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Abstract In a function-hiding inner product functional encryption (FH-IPFE) scheme, both secret keys and ciphertexts
are associated with vectors. Given a secret key for n-dimensional vector x, and a ciphertext for n-dimensional vector y, a
decryptor learns the inner product value ⟨x, y⟩ and nothing else about both x and y. FH-IPFE has been shown to be very
useful in privacy-preserving computation. In this paper, we first propose a  new ( secret-key) FH-IPFE scheme and prove it
secure in generic group model. Compared with the state-of-the-art scheme (Kim et al, SCN18), the proposed scheme has
comparable performance in decryption and reduces 1) the size of master key from n2 to 3n − 1, 2) the setup complexity

from O
(
n3

)
to O (n), and 3) the encryption and key generation complexities from O(n2) to O(n logn). To the best of our

knowledge, this is the most efficient construction based on pairings to date. Moreover, we apply our FH-IPFE scheme to

build a fine-grained data sharing system, where data owners store their encrypted data on an untrusted server. Our design

supports not only basic database operations but also statistical analyses on encrypted data. To achieve this goal, we also

introduce a new security notion, partial-key exposure-resilient simulation-based security (PK-ER-SIM), for FH-IPFE, which

enables lightweight clients to securely delegate heavy computations to powerful server and may be independent of interest.

Keywords function-hiding, functional encryption, fine-grained data sharing, generic group model, inner product

1 Introduction

Functional encryption (FE) [1–4] is a powerful gen-

eralization of traditional encryption, which enables fine-

grained information disclosure to a secret key holder. In

an FE scheme, the holder of the master key is able to

delegate arbitrary secret keys that allow users to learn

specific functions of the data, and nothing else. Specif-

ically, given an encryption of a message x and a secret

key for a function f in some function class F , a decryp-

tor only learns the value f (x).

Inner product functional encryption (IPFE) [5–7],

is a special case of FE supporting inner product func-

tionality. IPFE has been shown to be expressive and

efficient enough to support many interesting applica-

tions such as biometric authentication and queries on

encrypted data [8, 9]. In an IPFE scheme, both secret

keys and ciphertexts are associated with vectors x ∈ Zn

and y ∈ Zn. Given a secret key skx for x and a cipher-

text cty for y, the decryption algorithm outputs the

inner product value ⟨x,y⟩ ∈ Z.

The basic security notion of IPFE guarantees that

an encryption of y reveals only the inner product value

⟨x,y⟩ (but potentially x) to an adversary who has a se-

cret key skx. However, for certain applications, the ba-
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sic security notion may not be enough and it is further

required that secret keys reveal nothing about the un-

derlying functions. For example, let us suppose that a

data owner stores sensitive data on an untrusted server

in the encrypted form (say cty) and the server wants to

make some specific statistical analyses (with skx) on the

encrypted data. For certain statistical calculations such

as variance or covariance, the vector xmay be related to

the data vector y. It is easy to imagine that the owner

may also want to hide the particular choice of x from

the server. IPFE with such a function-hiding property

is defined as function-hiding inner product functional

encryption (FH-IPFE)[7, 10–12].

In the last decade, owing to the fast development

of FE and homomorphic encryption (HE) [13, 14] , the

concept of computation on encrypted data has drawn

lots of attentions. In an FE scheme, an owner of the

master key can delegate secret keys to an untrusted

server that allows to provide fine-grained control over

encrypted data, while in an HE scheme, only the mas-

ter key holder can decrypt the evaluated ciphertext.

Therefore, in contrast to the general-purpose leverag-

ing of HE, FE allows the server to gain access to the

evaluation results. To capture this scenario, we apply

our FH-IPFE scheme to build a fine-grained data shar-

ing system. Let us imagine that each data owner is

given a master key for an FH-IPFE scheme and the

server stores an encryption cty of each owner’s sensi-

tive data under the master key. The server will gain

access to statistical analyses on the encrypted data by

decryption, using delegated secret keys skx.

On the other hand, some data owners may also want

to learn particular statistical results on their own sensi-

tive data and keep those results secret from the server.

Here we also consider the problem that the resource of

every data owner is limited and must rely on the server

for computation. We point out that the standard se-

curity notion of FH-IPFE cannot capture the require-

ment. For such a requirement, we need an additional

security notion that if the server is given a partial secret

key, it can only help the data owner to calculate an en-

crypted statistical result (by doing partial decryption).

Meanwhile, the server gains no additional information

about the actual value. We call such security notion as

partial-key exposure-resilient simulation-based security

(PK-ER-SIM).

1.1 Our Contributions

In this work, we focus on the construction of more

efficient FH-IPFE and its application to fine-grained

data sharing system. Our main contributions include:

First, we give a new construction of FH-IPFE

scheme where the master key contains just (3n−1) field
elements and prove the simulation-based security in the

generic group model. This corresponds to a noticeable

reduction in the size of the master key compared with

all existing schemes. Meanwhile, in our scheme, secret

keys and ciphertexts contain (n + 1) group elements.

This also corresponds to a reduction (by a factor of

2, 4, and 2, respectively) compared with the existing

schemes of Bishop et al. [10], Datta et al. [11], and

Tomida et al. [12], and has comparable performance

with Kim et al. [7] (See Table 1). As a result, the

run-time complexities of all algorithms (except for de-

cryption) are also reduced asymptotically (See Table

2). Furthermore, our experiment results also show that

over the same pairing curves, the running time of al-

gorithms in our FH-IPFE scheme is much shorter than

those in the state-of-the-art construction given by Kim

et al. [7].

Second, we formalize an additional security notion,

PK-ER-SIM, for FH-IPFE. The start-point is that, in

our construction, the secret key contains two parts (i.e.,

K1 and K2) and the ciphertext also contains two parts

(i.e., C1 and C2). We want to demonstrate that with

K2 but not K1, a decryptor can only get an encryption

form of inner product value ⟨x,y⟩ but not the value it-

self. The property is necessary for designing fine-gained

data sharing application to support statistical analyses

on the data owners side.

At last, based on the proposed FH-IPFE scheme,

we present a fine-grained data sharing system. Our

designed system not only supports basic database op-

erations but also achieves statistical analyses for both
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Table 1. Comparison of Parameter Sizes in FH-IPFE Schemes

Scheme Master Key Ciphertext Secret Key

Bishop et al. [10] (8n2 + 8)ℓZq (2n+ 2)ℓG1
(2n+ 2)ℓG2

Datta et al. [11] (8n2 + 12n+ 28)ℓZq (4n+ 8)ℓG1
(4n+ 8)ℓG2

Tomida et al. [12] (4n2 + 18n+ 20)ℓZq (2n+ 5)ℓG1
(2n+ 5)ℓG2

Kim et al. [7] (n2)ℓZq (n+ 1)ℓG1
(n+ 1)ℓG2

This work (3n− 1)ℓZq (n+ 1)ℓG1
(n+ 1)ℓG2

Note: All schemes employ asymmetric bilinear maps over two groups G1 and G2 of order q.
n: the dimension of vector. ℓG: the bit length to represent an element in group G. ℓZq : the bit length to represent an element in

field Zq .

Table 2. Comparison of Run-time Complexities in FH-IPFE Schemes

Scheme Setup Key Generation Encryption Decryption

Bishop et al. [10] O
(
n3

)
O

(
n2

)
O

(
n2

)
O(n)

Datta et al. [11] O
(
n3

)
O

(
n2

)
O

(
n2

)
O(n)

Tomida et al. [12] O
(
n3

)
O

(
n2

)
O

(
n2

)
O(n)

Kim et al. [7] O
(
n3

)
O

(
n2

)
O

(
n2

)
O(n)

This work O (n) O (n logn) O (n logn) O(n)

data owners and server. An overview of the system is

illustrated in Fig.1. To put it in more detail, we achieve

two main functionalities depending on who initiates the

request.

1) If the server tries to make a specific statistical

analysis on an owner’s data, the owner first generates

the corresponding secret key skx and sends it to the

server. Then the server computes the result with the

secret key skx. In this case, we require that the sen-

sitive data x and y are both hidden from the server

and it can be guaranteed by the standard security of

FH-IPFE since both secret key and ciphertext hide the

underlying information.

2) If a data owner wants to learn a particular statis-

tical result on his/her own sensitive data and keeps it

secret from the server, the owner first generates the cor-

responding secret key skx and sends partial secret key

to the server. The server uses this partial key to get an

intermediate value of final result and returns it to the

owner. In our design, this procedure will deal with the

most part of heavy computation, then the owner only

need to do minor operations with the rest part of skx

to learn the statistical result. In this case, we require

that the actual result is hidden from the server and it

can be guaranteed by our PK-ER-SIM security notion.

2 Related Works

FH-IPFE was first considered by Bishop et al. [10],

they gave a direct construction of secret-key function-

hiding inner product functional encryption (FH-IPFE)

scheme under an indistinguishability-based definition

from the symmetric external Diffie-Hellman (SXDH)

assumption in bilinear groups. However, they defined a

relaxed security model that imposes a somewhat unreal-

istic admissibility constraint on the adversary’s queries.

This was further improved upon by Datta et al. [11]

who showed how to construct a secret-key FH-IPFE

scheme from the SXDH assumption that removes the

need for that additional constraint on the adversary’s

queries. Subsequently, Tomida et al. [12] gave a con-

struction of secret-key FH-IPFE scheme from the de-

cision linear (DLIN) assumption where the secret keys

and ciphertexts consist of (2n+5) group elements. Kim

et al. [7] also gave a construction of secret-key FH-IPFE

scheme in the generic group model where the secret keys

and ciphertexts contain only (n + 1) group elements.

Notably, in all previous constructions, the master key

contains O
(
n2
)
field elements.

The main idea in all those constructions is to use

one or several uniformly random matrices and their in-

verse to hide the information of x and y, respectively.

This leads an O(n3) complexity in setup phase since we

need to calculate inverse matrices with Gaussian elim-

ination method. Furthermore, in the key generation

and encryption phases, x and y are multiplied by uni-
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Fig.1. Overview of proposed fine-gained data sharing system.

formly random matrices and it leads an O(n2) complex-

ity. Thus, the size of master key affects performance

heavily since the complexities of setup, encryption and

key generation algorithms depend on it. In fact, when

considering practical applications enabled by FH-IPFE,

the O(n3) complexity in setup phase is unrealistic due

to the inefficient finite field arithmetic computation in

Zq, where q = 2λ and λ is a security parameter. This

motivates us to design more efficient FH-IPFE schemes

with smaller master key size, which will also reduce the

run-time complexities.

3 Preliminaries

3.1 Notations

In Table 3, we summarize some notations used in

this paper.

3.2 Number Theoretic Transform

The number theoretic transform (NTT) [16] is a spe-

cialized version of the Fast Fourier Transform (FFT)

over a finite field.

Let q be a prime number and n = 2κ be a power

of two such that q mod 2n ≡ 1. Let ω be an n-

th primitive root of unity in Zq. Then for a vector

f , for 1 ≤ i ≤ n, we define the forward transforma-

tion f̄i =
∑n

j=1 fjω
(i−1)(j−1) mod q and the inverse

transformation fi = n−1
∑n

j=1 f̄jω
−(i−1)(j−1) mod q.

For simplicity, we write f̄ = NTTω (f) = T · f and

f = NTT−1
ω

(
f̄
)
= T−1 · f̄ , where T is defined as fol-

lows:

T =


1 1 1 ... 1
1 ω ω2 ... ωn−1

1 ω2 ω4 ... ω2(n−1)

...
...

...
...

1 ωn−1 ω2(n−1) ... ω(n−1)2

 ∈ Zn×n
q .

3.3 Bilinear Groups

We briefly recall the basic definition of an asym-

metric bilinear group [17, 18]. Let G1, G2, and GT

be three distinct groups of prime order q, and let

e : G1×G2 7→ GT be a function mapping two elements

from G1 and G2 onto the target group GT . Let g1, g2,

and gT be generators of G1, G2, and GT , respectively.

We write the group operation in groups multiplicatively

and write 1 to denote their multiplicative identity. We

say that the tuple (G1,G2,GT , q, e) is an asymmetric
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Table 3. Notations in This Paper

Notations Representations
α or a scalar

v column vector
M matrix
λ the security parameter

ϵ (λ) ϵ (λ) is negligible in λ if ϵ (λ) = o
(

1
λc

)
for all positive integers c

[n] the set {1, 2, ..., n}
x← S the operation of sampling a uniformly random element x from a set S
x← D the operation of sampling a random x according to the distribution D

v−1
(
v−1
1 , ..., v−1

n

)T
for v ∈ Zn

q that is non-zero in every coordinate

MT the transpose of M
det (M) the determinant of M
GLn (Zq) the general linear group of (n× n) matrices over Zq (i.e., invertible matrices over Zq)

u⊙ v (u1v1, ..., unvn)
T

gv (gv1 , ..., gvn )T

bilinear group if the following properities hold:

� Efficiency: The group operations in G1,G2,GT

as well the map e (·, ·) are all efficiently com-

putable.

� Non-degeneracy: e (g1, g2) = gT ̸= 1.

� Bilinearity: e
(
ga1 , g

b
2

)
= gabT for all a, b ∈ Zq.

In this work, we additionally let [a]1 , [b]2, and [c]T

denote encodings of a, b, c in G1,G2,GT , i.e., ga1 , g
b
2,

and gcT , respectively. For a vector v or matrix M ,

we use the shorthand [v] or [M ] (for any of the three

groups) to denote the group elements obtained by en-

coding each entry of v and M respectively. Further-

more, for any scalar k ∈ Zq and vectors v,w ∈ Zn
q ,

we write [v]
k
= [kv] and [v] [w] = [v +w] . The pair-

ing operation over groups is also extended to vectors

and matrices as follows, e
([
vT
]
1
, [w]2

)
= [⟨v,w⟩]T and

e
([
vT
]
1
, [M ]2

)
=
[
vTM

]
T
. It is not hard to see that

the above operations are all efficiently computable.

3.4 Generic Bilinear Group Model

We prove the security of our construction in a

generic model of bilinear groups [19, 20], which is an

extension of generic group model [21, 22] adapted to

bilinear groups. In the generic group model, access to

the group elements is replaced by “handles.” In this

case, an adversary in the generic group model is also

only given access to a stateful oracle which carries out

the group operations, and in the bilinear group setting,

the pairing operation. The generic group oracle main-

tains internally a list mapping from handles to group

elements, which is used to answer the oracle queries.

Thus, when a cryptographic scheme is shown to satisfy

some security property in the generic group model, it

means that no efficient adversary can break that secu-

rity property applying the group operations as a black-

box oracle. The following definition is taken verbatim

from [15] and originally appeared in [7].

Definition 1 (Generic Bilinear Group Oracle). A

generic bilinear group oracle is a stateful oracle BG that

responds to queries as follows:

� On a query BG.Setup
(
1λ
)
, the oracle generates

two fresh handles pp, sp ← {0, 1}λ and a prime

q. It outputs (pp, sp, q). It stores the generated

values, initializes an empty table T ← {}, and

sets the internal state so subsequent invocations

of BG.Setup fail.

� On a query BG.Encode (k, x, i), where k ∈ {0, 1}λ,
x ∈ Zq and i ∈ {1, 2, T}, the oracle checks that

k = sp (return ⊥ otherwise). The oracle then

generates a fresh handle h ← {0, 1}λ, adds the

entry h 7→ (x, i) to table T , and outputs h.

� On a query BG.Add (k, h1, h2), where k, h1, h2 ∈
{0, 1}λ, the oracle checks that k = pp, that the

handles h1, h2 are present in its internal table T

and are mapped to the values (x1, i1) and (x2, i2),

respectively, with i1 = i2 (return ⊥ otherwise).
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The oracle then generates a fresh handle h ←
{0, 1}λ, computes x = x1 + x2 ∈ Zq, adds the

entry h 7→ (x, i1) to T , and outputs h.

� On a query BG.Pair (k, h1, h2), where k, h1, h2 ,

the oracle checks that k = pp, that the handles

h1, h2 are present in T and are mapped to values

(x1, 1) and (x2, 2), respectively (returning ⊥ oth-

erwise). The oracle then generates a fresh handle

h ← {0, 1}λ, computes x = x1x2 ∈ Zq, adds the

entry h 7→ (x, T ) to T , and outputs h.

� On a query BG.ZeroTest (k, h) where k, h ∈
{0, 1}λ , the oracle checks that k = pp, that the

handle h is present in T and it maps to some

value (x, i) (returning ⊥ otherwise). The oracle

then outputs “zero” if x = 0 ∈ Zq and “non-zero”

otherwise.

We notice that in the generic group model, the

random elements will often be substituted to formal

variables when analyzing the security of constructed

schemes. In order to distinguish between a specific

value and a formal variable, we will explicitly write x if

it is a specific value and x̂ if it is a formal variable. This

notation will also naturally extend to vectors v̂ and ma-

trices M̂ where their each entry is a formal variable.

We also use the Schwartz-Zippel lemma [23, 24] in

the security proof, stated below.

Lemma 2 (Schwartz-Zippel [23, 24], adapted). Fix a

prime q and let f ∈ Fq [x̂1, ..., x̂n] be an n-variate poly-

nomial with degree at most d and which is not identi-

cally zero. Then,

Pr [x1, ..., xn ← Fq : f (x1, ..., xn) = 0] ≤ d

q
.

4 Function-Hiding Inner Product Functional

Encryption

4.1 Syntax

We recall the definition of secret-key FH-IPFE

schemes.

Definition 3 ([7]). A secret-key FH-IPFE scheme is a

tuple of algorithms Π = (Setup, KeyGen,Enc,Dec) de-

fined over a message space Zn
q \{0n} with the following

properties:

� Setup
(
1λ, S

)
7→ (pp,msk): On input a security

parameter λ and a set S ⊆ Zq, the setup algo-

rithm Setup outputs the public parameter pp and

the master key msk.

� KeyGen (pp,msk,x) 7→ skx: On input the pub-

lic parameter pp, the master key msk and a vec-

tor x ∈ Zn
q \{0n}, the key generation algorithm

KeyGen outputs a secret key skx.

� Enc (pp,msk,y) 7→ cty: On input the public pa-

rameter pp, the master key msk, and a vector

y ∈ Zn
q \{0n}, the encryption algorithm Enc out-

puts a ciphertext cty.

� Dec (pp, cty, skx) 7→ z/⊥: On input the public

parameter pp, a secret key skx and a ciphertext

cty, the decryption algorithm Dec outputs a re-

sult z ∈ S or a special symbol ⊥.

An FH-IPFE scheme Π = (Setup,KeyGen,Enc,Dec)

defined above is correct if for all sets S where |S| =
poly (λ), and all non-zero vectors x,y ∈ Zn

q \{0n},
where ⟨x,y⟩ ∈ S, the following condition holds. Let

(pp,msk) ← Setup
(
1λ, S

)
, skx ← KeyGen (pp,msk,x),

and cty ← Enc (pp,msk,y), then

Pr [Dec (pp, skx, cty) = ⟨x,y⟩] = 1− ϵ (λ) ,

where the probability is taken over the internal ran-

domness of the Setup, Enc and KeyGen algorithms, and

ϵ (λ) is a negligible function.

4.2 Simulation-Based Security

In the simulation-based definition, we require that

every efficient adversary that interacts with the real en-

cryption and key generation oracles can be simulated

given only oracle access to the inner products between

each pair of vectors that the adversary submits to the

key generation and encryption oracles. The following

definition is taken verbatim from [7].
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Definition 4. Let Π = (Setup,KeyGen,Enc,Dec) be

an FH-IPFE scheme. Then Π is SIM-secure if for all

PPT adversaries A, there exists an efficient simulator

S = {S1,S2,S3} such that the outputs of the following

experiments are computationally indistinguishable:

Real experiment RealA
(
1λ
)
:

� (pp,msk)← Setup
(
1λ
)

� b← AOKeyGen(pp,msk,·),OEnc(pp,msk,·) (1λ)
� output b

Ideal experiment IdealA,S
(
1λ
)
:

� initialize X ← ∅ and Y ← ∅

� (pp, st)← S1 (λ)

� b← AO′
KeyGen(pp,·),O

′
Enc(pp,·)

(
1λ
)

� output b

where the oracles OKeyGen (pp,msk, ·), OEnc (pp,msk, ·),
O′

KeyGen (pp, ·) and O′
Enc (pp, ·) are defined as follows:

1) Oracles OKeyGen (pp,msk, ·) and OEnc (pp,msk, ·)
represent the real encryption and key gen-

eration oracles, respectively. Specifically,

OKeyGen (pp,msk,x) = KeyGen (pp,msk,x) and

OEnc (pp,msk,y) = Enc (pp,msk,y).

2) Oracles O′
KeyGen (pp, ·) and O′

Enc (pp, ·) represent

the ideal encryption and key generation oracles,

respectively. The two oracles are stateful and

share counters i and j (initialized to 0 at the be-

ginning of the experiment), a simulator sate st

(initialized to state output by S1), and a collec-

tion of mappings:

Cip = {(i′, j′) 7→ ⟨x(i′),y(j′)⟩ : (i′, j′) ∈ [i]× [j]},

where x(i) ∈ Zn
q and y(j) ∈ Zn

q are the inputs for

the i-th invocation of O′
KeyGen (pp, ·) and the j-th

invocation of O′
Enc (pp, ·) by the adversary, respec-

tively. At the beginning of the experiment, the set

Cip is initialized to the empty set.

a) On the adversary’s i-th invocation of

O′
KeyGen (pp, ·) with input vector x(i) ∈ Zn

q ,

the oracle O′
KeyGen sets i ← i + 1, updates

the collection of mapping Cip, and invokes the

simulator S2 on inputs Cip and st. The sim-

ulator responds with a tuple (skx(i) , st′) ←
S2 (Cip, st). The oracle updates the state st←
st′ and replies to the adversary with the se-

cret key skx(i) .

b) On the adversary’s j-th invocation of

O′
Enc (pp, ·) with input vector y(j) ∈ Zn

q , the

oracle O′
Enc sets j ← j + 1, updates the col-

lection of mapping Cip, and invokes the sim-

ulator S3 on inputs Cip and st. The sim-

ulator responds with a tuple
(
cty(j) , st′

)
←

S3 (Cip, st). The oracle updates the state st←
st′ and replies to the adversary with the ci-

phertext cty(j) .

4.3 Partial-Key Exposure-Resilient Simulation-
Based Security

For our purpose, here we present a new security no-

tion called PK-ER-SIM, for FH-IPFE. In our construc-

tion, the key generation algorithm KeyGen outputs a se-

cret key skx consisting of two components K1 and K2.

The PK-ER-SIM security shows that without knowing

K1, the adversary learns no information about the inner

product value even if it holds K2.

Definition 5. Let Π = (Setup,KeyGen,Enc,Dec) be an

FH-IPFE scheme. Then Π is PK-ER-SIM-secure if for

all PPT adversaries A, there exists an efficient simula-

tor S = {S1,S2,S3} such that the outputs of the follow-

ing experiments are computationally indistinguishable:

Real experiment RealA
(
1λ
)
:

� (pp,msk)← Setup
(
1λ
)

� b← AOKeyGen′ (pp,msk,·),OEnc(pp,msk,·) (1λ)
� output b

Ideal experiment IdealA,S
(
1λ
)
:

� initialize X ← ∅ and Y ← ∅
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� (pp, st)← S1 (λ)

� b← AO′
KeyGen′ (pp,·),O

′
Enc(pp,·)

(
1λ
)

� output b

where the oracles OKeyGen′ (pp,msk, ·), OEnc (pp,msk, ·),
O′

KeyGen′ (pp, ·) and O′
Enc (pp, ·) are defined as follows:

1) Oracle OKeyGen′ (pp,msk, ·) behaves the same as

OKeyGen (pp,msk, ·) except that it only returns K2.

Oracle OEnc (pp,msk, ·) represents the real en-

cryption oracle. Specifically, OEnc (pp,msk,y) =

Enc (pp,msk,y).

2) Oracles O′
KeyGen′ (pp, ·) and O′

Enc (pp, ·) represent

the ideal encryption and key generation oracles,

respectively. The two oracles are stateful and

share counters i and j (initialized to 0 at the be-

ginning of the experiment), a simulator sate st

(initialized to state output by S1), and a collec-

tion of mappings:

Cip = {(i′, j′) 7→ αi′⟨x(i′),y(j′)⟩ : (i′, j′) ∈ [i]×[j]},

where αi is a random value tied by x(i). More-

over, x(i) ∈ Zn
q and y(j) ∈ Zn

q are the inputs for

the i-th invocation of O′
KeyGen′ (pp, ·) and the j-th

invocation of O′
Enc (pp, ·) by the adversary, respec-

tively. At the beginning of the experiment, the set

Cip is initialized to the empty set.

a) On the adversary’s i-th invocation of

O′
KeyGen′ (pp, ·) with input vector x(i) ∈ Zn

q ,

the oracle O′
KeyGen′ sets i ← i + 1, updates

the collection of mapping Cip, and invokes the

simulator S2 on inputs Cip and st. The sim-

ulator responds with a tuple (skx(i) , st′) ←
S2 (Cip, st). The oracle updates the state st←
st′ and replies to the adversary with the sec-

ond part of secret key skx(i) , i.e., K
(i)
2 .

b) On the adversary’s j-th invocation of

O′
Enc (pp, ·) with input vector y(j) ∈ Zn

q , the

oracle O′
Enc sets j ← j + 1, updates the col-

lection of mapping Cip, and invokes the sim-

ulator S3 on inputs Cip and st. The sim-

ulator responds with a tuple
(
cty(j) , st′

)
←

S3 (Cip, st). The oracle updates the state st←
st′ and replies to the adversary with the ci-

phertext cty(j) .

Remark. In this definition, the inner product ⟨xi,yj⟩
is hidden from the simulator by αi if and only if when

⟨xi,yj⟩ ̸= 0. Therefore, in our construction below, we

require that x and y contain only positive elements to

meet the condition, which means that we may need a

preprocessing phase on the data.

5 Our Efficient FH-IPFE Scheme

In this section, we give our construction of secret-

key FH-IPFE scheme. We then prove that the scheme

is simulation-based secure and PK-ER-SIM secure in

the generic bilinear group model.

5.1 Technical Overview

Following the basic idea of designing FH-IPFE

scheme mentioned by Kim et al. [7] in generic group

model, the main idea is to use a random matrix R

to hide the information of x and y. In the construc-

tion of Kim et al., the master key is R and R∗ =

det(R) · (R−1)T . The ciphertext cty = (C1, C2) con-

tains two parts C1 = gβ1 and C2 = gβ·R
∗·y

1 and the

secret key skx = (K1,K2) also contains two parts

K1 = g
α·det(R)
2 and K2 = gα·R·x

2 . Note that α and

β are random values, generated while running the cor-

responding algorithms. As shown, in their scheme, the

master key is composed of n2 field elements and the

run-time complexities of setup, encryption and key gen-

eration algorithms are O(n3), O(n2), and O(n2), re-

spectively. To reduce the size of parameters, we choose

a structured matrix that can be generated with only

(3n − 1) field elements to replace the original random

matrix and the complexity of such structured matrix

inversion is O(n). Our matrix R is composed of three

vectors r, s, and t that are nonzero in every coordinate

and R−1 can be calculated by r−1, s, and t−1 where

r−1 =
(
r−1
1 , ..., r−1

n

)T
and the same case for t−1.

However, the security of the scheme should be re-

considered since the structured matrix cannot guaran-
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tee that the underlying vectors x and y are well hid-

den. To solve this problem, we utilize the technical

of number theoretic transform (NTT) to convert our

structured matrix to be non-sparse to provide sufficient

randomness and improve the efficiency. Generally, let ω

be an n-th primitive root of unity in Zq and we define a

public Vandermonde matrix T and its inverse T−1 gen-

erated by ω to multiply the structured R while in key

generation and encryption algorithms. By the proper-

ties of Vandermonde matrix T , the result new matrix

is non-sparse and the procedures of generating K2 and

C2 can be iterated using NTT and its inverse instead of

matrix multiplication. We state an important lemma,

which is a generalization of zeroing lemma appeared in

[15] and prove that it also holds for our structured ma-

trix (See Appendix). This allows us to hide the under-

lying vectors and reduce the run-time complexities of

key generation and encryption algorithms from O(n2)

to O(n log n).

5.2 Construction

Fix a security parameter λ, and let n = n (λ) be

a power-of-two positive integer, q = q (λ) be a posi-

tive prime integer such that q mod 2n ≡ 1. Let S be

a polynomial-sized subset of Zq. We construct a FH-

IPFE scheme Π = (Setup,KeyGen,Enc,Dec) as follows.

� Setup
(
1λ, S

)
: On input the security parameter

λ, and the set S, the setup algorithm samples

an asymmetric bilinear group (G1,G2,GT , q, e)

and chooses generators g1 ∈ G1, g2 ∈ G2 and

ω ∈ Zq\{0}. It samples r, t ←
(
Z∗
q

)n
and

s ←
(
Z∗
q

)n−1
. Then it computes r−1 and t−1.

Finally, the setup algorithm outputs the public

parameters pp = (G1,G2,GT , q, e, S) and master

msk =
(
r, t, s, r−1, t−1

)
.

� KeyGen (pp,msk,x): On input the public param-

eters pp, the master key msk and a vector x ∈
Zn
q \{0n}, the key generation algorithm computes

x′ = x⊙t and x̄ = NTTω (x′). Then, it computes

x∗ = x̄ ⊙ r + (0∥x̄1s1, ..., x̄n−1sn−1)
T
, chooses a

uniformly random element α ∈ Zq and outputs

skx = (K1,K2), where

K1 = [α]1 and K2 = [α · x∗]1 .

� Enc (pp,msk,y): On input the public parameters

pp, the master key msk and a vector y ∈ Zn
q \{0n},

the encryption algorithm computes y′ = y ⊙ t−1

and ȳ = NTT−1
ω (y′). Then, it computes y∗ =

(y∗1 , ..., y
∗
n)

T
as follows:

1) y∗n = ȳnr
−1
n ,

2) for i from n− 1 to 1, y∗i = r−1
i

(
ȳi − siy∗i+1

)
.

Finally, it chooses a uniformly random element

β ∈ Zq and outputs cty = (C1, C2), where

C1 = [β]2 and C2 = [β · y∗]2 .

� Dec (pp, cty, skx): On input the public parameters

pp, a secret key skx = (K1,K2) and a ciphertext

cty = (C1, C2), the decryption algorithm com-

putes

D1 = e (K1, C1) and D2 = e (K2, C2) .

Then, it calculates the discrete logarithm to check

whether there exists z ∈ S such that (D1)
z
= D2.

If so, the decryption algorithm outputs z. Oth-

erwise, it outputs ⊥. Note that this algorithm is

efficient since |S| = poly (λ).

5.3 Correctness

Let R =


r1 s1 0 ... 0
0 r2 s2 ... 0
0 0 r3 ... 0
...

...
...

...
0 0 0 ... rn

 and D =

diag (t1, ..., tn) . It is easy to verify that x∗ = RT · x̄
and y∗ = R−1 · ȳ. Since D and T are both symmetric

invertible matrices, we can rewrite D2 as follows:

D2 = e (K2, C2) = [αβ⟨x∗,y∗⟩]T =
[
αβx̄T ·R ·R−1 · ȳ

]
T

=
[
αxT ·DT · T T ·R ·R−1 · T−1 ·D−1 · y

]
T

= [αβ⟨x,y⟩]T .

On the other hand, D1 = e (K1, C1) = [αβ]T . Then

if ⟨x,y⟩ ∈ S, the decryption algorithm will correctly

output ⟨x,y⟩.
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5.4 Simulation-Based Security

To prove the simulation-based security of Π in the

generic group model, we construct a simulator that,

given only the inner products of the vectors correspond-

ing to the key generation and encryption queries, is able

to correctly simulate the real distribution of the secret

keys and ciphertext. We first state a lemma that plays

important roles in our security proof and the proof de-

tails can be founded in the Appendix.

The following lemma is inspired by a variant of

lemma due to [25] that originally appeared in [26]. We

adapt their results to our designed structural matrix R̂.

Lemma 6. Let R̂ =


r̂1 ŝ1 0 ... 0
0 r̂2 ŝ2 ... 0
0 0 r̂3 ... 0
...

...
...

...
0 0 0 ... r̂n

 be an n × n

matrix of variables r̂i and ŝj, and u,v ∈ Fn
q be two

arbitrary vectors that are non-zero in every coordinate.

Let ûT = uT · R̂−1 and v̂ = R̂ · v be two vectors of ra-

tional functions over the r̂i and ŝj formal variables. Let

P be a polynomial over the entries of û and v̂ such that

each monomial contains exactly one entry from û and

one from v̂. Then if P is identically a constant over

the r̂i and ŝj variables, it must be a constant multiple

of the inner product of û and v̂.

Theorem 7. The FH-IPFE scheme Π is SIM-secure

in the generic group model.

Proof. We start by defining the simulation-based se-

curity in the generic group model.

1) Real Experiment RealA
(
1λ
)
:

� Setup
(
1λ
)
: for generators g1, g2, and gT , the chal-

lenger queries the oracle BG.Encode and returns

the handles {hi}i∈{1,2,T}. For convenience, we de-

note handle hi as [1]i.

� OKeyGen (pp,msk, ·): for any vector xi correspond-

ing to the i-th key generation queries, the chal-

lenger queries the oracle BG.Encode and returns

the handles [αi]1 and [αix
∗
i ]1.

� OEnc (pp,msk, ·): for any vector yj correspond-

ing to the j-th encryption queries, the challenger

queries the oracle BG.Encode and returns the han-

dles [βj ]2 and
[
βjy

∗
j

]
2
.

� The adversary also has the ability to query

other GGM oracles such as BG.Add, BG.Pair, and

BG.ZeroTest, the challenger just simply forwards

those queries and returns the results.

2) Ideal Experiment IdealA,S
(
1λ
)
:

� The simulator S1 generates a random handle for

each group generator as the public parameters,

and returns all the handles to the adversary.

� O′
KeyGen (pp, ·): On input a vector xi, the simu-

lator S2 receives as input a new collect C′IP of

inner products (instead of real xi) and updates

Cip ← C′ip. Then S2 generates fresh handles [α̂i]1,

[α̂ix̂
∗
i ]1 and responds with a secret key skxi

=(
[α̂i]1 , [α̂ix̂

∗
i ]1
)
.

� O′
Enc (pp, ·): On input a vector yj , the simula-

tor S3 receives as input a new collect C′IP of in-

ner products (instead of real yj) and updates

Cip ← C′ip. Then S3 generates fresh handles[
β̂j

]
2
,
[
β̂j ŷ

∗
j

]
2
and responds with a ciphertext

ctyj
=
([
β̂j

]
2
,
[
β̂j ŷ

∗
j

]
2

)
.

� The adversary also has the ability to query other

GGM oracles. For BG.Add, BG.Pair, the simula-

tor S honestly returns the corresponding handles

but for BG.ZeroTest, the simulator S returns the

output zero if and only if∑
i,j

α̂iβ̂j (κi,j + ci,jCip (i, j)) = 0,

where κi,j and ci,j represent coefficients submit-

ted by a A and Cip (i, j) are the collection of map-

pings defined before.

LetQ1 andQ2 be the total number of key generation

and encryption oracle queries made by A, respectively.
We present two hybrid experiments, beginning with the

original real experiment.
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� Exp0: Exp0 is the real experiment and the adver-

sary has access to the handles of elements {[αi]1}i,
{[αix

∗
i ]1}i, {[βj ]2}j , and {

[
βjy

∗
j

]
2
}j .

� Exp1: Exp1 is obtained from Exp0 by modifying

the random elements chosen by challenger C to

formal variables. We can imagine replacing {αi}i,
{βj}j , r, t, and s with formal variables. In this

case, for every zero-test query submitted by A,
the resulting zero-test expressions are substituted

by rational functions of above variables. By con-

struction, this results in a polynomial of degree at

most (n+1) over the formal variables. Hence, for

each zero-test, the difference between Exp0 and

Exp1 is n+1
q , due to the Schwartz-Zippel lemma.

Assuming that A makes zero-tests for p (which

is a polynomial size) times, by union bound, the

difference between Exp0 and Exp1 can be bounded

by p(n+1)
q , which is negligible. In other words, A

cannot distinguish this switch except with negli-

gible probability.

Now in Exp1, we rewrite the handles of the ele-

ments given to A: {[α̂i]1}i, {[α̂ix̂
∗
i ]1}i, {

[
β̂j

]
2
}j , and

{
[
β̂j ŷ

∗
j

]
2
}j . We consider all the possible ways that A

can produce elements in the target group (i.e., GT ) and

write a general linear combinations of such elements (as

a polynomial expression), where ρ, γi, κi,j , θi,j,l, ψi,k,

τi,j,k, ηi,j,k,l, δj , and µj,l represent coefficients submit-

ted by A. Firstly, we list all the elements that may

appear in the final expression:

� Adding by a constant in GT : ρ;

� Pairing {[α̂i]1}i by a constant in G2:
∑

i γiα̂i;

� Pairing {[α̂i]1}i with {
[
β̂j

]
2
}j :

∑
i,j κi,jα̂iβ̂j ;

� Pairing {[α̂i]1}i with {
[
β̂j ŷ

∗
j

]
2
}j :

∑
i,j,l θi,j,lα̂iβ̂j

(
ŷ∗
j

)
l
;

� Pairing {[α̂ix̂
∗
i ]1}i by a constant in G2:∑

i,k ψi,kα̂i (x̂
∗
i )k;

� Pairing {[α̂ix̂
∗
i ]1}i with {

[
β̂j

]
2
}j :

∑
i,j,k τi,j,kα̂iβ̂j (x̂

∗
i )k;

� Pairing {[α̂ix̂
∗
i ]1}i with {

[
β̂j ŷ

∗
j

]
2
}j :∑

i,j,k,l ηi,j,k,lα̂iβ̂j (x̂
∗
i )k
(
ŷ∗
j

)
l
;

� Pairing {
[
β̂j

]
2
}j by a constant in G1:

∑
j δj β̂j ;

� Pairing {
[
β̂j ŷ

∗
j

]
2
}j by a constant in G1:∑

j,l µj,lβ̂j
(
ŷ∗
j

)
l
.

Secondly, we write the following expression, which is

obtained by a linear combination of all the listed ele-

ments:

ρ+
∑
i

γiα̂i +
∑
i,j

κi,jα̂iβ̂j +
∑
i,j,l

θi,j,lα̂iβ̂j
(
ŷ∗
j

)
l
+

∑
i,k

ψi,kα̂i (x̂
∗
i )k +

∑
i,j,k

τi,j,kα̂iβ̂j (x̂
∗
i )k +∑

i,j,k,l

ηi,j,k,lα̂iβ̂j (x̂
∗
i )k
(
ŷ∗
j

)
l
+
∑
j

δj β̂j +
∑
j,l

µj,lβ̂j
(
ŷ∗
j

)
l
.

Rewrite it as

ρ+
∑
i

α̂i

(
γi +

∑
k

ψi,k (x̂
∗
i )k

)
+

∑
j

β̂j

(
δj +

∑
l

µj,l

(
ŷ∗
j

)
l

)
+

∑
i,j

α̂iβ̂j

(
κi,j +

∑
l

θi,j,l
(
ŷ∗
j

)
l
+
∑
k

τi,j,k (x̂
∗
i )k

)
+

∑
i,j

α̂iβ̂j

∑
k,l

ηi,j,k,l (x̂
∗
i )k
(
ŷ∗
j

)
l

 .

(1)

Now for any potentially successful zero-test queried by

A, this must result in an identically zero rational func-

tion for expression (1). Thus, the following conditions

must hold:

1) Obviously, ρ = 0.

2) For the terms that only contain α̂i, we can get

that for all i ∈ [Q1], γi +
∑

k ψi,k (x̂
∗
i )k =

0. Note that x̂∗
i = R̂T · x̄i and (x̄i)k =∑n

j=1 xj t̂jω
(k−1)(j−1). In this case, if xi are non-

zero vectors, we have that every entry in x̄i is

non-zero. Therefore, the formal variable r̂k only

appears in ψi,k (x̂
∗
i )k. Then ψi,k must be 0 for all

i ∈ [Q1] , k ∈ [n], and hence γi = 0 for i ∈ [Q1].
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3) For the terms that only contain β̂j , we can get

that for all j ∈ [Q2], δj +
∑

l µj,l

(
ŷ∗
j

)
l
= 0. Sim-

ilar to 2), for all j ∈ [Q2] and l ∈ [n], δj = 0 and

µj,l = 0.

4) For the terms contain α̂iβ̂j , we can get that for

all i ∈ [Q1] , j ∈ [Q2],

κi,j +
∑
l

θi,j,l
(
ŷ∗
j

)
l
+
∑
k

τi,j,k (x̂
∗
i )k +∑

k,l

ηi,j,k,l (x̂
∗
i )k
(
ŷ∗
j

)
l
= 0.

Similar to 2) and 3), we can get that for i ∈
[Q1] , j ∈ [Q2] , k ∈ [n] , l ∈ [n], θi,j,l = 0 and

τi,j,k = 0. In this case, the initial expression (1)

now can be rewritten as,

∑
i,j

α̂iβ̂j

κi,j +∑
k,l

ηi,j,k,l (x̂
∗
i )k
(
ŷ∗
j

)
l

 (2)

By Lemma 6, for each i, j, the coefficients

{ηi,j,k,l}k,l must be set to induce a scaling of the

inner product of x̂∗
i and ŷ∗

j . Supposing that ci,j

is the scaling, we rewrite the expression (2) as

follows: ∑
i,j

α̂iβ̂j(κi,j + ci,j⟨x̄i, ȳj⟩)

=
∑
i,j

α̂iβ̂j(κi,j + ci,j⟨xi,yj⟩)

=
∑
i,j

α̂iβ̂j(κi,j + ci,jCip (i, j)),

where Cip (i, j) is the collection of mappings de-

fined before.

Observe that in Exp1, the challenger C behaves as the

simulator we described at the beginning of the proof

without knowing information about the actual value

of {xi}i and {yj}j but only {⟨xi,yj⟩}i,j . Overall,

RealA
(
1λ
)
= Exp0 ≈ Exp1 = IdealA,S

(
1λ
)
. This com-

pletes the proof.

5.5 PK-ER-SIM Security

Here we prove the PK-ER-SIM security of Π in the

generic group model.

Theorem 8. The FH-IPFE scheme Π is PK-ER-SIM-

secure in the generic group model.

Proof. The proof is similar to the generic group

proofs given in Theorem 7. We start by defining the

simulation-based security in the generic group model.

1) Real Experiment RealA
(
1λ
)
:

� Setup
(
1λ
)
: for generators g1, g2, and gT , the chal-

lenger queries the oracle BG.Encode and returns

the handles {hi}i∈{1,2,T}. For convenience, we de-

note handle hi as [1]i.

� OKeyGen′ (pp,msk, ·): for any vector xi correspond-

ing to the i-th key generation queries, the chal-

lenger queries the oracle BG.Encode and returns

the handles [αix
∗
i ]1.

� OEnc (pp,msk, ·): for any vector yj correspond-

ing to the j-th encryption queries, the challenger

queries the oracle BG.Encode and returns the han-

dles [βj ]2 and
[
βjy

∗
j

]
2
.

� The adversary also has the ability to query

other GGM oracles such as BG.Add, BG.Pair, and

BG.ZeroTest, the challenger just simply forwards

those queries and returns the results.

2) Ideal Experiment IdealA,S
(
1λ
)
:

� The simulator S1 generates a random handle for

each group generator as the public parameters,

and returns all the handles to the adversary.

� O′
KeyGen′ (pp, ·): On input a vector xi, the simula-

tor S2 receives as input a new collect C′ip of map-

pings (instead of real xi) and updates Cip ← C′ip.
Then S2 generates fresh handles [α̂ix̂

∗
i ]1 and re-

sponds with the second part of a secret keyK
(i)
2 =

[α̂ix̂
∗
i ]1.

� O′
Enc (pp, ·): On input a vector yj , the simula-

tor S3 receives as input a new collect C′ip of in-

ner products (instead of real yj) and updates

Cip ← C′ip. Then S3 generate fresh handles
[
β̂j

]
2
,[

β̂j ŷ
∗
j

]
2
and responds with a ciphertext ctyj

=([
β̂j

]
2
,
[
β̂j ŷ

∗
j

]
2

)
.

Jus
t A

cce
pte

d



Ming Wan et al.:Efficient FH-IPFE and Fine-grained Data Sharing 13

� The adversary also has the ability to query other

GGM oracles. For BG.Add, BG.Pair, the simula-

tor S honestly returns the corresponding handles

but for BG.ZeroTest, the simulator S returns the

output zero if and only if∑
j

β̂j
∑
i

ci,jCip (i, j) = 0,

where ci,j represent coefficients submitted by a

A and Cip (i, j) are the collection of mappings de-

fined before.

Let Q1 and Q2 be the total number of key generation

and encryption oracle queries made by A, respectively.
We present two hybrid experiments, beginning with the

original real experiment.

� Exp0: Exp0 is the real experiment and the ad-

versary has access to the handles of elements

{[αix
∗
i ]1}i, {[βj ]2}j , and {

[
βjy

∗
j

]
2
}j .

� Exp1: Exp1 is obtained from Exp0 by modifying

the random elements chosen by challenger C to

formal variables. We can imagine replacing {αi}i,
{βj}j , r, t, and s with formal variables. In this

case, for every zero-test query submitted by A,
the resulting zero-test expressions are substituted

by rational functions of above variables. By con-

struction, this results in a polynomial of degree at

most (n+1) over the formal variables. Hence, for

each zero-test, the difference between Exp0 and

Exp1 is n+1
q , due to the Schwartz-Zippel lemma.

Assuming that A makes zero-tests for p (which

is a polynomial size) times, by union bound, the

difference between Exp0 and Exp1 can be bounded

by p(n+1)
q , which is negligible. In other words, A

cannot distinguish this switch except with negli-

gible probability.

Now in Exp1, we rewrite the handles of the elements

given to A: {[α̂ix̂
∗
i ]1}i, {

[
β̂j

]
2
}j , and {

[
β̂j ŷ

∗
j

]
2
}j . We

consider all the possible ways that A can produce ele-

ments in the target group and write a general linear

combinations of such elements, where ρ, ψi,k, τi,j,k,

ηi,j,k,l, δj , and µj,l represent coefficients submitted by

A. As proofs given in Theorem 7, we list the following

elements:

� Adding by a constant in GT : ρ;

� Pairing {[α̂ix̂
∗
i ]1}i by a constant in G2:∑

i,k ψi,kα̂i (x̂
∗
i )k;

� Pairing {[α̂ix̂
∗
i ]1}i with {

[
β̂j

]
2
}j :

∑
i,j,k τi,j,kα̂iβ̂j (x̂

∗
i )k;

� Pairing {[α̂ix̂
∗
i ]1}i with {

[
β̂j ŷ

∗
j

]
2
}j :∑

i,j,k,l ηi,j,k,lα̂iβ̂j (x̂
∗
i )k
(
ŷ∗
j

)
l
;

� Pairing {
[
β̂j

]
2
}j by a constant in G1:

∑
j δj β̂j ;

� Pairing {
[
β̂j ŷ

∗
j

]
2
}j by a constant in G1:∑

j,l µj,lβ̂j
(
ŷ∗
j

)
l
.

The following expression is obtained by a linear combi-

nation of all the above listed elements:

ρ+
∑
i,k

ψi,kα̂i (x̂
∗
i )k +

∑
i,j,k

τi,j,kα̂iβ̂j (x̂
∗
i )k +∑

i,j,k,l

ηi,j,k,lα̂iβ̂j (x̂
∗
i )k
(
ŷ∗
j

)
l
+
∑
j

δj β̂j +
∑
j,l

µj,lβ̂j
(
ŷ∗
j

)
l
.

Rewrite it as

ρ+
∑
i

α̂i

(∑
k

ψi,k (x̂
∗
i )k

)
+
∑
j

β̂j

(
δj +

∑
l

µj,l

(
ŷ∗
j

)
l

)
+

∑
i,j

α̂iβ̂j

∑
k

τi,j,k (x̂
∗
i )k +

∑
k,l

ηi,j,k,l (x̂
∗
i )k
(
ŷ∗
j

)
l

 .

(3)

Now for any potentially successful zero-test queried by

A, this must result in an identically zero rational func-

tion for expression (3). It implies the following condi-

tions:

1) Obviously, ρ = 0.

2) For the terms that only contain α̂i, we can get

that for all i ∈ [Q1],
∑

k ψi,k (x̂
∗
i )k = 0. Note that

(x̂∗
i ) = R̂T ·x̄i

b and (x̄i)k =
∑n

j=1 xj t̂jω
(k−1)(j−1).

In this case, if xi are non-zero vectors, we have

that every entry in x̄i is non-zero. Therefore,

the formal variable r̂k only appears in ψi,k (x̂
∗
i )k.

Then ψi,k must be 0 for all i ∈ [Q1] , k ∈ [n].
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3) For the terms that only contain β̂j , we can get

that for all j, δj +
∑

l µj,l

(
ŷ∗
j

)
l
= 0. Similar to

2), for all j ∈ [n] and l ∈ [n], µj,l = 0 and hence

δj = 0 for j ∈ [n].

4) For the terms contains α̂iβ̂j , we can get that for

all i ∈ [n] , j ∈ [n],∑
k

τi,j,k (x̂
∗
i )k +

∑
k,l

ηi,j,k,l (x̂
∗
i )k
(
ŷ∗
j

)
l
= 0.

Similar to 2) and 3), we first get that for i ∈
[n] , j ∈ [n] , k ∈ [n], τi,j,k = 0. The expression (3)

now can be rewritten as,∑
i,j

α̂iβ̂j(
∑
k,l

ηi,j,k,l (x̂
∗
i )k
(
ŷ∗
j

)
l
). (4)

By Lemma 6, for each i, j, the coefficients

{ηi,j,k,l}k,l must be set to induce a scaling of the

inner product of x̂∗
i and ŷ∗

j . Supposing that ci,j

is the scaling, we rewrite the expression (4) as

follows:∑
i,j

α̂iβ̂jci,j⟨x̄i, ȳj⟩ =
∑
i,j

ci,j⟨xi,yj⟩. (5)

Now the expression (5) for zero-test can be shown

as∑
i,j

α̂iβ̂jci,j⟨xi,yj⟩ =
∑
j

β̂j
∑
i

ci,jα̂i⟨xi,yj⟩

=
∑
j

β̂j
∑
i

ci,jCip (i, j) .

Observe that now in Exp1, the challenger C be-

haves as the simulator we described at the be-

ginning of the proof without knowing informa-

tion about the actual inner product value of

{xi}i and {yj}j but only {αi⟨xi,yi⟩}i,j . Over-

all, RealA
(
1λ
)
= Exp0 ≈ Exp1 = IdealA,S

(
1λ
)
.

This completes the proof.

5.6 Discussion

It is very interesting to consider whether our NTT

technique can be applied to other function-hiding func-

tional encryption. Bartusek et al. [15] constructed a

public-key function-hiding predicate encryption (FH-

PE) for “small superset predicates”, where they also

use a uniformly random matrix R to hide the informa-

tion of underlying attributes and predicates. However,

in their construction, the public parameters contain an

encode of R as the form [R]2, which will be delivered to

adversary A in the security games. When considering

the expressions that A submits to the zero-test oracle

in generic group model, there will be additional mono-

mials consisting of ci,j r̂i,j . In this case, our technique

fails since we cannot deal with those monomials with

the structured R. Note that in the secret-key setting,

the issues do not exist due to the fact that A has no

access to any encodes of R in G1 or G2.

6 Application to Fine-grained Data Sharing

In this section, we show the application of our

scheme in fine-grained data sharing system.

6.1 Overview of Our Fine-Grained Data Shar-
ing System

Our system is divided into data owners and an un-

trusted server. Each data owner is provided with a

master key for the FH-IPFE scheme, and the server

stores sensitive data in the encrypted form (say cty)

under the master key.

On the data owners side, our system supports ba-

sic operations such as insert, delete, query and update.

Furthermore, a data owner can also make some statisti-

cal analyses such as mean, weighted mean and variance

values. Those can be done by issuing partial secret key

(K2) for the server to process (by doing partial decryp-

tion) on encrypted data. The server gets an interme-

diate value of decryption and returns it to the owner.

Then the data owner uses K1 for final decryption and

gets the actual value. With appropriately issued keys

(K1, K2), the data owner can achieve various opera-

tions. In more detail, the data owner generates dif-

ferent secret keys by embedding corresponding vectors.

For any fixed data vector y, we can choose appropriate

vector x and the inner product value ⟨x,y⟩ helps us to
implement various operations (See Section 6.3 for more
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details). Meanwhile, the security is guaranteed by the

PK-ER-SIM security of FH-IPFE.

On the server side, our system also supports above

statistical analyses with the data owner’s delegated se-

cret keys (both K1 and K2 are sent to the server) and

the security is guaranteed by the standard security of

FH-IPFE.

6.2 Initialization

Let N = 2m denote the maximal dimension of the

data vector. The initialization steps of the interaction

between each data owner and the server are as follows:

Step 1. For the data y (viewed as a vector with only

positive elements), let n = |y| and yi = 0 1O for

i ∈ [n+ 1, N ].

Step 2. Each data owner runs the setup algo-

rithm Setup
(
1λ, S

)
to get the public parame-

ter pp and the master key msk, where pp =

(G1,G2,GT , q, e, S) and msk = (r, t, s).

Step 3. Each data owner runs the encryption algo-

rithm Enc (msk,y) to get the ciphertext cty and

the key generation algorithm KeyGen (msk,y) to

get the secret key sky, where cty = (C1, C2) and

sky = (J1, J2).

Step 4. Each data owner sends pp, n, nmax = n,C1,

C2, and J2
2O to the server. The owner holds msk

and J1 on his/her own side.

After the initialization steps are completed, we now

describe how the proposed system supports the various

operations. We describe the system for the data owners

side and the server side in Section 6.3 and Section 6.4,

respectively.

6.3 Data Owners Side

6.3.1 Basic Operations

We implement all the basic operations by choosing

appropriate vectors to calculate the inner product val-

ues (without leaking the vectors themselves). Hence,

we first construct some vectors for different types of

operations.

1) For query operation in position i, let vector x =

(0, ..., 0, 1, 0, ..., 0) where i-th entry is 1 and other

entries are all zero.

2) For update operation in position i, let vector

y′ = (0, ..., 0, y − yi, 0, ..., 0) where yi is the value

returned by the query operation and y is the value

to be updated.

3) For insert operation in position (nmax + 1), let

vector y′ = (0, ..., 0, ynmax+1, 0, ..., 0) and set n =

n + 1, nmax = nmax + 1. Here ynmax+1 is the

value to be inserted.

4) For delete operation in position i, let vector y′ =

(0, ..., 0,−yi, 0, ..., 0) where yi is also the value re-

turned by the query operation. Additionally, set

n = n− 1.

Now we show that how the proposed system sup-

port various basic operations. We start with the query

operation. Subsequently, it works as a subroutine to

implement operations insert, update, and delete.

1) Query: If a data owner wants to query the data

that indexed by i (i.e., the i-th entry), the inter-

action between the data owner and the server is

as follows:

Step 1. The data owner runs the key generation

algorithm KeyGen (msk,x) to get the secret key

skx, where skx = (K1,K2). Then it holds K1 and

sends K2 to the server.

Step 2. The server computes D2 = e (K2, C2) and

returns D2 to the data owner.

Step 3. The data owner computes D1 =

e (K1, C1), finds z such that Dz
1 = D2 and out-

puts z.

It is easy to verify that D1 = [αβ]T , D2 =

[αβyi]T , and z = yi due to the correctness of

1OFor an entry that is null, we set it as 0.
2ONote that each data owner does not store the original data y, and J2 is used to calculate variance. Thus J2 is generated in this

phase.
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our FH-IPFE scheme in Section 5. For security,

we have proven the PK-ER-SIM security of the

proposed FH-IPFE scheme. It guarantees that

even if the server receives K2, it learns nothing

about ⟨x,y⟩ = yi as long as it does not hold K1.

In other words, in the query operation, the data

owner securely gets yi from the server.

2) Update, Insert and Delete: Note that in our

system, the operations insert, update, and delete

can all be seen as the update operation. The main

idea is that we view 0 as useless data, thus if we

want to delete a data, we update it to be 0 and

to insert a data, we update 0 to a new value. The

only difference between them is the construction

of vectors y′. Here we only describe the update

operation. If a data owner wants to update y in

position i (i.e., the i-th entry) with value y, the

interaction between the data owner and the server

is as follows:

Step 1. The data owner queries the element yi

indexed by i using the query operation described

before. Note that for insert operation, this step

is omitted and just set i = nmax + 1.

Step 2. The data owner selects corresponding y′

according to operations.

Step 3. The data owner computes C ′
2 =

CRT ·T ·D·y′

1 and J ′
2 = JR−1·T−1·D−1·y′

1 , and sends

them to the server.

Step 4. Upon receiving C ′
2 and J ′

2, the server up-

dates C2 = C2 · C ′
2 and J2 = J2 · J ′

2
3O.

The correctness follows by the fact that

C2 =
[
βRT · T ·D · y′]

2
·
[
βRT · T ·D · y

]
2

=
[
βRT · T ·D · (y + y′)

]
2
,

and

J2 =
[
αR−1 · T−1 ·D−1 · y′]

1

·
[
αR−1 · T−1 ·D−1 · y

]
1

=
[
αR−1 · T−1 ·D−1 · (y′ + y)

]
1
.

It is easy to see that C2 and J2 are generated by

the encryption and key generation algorithms of

our FH-IPFE scheme, respectively. That is, the

vector (y′ + y) is embed in C2 and J2. Further-

more, the security is simply followed by the PK-

ER-SIM security of underlying FH-IPFE scheme.

6.3.2 Statistical Analyses

As above, we first construct two vectors for calcu-

lating inner product values. Those vectors help us to

implement statistical analyses for mean and weighted

mean. See below:

1) For calculating mean value, let vector x =

(1, ..., 1, ..., 1) where all the entries are 1.

2) For calculating weighted mean value, let vector

x = (w1, ..., wnmax
, 0, ..., 0) where w1, ..., wnmax

are all weight values.

On the other hand, for calculating variance values,

we utilize the calculation of mean value as a subroutine

to process on the encrypted data. And we have no need

to construct any additional vectors. The point is that

in the initialization phase, the data owner has already

sent J2 to the server. It implies that the data owner can

get y2 using J1 and he/she can compute var = y2

n −avg
2

as the variance value.

1) Mean and Weighted Mean: The only dif-

ference between operations calculating mean and

weighted mean values is located in choosing the

vector x and the rest of steps are the same.

Hence, we describe them together. If a data owner

wants to calculate mean or weighted mean values

of all data (i.e., the full data vector), the interac-

tion between the data owner and the server is as

follows:

Step 1. The data owner selects x depending on

calculating mean or weighted mean values.

Step 2. The data owner runs the key generation

algorithm KeyGen (msk,x) to get the secret key

3OJ2 is also updated for calculating variance values.

Jus
t A

cce
pte

d



Ming Wan et al.:Efficient FH-IPFE and Fine-grained Data Sharing 17

skx, where skx = (K1,K2). Then it holds K1 and

sends K2 to the server.

Step 3. The server computes D2 = e (K2, C2) and

returns D2 to the data owner.

Step 4. The data owner computes D1 =

e (K1, C1) and finds z such that Dz
1 = D2. Then

the mean or weighted mean value is outputted by

avg = z
n .

Here D1 = [αβ]T and D2 = [αβ⟨x,y⟩]T . For ap-

propriately chosen x, the correctness follows.

2) Variances: If a data owner wants to calculate

variance value of the full data vector, the interac-

tion between the data owner and the server is as

follows:

Step 1. The data owner calculates the mean value

avg by the method described above.

Step 2. The server computes D2 = e(J2, C2) and

returns D2 to the data owner.

Step 3. The data owner computes D1 = e(J1, C1)

and finds z such that Dz
1 = D2.

Step4. Finally, the variance value is outputted by
z
n − avg2.

It is easy to verify that z = ⟨y,y⟩ and var =
⟨y,y⟩
n − (

∑
yi

n )2. The correctness follows.

For all statistical analyses on the data owners side,

the security can also be guaranteed by the PK-ER-SIM

security of underlying FH-IPFE schemes.

6.4 Server Side

6.4.1 Statistical Analyses

On the server side, the proposed system can also

support various statistical analyses. Based on the sta-

tistical analyses given in Section 6.3, if the server re-

quests for a statistical analysis, the data owner dele-

gates the full secret key K1 and K2 (instead of only

K2) to the server. In this case, the server has the abil-

ity to do complete decryption and receives the actual

statistical result.

As before, we first construct two vectors for calcu-

lating mean and weighted mean values. See below:

1) For calculating mean value, let vector x =

(1, ..., 1, ..., 1) where all the entries are 1.

2) For calculating weighted mean value, let vector

x = (w1, ..., wnmax
, 0, ..., 0) where w1, ..., wnmax

are all weight values.

Similar to Section 6.3.2, there is no need to con-

struct vectors for calculating variance values and we

utilize the calculation of mean values as a subroutine.

Now we start with describing how the server can com-

pute mean or weighted values.

1) Mean and Weighted Mean: If the server

wants to calculate mean or weighted mean val-

ues of all data (i.e., the full vector), the interac-

tion between the data owner and the server is as

follows:

Step 1. The data owner selects x depending on

calculating mean or weighted mean values.

Step 2. The data owner runs the key generation

algorithm KeyGen (msk,x) to get the secret key

skx, where skx = (K1,K2). Then it sends K1

and K2 to the server.

Step 3. The server computes D1 = e (K1, C1),

D2 = (K2, C2) and finds z such that Dz
1 = D2.

Then the mean or weighted value is outputted by

avg = z
n .

The correctness is similar to the case on the data

owners side, for appropriately chosen x.

2) Variance: On the other hand, if the server wants

to calculate variance values, the interaction be-

tween the data owner and the server is as follows:

Step 1. The server calculates the mean value avg

by the method described above.

Step 2. The data owner sends J1 to the server.

Step 3. The server computes D1 = e(J1, C1),

D2 = e(J2, C2), and finds z such that Dz
1 = D2.

Note that J2 is sent to the server in the initializa-

tion phase.
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Table 4. Running Time(s) on Several Different Values of n and Comparison with Kim et al. [7]

Dimension n
Setup(s) Key Generation(s) Enc(s) Dec(s)

[7] This work [7] This work [7] This work [7] This work
512 ≥ 100 0.039 0.508 0.317 2.539 2.328 2.243 2.163
1024 ≥ 800 0.051 1.357 0.637 5.389 4.632 4.152 4.010
2048 ≥ 1600 0.055 4.268 1.292 12.322 9.344 8.065 7.965

Table 5. Running Time(s) of Proposed Fine-grained Data Sharing System

Operations Data Owner(s) Server(s)

Data Owners Side

Initialization 0.191 N/A
Query 0.147 0.263

Update, Insert, or Delete 0.181 0.002
Mean or Weighted Mean 0.155 0.264

Variance 0.333 0.527

Server Side
Mean or Weighted Mean 0.148 0.267

Variance 0.278 0.581

Step 4. Finally, the variance value is outputted

by z
n − avg2.

The correctness is also similar to the case on the

data owners side.

For all statistical analyses on the server side, the

security is followed by the SIM security of underlying

FH-IPFE schemes. The server gets full secret key K1,

K2, J1, J2 and ciphertext C1, C2 but no additional

information about y.

7 Experiments

To evaluate the practicality of our main construc-

tion, we implement our FH-IPFE as well as fine-grained

data sharing system. Our implementation uses the

RELIC 4O library to implement the pairing group op-

erations and the finite field arithmetic in Zq. In our

experiments, we measure the time needed to run Setup

(generate master key), Enc (encrypt), Key Generation

(issue secret keys), and Dec (decrypt the inner product)

algorithms for n-dimensional binary vectors for several

different values of n.

We run all of our experiments on a Linux laptop

with a 6-core Intel Core i5-10500H 2.50GHz processor

and 16GB of RAM. We also implement the previously

state-of-the-art FH-IPFE scheme constructed by Kim

et al. [7] and the experiment results show that our run-

ning time of various algorithms is much shorter. We

run experiments over the curve MNT224 and assume

the bound of inner products as 3 × 109 when solving

discrete logarithm.

For the FH-IPFE scheme proposed by Kim et al.

[7], the running time of the Setup algorithm is domi-

nated by the inversion of a random n× n matrix in Zq

where q is a 224-bit prime, corresponding to 112 bits

of security. The inverse computation is done in O
(
n3
)

time and when n ≥ 512, the Setup algorithm in the

FH-IPFE scheme given by Kim et al. [7] is agnostic to

the actual values in R and R∗. Following the sugges-

tion in [7], we measure the performance with respect to

matrices R and R∗ that are sampled uniformly at ran-

dom. Using simulated rather than real matrices has no

effect on the experiment results when focusing on Key

Generation, Enc and Dec algorithms 5O. The concrete

performance numbers of FH-IPFE schemes are summa-

rized in Table 4.

Based on our FH-IPFE scheme with maximal di-

mension n = 1024, we also implement our fine-grained

data sharing system and the concrete performance

numbers are summarized in Table 5. It can be seen

that after putting the most parts of pairing operations

on a server, the data owners save lot of time when car-

rying out statistical analyses.

4OAranha D F, Gouva C P L, Markmann T, Wahby R S, Liao K. RELIC is an Efficient LIbrary for Cryptography.
https://github.com/relic-toolkit/relic.

5OWhen running experiments on their Setup algorithm, we do not use this simulation method.
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8 Conclusion

In this work, we construct a more efficient (secret-

key) FH-IPFE scheme. We prove the security of our

construction in a generic model of bilinear maps. We

also formalize an additional notion of security as PK-

ER-SIM for FH-IPFE and design a fine-grained data

sharing system based on our construction. It supports

not only basic database operations but also statistical

analyses on encrypted data. The experiment results

also show that our FH-IPFE scheme and designed sys-

tem are efficient and practical.
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tional encryption for inner products, from standard as-

sumptions. In Proc. the 36th Annual International Cryp-

tology Conference, Aug. 2016, pp.333-362. DOI:10.1007/

978-3-662-53015-3_12.

[7] Kim S, Lewi K, Mandal A, Montgomery H, Roy A, Wu

D J. Function-Hiding Inner Product Encryption Is Prac-

tical. In Proc. the 11th International Conference on Secu-

rity and Cryptography for Networks, Sep. 2018, pp.544-562.

DOI:10.1007/978-3-319-98113-0_29.

[8] Ryu D H, Jeon S Y, Hong J, Lee MK. Efficient lp distance

computation using function-hiding inner product encryp-

tion for privacy-preserving anomaly detection. In Sensors,

2023, 23(8): 4169. DOI:10.3390/s23084169.

[9] Zheng Y D, Lu R X. Efficient Privacy-Preserving Similarity

Range Query based on Pre-Computed Distances in eHealth-

care. In Proc. the 2020 IEEE Global Communications Con-

ference, Dec. 2020, pp.1-6. DOI:10.1109/GLOBECOM42002.

2020.9322502.

[10] Bishop A, Jain A, Kowalczyk L. Function-hiding inner

product encryption. In Proc. the 21st International Con-

ference on the Theory and Application of Cryptology and

Information Security, Dec. 2015, pp.470-491. DOI:10.1007/

978-3-662-48797-6_20.

[11] Datta P, Dutta R, Mukhopadhyay S. Functional encryption

for inner product with full function privacy. In Proc. the

19th IACR International Conference on Practice and The-

ory in Public-Key Cryptography, Mar. 2016, pp.164-195.

DOI:10.1007/978-3-662-49384-7_7.

[12] Tomida J, Abe M, Okamoto T. Efficient Functional Encryp-

tion for Inner-Product Values with Full-Hiding Security. In

Proc. the 19th Information Security Conference, Sep. 2016,

pp.408-425. DOI:10.1007/978-3-319-45871-7_24.

[13] Brakerski Z, Gentry C, and Vaikuntanathan V. (lev-

eled) fully homomorphic encryption without bootstrapping.

In Proc. the Innovations in Theoretical Computer Sci-

ence 2012, Jan. 2012, pp.309-325. DOI:10.1145/2090236.

2090262.

[14] Gentry C, Sahai A, Waters B. Homomorphic encryp-

tion from learning with errors: Conceptually-simpler,

asymptotically-faster, attribute-based. In Proc. the 33rd

Annual Cryptology Conference, Aug. 2013, pp.75-92.

DOI:10.1007/978-3-642-40041-4_5.

[15] Bartusek J, Carmer B, Jain A, Jin Z, Lepoint T, Ma

F, Malkin T, Malozemoff A J, Raykova M. Public-key

function-private hidden vector encryption (and more). In

Proc. the 25th International Conference on the Theory and

Application of Cryptology and Information Security, Dec.

2019, pp.489-519. DOI:10.1007/978-3-030-34618-8_17.

[16] Good I J. Introduction to Cooley and Tukey (1965) An Al-

gorithm for the Machine Calculation of Complex Fourier

Series. In Breakthroughs in Statistics, Kotz S, Johnson N L

(eds.), Springer Series in Statistics, 1997, pp.201-216.

Jus
t A

cce
pte

d

https://eprint.iacr.org/2010/556
https://eprint.iacr.org/2010/556
10.1007/978-3-662-48797-6_20
10.1007/978-3-662-48797-6_20
10.1007/978-3-030-64840-4_16
10.1007/978-3-030-64840-4_16
10.1007/978-3-030-77870-5_18
10.1007/978-3-662-46447-2_33
10.1007/978-3-662-53015-3_12
10.1007/978-3-662-53015-3_12
10.1007/978-3-319-98113-0_29
10.3390/s23084169
10.1109/GLOBECOM42002.2020.9322502
10.1109/GLOBECOM42002.2020.9322502
10.1007/978-3-662-48797-6_20
10.1007/978-3-662-48797-6_20
10.1007/978-3-662-49384-7_7
10.1007/978-3-319-45871-7_24
10.1145/2090236.2090262
10.1145/2090236.2090262
10.1007/978-3-642-40041-4_5
10.1007/978-3-030-34618-8_17


20 J. Comput. Sci. & Technol., January 2018, Vol., No.

[17] Joux A. A one round protocol for tripartite diffie–hellman.

In J. Cryptology, 2003, 17(4): 263-276. DOI:10.1007/

s00145-004-0312-y.

[18] Boneh D, Franklin M. Identity-based encryption from the

weil pairing. In Proc. the 21st Annual International Cryp-

tology Conference, Aug. 2001, pp.213-229. DOI:10.1007/

3-540-44647-8_13.

[19] Boneh D, Boyen X, Shacham H. Short group signa-

tures. In Proc. the 24th Annual International Cryp-

tology Conference, Aug. 2004, pp.41-55. DOI:10.1007/

978-3-540-28628-8_3.

[20] Boneh D, Boyen X, Goh E J. Hierarchical identity based

encryption with constant size ciphertext. In Proc. the 24th

Annual International Conference on the Theory and Ap-

plications of Cryptographic Techniques, May. 2005, pp.440-

456. DOI:10.1007/11426639_26.

[21] Nechaev V I. Complexity of a determinate algorithm for

the discrete logarithm. In Math Notes, 1994, 17: 165-172.

DOI:10.1007/BF02113297.

[22] Shoup V. Lower bounds for discrete logarithms and related

problems. In Proc. the 1997 International Conference on

the Theory and Application of Cryptographic Techniques,

May. 1997, pp.256-266. DOI:10.1007/3-540-69053-0_18.

[23] Schwartz J T. Fast probabilistic algorithms for verification

of polynomial identities. In J. ACM, 1980, 27(4): 701-717.

DOI:10.1145/322217.322225.

[24] Zippel R. Probabilistic algorithms for sparse polynomi-

als. In Proc. the 1979 International Symposium on Sym-

bolic and Algebraic Manipulation, Jun. 1979, pp.216-226.

DOI:10.1007/3-540-09519-5_73.

[25] Bartusek J, Guan J, Ma F, Zhandry M. Return of GGH15:

Provable Security Against Zeroizing Attacks. In Proc.

the 18th Theory of Cryptography Conference, Nov. 2018,

pp.544-574. DOI:10.1007/978-3-030-03810-6_20.

[26] Badrinarayanan S, Miles E, Sahai A, Zhandry M. Post-

zeroizing obfuscation: New mathematical tools, and the

case of evasive circuits. In Proc. the 35th Annual Inter-

national Conference on the Theory and Applications of

Cryptographic Techniques, May. 2016, pp.764-791. DOI:10.

1007/978-3-662-49896-5_27.

Ming Wan received his B.S.

degree in computer science from

Northwestern Polytechnical Univer-

sity, Xi’an, in 2017. He is currently

a Ph.D. candidate at the school of

electronic information and electrical

engineering, Shanghai Jiao Tong

University, Shanghai. His research

interests include functional encryption

and group-based cryptography.

Geng Wang received his Ph.D.

degree in applied mathematics from

Peking University, Beijing, in 2013.

He is currently an assistant researcher

at the school of electronic information

and electrical engineering, Shanghai

Jiao Tong University, Shanghai. His

research interests include functional

encryption and lattice-based cryptography.

Shi-Feng Sun received his Ph.D.

degree in computer science from

Shanghai Jiao Tong University,

Shanghai, in 2016. He is currently

an associate professor at the school of

electronic information and electrical

engineering, Shanghai Jiao Tong

University, Shanghai. His research

interests include cryptography and

data privacy, particularly provably secure cryptosystems

against physical attacks, data privacy-preserving technol-

ogy in cloud storage, and privacy-enhancing technology in

blockchain.

Da-Wu Gu is a distinguished

professor at School of Electronic

Information and Electrical Engineer-

ing, Shanghai Jiao Tong University

(SJTU), Shanghai. He received from

Xidian University of China, Xi’an, his

B.S. degree in applied mathematics

in 1992, and his M.S. degree in 1995

and Ph.D. degree in 1998, both

in cryptography. His research interests include crypto

algorithms, crypto engineering, and system security.

He leads the Laboratory of Cryptology and Computer

Security (LoCCS) at SJTU, Shanghai. He was the winner

of Chang Jiang Scholars Distinguished Professors Program

in 2014 by Ministry of Education of China. He won the

National Award of Science and Technology Progress in

2017. He has got over 150 scientific papers in academic

journals and conferences, and owned 28 innovation patents.

Gong-Yu Shi received his B.S.

degree from Zhejiang University,

Hangzhou, in 2020. He is currently

a Master student at the school of

electronic information and electrical

engineering, Shanghai Jiao Tong

University, Shanghai. His research

interests include cryptanalysis and

cryptography engineering.

Jus
t A

cce
pte

d

10.1007/s00145-004-0312-y
10.1007/s00145-004-0312-y
10.1007/3-540-44647-8_13
10.1007/3-540-44647-8_13
10.1007/978-3-540-28628-8_3
10.1007/978-3-540-28628-8_3
10.1007/11426639_26
10.1007/BF02113297
10.1007/3-540-69053-0_18
10.1145/322217.322225
10.1007/3-540-09519-5_73
10.1007/978-3-030-03810-6_20
10.1007/978-3-662-49896-5_27
10.1007/978-3-662-49896-5_27


Ming Wan et al.:Efficient FH-IPFE and Fine-grained Data Sharing 21

Appendix

Proof of Lemma 6

Proof. We firstly write

R̂ =


r̂1 ŝ1 0 ... 0
0 r̂2 ŝ2 ... 0
0 0 r̂3 ... 0
...

...
...

...
0 0 0 ... r̂n

 .

Hence, for R̂−1,

R̂−1
i,j =

{
(−1)j−i∏j

k=i r̂
−1
k

∏j−1
k=i ŝk, j ≥ i

0, j < i
.

Let ẑi = r̂−1
i ŝi, then we can rewrite R̂−1

i,j ={
(−1)j−i

r̂−1
j

∏j−1
k=i ẑk, j ≥ i

0, j < i
. Now for û, we write

ûT = uT · R̂−1 =
(∑

j ujR̂
−1
j,1 , ...,

∑
j ujR̂

−1
j,n

)
, we

have ûi =
∑

j ujR̂
−1
j,i = r̂−1

i

∑i
j=1 (−1)

i−j
uj
∏i−1

k=j ẑk.

On the other hand, for v̂, v̂i can be written as v̂i ={
r̂ivi + ŝivi+1 = r̂i (vi + vi+1ẑi) , 0 ≤ i ≤ n− 1

r̂nvn, i = n
.

Since P is a polynomial over the entries of û and

v̂ such that each monomial contains exactly one entry

from û and one from v̂, we have

P =
∑
i,j

Mi,j ûiv̂j = ûT ·M · v̂.

Observe that the formal variables r̂ir̂j only exists in

Mi,j ûiv̂j and the coefficient is Mi,juivj , we can get

Mi,j = 0 if i ̸= j since uivj ̸= 0 following the assump-

tion. Now we rewrite

P =
∑
i

Mi,iûiv̂i

=
∑
i

Mi,i

 i∑
j=1

(−1)i−j
uj

i−1∏
k=j

ẑk

 (vi + vi+1ẑi) .

Observe that the monomial cẑi for some constant c

exists in two cases, one in Mi,iûiv̂i and another in

Mi+1,i+1ûi+1v̂i+1. The coefficients are Mi,iuivi+1 and

−Mi+1,i+1uivi+1, respectively. Again, Mi,i must be

equal to Mi+1,i+1 since uivi+1 ̸= 0 following the as-

sumption. Therefore, the matrix M can be viewed

as the form M = mI for some constant m and P =

m⟨û, v̂⟩. This completes the proof.
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