptive  aggregation  for  generating

 

Table  1.    Notations and Explanations

Notation Explanation

St utHistorical behavior sequence of 

H Feature of items

G Co-occurrence graph

Gφx User generic intent

GΦ User generic intents set

H(Gφx ) GφxHomogeneity of 

Q(GΦ) GΦModularity of 

Gπt User specific intent

GΠ User specific intents set

F πt GπtEmbedding of 

Fφx GφxEmbedding of 

I(F πt ,Fφx ) Gπt GφxMutual information between  and 
rx GφxRecommend rating for 
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GΦuser  generic  intents ,  which  inputs  triangular

structured basic intents and outputs the intents with

an arbitrary number of  nodes based on the measure-

ment of homogeneity and modularity among nodes.

Algorithm 1. Adaptive Aggregation

Input:

H　initial features of items ;

GΦ = {Gφ1 , Gφ2 , . . . , Gφp}　basic generic intents ;

G　co-occurrence graph ;
Output:

GΦ　user generic intents  after adaptive aggregation

flag1: Initialize  = 1;

flag2: while  == 1 do

Gφx ∈ GΦ3: 　for  do

H(Gφx)4: 　　Calculate  by (1);

vi ∈ V φx5: 　　for  do

H(Gφx + {vi})6: 　　　Calculate  by (1);

H(Gφx + {vi})−H(Gφx)7: 　　　Calculate ;

8: 　　end for

Gφx

9: 　　Find node with the maximum homogeneity gain by (2)
          and add it to ;

10: 　end for

Q(GΦ′
)11: 　Calculate  by (3);

∆Q(GΦ′
, GΦ)12: 　Calculate  by (4);

∆Q(GΦ′
, GΦ) < 013: 　if  then

flag14: 　　 =0;

15: 　else

GΦ ⇐ GΦ′
16: 　　 ;

17: 　end if
18: end while

GΦ19: return 
 

3.4    User Specific Intents Generation

St

V πt

G

GΠ = {Gπ1 , Gπ2 , . . . , Gπm}

Gπt = {V πt ,Eπt ,W πt}
GΠ V πt

St Eπt

W πt

To capture the complete interest profiles and pref-

erence trends of individual users, the items in the us-

er behavior sequence  are taken as the initial set of

nodes  for  each  user,  and  the  corresponding  sub-

graph from  is  extracted as  the  initial  user  specific

intent  graph.  All  initial  user  specific  intents  are  de-

noted  as .  To  clearly  ex-

plain  the  generation  of  user  specific  intents,  we  use

 to denote an initial user specif-

ic intent in .  is the set of all nodes contained

in the user sequence .  denotes the correspond-

ing connection relations among nodes, and  con-

tains the weights of nodes.

γ
Gπt

Nγ(G
πt)

H(Gπt)

Similar to the aggregation for generic intents gen-

eration, we adaptively aggregate -order neighbors of

 to  mine  neighboring  users'  preferences  and  im-

prove the user profile based on social semantic infor-

mation.  By  traversing ,  the  node  with  the

maximum homogeneity  is found as the aggre-

gation  node.  After  each  round  of  aggregation,  the

∆Q(GΠ
′

, GΠ)

GΠ

modularity  improvement  is  calculated

to evaluate the new aggregation scheme. Finally,  the

best aggregation scheme  is obtained. 

3.5    Graph-Level Embedding Learning

Gπt GΦ

GΦ

V φx ⊂ V πt α

Since  recommendation  algorithms  are  often  ap-

plied  to  different  fields  such  as  music,  business,  and

social  media,  the  adoption  of  comparative  learning

can  help  the  network  adapt  to  learn  the  representa-

tion related to the specific task. Here, for learning the

representation of intents, a set of positive samples and

a set of negative samples for each user specific intent

 are  obtained from the set  of  generic  intents .

Positive  samples  are  randomly  selected  from 

where ,  resulting in  generic intents.  The

same number of negative samples are constructed by

randomly  changing  nodes,  adding  extra  edges,  and

deleting existing edges to destroy the graph structure

of the positive samples.

Now  the  goal  is  to  learn  the  mutual  information

relationship  between  user  specific  intents  and  user

generic  intents,  and  generate  the  corresponding  em-

bedding  for  user  specific  intents  and  user  generic  in-

tents,  therefore that the mutual information between

the  positive  user  generic  intents  embedding  and  the

corresponding user specific intents embedding is maxi-

mized, and the mutual information between the nega-

tive  user  generic  intents  embedding  and  the  corre-

sponding  user  specific  intents  embedding  is  mini-

mized. Fig.2 clearly  shows  the  framework  of  this

graph-level embedding learning. We use the standard

binary cross entropy loss function[26] to train the net-

work, which is defined as follows:
 

LMI =
m∑
t=1

α∑
x=1

log(I(F πt ,F φx)) +

m∑
t=1

α∑
x=1

log
(
1− I(F πt ,F φ̂x)

)
,

F φx

F φ̂x

where  represents  the  embedding  representation

corresponding to positive generic intent samples, 

represents  the  embedding  representation  correspond-

ing  to  negative  generic  intent  samples. I denotes  the

function  for  calculating  mutual  information  between

user  specific  intents  representation  and  user  generic

intents representation as follows:
 

I(F πt ,F φx) = Θ
(
(F πt)

T
BF φx

)
,

 

I(F πt ,F φ̂x) = Θ
(
(F πt)

T
BF φ̂x

)
,
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B

Θ

where  is  a  matrix  of  learnable  rating  weight  pa-

rameters.  denotes the sigmoid activation function.

F πt ∈ R1×z

z

A  graph  embedding  network  is  constructed  to

generate  user  specific  intents  embedding ,

where  is the dimension of embedding. The network

consists  of  graph  isomorphism  convolutional  layers

and an average graph pooling function.  The network

are calculated as follows:
 

F 1 = σ(MLP ((Eπt + (1 + ϵ1) · I) · F 0)), (5)

 

F 2 = σ(MLP ((Eπt + (1 + ϵ2) · I) · F 1)), (6)

 

F 3 = σ(MLP ((Eπt + (1 + ϵ3) · I) · F 2)), (7)

 

F πt =
1

|V πt|
IT|V πt |F

3, (8)

F 0 H

F 1

Gπt F 2,F 3

I ϵ1

ϵ2 ϵ3 σ(·)

where  is  just  the  features  of  attributes  of

nodes,  represents the embedding representation of

the graph  at the first layer, and  have the

similar meaning.  represents the identity matrix. ,

,  and  are trainable parameters.  denotes the

ReLU  activation  function. MLP is  a  multilayer  per-

ceptron.

F φx

F φ̂x

Using  the  same  way,  we  can  obtain  the  embed-

ding  corresponding to the positive generic intent

samples and the embedding  corresponding to the

negative generic intent samples. 

3.6    Intent-Based Recommendation

Commonly, the matrix decomposition[7] is applied

for recommendation, which decomposes the user-item

interaction  matrix  into  multiple  low-rank  matrices,

and  scores  the  item  through  the  decomposition  ma-

trix to generate a recommendation list. However, ma-

trix  decomposition  cannot  dynamically  capture  the

user's interest. Based on the concept of intents given

in Subsection 3.5,  we  design  an  intent-based  recom-

mendation strategy here, which calculates the recom-

mendation scores in terms of intents and returns the

recommendation list based on our exploration and ex-

ploitation strategy.

i ut

rx
Gφx

To be specific, for the -th recommendation of ,

the recommendation score  is calculated for each al-

ternative user generic intent , which is defined as:
 

rx = I(F πt ,F φx) +
θηx
βx

+

√
2 ln i
βx

, (9)

βx Gφx

ut ηx
Gφx

θ

θ

θ

where  represents  the  number  of  times  has

been  selected  in  the  historical  recommendations  for

user .  represents  the  sum  of  previous  rewards

from the choice of  in the historical recommenda-

tions, with an initial value of 0.  is a parameter with

a range from 0 to 1, which is used to control the bias

of recommendation. When  decreases, it tends to ex-

plore  new  items  different  from  the  previous  recom-

mendation  to  discover  potential  user  preferences,

which means the recommendation is more diverse for

users.  When  increases,  it  tends  to  recommend  ex-

pected  items  by  exploiting  the  existing  knowledge,

which  means  the  recommendation  is  more  stable  for

the user.

 

...

...

Positive Generic Samples

Negative Generic Samples

User Specific Samples

GIN Convolution
Layer

GIN Convolution
Layer

Full Graph
Pooling

Graph Embedding Network

GIN Convolution
Layer

Embedding

F
 , F

 , ..., F
 

F     
 

F
 , F

 , ..., F
  (F     

 , F
 )

(F     
 , F

 )

L

Fig.2.  Framework of graph-level embedding learning.
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K

K

H

ut

rx

rx

yk k ∈ [1, K] ηx βx

K

Y K

ut

ut

For  the  top-  recommendation  task,  the  above

strategy is  employed  rounds.  After  extracting  ini-

tial features  for items, and generating user generic

intents  and the specific  intents  of ,  each round in-

volves sorting user generic intents based on  and se-

lecting the user generic intent with the maximum .

Then an item from this intent is randomly selected as

the  recommended  item , .  and  are

updated based on user feedback. After completing 

rounds,  a  recommendation  list  with  length  is

given for . Algorithm 2 shows the whole process of

getting  a  recommendation  list  for  user ,  which  in-

puts the generic intents and specific  intents of  users,

generates the graph embedding of each intent, calcu-

lates  the  recommendation  scores  in  terms  of  intents,

and finally returns the recommendation list based on

an exploration and exploitation strategy.

Algorithm 2. Intent-Based Recommendation

Input:

H　the features of items ;

GΦ　user generic intents ;

Gπt　user specific intent ;
Output:

Y = (y1, y2, . . . , yK)　recommendation list of items ;

1: Initialize Y = ();

i 1, 2, 3, . . . , K2: for  =   do

F0 Gπt3: 　Initialize  by the feature matrix of the nodes in ;

F 14: 　Calculate  by (5);

F 25: 　Calculate  by (6);

F 36: 　Calculate  by (7);

F πt7: 　Calculate  by (8);

Gφx ∈ GΦ8: 　for  do

F0 Gφx9: 　　Initialize  by the feature matrix of the nodes in ;

F 110: 　  Calculate  by (5);

F 211: 　  Calculate  by (6);

F 312: 　  Calculate  by (7);

F φx13: 　  Calculate  by (8);

rx14: 　  Calculate  by (9);

15:　end for

GΦ rx16: 　Sort  based on ;

Gφx rx17: 　Select  with maximum ;

Gφx yk18: 　Randomly select an item from  as ;

yk19: 　if user is interested in  then

ηx = ηx + 120: 　　 ;

21: 　end if

βx = βx + 122: 　Update ;

yk Y23: 　Add  into ;
24: end for

Y25: return ;
 

4    Experiments
 

4.1    Experimental Setup
 

4.1.1    Datasets

We  adopt  three  public  datasets  Movielen②,

Yelp2018③, Amazon2018④ to verify the proposed rec-

ommendation framework IaGEL.

The MovieLens dataset includes 100 835 ratings of

9 741 movies given by 1 010 users. The ratings are on

a scale of one to five stars and each user has rated at

least  20  movies.  In  addition  to  the  rating  data,  the

dataset  also  provides  basic  attributes  of  both movies

and  users.  For  movies,  the  attributes  include  genre,

director,  actors,  release  year,  and  internet  movie

database  (IMDB)  link.  For  users,  the  attributes  in-

clude  age,  gender,  and  occupation.  MovieLen's  large

size  and  high-quality  rating  data,  along  with  rich

movie and user attributes, make it a popular dataset

for studying recommendation systems.

Yelp  is  a  widely-used  business  dataset  that  con-

tains 185 484 review records, 30 099 business  records,

and 301 757 user  records.  The  review  data  includes

user-generated  text,  ratings,  and  timestamps  of  re-

views,  with  ratings  ranging  from  one  to  five  stars.

The business data includes information such as busi-

ness names, addresses, geolocation, and review counts

for multiple cities around the world. The user data in-

cludes user ID, username, and the number of reviews.

The  Amazon-Book  dataset  contains 24 531 rat-

ings  and information about 29 978 books.  The rating

data  contains  a  large  number  of  user  ratings  from

Amazon.com,  including  user  ID,  rating,  rating  time,

and other information. Each user's rating of a book is

an integer value from one to five. The book data con-

tains the basic attributes of the book, including the ti-

tle,  author,  publisher,  ISBN,  publication  date,  and

other information.

The numbers of users,  items and records of these

three datasets are summarized in Table 2. The densi-

ty of each dataset is also listed in Table 2. Density is

an important evaluation parameter of a business rec-

ommendation dataset, reflecting the ratio of the num-

ber  of  interactions  already  in  the  dataset  relative  to

the  maximum  number  of  possible  interactions.  A

higher  density  indicates  that  the  dataset  is  richer  in
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③https://www.yelp.com/dataset, Sept. 2024.
 

④https://nijianmo.github.io/amazon/index.html, Sept. 2024.
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existing  interactions  and  the  interactions  between

users and items are more intensive. Conversely, a low-

er  density means that  the dataset  is  sparser  and the

interaction between users and items is more limited. 

4.1.2    Comparison Methods and Evaluation

Metrics

To evaluate the performance of the proposed meth-

od,  we  consider  both  the  state-of-the-art  methods  of

recommendation and graph neural networks.

NGCF[36]:  a  collaborative  filtering  approach  that

captures  collaborative  signals  in  higher-order  connec-

tions by stacking multiple embedded propagation lay-

ers.

K

GraphDA[37]:  a  collaborative  filtering  approach

that  enhances  the  user-item  interaction  matrix  via

top-  sampling.

MCLSR[38]:  a  graph-based recommendation which

learns the representations of users and items through

a cross-view contrastive learning paradigm.

Multi-GCCF[39]:  a  graph-based  approach  that  ex-

plicitly  incorporates  multiple  graphs  in  the  embed-

ding learning process.

GIM[14]:  a  graph-based  intention  mining  method

with multi-layered intention diffusion on the co-occur-

rence relationship graph.

TGIN[15]:  a  graph  interest  network  that  intro-

duces  triangle  structures  in  item-item  co-occurrence

graphs as the basic unit of user interest.

K K

K

K K

K

K K K

K

The metrics widely used for recommendation tasks

are  used  to  evaluate  the  performance  of  all  the  ap-

proaches, including recall of top-  items (Recall@ )

and normalized discounted cumulative gain of top-

items  (NDCG@ ).  Recall@  is  an  accuracy-based

metric  that  reflects  how  accurately  the  model  pre-

dicts  positive  cases.  NDCG@  is  a  precision-based

metric  that  evaluates  the  difference  between  the

ranked list and the real interaction list of the user. In

the  experiments,  we  set k=10  and  20  to  make  the

generated recommendation list the same length as the

regular  recommendation  list.  In  the  following  tables,

Recall@  and  NDCG@  are  shorted  as  R@  and

N@ , respectively.

K

K

K K

The recommendation  algorithms based  on  matrix

decomposition  like  NGCF,  GraphDA  and  Multi-GC-

CF  use  user-item  interaction  data  to  select  the 

items with  the  largest  rating  function to  form a rec-

ommendation  list.  The  sequence-based  recommenda-

tion algorithms like IaGEL, MCLSR, GIM and TGIN

use  a  sequence  of  the  user's  historical  behaviors  to

make  consecutive recommendations to form a rec-

ommendation  list.  We  evaluate  the  recommendation

performance  using  Recall@  and  NDCG@  based

on the number of products contained in the final rec-

ommendation list. 

4.1.3    Implementation Details

1× 10−4

In the proposed IaGEL, the dimension of  embed-

ding representation is set to 64 and the learning rate

is  set  to .  To  ensure  fairness,  we  follow  the

officially  reported  hyper-parameter  settings  with  the

best model performance for these compared approach-

es. For NGCF, the number of layers in the graph en-

coder  is  set  to  three and the embedding size  is  fixed

to  64.  For  GraphDA,  the  number  of  neighbors  from

different semantics is set to 5. For MCLSR, the depth

of GNN layers is set to 2. For Multi-GCCF, two Bi-

parGCN layers  are  used  and  the  neighborhood  sam-

pling size is set to 15. For GIM, five-layer full-connec-

tion  perceptron  is  adopted  as  the  forward  network.

For TGIN, the window size is set to 3 and the embed-

ding size is set to 18. 

4.2    Comparison with State-of-the-Art

Methods

We randomly choose 60% of the data as the train-

ing set, 20% as the test set and the remaining data as

the  validation  set  for  the  experiments.  The  compari-

son  of  the  proposed  IaGEL  and  the  state-of-the-art

methods is given in Table 3 (bold represents the best

performing method).  It  can be seen that IaGEL out-

performs  these  advanced  approaches  on  these  three

different  datasets.  For  the  Moivelen  dataset,  the  re-

call  of  IaGEL is  0.67% to 2.40% higher  than that of

the other methods, and the NDCG of IaGEL is 1.01%

to 3.00% higher than those of the other methods. For

the Yelp2018 dataset, the recall of IaGEL is 0.49% to

2.21%  higher  than  those  of  the  other  methods,  and

the  NDCG of  IaGEL is  1.14% to  3.50% higher  than

that  of  the  other  methods.  For  the  Amazon dataset,

the  recall  of  IaGEL  is  0.32%  to  2.61%  higher  than

that of the others, and the NDCG of IaGEL is 0.39%

 

Table  2.    Statistics of Datasets

Dataset #Users #Items #Records Density

MovieLens 1M 1 010 9 741 100 835 0.010 20

Yelp2018 301 757 30 099 185 484 0.000 02

Amazon-Book 24 531 29 978 299 258 0.000 27
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to 2.56% higher than that of the others. An interest-

ing  thing  should  be  pointed  out:  IaGEL  has  signifi-

cant advantages for sparse datasets, such as Yelp2018

whose density is only 0.000 02. The reason is that the

IaGEL  mines  the  potential  semantic  information  in

the  neighborhood  space  to  complement  the  missing

contextual information of the sparse graph.

IaGEL  has  obvious  performance  improvement

compared  with  inductive  collaborative  filtering  like

NGCF,  GraphDA,  and  graph-based  recommendation

like MCLSR and Multi-GCCF. This is because IaGEL

not only captures the relationship between users and

items  through  structural  and  temporal  correlations,

but  also  mines  users'  real  purposes  and  higher-order

semantic  features  through  intents,  which  has  more

powerful  generalization  ability  and  interpretability.

Due to the dynamic recommendation weighting strat-

egy  and  adaptive  aggregation  strategy,  IaGEL has  a

significant  performance  improvement  compared  with

intent-based recommendation like GIM and TGIN. In

IaGEL, intents generation is offline operations, which

does not require iterative training. Therefore the com-

plexity of IaGEL depends on the embedding learning

which  needs  to  specify  the  number  of  sampled  posi-

tive and negative general intents for each user specif-

ic intent. Compared with another graph-based recom-

mendations  algorithm[9] which  depends  on  the  num-

ber  of  nodes,  intents  tend  to  be  more  granular  and

less numerous. Using intents as recommendation units

has better time complexity. 

4.3    Evaluation of  the Capture of  Preference

Changes

Dynamic  user  preference  changes  are  a  frequent

problem for recommendation systems. Traditional rec-

ommendation algorithms are often modeled based on

user-item interaction matrices, which often fail to cap-

ture  dynamic  user  preferences  over  time.  To  demon-

strate that IaGEL has the ability of capturing dynam-

ic  user  preferences  over  time,  we  do  experiments  on

the  Movielen  dataset  whose  density  is  larger  than

those  of  the  other  two  datasets.  Yelp  and  Amazon

datasets  are  relatively  sparse  and  lack  a  sufficient

number of long user behavior sequences.

The first 25% of the data is used as the initial da-

ta  to  train  IaGEL,  and  its  performance  metrics  are

recorded. Then, the data was incrementally increased

by subsequent 25%, and each time when new data is

added, IaGEL will be retrained. By this way, the us-

er's dynamic preferences are simulated and evaluated.

IaGEL  is  compared  with  MCLSR  and  TGIN  which

also extract intents or use contrastive learning. From

Fig.3,  we  can  see  that  when  the  user  behavior  se-

quence  is  short,  the  performance  improvement  of

IaGEL is not obvious compared with these two meth-

ods, only 0.34% and 0.94% higher at Recall@20, only

0.14%  and  0.54%  higher  at  NDCG@20.  However,  as

the  user  behavior  sequence  becomes  longer,  other

models  gradually  fail  to  capture  the  long-term trend

of  user  preferences,  while  IaGEL captures  the  evolu-

tion  of  user  preferences  through  intentions.  For  the

complete  user  sequence,  the  Recall@20  of  IaGEL  is

1.78%  and  2.94%  higher  than  that  of  MCLSR  and

TGIN,  respectively.  The  NDCG@20  of  IaGEL  is

2.78%  and  2.91%  higher  than  that  of  MCLSR  and

TGIN, respectively. 

4.4    Parameter Analysis
 

4.4.1    Evaluation of the Order of Adaptive

Aggregation

γ

γ

γ

γ

γ
@ @

The order  tells the search scope of adaptive ag-

gregation for  basic  intents.  When  = 0,  the intents

are just the pure triangular structure. When  is larg-

er than 0, the intents are generated from the basic tri-

angular  structure  and  basic  triangular  structure's 

order neighbors. Intuitively, the order of neighbors af-

fects  the  performance  of  the  relevant  intents  embed-

ding.  As  shown  in Table 4,  we  can  see  that  the  in-

tents  generated  based  on  order  neighbors  can  im-

prove  Recall 20  and  NDCG 20  compared  with  the

 

Table  3.    Results Obtained with Different Methods in MovieLens, Yelp, and Amazon Datasets

Model MovieLens (%) Yelp2018 (%) Amazon (%)

R@10 N@10 R@20 N@20 R@10 N@10 R@20 N@20 R@10 N@10 R@20 N@20

NGCF[36] 20.12 39.53 23.83 43.32 4.62 8.53 5.13 9.25 5.12 5.68 5.69 7.13

GraphDA[37] 20.92 40.62 24.33 43.97 5.84 9.12 6.49 9.93 6.34 6.77 7.26 7.56

MCLSR[38] 21.53 40.93 24.31 44.67 6.22 9.91 6.36 9.62 6.68 6.93 7.46 8.43

Multi-GCCF[39] 20.35 39.87 23.72 43.34 6.04 9.55 6.31 9.74 6.29 6.21 7.34 7.65

GIM[14] 20.84 40.35 23.67 43.17 5.95 9.38 6.22 9.92 6.53 6.84 7.26 8.13

TGIN[15] 21.95 41.52 24.12 43.64 6.34 10.07 6.78 10.14 6.87 7.05 7.81 8.42

IaGEL 22.62 42.53 25.74 45.93 6.83 11.21 7.32 12.75 7.73 8.24 8.13 8.82
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@ @ γ = 2

γ = 0

@ @

pure triangular structural  intents.  When the order is

2,  Recall 20  and  NDCG 20  are  much  higher:  Re-

call 20  and  NDCG 20  are  6.42%  and  9.5%  higher

than the  basic  intents  in  the  MovieLens  dataset.  On

the  two  sparse  datasets  Yelp2018  and  Amazon,  Re-

call 20 and NDCG 20 of  are also higher than

those  of .  But when the order  is  larger  than 2,

Recall 20 and NDCG 20 are decreased significantly.

The reason may be that when the search scope is too

large,  the  integration  will  bring  too  much  irrelevant

nodes  in  the  intents,  resulting  in  semantic  confusion

and information redundancy. Therefore we fix the or-

der of aggregation to 2 in the experiments. 

4.4.2    Evaluation of the Number of Intent

Samples

α

@ @
α = 30

α

α

α = 30

The  complexity  and  accuracy  of  IaGEL  are  also

influenced  by  the  number  of  sampled  intents.  As

shown in Fig.4, we can see that it needs more epochs

to get network convergence when the number of sam-

ples  is  smaller  than  20  or  larger  than  50.  As  in-

creases from 10 to 30, the final performance improves

by 4.84% in  NDCG 20 and 3.36% in  Recall 20  for

the  Movielen dataset,  while  gives  the  highest

NDCG  and  recall  values  at  175  epochs.  However,

when  exceeds 30, the network takes up more space,

and the  final  performance  decreases  in  terms of  ND-

CG and recall. This may be due to the increase of 

leading to the overfitting of the network. Therefore in

the experiments, we select 30 positive samples and 30

negative  samples  for  each  specific  intent.  For  the

Yelp2018  and  Amazon  datasets,  it  has  the  similar

phenomena, therefore  is also used in these two

datasets. 
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Fig.3.   Performance of  user  dynamic preference capture  in  the
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Table  4.      Comparison of Different Orders of Intents'  Neigh-
bor

γ MovieLens (%) Yelp2018 (%) Amazon (%)

R@20 N@20 R@20 N@20 R@20 N@20

0 19.32 36.43 6.42 10.32 7.79 8.12

1 24.46 43.27 7.12 12.51 8.04 8.62

2 25.74 45.93 7.32 12.75 8.13 8.82

3 23.32 41.45 6.72 11.73 7.63 7.83
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4.4.3    Evaluation  of  Different  Graph  Embedding

Operators

For  graph-level  embedding  learning  in  IaGEL,

there are a lot of choices for graph embedding. Here,

we try to compare several commonly used graph em-

bedding  networks  to  discuss  which  one  is  better  for

this  task. Table 5 shows  the  performance  of  these

graph  embedding  networks  for  these  three  dataset.

We  can  see  that  Graph  Convolutional  Network

(GCN)[27] suffers  from  the  complexity  of  commodity

data, which makes it difficult to fully explore the rela-

tionships  and  features  on  co-occurrence  graphs.

GraphSAGE[29] uses  a  fixed  approach  to  aggregate

feature  information from neighboring  nodes  and can-

not fully identify complex associations between differ-

ent  levels  of  intents.  Graph  Attention  Network

(GAT)[28] has  good  performance  on  recommendation

tasks, but the attention mechanism is computational-

ly intensive and has a much higher memory and time

overhead  than  other  graph  embedding  models  when

dealing with large datasets. Graph Isomorphism Net-

work  (GIN)[30] learns  global  features  by  recursively

learning  local  subgraphs,  which  is  suitable  for  han-

dling graph data with different structures, and is ex-

cellent at the task of learning mutual information re-

lationships between different levels of intents.
 
 

Table  5.    Comparison of Different Graph Embedding Opera-
tors

Operator MovieLens (%) Yelp2018 (%) Amazon (%)

R@20 N@20 R@20 N@20 R@20 N@20

GraphSAGE[29] 20.87 41.34 6.14 9.87 6.84 7.53

GCN[27] 21.35 40.57 6.22 10.02 7.35 8.29

GAT[28] 25.42 42.21 6.24 10.17 8.03 8.65

GIN[30] 25.74 45.93 7.32 12.75 8.13 8.82
  

4.4.4    Evaluation  of  Intent-Based  Recommenda-

tion Strategy

θ

θ

In  the  proposed  intent-based  recommendation

strategy,  there  is  a  factor  to  control  recommenda-

tion  bias.  It  is  a  trade-off  between  the  stability  and

the  diversity.  If  the  recommendation  is  more  stable,

the  recommended  items  are  more  uniform,  which

means  that  the  changes  of  users'  preferences  are  less

reflected. Therefore, we quantify the stability and di-

versity to show that the recommendation bias can be

changed  by  adjusting .  The  stability  and  diversity

are quantified as follows:

 

Stability =
N − 1

N∑
t=1

(ot − ō)2
,

 

Diversity =
1

K

K∑
i=1

i−1∑
j=1

(1− cos(ci, cj))

i− 1
,

N

ot t ō

N

cos(ci, cj)

i j

where the stability is obtained by calculating the sam-

ple  variance  of  the  accuracy  of  the  recommenda-

tions and taking the reciprocal as the stability value.

 is the accuracy of the -th recommendation, and 

is the average accuracy of  recommendations and a

smaller value represents more stable. The diversity is

calculated  by  averaging  the  similarity  between  the

recommended  items  and  all  historical  recommended

items,  and  calculates  the  cosine  similarity

between the -th recommended item and the -th rec-

ommended item by using their attributes' features.

As shown in Fig.5, we can see that the stability of
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θ

θ

θ

recommendation is increased and the diversity of rec-

ommendation  is  decreased  as  increases.  For  the

common  recommendation,  can  be  selected  as  0.5.

For  the  situation  of  cold  start,  can  be  selected  as

0.2. 

5    Conclusions

In this paper, a novel recommendation framework

named  IaGEL  was  proposed  for  solving  the  problem

of dynamic user  preference changes and potential  in-

tents  recognition.  Its  accuracy  exceeds  the  existing

advanced  recommendation  algorithms.  The  frame-

work  explores  user  generic  intents  and  specific  in-

tents  to  capture  users'  potential  interest.  Further-

more,  an  intent-based  recommendation  strategy  was

designed to accommodate the changes in users' prefer-

ences. Experiments not only tested the important pa-

rameters  of  the  proposed  framework  but  also  com-

pared  its  performance  with  several  advanced  recom-

mendation approaches. What is more, how to make a

trade-off  between  the  stability  and  the  diversity  of

recommendations  was  also  analyzed.  It  is  also  a  fu-

ture  research  direction  for  solving  the  issue  of  cold

start in recommendation. 
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