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Abstract    The emergence of software-defined vehicles (SDVs), combined with autonomous driving technologies, has en-

abled a new era of vehicle computing (VC), where vehicles serve as a mobile computing platform. However, the interdisci-

plinary complexities of automotive systems and diverse technological requirements make developing applications for au-

tonomous vehicles challenging. To simplify the development of applications running on SDVs, we propose a comprehen-

sive suite of vehicle programming interfaces (VPIs). In this study, we rigorously explore the nuanced requirements for ap-

plication development within the realm of VC, centering our analysis on the architectural intricacies of the Open Vehicu-

lar Data Analytics Platform (OpenVDAP). We then detail our creation of a comprehensive suite of standardized VPIs,

spanning five critical categories: Hardware, Data, Computation, Service, and Management, to address these evolving pro-

gramming requirements. To validate the design of VPIs, we conduct experiments using the indoor autonomous vehicle, Ze-

bra, and develop the OpenVDAP prototype system. By comparing it with the industry-influential AUTOSAR interface,

our  VPIs  demonstrate  significant  enhancements  in  programming  efficiency,  marking  an  important  advancement  in  the

field of SDV application development. We also show a case study and evaluate its performance. Our work highlights that

VPIs significantly enhance the efficiency of developing applications on VC. They meet both current and future technologi-

cal demands and propel the software-defined automotive industry toward a more interconnected and intelligent future.

Keywords    software-defined  vehicle  (SDV), vehicle  computing  (VC), vehicle  programming  interface  (VPI), au-

tonomous system

  

1    Introduction

The  progression  of  autonomous  vehicle  technolo-

gy is being significantly accelerated by advancements

in  algorithms  and  computational  capabilities.  Conse-

quently,  an  increasing  number  of  these  vehicles  are

undergoing  road  tests,  heralding  a  transformation  in

conventional  modes  of  transportation.  Predictions  by

Boston  Consulting  Group  indicate  that  the  emer-

gence  of  software-defined  vehicles  (SDVs)[1] will  cre-

ate over $650 billion in value for the auto industry by

2030,  making  up  15% to  20% of  automotive  value①.

In  this  evolving  landscape,  autonomous  vehicles

emerge  as  sophisticated  mobile  platforms,  endowed
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with  extensive  computational,  storage,  communica-

tion, and energy resources. This development has cat-

alyzed the emergence of vehicle computing (VC) as a

key  technological  trend[2, 3].  With  autonomous  vehi-

cles  catering  to  their  inherent  software  development

requirements,  there  is  a  parallel  emergence  of  an  ex-

pansive  software  ecosystem,  leveraging  the  vehicles'

vast resource pool. Consequently, the development of

applications  centered  around  VC  is  becoming  a  piv-

otal area of research and technological innovation.

In  the  era  of  VC,  autonomous  vehicles  will  be-

come  a  mobile  computation  platform,  a  mobile  com-

munication  platform,  a  mobile  energy  consumption,

storage, delivery platform, a mobile sensing platform,

and  a  mobile  data  generation  and  storage  platform.

As  illustrated  in Fig.1,  while  addressing  their  own

needs, these autonomous vehicles will also provide re-

sources for surrounding devices[4]. At that time, ubiq-

uitous  high-performance  computing,  sensing,  power,

and communicating capabilities will be realized.

Intel estimates that autonomous vehicles of the fu-

ture will produce 4 TB of data every day②. To effec-

tively  analyze  this  data  on  mobile  computing  plat-

forms,  OpenVDAP  (Open  Vehicular  Data  Analytics

Platform)[5] provides  a  roadmap  for  on-board  system

data  analysis.  OpenVDAP is  a  complete  stack  edge-

based  platform  comprising  an  on-board  computing/

communication  unit,  a  security  and  privacy-preserv-

ing  vehicle  operation  system  supported  by  isolation,

an  edge-aware  application  library,  and  an  optimal

workload offloading and scheduling strategy.

A  crucial  aspect  of  OpenVDAP  is  its  program-
ming  interface,  which  includes  vehicle  programming

interfaces  (VPIs).  These  VPIs  are  specifically  de-

signed to bridge the gap between the autonomous ve-

hicle's  computational  capabilities  and  the  require-

ments of  advanced VC applications.  VPIs enable de-
velopers to more effectively create and deploy applica-

tions that leverage the full potential of vehicular edge
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Fig.1.  Paradigm of vehicle computing[2, 3].

Bao-Fu Wu et al.: VPI: Vehicle Programming Interface for Vehicle Computing 23

 

②Yogesh M. 100 million lines of code, 4 TB data per day—Is that your next car? 2017. https://futuremonger.com/100-million-
lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa, Jan. 2024.

https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa


computing  by  providing  a  structured  way  to  access

and utilize the vehicle's resources.

Easily  developing  VC  applications  currently  face

high technical barriers, primarily stemming from four

key challenges.

● First,  the  interdisciplinary  nature  of  au-

tonomous  driving  technology,  which  encompasses

computer vision, machine learning, sensor fusion, con-

trol  theory,  and  software  engineering,  contributes  to

the high technical threshold[6, 7]. This broad spectrum

of  disciplines  sets  the  foundational  challenge  in  the

field,  requiring  a  deep  and  integrated  understanding

across various areas of expertise.

● Second, the substantial variation in autonomous

vehicles  produced  by  different  manufacturers③ is  an-

other  critical  challenge.  This  diversity  manifests  in

the types and numbers of  sensors deployed,  inconsis-

tencies in data formats, and differences in the design

of autonomous driving architectures. Such heterogene-

ity  complicates  the  development  of  universal  solu-

tions that can be applied across various vehicle models.

● Third,  the  complexity  of  autonomous  driving

components  presents  a  substantial  challenge.  Taking

Autoware④ as  an  example,  a  renowned  open-source

software  for  autonomous  driving,  it  has  developed

hundreds  of  Robot  Operating  System (ROS)[8] nodes

to support autonomous driving applications and illus-

trates the intricate nature of autonomous vehicle sys-

tems. Developing and integrating these complex com-

ponents demands a high level of expertise.

● Finally,  the  need  for  data  security  protection

and  the  focus  on  vehicle  safety  significantly  impact

the  field[9, 10].  Currently,  autonomous  vehicle  compa-

nies  tend  to  focus  on  custom  development  for  their

specific  vehicle  models,  with  vehicle  safety  being  a

paramount  consideration.  However,  this  approach

limits  collaboration  between  companies  and  is  a  ma-

jor impediment to the growth of an open-source com-

munity for VC.

Addressing these issues in this structured manner

is essential to lower the barriers to autonomous driv-

ing software development and foster the growth of an

open-source  community  for  VC.  To  effectively  pro-

mote this development, it is imperative to clearly de-

fine the requirements of VC. Based on these require-

ments,  functional  modules  should  be  segmented,  and

a  set  of  standardized  programming  interfaces  specifi-

cally  designed.  Future  autonomous  driving  software

developers  will  then  be  able  to  focus  on  these  de-

signed  interfaces,  leveraging  their  respective  areas  of

expertise  to  implement  corresponding  functionalities.

This  collaborative  approach  will  not  only  facilitate

the advancement of autonomous driving software de-

velopment but also pave the way for a more integrat-

ed and innovative VC ecosystem.

It is imperative to clearly define the requirements

to  address  the  aforementioned  challenges  and  pro-

mote  the  development  of  VC.  Functional  modules

should be segmented on these requirements, and a set

of standardized programming interfaces should be de-

signed.  The  novelty  of  program  interfaces  lie  in  en-

abling future autonomous driving software developers

to  focus  on  these  interfaces,  leveraging  their  specific

areas  of  expertise  to  implement  corresponding  func-

tionalities.  This  collaborative  method  is  not  just

about modularization,  but  about fostering an ecosys-

tem where  developers  can contribute  more  efficiently

and  innovatively.  The  proposed  approach  contrasts

with  existing  developments  like  AUTomotive  Open

System  ARchitecture  (AUTOSAR)[11],  which  has  in-

troduced Adaptive AUTOSAR to design a set of APIs

(application  programming  interfaces).  While  these

APIs  offer  a  standardized  method  for  automotive

manufacturers and suppliers to develop and integrate

vehicle  software,  making  software  development  more

efficient and interoperable, our approach extends this

concept further. It aims to create a more comprehen-

sive,  open,  and  versatile  framework  for  VC,  surpass-

ing the traditional boundaries of automotive software

development.  Similarly,  the  European  Automobile

Manufacturers Association (ACEA)⑤ has been instru-

mental  in  promoting  the  standardization  of  vehicle

data. This initiative has facilitated different manufac-

turers and service providers in exchanging and utiliz-

ing  vehicle  data  more  easily,  reducing  compatibility

issues. However, our approach seeks to unify not just

data standards, but also the broader spectrum of VC

functionalities, including data processing, communica-

tion,  and  control  systems.  This  unified  API  design,

therefore, not only enables the transmission and pars-

ing  of  data  across  different  manufacturers  but  also

paves  the  way  for  more  intelligent  and  interconnect-

ed  developments  in  the  automotive  industry.  Our

comprehensive  solution  is  designed  to  fully  meet  the

extensive and evolving requirements of VC, marking a

significant advancement over existing systems.

24 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1
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To  address  the  programming  challenges  in  VC,

centered  around  the  design  philosophy  of  Open-

VDAP's APIs, we designed a set of vehicle program-

ming interfaces (VPIs) for the development of VC ap-

plications.  Proposed  VPIs  are  designed  to  manage

various  aspects  of  vehicle  hardware,  data,  computa-

tion,  service,  and  system  management  for  au-

tonomous vehicles. These VPIs, being open-source, of-

fer a universal solution for the open community. They

have been meticulously developed, considering the fu-

ture  of  connected  vehicles  as  platforms  for  mobile

computing, communication, energy consumption, stor-

age  and  transfer,  and  mobile  sensing.  This  suite  of

VPIs  represents  the  first  of  its  kind,  specifically  tai-

lored  to  meet  the  application  development  needs  of

this new era,  offering a holistic approach to develop-

ing applications for connected vehicles in the context

of mobile computing and sensing.

Our  main  contributions  can  be  summarized  in

three significant aspects.

● We  have  proposed  the  first  standardized  soft-

ware  programming  development  interfaces  that  com-

prehensively  satisfy  the  requirements  of  VC  applica-

tion development, VPIs, which will facilitate the rapid

development of VC software.

● We have developed the OpenVDAP prototype,

a  purpose-built  framework  to  facilitate  technological

validation  and  support  the  implementation  of  these

programming interfaces.

● We  have  validated  the  programming  efficiency

of  VPIs  in  application  development  by  conducting

two  sets  of  experiments,  demonstrating  their  practi-

cality and effectiveness in real-world scenarios involv-

ing VC platforms.

In this paper, we begin by reviewing related work

in Section 2, then articulate the principles guiding our

VPI design and provide a comprehensive explanation

of  the  VPIs'  design  and  considerations  in Section 3.

Section 4 introduces  the  OpenVDAP validation  plat-

form,  designed  to  test  and  validate  our  VPI  frame-

work. Section 5 evaluates  the  efficiency  performance

of  programming  with  proposed  VPIs,  combined  with

a case study and performance evaluation, and finally,

in Section 6,  we  discuss  our  work. Section 7 summa-

rizes  our  contributions  and  potential  avenues  for  fu-

ture research. 

2    Related Work

In  the  era  of  vehicle  computing  (VC),  connected

vehicles  emerge  as  formidable  edge  computing  plat-

forms,  exhibiting  proficiency  in  mobile  computing,

communication,  energy  storage  and  transfer,  mobile

sensing,  and data storage.  The analytical  capabilities

of  VC extend  to  examining  data  streams  originating

from onboard sensors  and surrounding connected de-

vices, even during vehicle parking or charging periods.

Confronted with myriad service needs within VC, re-

searchers  have  delved  into  and  deliberated  upon  re-

source  allocation,  task  computing,  and  data  schedul-

ing[12–14].  Correspondingly,  future  connected  vehicles

should  at  least  possess  autonomous  driving  function

modules  with  APIs  for  perception  and  localization,

planning  and  decision,  vehicle  control,  data  services,

communication, device, charging, user interface, moni-

toring, and safety.

Facing such demands, numerous automotive man-

ufacturers, industry alliances, and large companies are

striving  toward  this  direction.  Their  research  out-

comes can partially meet the needs of connected vehi-

cles  in  the  VC  era.  The  automotive  industry's  API

design primarily focuses on autonomous driving appli-

cations  and  enhancing  user  experience.  For  instance,

Ford Motor Company's AppLink technology⑥, Gener-

al  Motors'  Next  Generation  Infotainment  System

(NGI)⑦,  and  Toyota  Motor  Corporation's  introduc-

tion of  the  Mobile  Service  Platform (MSPF)⑧ exem-

plify  such  developments.  These  technologies  empha-

size  the importance of  providing seamless  connectivi-

ty between vehicles and mobile devices. Many associa-

tions  and  technological  companies  are  also  paying

more  attention  to  this  part,  like  AUTOSAR,

COVESA,  Autoware,  Baidu  Apollo,  NVIDIA  Drive,

SOAFEE,  BlackBerry  IVY,  and  ROS.  These  plat-

forms vary in their  API support,  and the details  are

shown in Table 1.

AUTOSAR[15].  AUTOSAR is  a  widely  recognized

middleware solution for automotive software develop-

ment,  offering  APIs  for  diagnostics,  safety,  network

management, power management, and driver and ser-

vice  management.  Despite  its  widespread  adoption,

AUTOSAR  faces  challenges  in  autonomous  driving

applications due to its complexity, high cost, and pri-

mary  focus  on  in-vehicle  communication.  Developing

Bao-Fu Wu et al.: VPI: Vehicle Programming Interface for Vehicle Computing 25

 

⑥https://developer.ford.com/infotainment/in-vehicle-apps, Jan. 2024.
 

⑦https://developer.gm.com/, Jan. 2024.
 

⑧https://toyotaconnected.co.jp/en/service/connectedplatform.html, Jan. 2024.

https://developer.ford.com/infotainment/in-vehicle-apps
https://developer.ford.com/infotainment/in-vehicle-apps
https://developer.ford.com/infotainment/in-vehicle-apps
https://developer.ford.com/infotainment/in-vehicle-apps
https://developer.ford.com/infotainment/in-vehicle-apps
https://developer.gm.com/
https://toyotaconnected.co.jp/en/service/connectedplatform.html


a  custom  operating  system  with  AUTOSAR  can  in-

crease the cost and complexity.

COVESA⑫.  Connected  Vehicle  Systems  Alliance

(COVESA) is a community of automakers and suppli-

ers  collaborating  on  an  open  in-vehicle  infotainment

(IVI)  and  connectivity  software  platform.  GENIVI⑱

offers  APIs  for  vehicle  communication,  data  services,

and hardware interfaces, catering to basic vehicle con-

trol and communication requirements. It focuses more

on  standardization  and  interoperability  in  IVI  sys-

tems  than  advanced  autonomous  driving  functionali-

ties.

Autoware⑬.  Developed by  Tier  IV in  Japan,  Au-

toware is an open-source platform based on the Robot

Operating System (ROS). It offers extensive APIs for

processing  point  cloud  data,  mapping,  localization,

perception,  and  control.  While  it  is  easy  to  deploy

and  maintain  due  to  its  open-source  nature,  further

improvements  are  needed in  Autoware's  performance

and stability.

Baidu  Apollo⑭.  Developed  by  Baidu,  Apollo  pro-

vides a comprehensive set of APIs for perception, lo-

calization, planning, and control. Its high level of au-

tonomy  enables  the  implementation  of  autonomous

driving functions under various road conditions. Nev-

ertheless,  Apollo's  steep  learning  curve  and  the  need

for  high  technical  expertise  may  pose  barriers  to  en-

try for some developers.

NVIDIA  DRIVE⑮.  NVIDIA  DRIVE,  developed

by NVIDIA, is a comprehensive software platform for

autonomous  driving,  encompassing  everything  from

the  vehicle  to  the  data  center.  It  includes  hardware

and  software  for  AV  development,  such  as  NVIDIA

DGX  for  training  neural  networks  and  DRIVE  Sim

for  dataset  generation  and  validation.  NVIDIA

DRIVE  supports  end-to-end  development  with  rich

APIs and tools, excelling in multi-sensor fusion. How-

ever, its high cost makes it more suitable for medium

to large enterprises.

SOAFEE⑯. Arm's Scalable Open Architecture for

Embedded Edge (SOAFEE) is  designed to  provide  a

cloud-native  development  environment  that  address-

es  the  automotive  industry's  unique  challenges  and

constraints.  It  offers  standardized  interfaces  to  avoid

vendor  lock-in  and  integrates  container  orchestration

with  automotive  functional  safety.  However,  the  vir-

tualized  environment  per  ECU in  SOAFEE may not

align  well  with  certain  real-time  SDV  applications.

The complexity and security concerns associated with

its modular and scalable nature may pose integration

 

Table  1.    API Comparison of Software Platforms and Automotive Companies for Vehicle Computing

Platform Perception &
Localization

Vehicle
Control

Data
Service

Communication Charging
API

User
Interface

Monitoring
API

Safety
API

Ford Applink⑨ ✓
General Motors NGI⑩ ✓ ✓ ✓
Toyota MSPF⑪ ✓
AUTOSAR[15] ✓ ✓ ✓ ✓ ✓
COVESA⑫ - - - - - - - -

Autoware⑬ ✓ ✓ ✓
Baidu Apollo⑭ ✓ ✓ ✓ ✓
NVIDIA DRIVE⑮ ✓ ✓ ✓
SOAFEE⑯ ✓
BlackBerry IVY⑰ ✓ ✓ ✓ ✓
ROS[16] ✓ ✓ ✓
VPI ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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challenges,  necessitating  significant  technical  exper-

tise  and  thorough  validation  for  autonomous  driving

application development.

BlackBerry  IVY⑲.  Being  a  collaboration  between

BlackBerry and AWS, BlackBerry IVY is  a scalable,

cloud-connected  software  platform  designed  to  en-

hance  driver  and  passenger  experiences  in  connected

vehicles  using  the  BlackBerry  QNX  and  AWS  tech-

nology.  IVY  provides  scalable  APIs  and  tools  sup-

porting  various  sensing  devices  and  vehicle  models.

With its high security and stability, BlackBerry IVY

is ideal for medium-to-large enterprises, though it re-

quires enterprise authorization.

ROS[16]. The Robot Operating System (ROS) is a

free,  open-source  software  platform  for  robotic  and

autonomous  systems  development,  supporting  multi-

ple  programming  languages  and  platforms.  ROS  of-

fers an extensive suite of APIs and tools known for its

ease of use and learning. Nonetheless, its performance

and  stability  are  areas  that  require  further  improve-

ment.

In  summary,  although  the  methods  mentioned

above have unique features, they cannot meet the fu-

ture  development  needs  of  VC.  For  this  reason,  we

are the first to propose a comprehensive standard pro-

gramming  interface  specifically  designed  to  meet  the

requirements  of  VC.  Simultaneously,  in  light  of  the

development requirements for future VC applications,

we have thoroughly considered the API design philos-

ophy of the Open Vehicular Data Analytics Platform

(OpenVDAP)[5].  We  have  meticulously  analyzed  and

designed  a  set  of  programming  development  inter-

faces  tailored  to  VC  application  development  needs.

This suite of  VPIs represents the first  attempt of  its

kind. 

3    Vehicle Programming Interface Design

The  design  philosophy  of  VPI  revolves  around

conceptualizing the vehicle as a platform for computa-

tion,  storage,  power  management,  and  sensing.  This

concept is increasingly crucial in the realm of automo-

tive  technology.  VPI  is  intended  to  harness  modern

vehicles' advanced computational capabilities and rich

sensor resources. It aims to integrate vehicles' compu-

tational, storage, power management, and sensing ca-

pabilities,  providing a unified programming interface.

This interface supports the development of  advanced

applications  in  connected  vehicles,  such  as  au-

tonomous driving,  Vehicle-to-Everything (V2X) com-

munications, and advanced infotainment systems.

To optimally design VPIs, it is imperative to com-

prehend the data analysis architecture of future Con-

nected  and  Autonomous  Vehicles  (CAVs)[17],  along

with the VPI design considerations predicated on this

framework.  OpenVDAP[5] provides  a  roadmap  for  it,

which  is  an  edge  computing  based  platform.  It  inte-

grates onboard heterogeneous computing units, a spe-

cialized  operating  system  for  vehicles,  and  an  edge-

aware  application  library.  This  platform  supports  a

dual-tier architecture that enables dynamic service as-

sessment  and  optimal  offloading  decisions  for  timely

processing.  Most  importantly,  unlike  the  proprietary

platforms, the OpenVDAP design offers an open and

free  edge-aware  library  that  contains  how  to  access

and  deploy  edge  computing  based  vehicle  applica-

tions and various common used AI models, which will

enable the researchers and developers in the commu-

nity to deploy, test, and validate their applications in

the real environment.

In  the  increasingly  complex  automotive  industry,

VPI adheres  to  the  key design principles  for  optimal

functionality:

● Layered:  assigns  responsibilities  across  multiple

layers, ranging from hardware abstraction to the user

interface;

● Decoupled:  minimizes  dependencies  between la-

yers to enhance flexibility and maintainability;

● Standardized: ensures compatibility and integra-

tion with uniform interfaces and protocols;

● Open: promotes extensive integration and inno-

vation  by  supporting  an  open  design  for  third-party

contributions. 

3.1    Overview of Vehicle Programming

Interface

The VPIs of  connected vehicles  in  the era of  VC

can be conceptualized into five  key categories:  Hard-

ware, Data, Computation, Service,  and Management,

which is shown in Fig.2. This layered approach signi-

fies  a  progressive  transition  from  the  fundamental

hardware to user-facing services, ensuring the scalabil-

ity and flexibility of the system.

● Hardware.  Hardware VPIs form the foundation

of the connected vehicle system. They serve to shield
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the  hardware  differences  among  autonomous  vehicles

from  different  manufacturers,  providing  a  unified  in-

terface  for  direct  access  to  sensors,  communication

systems,  controllers,  actuators,  energy  management,

and  intelligent  cockpit  hardware.  This  facilitates  the

rapid development and integration of advanced appli-

cations.

● Data.  Data  VPIs  focus  on  acquiring  and  pro-

cessing  real-time  and  historical  sensor  data,  which  is

crucial for the vehicle's dynamic adaptation and intel-

ligent  decision-making.  They  manage  data  from  the

vehicle itself, surrounding devices, other vehicles, road

infrastructure, cloud, and driver data, ensuring a uni-

fied approach to data management.

● Computation. Computation  VPIs  are  responsi-

ble  for  data  processing  and  decision  support.  They

support  the  computational  capabilities  of  core  au-

tonomous  driving  modules  like  obstacle  detection,

end-to-end autonomous driving, and automatic detec-

tion. Computation VPIs also prioritize the coordinat-

ed allocation of computational resources from the ve-

hicle,  surrounding  devices,  road  infrastructure,  and

cloud.

● Service. Service VPIs represent the functionally

integrated  module  of  VC  for  application  developers,

simplifying the invocation of high-level functionalities

such as autonomous driving. Key services include Ad-

vanced  Driver  Assistance  Systems  (ADAS),  au-

tonomous driving, emergency response, and entertain-

ment services.

● Management. Management VPIs act  as  a com-

prehensive control center for autonomous vehicles, in-

tegrating  device  and  service  connections,  access  con-

trol,  system  monitoring,  and  OTA  (Over-the-Air

technology)  upgrade  support.  This  ensures  seamless,

secure,  and  efficient  management  of  the  vehicle's

overall performance and resources.

Through the collaborative efforts of these five cat-

egories  of  VPIs  and  the  seamless  flow  of  data,  the

connected  vehicle  system  achieves  efficient  data  pro-

cessing, precise control decisions, and rich user inter-

action  experiences,  revolutionizing  autonomous  driv-

ing and intelligent transportation in the VC era. 

3.2    Hardware VPIs

Due  to  the  hardware  variations  among  different

vehicles, designing Hardware VPIs in VC is necessary

to  shield  the  underlying  differences,  supporting  the

development  of  advanced  software.  Centered  around

VC  needs,  the  design  of  the  Hardware  VPIs  should

include  the  direct  access  and  control  of  the  vehicle's

sensors,  communication  systems,  controllers,  various

electronic  control  units  (ECUs),  and  onboard  enter-

tainment devices. The specific Hardware VPIs are de-

tailed in Appendix Table A1, which outlines the func-

tionalities and interface designs of the VPI. Below, we

provide a summarized explanation of these VPIs.

listSensors configureSensor calibrateSen
sor

● Sensors. Sensors  are  crucial  for  gathering  data

from  the  vehicle’s  environment.  VPIs  such  as

, ,  and -

 enable  the  enumeration,  configuration,  and  cali-

bration  of  various  sensors.  These  functions  are  vital

for  ensuring  the  accuracy  and  reliability  of  the  data

collected  by  sensors,  which  include  cameras,  radars,

and  LiDARs,  essential  for  functions  like  navigation,

obstacle detection, and driver assistance.

controlActuator configureActuator

● Actuators. Actuators play a key role in convert-

ing  electronic  signals  into  physical  actions.  VPIs  like

 and  manage

the  operation  and  configuration  of  actuators,  which

are  responsible  for  actions  such  as  steering,  braking,

and  throttle  control.  These  VPIs  ensure  precise  and

responsive actuation based on sensor inputs and con-

trol commands.

● ECUs (Electronic Control Units). ECUs are the
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Fig.2.  Structure of VPIs. VPIs are composed of five main categories: Hardware, Data, Computation, Service, and Management.

28 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1



listECUs controlECU
configureECU

controlLighting

brains  behind  the  vehicle's  electronic  systems.  With

VPIs  such  as , ,  and

,  the  vehicle  can  monitor  and  manage

various  ECUs,  including  those  for  engine  control,

transmission,  and  safety  systems.  Additionally,  spe-

cialized  VPIs  like  manage  specific

functions like vehicle lighting, illustrating the versatil-

ity of ECU management.

listCommDevices configureCommDevice togg
leV2X

● Communication. This category focuses on man-

aging the vehicle’s communication systems. VPIs like

, ,  and -

 are  essential  for  controlling  various  communi-

cation  devices,  including  cellular,  Wi-Fi,  and  V2X

communication  systems.  These  functions  enable  the

vehicle  to  stay  connected  and  communicate  with  ex-

ternal  networks  and  devices,  facilitating  features  like

telematics and connected services.

controlCharging controlPowerOutput

● Energy. Managing the vehicle’s energy systems,

especially in electric vehicles, is critical. VPIs such as

 and  manage

the  battery  charging  process  and  power  distribution

to external systems. These functions are essential  for

optimizing battery life, ensuring energy efficiency, and

even supporting vehicle-to-grid (V2G) capabilities.

configureDisplay configureAudio

● Infotainment. The  infotainment  system  en-

hances  the  in-vehicle  experience.  VPIs  like

 and  manage  the

settings  of  the  vehicle's  display  and  audio  systems,

ensuring  an  engaging  and  customizable  entertain-

ment experience for passengers. These functions cater

to user preferences in media consumption, navigation,

and connectivity.

These Hardware VPIs are unique and essential in

the context of VC due to their focus on direct hard-

ware control and management. They differ from exist-

ing interfaces by providing specialized control and ac-

cess to vehicle hardware components, allowing for ad-

vanced  software  development  tailored  to  the  specific

needs  of  autonomous  vehicles.  The  benefits  of  these

interfaces  include  enhanced  flexibility,  customization,

and optimization of  vehicle  functionalities,  which are

crucial  for  the  advancement  of  VC  and  the  realiza-

tion of advanced autonomous driving systems. 

3.3    Data VPIs

In  the  vehicle  system  architecture,  Data  VPIs

hold a critical position. They are principally responsi-

ble  for  gathering,  managing,  and  preprocessing  data

from both the vehicle itself and external sources. This

ensures  efficient  access  and utilization  of  data  across

various  system components.  Data  VPIs  facilitate  dy-

namic  environmental  adaptation  and  informed  deci-

sion-making  by  offering  unified  management  of  data

from the vehicle,  surrounding devices,  other  vehicles,

roadways, cloud sources, and the driver. The detailed

design of Data VPIs is illustrated in Appendix Table

A2. Data VPIs are categorized into following key ar-

eas based on their responsibilities.

getSensorData
getHistSensorData

● Sensor  Data. Centered  around  acquiring  and

processing  real-time  and  historical  sensor  data,  these

VPIs  are  crucial  for  dynamic  environmental  adapta-

tion  and  informed  decision-making.  For  instance,

 captures  immediate  environmental

data,  while  allows  for  retrospec-

tive analysis of sensor readings. This category is vital

for enhancing the vehicle's awareness and responsive-

ness to its surroundings, supporting functions like ob-

stacle detection and navigation.

getDeviceData

storeDeviceData

● Device  Data. Addressing  the  increasing  inter-

connectivity in vehicular ecosystems, these VPIs facil-

itate  seamless  data  communication  with  external  de-

vices.  Key  functionalities  include  for

ingesting data from devices such as smartphones and

 for  preserving  such  information.

This  category  underscores  the  vehicle’s  role  in  the

broader  IoT  landscape,  enhancing  user  convenience

and  expanding  the  vehicle's  operational  capabilities

beyond traditional boundaries.

getOperationalLogs
● Logs. Focused  on  collecting  and  storing  opera-

tional logs, these VPIs, such as ,

offer deep insights into the vehicle’s performance and

usage  patterns.  They  are  instrumental  in  predictive

maintenance,  troubleshooting,  and  long-term  perfor-

mance  optimization,  making  them  integral  for  main-

taining vehicle health and efficiency.

getUserData

● User  Data. Tailoring  the  vehicle  experience  to

individual  preferences,  VPIs  in  this  category,  like

,  cater  to  the  personalization  aspect  of

modern  vehicles.  They  handle  the  storage  and  re-

trieval of user-specific settings and preferences, ensur-

ing  each  journey  is  aligned  with  the  user's  comfort

and convenience.

getMediaContent
● Infotainment  Data. Enhancing  the  in-cabin  ex-

perience,  VPIs such as  manage di-

verse  forms  of  entertainment  content.  They  play  a

pivotal role in delivering a versatile and enjoyable in-

vehicle  infotainment  experience,  from  streaming  me-

dia to interactive navigation interfaces.

syncDataFromCloud
● Cloud & 3rd Party Data. These VPIs, exempli-

fied  by ,  represent  the  vehicle's

capability  to  integrate  with  cloud-based  services  and
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third-party data sources.  They ensure the vehicle  re-

mains  at  the  forefront  of  technological  integration,

leveraging  external  computational  power  and  expan-

sive datasets for enhanced functionalities.

getV2XData
● V2X  Data. Encompassing  VPIs  such  as

, this category is essential for enabling in-

teractive  and  cooperative  functionalities  with  other

vehicles,  pedestrians,  and  road  infrastructure.  They

foster a connected and cooperative road environment,

enhancing  safety,  traffic  management,  and  overall

driving experience.

These  Data  VPIs  are  integral  in  the  context  of

VC as they differ  from existing interfaces  by provid-

ing  specialized  data  handling  capabilities  tailored  to

the  unique  requirements  of  autonomous  vehicles  and

connected  transportation  systems.  Their  benefits  en-

compass  efficient  data  storage,  data  retrieval,  and

sharing, which are essential for enhancing the perfor-

mance  and  functionality  of  VC  systems.  By  provid-

ing these specialized interfaces, the architecture is op-

timized  for  VC,  ensuring  that  data  from  various

sources is effectively collected, processed, and shared,

thus contributing to the advancement of autonomous

and connected vehicles. 

3.4    Computation VPIs

In the vehicular system, Computation VPIs act as

the “brain”,  orchestrating  advanced  data  processing

and  decision-making  support.  They  enable  essential

autonomous functions, such as route planning and ob-

stacle detection, and manage the allocation of compu-

tational  resources  across  the  vehicle,  surrounding de-

vices,  and  cloud  services.  These  VPIs  are  crucial  for

integrating  AI  support  into  the  vehicle's  operational

framework, enhancing its autonomous capabilities and

environmental interaction. As shown in Appendix Ta-

ble A3,  the  followings  are  the  main  Computation

VPIs components.

cleanData
formatData

● Data  Preprocessing. This  category  lays  the

groundwork for all subsequent data-driven operations

within  the  vehicle  system.  VPIs  like  and

 are  vital  in  refining  raw  data,  removing

inaccuracies,  and  transforming  them  into  formats

suitable  for  advanced  analysis.  These  functions  en-

sure data integrity and consistency, which are critical

for  accurate  sensor  data  interpretation  and  reliable

vehicle operations.

● Autonomous Driving Core. Central to the vehi-

cle's  self-driving  capabilities,  this  category  involves

complex  data  fusion  and  processing.  VPIs  such  as

earlyFusion intermFusion lateFusion

getFusedBEVResult
get360View

, ,  and  deal

with integrating various data streams, including cam-

era, Radar, and LiDAR inputs at different stages for

nuanced  perception[18].  VPIs  provide  enhanced  situa-

tional  awareness  like [19] and

,  which  generate  comprehensive  visual

representations  of  the  vehicle's  surroundings,  crucial

for  safe  autonomous  navigation  and  obstacle  avoid-

ance.

processAIInference runAIModel

● AI  Model  Support. Reflecting  the  vehicle's  ad-

vanced  intelligence,  this  category  encompasses  VPIs

that  facilitate  sophisticated AI tasks.  Functions  such

as  and  showcase

the  vehicle's  prowess  in  handling  complex  AI  algo-

rithms,  ranging  from  real-time  image  processing  to

predictive analytics. These VPIs empower the vehicle

with capabilities like object recognition, behavior pre-

diction,  and  even  personalized  user  interaction,  en-

hancing the overall autonomy and user experience.

reqCloudCompute reqDeviceCompute

● V2X Analytics Support. Emphasizing collabora-

tive  computation,  this  category  includes  VPIs  like

 and ,  which  en-

able  the  vehicle  to  extend  its  computing  capabilities

beyond  its  physical  confines.  By  utilizing  external

computational  resources such as cloud services,  near-

by  devices,  or  other  vehicles,  these  VPIs  allow  for

more  extensive  and  complex  data  processing  tasks.

This  collaborative  approach  enhances  the  vehicle's

ability to make more informed decisions, adapt to dy-

namic  environments,  and  offer  enriched  services  like

traffic management and environmental monitoring.

allocateRe
sources

● Resource  Allocation. This  category  focuses  on

the  efficient  management  of  the  vehicle's  onboard

computational  resources.  VPIs  such  as -

 dynamically balance CPU, GPU, and memo-

ry usage, optimizing the performance for varying com-

putational loads. This ensures that the vehicle's com-

puting  system  operates  efficiently,  conserving  energy

while maintaining high performance, which is particu-

larly critical  in resource-intensive scenarios  like  high-

definition mapping and real-time sensor data process-

ing.

Computation  VPIs  are  unique  in  the  context  of

VC as they differ  from existing interfaces  by provid-

ing specialized computational  support  tailored to  the

complex demands of autonomous driving and connect-

ed  vehicles.  Their  benefits  encompass  advanced  data

processing,  enhanced  decision-making,  and  efficient

resource management, all of which are crucial for real-

izing the potential of VC and enabling advanced self-

driving  capabilities.  By  offering  these  specialized  in-
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terfaces,  the  architecture  is  optimized  to  handle  the

specific  computational  requirements  of  autonomous

vehicles, contributing to their safe and efficient opera-

tion. 

3.5    Service VPIs

Various  components  and  services  are  required  in

vehicle system applications to ensure effective interac-

tion  between  the  system  and  the  end  users.  Service

VPIs encompass the user interface design and a range

of  advanced  applications  and  services.  By  offering

these  components  and  services,  Service  ensures  that

vehicle systems can meet the diverse needs of modern

driving  and  provide  users  with  a  highly  personalized

driving experience.  Application developers  can utilize

these services for secondary development without de-

signing  underlying  implementations  from  scratch,

thereby  enhancing  development  efficiency.  As  shown

in Appendix Table A4,  Service  VPIs  should  include

the following aspects.

startADAS stopADAS
configADAS

● Advanced  Driver  Assistance  Systems (ADAS)

Service.  This  category  is  pivotal  in  enhancing  road

safety  and  driver  assistance  capabilities.  The  ADAS

Service  VPIs,  including , ,  and

,  are  designed  to  activate,  manage,  and

customize various driver-assistance functionalities like

automatic  braking,  lane keeping,  and adaptive  cruise

control.  Each  VPI  in  this  category  is  tailored  to  re-

spond to real-time driving conditions, ensuring height-

ened safety and situational awareness.

startAutoMode configAutoMode

startAutoModewithV2X

● Auto Service. Central  to  the  autonomous  driv-

ing  experience,  this  category  encompasses  VPIs  cru-

cial  for  managing  the  vehicle’s  self-driving  features.

VPIs  such  as  and 

facilitate the seamless transition between the manual

and autonomous driving modes. With the integration

of  V2X  communication  in ,

these services empower vehicles to interact intelligent-

ly with their surroundings, enhancing navigation, traf-

fic management, and overall driving efficiency.

initEmergencyCall sendEmergencyAlert

● Emergency  Response. This  category  addresses

urgent  safety  and  emergency  scenarios,  underscoring

the vehicle's responsiveness in critical situations. VPIs

like  and 

are designed to ensure rapid and effective communica-

tion  during  emergencies,  automatically  contacting

emergency  services  and  alerting  predefined  contacts,

thereby offering an essential lifeline in times of need.

● Infotainment Service. Tailored to enrich the in-

vehicle  entertainment  experience,  this  category  in-

playMedia pauseMedia
cludes VPIs that manage various forms of media con-

tent.  Functions  such  as  and 

reflect the vehicle's role as an entertainment hub, pro-

viding passengers with access to a wide range of mul-

timedia content and interactive infotainment options,

thereby transforming the vehicle into a space of relax-

ation and enjoyment.

Service VPIs play a crucial role in VC by offering

interfaces  and  services  that  cater  to  the  unique  re-

quirements of  modern driving.  These interfaces differ

from existing ones by providing advanced driver assis-

tance, autonomous driving capabilities,  and personal-

ized  services,  which  are  essential  for  enhancing  the

driving experience and safety. By incorporating these

specialized interfaces, the vehicle system can offer fea-

tures  that  go  beyond  traditional  vehicle  functionali-

ties,  improving  the  overall  driving  experience  and

aligning with the expectations of modern users. 

3.6    Management VPIs

Management  VPIs  play  a  crucial  role  in  oversee-

ing and enhancing the overall functionality of the con-

nected vehicle system. As detailed in Appendix Table

A5, management VPIs are responsible for integrating

device and service connections, access control, system

monitoring,  and  OTA  upgrades,  thereby  ensuring

seamless, secure, and efficient management of the ve-

hicle's  overall  performance and resources.  By provid-

ing  precise  control  and  monitoring  capabilities,  these

VPIs  ensure  the  reliability  and  safety  of  the  vehicle

system in all  aspects,  offering users a highly depend-

able and satisfying driving experience.

pairWithDevice connectCloud

● Device & Service  Connection. This  category  is

fundamental  to  the  vehicle's  ability  to  integrate  and

interact  with  external  devices  and  services.  Critical

VPIs such as  and  en-

able  seamless  conline-height-add:0.4ptnectivity  and

authentication with a variety of devices and cloud ser-

vices.  These functions are essential  for maintaining a

connected ecosystem, allowing the vehicle to leverage

external  computing  power,  access  a  broader  range  of

services, and enhance the in-vehicle experience.

authenticate
User setAccessControl

● Access Control. Centered around the security of

the  vehicle's  systems,  this  category  incorporates  so-

phisticated  VPIs  for  robust  user  authentication  and

data  protection.  Key  functions  like -

 and  ensure  that  the  access

to the vehicle’s systems and data is  securely regulat-

ed.  These  VPIs  are  critical  in  safeguarding  against
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unauthorized  access  and  potential  security  breaches,

thereby  maintaining  the  integrity  and  confidentiality

of sensitive information.

monitorHWStatus monitorCompResourceUse

● System Status Monitoring. Focused on continu-

ous  monitoring  and  maintenance  of  the  vehicle's

health, this category includes VPIs that provide real-

time insights into the status of various hardware com-

ponents  and  resource  usage.  VPIs  like

 and  are

instrumental  in  preemptive  maintenance  and  re-

source  optimization,  ensuring  the  vehicle  operates  at

peak efficiency and reliability.

startPersonalMode configPersonalMode

● Personalized Mode. Reflecting the increasing de-

mand  for  personalized  experiences  in  vehicles,  this

category includes VPIs that enable users to tailor the

vehicle's settings to their preferences. Functions such

as  and  al-

low for customization of user profiles and modes, en-

hancing comfort  and convenience  for  each user.  This

personalization extends from driving preferences to in-

fotainment  settings,  offering  a  bespoke  user  experi-

ence.

scheduleOTAUpdate
verifyOTAUpdate

● OTA Upgrade. Ensuring  the  vehicle's  software

remains up-to-date and secure, this category compris-

es VPIs dedicated to the management of over-the-air

software  updates.  VPIs  such  as 

and  streamline the update process,

from scheduling  and  downloading  to  installation  and

verification.  This continuous updating process is  cru-

cial  for  enhancing  features,  fixing  bugs,  and  improv-

ing the vehicle's overall security.

Management VPIs are essential components of VC

as  they  differ  from  existing  interfaces  by  providing

centralized  control  over  access,  monitoring  system

status, and managing OTA updates. They ensure that

every aspect of vehicle management, from device con-

nectivity  to  system monitoring  and  user  personaliza-

tion, is executed with precision and user-centric focus,

thereby  playing  a  pivotal  role  in  the  evolution  of

smart and connected vehicles. 

4    VPI Implementation

This  section  introduces  the  experimental  scenario

design  for  deploying  VPI  to  conduct  subsequent  ex-

perimental evaluations. It consists of two main parts:

the  hardware  deployment,  which  involves  the  indoor

autonomous  driving  vehicle  Zebra,  and  the  software

deployment, which includes the implementation of the

VPI-driven system OpenVDAP. 

4.1    Hardware: Zebra

×

±

In  this  study,  we  used  the  Zebra  hardware  plat-

form  which  is  implemented  to  emulate  real  au-

tonomous  vehicles  to  evaluate  the  performance  of

VPIs (as shown in Fig.3). A general autonomous driv-

ing  system  includes  the  computing  unit,  perception

sensors,  the  drive-by-wire  (DBW)  system,  and  the

battery  management  system  (BMS).  On  Zebra,  the

computing  unit  is  the  NVIDIA  Jetson  AGX  Xavier

Developer  Kit.  Jetson  AGX  Xavier⑳ is  a  compact,

high-performance  computing  device  designed  for  au-

tonomous  machines,  offering  up  to  32  TOPS  of  AI

performance  with  its  512-core  NVIDIA  Volta  GPU,

64  Tensor  cores,  and  an  8-core  ARM  v8.2  64-bit

CPU. Besides, we deployed two sensors on Zebra. The

first  is  the  Intel  RealSense  Depth  Camera  D435i,

which features an RGB sensor, providing a maximum

RGB resolution of 1 920  1 080. The second is Velo-

dyne  VLP-16,  a  compact  and  high-value  3D  LiDAR

sensor  offering  a  100  m  range  and  16-channel  high-

definition environmental mapping with an accuracy of

3  cm.  The  chassis  of  Zebra  is  the  hunter  robot  of

AgileX, which integrates an Ackermann control based

DBW and a BMS for reading energy-related informa-

tion. 

 

Camera  LiDAR  Jetson AGX Xavier   

Fig.3.   Zebra:  general  usage  indoor  robot  vehicle.  The  sensor
camera is realsense D435i and LiDAR is Velodyne VLP-16. The
computation unit is NVIDIA Jetson AGX Xavier.
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4.2    Software: OpenVDAP

In  this  subsection,  we  developed  a  VPI  verifica-

tion  software  prototype  platform㉑,  OpenVDAP[5],

which  is  designed  to  optimize  vehicle  applications

through  a  multi-layered  architecture  approach. Fig.4

details the architecture and the components involved.

The framework of the VPI supporting system, de-

signed  for  connected  autonomous  vehicles  (CAVs),

centers  around  the  OpenVDAP on  CAVs,  efficiently

structured  into  distinct  containers  for  specific  func-

tions: a server container as the central hub, an ROS2

container for managing sensor data, an ROS1 contain-

er  for  vehicle  control,  and  a  database  container  for

storing  essential  configurations.  Key  components  in-

clude VPIs for vehicle function access, hardware con-

trol  for  hardware  interaction,  data  management  for

integrity  and  storage,  algorithm  processing  for  real-

time  data  computation,  and  application  deployment

for seamless integration.

In  terms  of  implementation,  OpenVDAP  utilizes

C++  and  Python  for  effective  integration  with  the

ROS1 and ROS2 systems, employing Docker contain-

ers for modularity. Data flows through the system via

sensor nodes in ROS2 for processing, algorithm nodes

for  decision-making,  and  control  nodes  in  ROS1  for

executing vehicle commands. The system's configura-

tion  and  management  are  streamlined  through  the

AD  manager,  which  provides  a  comprehensive  inter-

face for system updates and maintenance.

getCameraData getLiDARdata getHistCameraData
getHistLiDARdata

controlVehicle runAIModel
startADAS stopADAS

checkAccess validate
Token

OpenVDAP  is  a  prototype  platform  and  still

needs  to  complete  the  development  of  all  VPIs.  The

first  version  includes  libraries  for  data-related  VPIs

( , , ,

and ),  vehicle  computation related

VPIs (  and ), services-re-

lated  VPIs  (  and ),  and  access

control  related  VPIs  (  and -

).  We  have  developed  applications  based  on

VPI,  such  as  lane-keeping,  remote  control,  and  re-

mote  lane  inspection.  Subsequently,  we  will  conduct

performance  evaluations  for  some  of  these  developed

applications. 

5    Evaluation

This  evaluation  section  systematically  examines

the  capabilities  and  performance  of  the  vehicle  pro-

gramming  interfaces  (VPIs)  in  real-world  au-

tonomous driving applications. 

 

OpenVDAP  

Running on CAVs  

Control Nodes  Algorithm Nodes  

VPIs  Service  Computation Data 

Server Container  

ROS1 Container  

Sensor Nodes  

ROS2 Container  

Database Container 
 

Sensor
Configuration 

Model
Configuration 

Control
Configuration 

Provided by
 AD Manager  

Sensor  
Configuration File 

Model
Configuration File 

Control  
Configuration File 

Hardware  

Vehicle Applications  

Management  

Fig.4.  Framework of VPI supporting system.
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㉑https://github.com/thecarlab/vpi, Jan. 2024.
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5.1    Simpler Coding: VPI vs AUTOSAR

Lane  keeping,  a  critical  feature  in  ADAS for  au-

tonomous  driving,  particularly  in  high-speed  scenar-

ios,  has  been  implemented  using  VPIs.  The listing 1

code segment demonstrates the VPI approach.
  

Listing  1.    Lane Keeping with VPI

 1 import vpi

 2

 3 modelID = “E2E_Lane_Keeping”
 4

 5 # Get front camera data

 6 front_camera_data = vpi.getCameraData(“front”)
 7

 8 # Run AI model for lane keeping

 9 ai_model_output = vpi.runAIModel(modelID,

　　front_camera_data, params = {})
10

11 # Control vehicle using the output twist

12 vehicle_control_status =

　　vpi.controlVehicle(ai_model_output[“twist”])
13

14 return vehicle_control_status

 

Comparatively,  we  provide  a  foundational  frame-

work  demonstrating  how  AUTOSAR  API  concepts

can be utilized in C++. It is  important to note that

this  is  a  conceptual  example. Listing 2 code  segment

is a rudimentary example illustrating the definition of

the lane keeping service interface and a basic  service

implementation.

When  comparing  VPI  with  AUTOSAR  API  for

implementing  lane-keeping  functionality,  using  VPI,

the  task  can  be  accomplished  with  only  14  lines  of

code, while AUTOSAR requires at least 35 lines. This

difference  is  not  merely  due  to  language  syntax  but

stems from the need in AUTOSAR to implement the

service interface for functionality. In contrast, VPI fo-

cuses on interface functionalities and the basic work-

flow logic without delving into the underlying imple-

mentation.

The primary advantage of VPI lies in its simplici-

ty and ease of use. Written in Python, VPI offers an

intuitive and user-friendly interface, facilitating rapid

development  and  prototyping.  This  approach  suits

scenarios that demand quick iterations and simplified

system  integration.  In  contrast,  while  AUTOSAR

API  provides  more  advanced  customization  capabili-

ties and safety features suitable for complex and safe-

ty-critical applications, it comes with a steeper learn-

ing  curve  and  greater  complexity.  Therefore,  for

projects  prioritizing  development  efficiency  and  a

streamlined programming experience, VPI stands out

as a more efficient and accessible option. 

5.2    Case Study: Remote Control and Latency

Evaluation

This  case  will  demonstrate  the  remote  transmis-

sion and remote control. The L4-level autonomous ve-

hicles  currently  in  trial  operation  cannot  still  cope

 

Listing  2.    Lane Keeping with AutoSAR

 1 #include <ara/com/com.h>
 2 #include <ara/core/future.h>
 3 #include <iostream>
 4

 5 // Service interface for lane keeping

 6 namespace ara::com::sample {
 7 　class LaneKeepingServiceInterface {
 8 　public:

 9 　　virtual ~LaneKeepingServiceInterface() =

　　　default;

10

11 　　// Method to activate lane keeping

12 　　virtual ara::core::Future<void> KeepLane()

　　　= 0;

13 　};
14 }
16 // Service implementation

17 class LaneKeepingServiceImpl : public

　ara::com::sample::LaneKeepingServiceInterface

　{
18 public:

19 　// Lane keeping logic implementation

20 　ara::core::Future <void> KeepLane() override {
21 　　std::cout << “Keeping the lane...” <<
　　　std::endl;

22 　　// Placeholder for actual lane keeping

　　　logic

23 　　return

　　　ara::core::Promise<void>().get_future();

24 　}
25 };
26

27 int main() {
28 　// Service instance creation

29 　LaneKeepingServiceImpl laneKeepingService;

30

31 　// Activating lane keeping service

32 　auto future = laneKeepingService.KeepLane();

33 　future.wait(); // Waiting for service execution

34 　return 0;

35 }
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with all  scenarios,  and manual  takeover is  necessary.

It  is  an economical  and effective  option to  centralize

the driver to drive the vehicles that need to be taken

over  remotely.  We  use  the  OpenVDAP  platform  to

implement the remote control demo. The remote con-

trol center application is deployed in Intel Fog Refer-

ence㉒, which acts as a center station.

getCameraData(vehicleID, ′front′)

web_stream_node
front_camera_node

front_camera_msg

controlVehicle
(vehicleID, ′twist′)

control_service_node
steer_control_msg

Fig.5 outlines  the  workflow within  a  remote  con-

trol  application. Initially,  the remote control applica-

tion in the center station submits a query to the ac-

cess manager to obtain visual data from the vehicle's

front  camera  (  )

(step  1).  Upon  gaining  authorization  (step  2),  the

 is  launched,  which,  in  turn,  acti-

vates the  responsible for stream-

ing the  back to the remote appli-

cation, as depicted in step 5. Concurrently, the appli-

cation  requests  control  access  (

) shown in step 6. Once allowed

(step 7), the  comes online to

manage the , channeling the con-

control_nodetrol  signals  to  the .  This  node  then

communicates  the  commands  through  the  CAN  bus

to  execute  the  vehicle's  control  actions,  completing

the process at step 8.

×

Communication latency is a pivotal metric for the

operation  of  indoor  remote-controlled  vehicles,  main-

ly when it involves transmitting high-definition video

data.  The  experiment  demonstrates  that  when  using

Wi-Fi  communication,  our  system  can  maintain  an

end-to-end  latency  with  a  median  value  of  1.54  sec-

onds  for  commands  to  retrieve  front  camera  data.

This  latency  persists  across  the  transmission  of  a

high-definition video stream at a resolution of 1 920

1 080 and  a  frame rate  of  30  Hz  from the  vehicle  to

the backend.

The  cumulative  distribution  function  (CDF)  de-

picted  in Fig.6 indicates  that  90%  of  the  commands

are executed with a latency of up to 1.77 seconds, es-

tablishing  a  significant  reliability  benchmark  for  the

system.  This  latency  profile  is  considered  acceptable

within the context of indoor environments, where the
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control_node   

control_service_node 

CAN  
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Fig.5.  Workflow of remote control.
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need for real-time control is not so critical as in out-

door  or  high-speed  scenarios[20].  It  enables  a  balance

between  high-quality  video  transmission  and  the  re-

sponsiveness of the control system.

In conclusion, while the system exhibits higher la-

tency than might be desired for real-time applications,

it  remains  within  a  tolerable  range  for  its  intended

use  case.  The  reliable  transmission  of  high-definition

video is achieved, suggesting that the current setup is

suited for applications where a slight delay is permis-

sible. This reliability and performance balance under-

scores  the  system’s  potential  for  indoor  remote-con-

trolled  operations  where  high-resolution  visual  feed-

back is required, and a marginal delay in lab environ-

ment is operationally acceptable[20]. 

6    Discussion

In  this  paper,  our  primary focus  has  been on de-

signing and developing programming interfaces for ve-

hicle computing (VC). We have presented a compre-

hensive  framework  of  vehicle  programming  interfaces

(VPIs)  that  cover  various  aspects  of  connected  vehi-

cle systems, from hardware management to service in-

teractions.  Our  work  has  aimed  to  provide  a  struc-

tured  and  standardized  approach  to  enable  efficient

application development for autonomous vehicles.

It is important to note that while performance op-

timization  is  a  critical  aspect  of  VC,  it  was  not  the

primary  objective  of  this  paper.  Our  emphasis  has

been on defining clear and standardized interfaces to

facilitate seamless communication and interaction be-

tween  different  components  of  the  vehicle  system.

These interfaces aim to address the challenges associ-

ated  with  the  diversity  of  autonomous  vehicles  and

the need for collaborative development.

Performance  improvement  remains  an  important

consideration  in  VC,  and we  acknowledge  that  there

is room for enhancing the performance aspects of the

proposed  interfaces.  This  includes  optimizing  compu-

tational  tasks,  reducing  latency,  and  ensuring  effi-

cient  resource  utilization.  However,  we  view  perfor-

mance  enhancement  as  part  of  future  work,  and  we

believe that the foundation provided by our standard-

ized  programming  interfaces  will  enable  researchers

and developers  to  build  upon it  and further  improve

the performance of autonomous vehicle systems.

After all, this paper has laid the groundwork for a

structured approach to VC through the development

of  programming  interfaces.  While  performance  opti-

mization is a critical aspect of connected vehicle sys-

tems,  our  main contribution lies  in  providing a  clear

and  standardized  framework  for  application  develop-

ment.  We  look  forward  to  future  research  endeavors

aimed  at  enhancing  the  performance  aspects  of  VC

while  building  upon  the  foundations  established  in

this work. 

7    Conclusions

In  response  to  the  urgent  need for  rapid  applica-

tion  development  centered  around  vehicle  computing

(VC),  we  delineated  and  proposed  a  comprehensive

set  of  standardized  vehicle  programming  interfaces

(VPIs) with five main sets: Hardware, Data, Compu-

tation,  Service,  and  Management.  We  developed  an

OpenVDAP  prototype,  in  which  we  experimentally

validated the efficiency of programming in VC appli-

cation  development  using  the  proposed  VPIs.  Addi-

tionally,  through  a  remote  control  example,  we

demonstrated  the  underlying  workflow  in  the  Open-

VDAP platform after invoking VPI and analyzed the

end-to-end  latency  characteristics  of  this  example.

Our  work  represents  an  essential  contribution  to  the

development  of  VC  applications  and  highlights  the

importance  of  interdisciplinary  collaboration.  In  the

future,  we  plan  to  further  enrich  and  refine  the  de-

sign of VPIs according to emerging requirements, ex-

pand the functionalities of OpenVDAP, and optimize

its performance. 
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Appendix
 

Table  A1.    Hardware VPIs Specifications

VPI Type VPI Method Parameter Return Value Functionality

Sensor listSensors(vehicleId) vehicleId: String (default: self) List Enumerates vehicle sensors

configureSensor(vehicleId,
sensorId, config)

vehicleId: String (default: self),

sensorId: String, config: Object

Boolean Configures a sensor

calibrateSensor(vehicleId,
sensorId)

vehicleId: String (default: self),

sensorId: String

Boolean Calibrates a sensor

Actuator controlActuator(vehicleId,
actuatorId, command)

vehicleId: String (default: self),

actuatorId: String, command:

Object

Boolean Controls an actuator

configureActuator(vehicleId,
actuatorId, config)

vehicleId: String (default: self),

actuatorId: String, config: Object

Boolean Configures an actuator

ECU listECUs(vehicleId) vehicleId: String (default: self) List Lists vehicle ECUs

controlECU(vehicleId,
ecuId, command)

vehicleId: String (default: self),

ecuId: String, command: Object

Boolean Sends command to an ECU

configureECU(vehicleId,
ecuId, config)

vehicleId: String (default: self),

ecuId: String, config: Object

Boolean Configures an ECU

controlLighting(vehicleId,
ecuId, lightingSettings)

vehicleId: String (default: self),

ecuId: String, lightingSettings:

Object

Boolean

controlLighting

Controls the lighting ECU

with specified settings.

 is an

example of a VPI for

managing common devices,

similar to VPIs for

controlling air conditioning

and windows

Communication listCommDevices(vehicleId) vehicleId: String (default: self) List Lists communication devices

configureCommDevice(vehicleId,
deviceId, config)

vehicleId: String (default: self),

deviceId: String, config: Object

Boolean Configures a communication

device

toggleV2X(vehicleId, enable) vehicleId: String (default: self),

enable: Boolean

Boolean Toggles V2X communication

Energy controlCharging(vehicleId,
action)

vehicleId: String (default: self),

action: String

Boolean Controls battery charging

process

controlPowerOutput(vehicleId,
action, params)

vehicleId: String (default: self),

action: String, params: Object

Boolean Controls power output to

external systems

Infotainment configureDisplay(vehicleId,
settings)

vehicleId: String (default: self),

settings: Object

Boolean Configures the display

settings

configureAudio(vehicleId,
settings)

vehicleId: String (default: self),

settings: Object

Boolean Configures the audio system

 

Table  A2.    Data VPIs Specifications

VPI Type VPI Method Parameter Return Value Functionality

Sensor Data getSensorData(vehicleId,
sensorType, sensorId, params)

vehicleId: String (default: self),
sensorType: String, sensorId:
String, params: Object

Sensor data Retrieves real-time data from a
specified sensor based on type
and ID

getCameraData(vehicleId,
cameraID, params)

vehicleId: String (default: self),
cameraID: String, params:
Object

Camera data

getLiDARData getRadarData
getGPSData

Retrieves real-time data from a
specified camera, similar to

, ,
and 

storeSensorData(vehicleId,
sensorType, sensorId, data)

vehicleId: String (default: self),
sensorType: String, sensorId:
String, data: Object

Boolean Stores real-time data from a
specified sensor based on type
and ID

storeCameraData(vehicleId,
cameraID, data)

vehicleId: String (default: self),
cameraID: String, data: Object

Boolean

storeLiDARData
storeRadarData
storeGPSData

Stores real-time data from a
specified camera, similar to

,
, and

(to be continued)
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Table A2.    Data VPIs Specifications (Continued)
 

VPI Type VPI Method Parameter Return Value Functionality

getHistSensorData(vehicleId,
sensorType, timeRange, params)

vehicleId: String (default: self),
sensorType: String, timeRange:
TimeRange, params: Object

Sensor data Retrieves historical data from
a specified sensor within a
defined time range

getHistCameraData(vehicleId,
cameraID, timeRange, params)

vehicleId: String (default: self),
cameraID: String, timeRange:
TimeRange, params: Object

Camera data

getHistLiDARData
getHistRadarData
getHistGPSData

Retrieves historical data from
a specified camera, similar to

,
, and

Device Data getDeviceData(vehicleId,
deviceId)

vehicleId: String (default: self),
deviceId: String

Object Receives data from a
connected external device, for
example, a body-worn camera
or a smartphone

storeDeviceData(vehicleId,
deviceId, data)

vehicleId: String (default: self),
deviceId: String, data: Object

Boolean Stores data from specified
nearby devices

shareDataToDevice(vehicleId,
deviceId, data)

vehicleId: String (default: self),
deviceId: String, data: Object

Boolean Sends data to a connected
external device

Logs getOperationalLogs(vehicleId,
params)

vehicleId: String (default: self),
params: Object

Object Retrieves operational logs

storeOperationalLogs
(vehicleId, data)

vehicleId: String (default: self),
data: Object

Boolean Stores vehicle operational data
like speed, fuel consumption

User Data getUserData(vehicleId,
userId, params)

vehicleId: String (default: self),
userId: String, params: Object

User data Accesses user-related
information within the vehicle,
including settings and
preferences

storeUserData(vehicleId,
userId, data)

vehicleId: String (default: self),
userId: String, data: Object

Boolean Stores user-related information
within the vehicle, including
settings and preferences

Infotainment
Data

getMediaContent(vehicleId,
mediaId)

vehicleId: String (default: self),
mediaId: String

Object Retrieves stored media content

storeMediaContent(vehicleId,
mediaData)

vehicleId: String (default: self),
mediaData: Object

String Stores media content like
music and videos

Cloud & 3rd
Party Data

syncDataFromCloud(vehicleId,
sourceId, params)

vehicleId: String (default: self),
sourceId: String, params: Object

Shared data Retrieves data shared from
cloud sources or other vehicles

syncDataWithCloud(vehicleId,
destinationId, data)

vehicleId: String (default: self),
destinationId: String, data:
Object

Boolean Shares data from the vehicle to
a specified destination, such as
cloud service

getHDMap(vehicleId, location,
detailLevel)

vehicleId: String (default: self),
location: Location, detailLevel:
String

MapData Fetches high-definition map
data for a specified location
with desired level of detail

getWeatherData(vehicleId,
location)

vehicleId: String (default: self),
location: Location

WeatherData Provides current weather
information for the vehicle's
location, including forecasts

V2X Data getV2XData(vehicleId) vehicleId: String (default: self) V2XData Receives and processes
incoming V2X data via C-
V2X, DSRC

sendV2XData(vehicleId, type,
content)

vehicleId: String (default: self),
type: String, content: Object

Boolean Sends V2X messages with
specified content for
communication

storeV2XData(vehicleId, data) vehicleId: String (default: self),
data: Object

Boolean Stores road and vehicle
information received through
V2X communications

getNearbyVehicles(vehicleId) vehicleId: String (default: self) VehicleInfo Retrieves information of
nearby vehicles from V2X
messages

getSafetyAlert(vehicleId) vehicleId: String (default: self) SafetyAlert Receives and acts on safety
alerts from surrounding sources

getTrafficSignals(vehicleId) vehicleId: String (default: self) TrafficSignalInfo Obtains traffic signal status
from V2X infrastructure

getEnviroInfo(vehicleId) vehicleId: String (default: self) EnvironmentalInfo Collects environmental data
via V2X sensors

(to be continued)
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Table A2.    Data VPIs Specifications (Continued)
 

VPI Type VPI Method Parameter Return Value Functionality

getParkingInfo(vehicleId) vehicleId: String (default: self) ParkingInfo Retrieves available parking
spot information and
recommendations from V2X
messages

getMapData(vehicleId, area) vehicleId: String (default: self),
area: Area

MapData Obtains detailed map data for
a specified area, including
roads, landmarks, and traffic
conditions from V2X messages

getRoadConditions(vehicleId) vehicleId: String (default: self) RoadConditions Gathers information about
current road conditions, such
as construction, closures, or
hazards from V2X messages

 

Table  A3.    Computation VPIs Specifications

VPI Type VPI Method Parameter Return Value Functionality

Data
Preprocessing

cleanData(dataType, rawData,
params)

dataType: String, rawData:
Object, params: Object

Cleaned data Performs data cleansing
operations on raw data to
remove inaccuracies and
inconsistencies

formatData(inputFormat,
outputFormat, data, params)

inputFormat: String,
outputFormat: String, data:
Object, params: Object

Formatted data Converts data from one format
to another, ensuring data
consistency across systems

Autonomous
Driving Core

earlyFusion(vehicleId,
sensorTypes, params)

vehicleId: String (default: self),
sensorTypes: Array, params:
Object

Early fused data Integrates raw data from
diverse sensors like cameras,
radars, and LiDARs for initial
insights

intermFusion(vehicleId,
sources, params)

vehicleId: String (default: self),
sources: Array, params: Object

Intermediate fused
data

Fuses partially processed data
from sources like navigation
and environmental sensors for
enhanced analysis

lateFusion(vehicleId, data,
params)

vehicleId: String (default: self),
data: Array, params: Object

Late fused data Merges fully processed data
from systems including V2X
and diagnostics for
comprehensive decisions

getFusedBEVResult(vehicleId) vehicleId: String (default: self) Fused bird view
result

Provides a fused overhead view
of the vehicle's surroundings

get360View(vehicleId) vehicleId: String (default: self) Fused 360 view
result

Provides a comprehensive 360-
degree fused view of the
vehicle's surroundings,
integrating data from all
around-view cameras

getFusedLocation(vehicleId) vehicleId: String (default: self) Fused location
result

Retrieves the fused location
data of the vehicle, combining
GPS, IMU, map data, and
sensor data

getDrivableAreas(vehicleId) vehicleId: String (default: self) Drivable areas
result

Identifies drivable areas around
the vehicle by fusing data from
cameras, radars, LIDARs, and
maps

predictPaths(vehicleId,
trafficData, params)

vehicleId: String (default: self),
trafficData: Object, params:
Object

Path predictions
result

Forecasts the driving paths of
surrounding vehicles based on
current traffic data and
specified parameters, enhancing
proactive driving strategies

planRoute(vehicleId,
destination, params)

vehicleId: String (default: self),
destination: Location, params:
Object

Route plan result Generates an optimized route
plan considering traffic, safety,
and efficiency

decideMotion(vehicleId,
situationData, params)

vehicleId: String (default: self),
situationData: Object, params:
Object

Decision result Processes real-time data to
make driving motion decisions
in response to road conditions

(to be continued)
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Table A3.    Computation VPIs Specifications (Continued)
 

VPI Type VPI Method Parameter Return Value Functionality

controlVehicle(vehicleId,
twist)

vehicleId: String (default: self),
twist: Object (containing linear
and angular velocity
components)

Boolean Sends control commands to the
vehicle based on the twist data
for precise movement and
navigation control

AI Model
Support

processAIInference(vehicleId,
taskType, data)

vehicleId: String (default: self),
taskType: String, data: Object

Inference result Performs AI inference tasks,
such as image recognition or
natural language processing

runAIModel(vehicleId, modelID,
inputData, params)

vehicleId: String (default: self),
modelID: String, inputData:
Object, params: Object

AI output Runs a specified AI model on
input data, providing
intelligent analysis

runE2EDriving(vehicleId,
params, environmentData)

vehicleId: String (default: self),
params: Object,
environmentData: Object

Boolean Executes comprehensive end-to-
end driving tasks, integrating
perception, planning, and
control based on real-time
environmental data

runDiagnostics(vehicleId) vehicleId: String (default: self) Diagnostic report Runs a full diagnostic check of
the vehicle

processVoiceCommand
(vehicleId, audioData)

vehicleId: String (default: self),
audioData: Data

Boolean Processes voice commands

V2X
Analytics
Support

reqCloudCompute(vehicleId,
task, data)

vehicleId: String (default: self),
task: String, data: Object

Task result Sends data to the cloud for
processing or analysis and
retrieves the results

reqDeviceCompute(vehicleId,
deviceId, task, data)

vehicleId: String (default: self),
deviceId: String, task: String,
data: Object

Compute result Utilizes computation resources
of a nearby device like a
smartphone for specified tasks

reqVehicleCompute(vehicleId,
targetVehicleID, task, data)

vehicleId: String (default: self),
targetVehicleID: String, task:
String, data: Object

Compute result Accesses computation resources
of a nearby vehicle for data
processing or analysis

reqInfraCompute(vehicleId,
infraId, task, data)

vehicleId: String (default: self),
infraId: String, task: String,
data: Object

Compute result Leverages computational power
of road infrastructure for
complex data tasks

Resource
Allocation

allocateResources(vehicleId,
resourceType, params)

vehicleId: String (default: self),
resourceType: String, params:
Object

Allocation status Dynamically allocates
computational resources based
on current needs and priorities

 

Table  A4.    Service VPIs Specifications

VPI Type VPI Method Parameter Return Value Functionality

ADAS Service startADAS(vehicleId, functId,
params)

vehicleId: String (default:
self), functId: String,
params: Object

Boolean Activates a specific ADAS function
such as automatic braking or lane
keeping

stopADAS(vehicleId, functId) vehicleId: String (default:
self), functId: String

Boolean Deactivates a specific ADAS function

configADAS(vehicleId, functId,
settings)

vehicleId: String (default:
self), functId: String,
settings: Object

Boolean Configures settings for an ADAS
function, allowing customization based
on user preferences

startACC(vehicleId, params) vehicleId: String (default:
self), params: Object

Boolean

startLKA
startNVA

Activates a specific ADAS function
Adaptive Cruise Control (ACC),
similar to  VPI for Lane
Keeping Assist (LKA),  VPI
for Night Vision Assist (NVA)

stopACC(vehicleId) vehicleId: String (default:
self)

Boolean
stopLKA stopNVA

Deactivates a specific ADAS function
ACC, similar to , 

configACC(vehicleId, settings) vehicleId: String (default:
self), settings: Object

Boolean

configLKA configNVA

Configures settings for an ADAS
function ACC, allowing customization
based on user preferences, similar to

, 

(to be continued)
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Table A4.    Service VPIs Specifications (Continued)
 

VPI Type VPI Method Parameter Return Value Functionality

Auto
Service

startAutoMode(vehicleId,
settings)

vehicleId: String (default:
self), destinationParams:
Object

Boolean Activates the vehicle's autonomous
driving mode with minimal driver
intervention

stopAutoMode(vehicleId) vehicleId: String (default:
self)

Boolean Deactivates the autonomous driving
mode, returning control to the driver

startAutoModewithV2X
(vehicleId, destinationParams)

vehicleId: String (default:
self), params: Object

Boolean Activates the vehicle's autonomous
driving mode with V2X capabilities

stopAutoModewithV2X
(vehicleId)

vehicleId: String (default:
self)

Boolean Deactivates the autonomous driving
mode, returning control to the driver

configAutoMode(vehicleId,
settings)

vehicleId: String (default:
self), settings: Object

Boolean Configures settings for the autonomous
driving mode

Emergency
Response

initEmergencyCall(vehicleId,
emergencyType)

vehicleId: String (default:
self), emergencyType:
String

Boolean Automatically contacts emergency
services with vehicle details and
location

sendEmergencyAlert(vehicleId,
alertData)

vehicleId: String (default:
self), alertData: Object

Boolean Sends an emergency alert to predefined
contacts or systems

Infotainment
Service

playMedia(vehicleId,
mediaId)

vehicleId: String (default:
self), mediaId: String

Boolean Plays a media file

pauseMedia(vehicleId) vehicleId: String (default:
self)

Boolean Pauses the currently playing media

 

Table  A5.    Management VPIs Specifications

VPI Type VPI Method Parameter Return Value Functionality

Device &
Service
Connection

pairWithDevice(vehicleId,
deviceId, authCredentials)

vehicleId: String (default: self),
deviceId: String, authCredentials:
Object

Boolean Pairs the vehicle with an
external device with
necessary authentication
credentials

unpairDevice(vehicleId, deviceId) vehicleId: String (default: self),
deviceId: String

Boolean Unpairs the vehicle from
the external device

checkDevConnStatus(vehicleId,
deviceId)

vehicleId: String (default: self),
deviceId: String

[DevConnStatus] Checks the current
connection status of the
specified external device

checkV2XConnStatus(vehicleId) vehicleId: String (default: self) [V2XConnStatus] Retrieves the status of
nearby V2X-enabled
devices, including type,
connection quality, and
sharing capability

connectCloud(vehicleId,
serviceId, credentials)

vehicleId: String (default: self),
serviceId: String, credentials:
Object

Boolean Connects the vehicle to a
specified cloud service
with authentication

disconnectCloud(vehicleId,
serviceId)

vehicleId: String (default: self),
serviceId: String

Boolean Disconnects the vehicle
from a specified cloud
service

Access
Control

authenticateUser(userId,
credentials)

userId: String, credentials: Object Boolean Validates user identity to
ensure authorized access

setAccessControl(policyDetails) policyDetails: Object Boolean Defines access control
policies for resources

checkAccess(userId, resource) userId: String, resource: String Access
permission

Determines if a user has
access to a specific
resource

logAccess(userId, resource,
accessDetails)

userId: String, resource: String,
accessDetails: Object

Boolean Records access attempts
and details for auditing

encryptData(data)
decryptData(encryptedData)

, data: Object, encryptedData:
Object

Processed data Encrypts or decrypts data
for security purposes

generateToken(credentials)
validateToken(token)

, credentials: Object, token: String Token/
validation

Generates/validates
tokens for access control

(to be continued)
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Table A5.    Management VPIs Specifications (Continued)
 

VPI Type VPI Method Parameter Return Value Functionality

System
Status
Monitoring

monitorHWStatus(vehicleId,
componentId, params)

vehicleId: String (default: self),
componentId: String, params:
Object

Hardware status Monitors and reports the
health, performance, and
operational status of
specific hardware
components in the vehicle

monitorSensorStatus(vehicleId,
sensorId, params)

vehicleId: String (default: self),
sensorId: String, params: Object

Sensor status

monitorSensorStatus
monitorActuatorStatus
monitorECUStatus
monitorChargingStatus

Retrieves the current
status of a specified
hardware device, for
example,

,
,

,

monitorEnergyUse(vehicleID,
functID, params)

vehicleId: String (default: self),
functID: String, params: Object

Energy usage Monitors the energy when
running a function

monitorCompResourceUse(vehicleId,
functID, params)

vehicleId: String (default: self),

functID: String, params: Object

Resource usage Monitors the usage of

CPU, GPU, and memory
when running a function

Personalized
Mode

startPersonalMode(vehicleId,
userId, modeID)

vehicleId: String (default: self),
userId: String, modeID: String

Boolean Activates a user-specific
mode in the vehicle with a
single click, providing a
tailored experience based
on individual preferences

stopPersonalMode(vehicleId,
userId, modeID)

vehicleId: String (default: self),
userId: String, modeID: String

Boolean Deactivates the currently
active mode for a specific
user, reverting to standard
or predefined settings

switchMode(vehicleId, userId,
currentModeID, newModeID)

vehicleId: String (default: self),
userId: String, currentModeID:
String, newModeID: String

Boolean Switches between modes
for a specific user,
facilitating seamless
transitions tailored to
individual preferences

configPersonalMode(vehicleId,
userId, modeID, settings)

vehicleId: String (default: self),
userId: String, modeID: String,
settings: Object

Boolean Configures personalized
modes for a specific user,
such as comfort mode,
gaming mode, and so on,
according to their
preferences

OTA
Upgrade

scheduleOTAUpdate(vehicleId,
updateContent, params)

vehicleId: String (default: self),
updateContent: String, params:
Object

Boolean Schedules OTA updates
for hardware drivers,
software, and algorithms

downloadOTAUpdate(vehicleId,
updateContent, params)

vehicleId: String (default: self),
updateContent: String, params:
Object

Download
status

Manages the downloading
process for OTA update
packages

installOTAUpdate(vehicleId,
updateContent, params)

vehicleId: String (default: self),
updateContent: String, params:
Object

Installation
status

Executes the installation
process for OTA updates

verifyOTAUpdate(vehicleId,
updateContent, params)

vehicleId: String (default: self),
updateContent: String, params:
Object

Verification
status

Verifies the results of
OTA updates and
provides system-level
feedback
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