
VPI: Vehicle Programming Interface for Vehicle Computing

Wu Bao-Fu, Zhong Ren, Wang Yuxin, Wan Jian, Zhang Ji-Lin, Shi Weisong

View online: http://doi.org/10.1007/s11390-024-4035-2

Articles you may be interested in

PVSS: A Progressive Vehicle Search System for Video Surveillance Networks

Xin-Chen Liu, Wu Liu, Hua-Dong Ma, Shuang-Qun Li

Journal of Computer Science and Technology. 2019, 34(3): 634-644 http://doi.org/10.1007/s11390-019-1932-x

An Intelligent Transportation System Application for Smartphones Based on Vehicle Position Advertising and Route Sharing in

Vehicular Ad-Hoc Networks

Seilendria A. Hadiwardoyo, Subhadeep Patra, Carlos T. Calafate, Juan-Carlos Cano, Pietro Manzoni

Journal of Computer Science and Technology. 2018, 33(2): 249-262 http://doi.org/10.1007/s11390-018-1817-4

Estimation of Vehicle Pose and Position with Monocular Camera at Urban Road Intersections

Jin-Zhao Yuan, Hui Chen, Bin Zhao, Yanyan Xu

Journal of Computer Science and Technology. 2017, 32(6): 1150-1161 http://doi.org/10.1007/s11390-017-1790-3

A Flocking-Based on Demand Routing Protocol for Unmanned Aerial Vehicles

Nour El Houda Bahloul, Saadi Boudjit, Marwen Abdennebi, Djallel Eddine Boubiche

Journal of Computer Science and Technology. 2018, 33(2): 263-276 http://doi.org/10.1007/s11390-018-1818-3

A Multi-Point Distance-Bounding Protocol for Securing Automatic Dependent Surveillance-Broadcast in Unmanned Aerial Vehicle

Applications

Zachary P. Languell, Qijun Gu

Journal of Computer Science and Technology. 2020, 35(4): 825-842 http://doi.org/10.1007/s11390-020-0260-5

JCST Homepage: https://jcst.ict.ac.cn
SPRINGER Homepage: https://www.springer.com/journal/11390
E-mail: jcst@ict.ac.cn
Online Submission: https://mc03.manuscriptcentral.com/jcst

JCST Official
WeChat Account

JCST WeChat
Service Account

Twitter: JCST_Journal
LinkedIn: Journal of Computer Science and Technology

https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-024-4035-2
https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-019-1932-x
https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-018-1817-4
https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-018-1817-4
https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-017-1790-3
https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-018-1818-3
https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-020-0260-5
https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-020-0260-5
https://jcst.ict.ac.cn
https://www.springer.com/journal/11390
mailto:jcst@ict.ac.cn
https://mc03.manuscriptcentral.com/jcst

VPI: Vehicle Programming Interface for Vehicle Computing

Bao-Fu Wu1, † (吴宝福), Ren Zhong2 (仲　任), Yuxin Wang3 (王昱心), Jian Wan1, * (万　健)
Ji-Lin Zhang1, * (张纪林), and Weisong Shi3 (施巍松), Fellow, IEEE

1 School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China
2 Department of Computer Science, Wayne State University, Detroit, MI 48202, U.S.A.
3 Department of Computer and Information Sciences, University of Delaware, Newark, DE 19716, U.S.A.

E-mail: baofu.wu@hdu.edu.cn; zhongren@wayne.edu; yuxw@udel.edu; wanjian@hdu.edu.cn; jilin.zhang@hdu.edu.cn
weisong@udel.edu

Received December 14, 2023; accepted January 24, 2024.

Abstract The emergence of software-defined vehicles (SDVs), combined with autonomous driving technologies, has en-

abled a new era of vehicle computing (VC), where vehicles serve as a mobile computing platform. However, the interdisci-

plinary complexities of automotive systems and diverse technological requirements make developing applications for au-

tonomous vehicles challenging. To simplify the development of applications running on SDVs, we propose a comprehen-

sive suite of vehicle programming interfaces (VPIs). In this study, we rigorously explore the nuanced requirements for ap-

plication development within the realm of VC, centering our analysis on the architectural intricacies of the Open Vehicu-

lar Data Analytics Platform (OpenVDAP). We then detail our creation of a comprehensive suite of standardized VPIs,

spanning five critical categories: Hardware, Data, Computation, Service, and Management, to address these evolving pro-

gramming requirements. To validate the design of VPIs, we conduct experiments using the indoor autonomous vehicle, Ze-

bra, and develop the OpenVDAP prototype system. By comparing it with the industry-influential AUTOSAR interface,

our VPIs demonstrate significant enhancements in programming efficiency, marking an important advancement in the

field of SDV application development. We also show a case study and evaluate its performance. Our work highlights that

VPIs significantly enhance the efficiency of developing applications on VC. They meet both current and future technologi-

cal demands and propel the software-defined automotive industry toward a more interconnected and intelligent future.

Keywords software-defined vehicle (SDV), vehicle computing (VC), vehicle programming interface (VPI), au-

tonomous system

1 Introduction

The progression of autonomous vehicle technolo-

gy is being significantly accelerated by advancements

in algorithms and computational capabilities. Conse-

quently, an increasing number of these vehicles are

undergoing road tests, heralding a transformation in

conventional modes of transportation. Predictions by

Boston Consulting Group indicate that the emer-

gence of software-defined vehicles (SDVs)[1] will cre-

ate over $650 billion in value for the auto industry by

2030, making up 15% to 20% of automotive value①.

In this evolving landscape, autonomous vehicles

emerge as sophisticated mobile platforms, endowed

Regular Paper

Bao-Fu Wu, Jian Wan, and Ji-Lin Zhang were supported by the National Natural Science Foundation of China under Grant
No. 62072146, the Key Research and Development Program of Zhejiang Province of China under Grant Nos. 2023C03194,
2021C03187, and 2023C01044, and the National Natural Science Foundation of China (Youth Fund) under Grant No. 62302133.

†This work was done when Bao-Fu Wu was a visiting scholar in the Connected and Autonomous Research Laboratory (CAR
Lab).

*Corresponding Author (Jian Wan guided the research work and paper writing. Ji-Lin Zhang provided financial support and
guided the paper writing.)

Wu BF, Zhong R, Wang Y et al. VPI: Vehicle programming interface for vehicle computing. JOURNAL OF COMPUT-

ER SCIENCE AND TECHNOLOGY 39(1): 22−44 Jan. 2024. DOI: 10.1007/s11390-024-4035-2

①Alex K, Nikolaus L, Brian C, Alex X, Markus H, Sophie H, Johannes W, Maria A, Sebastian B, Maya B D. Rewriting the
rules of software-defined vehicles. 2023. https://www.bcg.com/publications/2023/rewriting-rules-of-software-defined-vehicles, Jan.
2024.

©Institute of Computing Technology, Chinese Academy of Sciences 2024

https://doi.org/10.1007/s11390-024-4035-2
https://doi.org/10.1007/s11390-024-4035-2
https://doi.org/10.1007/s11390-024-4035-2
https://doi.org/10.1007/s11390-024-4035-2
https://doi.org/10.1007/s11390-024-4035-2
https://doi.org/10.1007/s11390-024-4035-2
https://doi.org/10.1007/s11390-024-4035-2
https://www.bcg.com/publications/2023/rewriting-rules-of-software-defined-vehicles
https://www.bcg.com/publications/2023/rewriting-rules-of-software-defined-vehicles
https://www.bcg.com/publications/2023/rewriting-rules-of-software-defined-vehicles
https://www.bcg.com/publications/2023/rewriting-rules-of-software-defined-vehicles
https://www.bcg.com/publications/2023/rewriting-rules-of-software-defined-vehicles
https://www.bcg.com/publications/2023/rewriting-rules-of-software-defined-vehicles
https://www.bcg.com/publications/2023/rewriting-rules-of-software-defined-vehicles
https://www.bcg.com/publications/2023/rewriting-rules-of-software-defined-vehicles
https://www.bcg.com/publications/2023/rewriting-rules-of-software-defined-vehicles
https://www.bcg.com/publications/2023/rewriting-rules-of-software-defined-vehicles
https://www.bcg.com/publications/2023/rewriting-rules-of-software-defined-vehicles

with extensive computational, storage, communica-

tion, and energy resources. This development has cat-

alyzed the emergence of vehicle computing (VC) as a

key technological trend[2, 3]. With autonomous vehi-

cles catering to their inherent software development

requirements, there is a parallel emergence of an ex-

pansive software ecosystem, leveraging the vehicles'

vast resource pool. Consequently, the development of

applications centered around VC is becoming a piv-

otal area of research and technological innovation.

In the era of VC, autonomous vehicles will be-

come a mobile computation platform, a mobile com-

munication platform, a mobile energy consumption,

storage, delivery platform, a mobile sensing platform,

and a mobile data generation and storage platform.

As illustrated in Fig.1, while addressing their own

needs, these autonomous vehicles will also provide re-

sources for surrounding devices[4]. At that time, ubiq-

uitous high-performance computing, sensing, power,

and communicating capabilities will be realized.

Intel estimates that autonomous vehicles of the fu-

ture will produce 4 TB of data every day②. To effec-

tively analyze this data on mobile computing plat-

forms, OpenVDAP (Open Vehicular Data Analytics

Platform)[5] provides a roadmap for on-board system

data analysis. OpenVDAP is a complete stack edge-

based platform comprising an on-board computing/

communication unit, a security and privacy-preserv-

ing vehicle operation system supported by isolation,

an edge-aware application library, and an optimal

workload offloading and scheduling strategy.

A crucial aspect of OpenVDAP is its program-
ming interface, which includes vehicle programming

interfaces (VPIs). These VPIs are specifically de-

signed to bridge the gap between the autonomous ve-

hicle's computational capabilities and the require-

ments of advanced VC applications. VPIs enable de-
velopers to more effectively create and deploy applica-

tions that leverage the full potential of vehicular edge

Cloud

Edge
Server

Vehicle

IoT

CPU-FPGA Cluster GPU Cluster TPU Cluster FPGA Cluster

Drone Body-Worn
Camera

Scooter Smart-Home Sensor Industry IoT Device Health Sensor

Vehicle-to-Everything (V2X)

Vehicle-to-Everything (V2X)

Vehicle-to-Vehicle (V2V)

RSU Cellular
Tower

Fig.1. Paradigm of vehicle computing[2, 3].

Bao-Fu Wu et al.: VPI: Vehicle Programming Interface for Vehicle Computing 23

②Yogesh M. 100 million lines of code, 4 TB data per day—Is that your next car? 2017. https://futuremonger.com/100-million-
lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa, Jan. 2024.

https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa

computing by providing a structured way to access

and utilize the vehicle's resources.

Easily developing VC applications currently face

high technical barriers, primarily stemming from four

key challenges.

● First, the interdisciplinary nature of au-

tonomous driving technology, which encompasses

computer vision, machine learning, sensor fusion, con-

trol theory, and software engineering, contributes to

the high technical threshold[6, 7]. This broad spectrum

of disciplines sets the foundational challenge in the

field, requiring a deep and integrated understanding

across various areas of expertise.

● Second, the substantial variation in autonomous

vehicles produced by different manufacturers③ is an-

other critical challenge. This diversity manifests in

the types and numbers of sensors deployed, inconsis-

tencies in data formats, and differences in the design

of autonomous driving architectures. Such heterogene-

ity complicates the development of universal solu-

tions that can be applied across various vehicle models.

● Third, the complexity of autonomous driving

components presents a substantial challenge. Taking

Autoware④ as an example, a renowned open-source

software for autonomous driving, it has developed

hundreds of Robot Operating System (ROS)[8] nodes

to support autonomous driving applications and illus-

trates the intricate nature of autonomous vehicle sys-

tems. Developing and integrating these complex com-

ponents demands a high level of expertise.

● Finally, the need for data security protection

and the focus on vehicle safety significantly impact

the field[9, 10]. Currently, autonomous vehicle compa-

nies tend to focus on custom development for their

specific vehicle models, with vehicle safety being a

paramount consideration. However, this approach

limits collaboration between companies and is a ma-

jor impediment to the growth of an open-source com-

munity for VC.

Addressing these issues in this structured manner

is essential to lower the barriers to autonomous driv-

ing software development and foster the growth of an

open-source community for VC. To effectively pro-

mote this development, it is imperative to clearly de-

fine the requirements of VC. Based on these require-

ments, functional modules should be segmented, and

a set of standardized programming interfaces specifi-

cally designed. Future autonomous driving software

developers will then be able to focus on these de-

signed interfaces, leveraging their respective areas of

expertise to implement corresponding functionalities.

This collaborative approach will not only facilitate

the advancement of autonomous driving software de-

velopment but also pave the way for a more integrat-

ed and innovative VC ecosystem.

It is imperative to clearly define the requirements

to address the aforementioned challenges and pro-

mote the development of VC. Functional modules

should be segmented on these requirements, and a set

of standardized programming interfaces should be de-

signed. The novelty of program interfaces lie in en-

abling future autonomous driving software developers

to focus on these interfaces, leveraging their specific

areas of expertise to implement corresponding func-

tionalities. This collaborative method is not just

about modularization, but about fostering an ecosys-

tem where developers can contribute more efficiently

and innovatively. The proposed approach contrasts

with existing developments like AUTomotive Open

System ARchitecture (AUTOSAR)[11], which has in-

troduced Adaptive AUTOSAR to design a set of APIs

(application programming interfaces). While these

APIs offer a standardized method for automotive

manufacturers and suppliers to develop and integrate

vehicle software, making software development more

efficient and interoperable, our approach extends this

concept further. It aims to create a more comprehen-

sive, open, and versatile framework for VC, surpass-

ing the traditional boundaries of automotive software

development. Similarly, the European Automobile

Manufacturers Association (ACEA)⑤ has been instru-

mental in promoting the standardization of vehicle

data. This initiative has facilitated different manufac-

turers and service providers in exchanging and utiliz-

ing vehicle data more easily, reducing compatibility

issues. However, our approach seeks to unify not just

data standards, but also the broader spectrum of VC

functionalities, including data processing, communica-

tion, and control systems. This unified API design,

therefore, not only enables the transmission and pars-

ing of data across different manufacturers but also

paves the way for more intelligent and interconnect-

ed developments in the automotive industry. Our

comprehensive solution is designed to fully meet the

extensive and evolving requirements of VC, marking a

significant advancement over existing systems.

24 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

③Goncharov I. Autonomous vehicle companies and their ML, 2013. https://wandb.ai/ivangoncharov/AVs-report/reports/Au-
tonomous-Vehicle-Companies-And-Their-ML--VmlldzoyNTg1Mjc1, Jan. 2024.

④https://autoware.org/, Jan. 2024.

⑤https://www.acea.auto/, Jan. 2024.

https://wandb.ai/ivangoncharov/AVs-report/reports/Autonomous-Vehicle-Companies-And-Their-ML--VmlldzoyNTg1Mjc1
https://wandb.ai/ivangoncharov/AVs-report/reports/Autonomous-Vehicle-Companies-And-Their-ML--VmlldzoyNTg1Mjc1
https://wandb.ai/ivangoncharov/AVs-report/reports/Autonomous-Vehicle-Companies-And-Their-ML--VmlldzoyNTg1Mjc1
https://wandb.ai/ivangoncharov/AVs-report/reports/Autonomous-Vehicle-Companies-And-Their-ML--VmlldzoyNTg1Mjc1
https://wandb.ai/ivangoncharov/AVs-report/reports/Autonomous-Vehicle-Companies-And-Their-ML--VmlldzoyNTg1Mjc1
https://wandb.ai/ivangoncharov/AVs-report/reports/Autonomous-Vehicle-Companies-And-Their-ML--VmlldzoyNTg1Mjc1
https://wandb.ai/ivangoncharov/AVs-report/reports/Autonomous-Vehicle-Companies-And-Their-ML--VmlldzoyNTg1Mjc1
https://wandb.ai/ivangoncharov/AVs-report/reports/Autonomous-Vehicle-Companies-And-Their-ML--VmlldzoyNTg1Mjc1
https://wandb.ai/ivangoncharov/AVs-report/reports/Autonomous-Vehicle-Companies-And-Their-ML--VmlldzoyNTg1Mjc1
https://wandb.ai/ivangoncharov/AVs-report/reports/Autonomous-Vehicle-Companies-And-Their-ML--VmlldzoyNTg1Mjc1
https://wandb.ai/ivangoncharov/AVs-report/reports/Autonomous-Vehicle-Companies-And-Their-ML--VmlldzoyNTg1Mjc1
https://wandb.ai/ivangoncharov/AVs-report/reports/Autonomous-Vehicle-Companies-And-Their-ML--VmlldzoyNTg1Mjc1
https://wandb.ai/ivangoncharov/AVs-report/reports/Autonomous-Vehicle-Companies-And-Their-ML--VmlldzoyNTg1Mjc1
https://wandb.ai/ivangoncharov/AVs-report/reports/Autonomous-Vehicle-Companies-And-Their-ML--VmlldzoyNTg1Mjc1
https://wandb.ai/ivangoncharov/AVs-report/reports/Autonomous-Vehicle-Companies-And-Their-ML--VmlldzoyNTg1Mjc1
https://wandb.ai/ivangoncharov/AVs-report/reports/Autonomous-Vehicle-Companies-And-Their-ML--VmlldzoyNTg1Mjc1
https://wandb.ai/ivangoncharov/AVs-report/reports/Autonomous-Vehicle-Companies-And-Their-ML--VmlldzoyNTg1Mjc1
https://wandb.ai/ivangoncharov/AVs-report/reports/Autonomous-Vehicle-Companies-And-Their-ML--VmlldzoyNTg1Mjc1
https://autoware.org/
https://www.acea.auto/

To address the programming challenges in VC,

centered around the design philosophy of Open-

VDAP's APIs, we designed a set of vehicle program-

ming interfaces (VPIs) for the development of VC ap-

plications. Proposed VPIs are designed to manage

various aspects of vehicle hardware, data, computa-

tion, service, and system management for au-

tonomous vehicles. These VPIs, being open-source, of-

fer a universal solution for the open community. They

have been meticulously developed, considering the fu-

ture of connected vehicles as platforms for mobile

computing, communication, energy consumption, stor-

age and transfer, and mobile sensing. This suite of

VPIs represents the first of its kind, specifically tai-

lored to meet the application development needs of

this new era, offering a holistic approach to develop-

ing applications for connected vehicles in the context

of mobile computing and sensing.

Our main contributions can be summarized in

three significant aspects.

● We have proposed the first standardized soft-

ware programming development interfaces that com-

prehensively satisfy the requirements of VC applica-

tion development, VPIs, which will facilitate the rapid

development of VC software.

● We have developed the OpenVDAP prototype,

a purpose-built framework to facilitate technological

validation and support the implementation of these

programming interfaces.

● We have validated the programming efficiency

of VPIs in application development by conducting

two sets of experiments, demonstrating their practi-

cality and effectiveness in real-world scenarios involv-

ing VC platforms.

In this paper, we begin by reviewing related work

in Section 2, then articulate the principles guiding our

VPI design and provide a comprehensive explanation

of the VPIs' design and considerations in Section 3.

Section 4 introduces the OpenVDAP validation plat-

form, designed to test and validate our VPI frame-

work. Section 5 evaluates the efficiency performance

of programming with proposed VPIs, combined with

a case study and performance evaluation, and finally,

in Section 6, we discuss our work. Section 7 summa-

rizes our contributions and potential avenues for fu-

ture research.

2 Related Work

In the era of vehicle computing (VC), connected

vehicles emerge as formidable edge computing plat-

forms, exhibiting proficiency in mobile computing,

communication, energy storage and transfer, mobile

sensing, and data storage. The analytical capabilities

of VC extend to examining data streams originating

from onboard sensors and surrounding connected de-

vices, even during vehicle parking or charging periods.

Confronted with myriad service needs within VC, re-

searchers have delved into and deliberated upon re-

source allocation, task computing, and data schedul-

ing[12–14]. Correspondingly, future connected vehicles

should at least possess autonomous driving function

modules with APIs for perception and localization,

planning and decision, vehicle control, data services,

communication, device, charging, user interface, moni-

toring, and safety.

Facing such demands, numerous automotive man-

ufacturers, industry alliances, and large companies are

striving toward this direction. Their research out-

comes can partially meet the needs of connected vehi-

cles in the VC era. The automotive industry's API

design primarily focuses on autonomous driving appli-

cations and enhancing user experience. For instance,

Ford Motor Company's AppLink technology⑥, Gener-

al Motors' Next Generation Infotainment System

(NGI)⑦, and Toyota Motor Corporation's introduc-

tion of the Mobile Service Platform (MSPF)⑧ exem-

plify such developments. These technologies empha-

size the importance of providing seamless connectivi-

ty between vehicles and mobile devices. Many associa-

tions and technological companies are also paying

more attention to this part, like AUTOSAR,

COVESA, Autoware, Baidu Apollo, NVIDIA Drive,

SOAFEE, BlackBerry IVY, and ROS. These plat-

forms vary in their API support, and the details are

shown in Table 1.

AUTOSAR[15]. AUTOSAR is a widely recognized

middleware solution for automotive software develop-

ment, offering APIs for diagnostics, safety, network

management, power management, and driver and ser-

vice management. Despite its widespread adoption,

AUTOSAR faces challenges in autonomous driving

applications due to its complexity, high cost, and pri-

mary focus on in-vehicle communication. Developing

Bao-Fu Wu et al.: VPI: Vehicle Programming Interface for Vehicle Computing 25

⑥https://developer.ford.com/infotainment/in-vehicle-apps, Jan. 2024.

⑦https://developer.gm.com/, Jan. 2024.

⑧https://toyotaconnected.co.jp/en/service/connectedplatform.html, Jan. 2024.

https://developer.ford.com/infotainment/in-vehicle-apps
https://developer.ford.com/infotainment/in-vehicle-apps
https://developer.ford.com/infotainment/in-vehicle-apps
https://developer.ford.com/infotainment/in-vehicle-apps
https://developer.ford.com/infotainment/in-vehicle-apps
https://developer.gm.com/
https://toyotaconnected.co.jp/en/service/connectedplatform.html

a custom operating system with AUTOSAR can in-

crease the cost and complexity.

COVESA⑫. Connected Vehicle Systems Alliance

(COVESA) is a community of automakers and suppli-

ers collaborating on an open in-vehicle infotainment

(IVI) and connectivity software platform. GENIVI⑱

offers APIs for vehicle communication, data services,

and hardware interfaces, catering to basic vehicle con-

trol and communication requirements. It focuses more

on standardization and interoperability in IVI sys-

tems than advanced autonomous driving functionali-

ties.

Autoware⑬. Developed by Tier IV in Japan, Au-

toware is an open-source platform based on the Robot

Operating System (ROS). It offers extensive APIs for

processing point cloud data, mapping, localization,

perception, and control. While it is easy to deploy

and maintain due to its open-source nature, further

improvements are needed in Autoware's performance

and stability.

Baidu Apollo⑭. Developed by Baidu, Apollo pro-

vides a comprehensive set of APIs for perception, lo-

calization, planning, and control. Its high level of au-

tonomy enables the implementation of autonomous

driving functions under various road conditions. Nev-

ertheless, Apollo's steep learning curve and the need

for high technical expertise may pose barriers to en-

try for some developers.

NVIDIA DRIVE⑮. NVIDIA DRIVE, developed

by NVIDIA, is a comprehensive software platform for

autonomous driving, encompassing everything from

the vehicle to the data center. It includes hardware

and software for AV development, such as NVIDIA

DGX for training neural networks and DRIVE Sim

for dataset generation and validation. NVIDIA

DRIVE supports end-to-end development with rich

APIs and tools, excelling in multi-sensor fusion. How-

ever, its high cost makes it more suitable for medium

to large enterprises.

SOAFEE⑯. Arm's Scalable Open Architecture for

Embedded Edge (SOAFEE) is designed to provide a

cloud-native development environment that address-

es the automotive industry's unique challenges and

constraints. It offers standardized interfaces to avoid

vendor lock-in and integrates container orchestration

with automotive functional safety. However, the vir-

tualized environment per ECU in SOAFEE may not

align well with certain real-time SDV applications.

The complexity and security concerns associated with

its modular and scalable nature may pose integration

Table 1. API Comparison of Software Platforms and Automotive Companies for Vehicle Computing

Platform Perception &
Localization

Vehicle
Control

Data
Service

Communication Charging
API

User
Interface

Monitoring
API

Safety
API

Ford Applink⑨ ✓
General Motors NGI⑩ ✓ ✓ ✓
Toyota MSPF⑪ ✓
AUTOSAR[15] ✓ ✓ ✓ ✓ ✓
COVESA⑫ - - - - - - - -

Autoware⑬ ✓ ✓ ✓
Baidu Apollo⑭ ✓ ✓ ✓ ✓
NVIDIA DRIVE⑮ ✓ ✓ ✓
SOAFEE⑯ ✓
BlackBerry IVY⑰ ✓ ✓ ✓ ✓
ROS[16] ✓ ✓ ✓
VPI ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

26 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

⑨Create utility here: In-vehicle apps. 2024. https://developer.ford.com/infotainment/in-vehicle-apps, Jan. 2024.

⑩https://developer.gm.com/in-vehicle-apps, Jan. 2024.

⑪https://toyotaconnected.co.jp/en/service/connectedplatform.html, Jan. 2024.

⑫https://covesa.global/about-covesa, Jan. 2024.

⑬https://autoware.org/, Jan. 2024.

⑭https://github.com/ApolloAuto/apollo, Jan. 2024.

⑮NVIDIA. NVIDIA DRIVE end-to-end solutions for autonomous vehicles. 2023. https://developer.nvidia.com/drive, Jan. 2024.

⑯SOAFEE Architecture. 2023. https://architecture.docs.soafee.io/en/latest/contents/introduction.html, Jan. 2024.

⑰https://www.blackberry.com/us/en/products/automotive/blackberry-ivy#features, Jan. 2024.

⑱https://github.com/genivi, Jan. 2024.

https://developer.ford.com/infotainment/in-vehicle-apps
https://developer.ford.com/infotainment/in-vehicle-apps
https://developer.ford.com/infotainment/in-vehicle-apps
https://developer.ford.com/infotainment/in-vehicle-apps
https://developer.ford.com/infotainment/in-vehicle-apps
https://developer.gm.com/in-vehicle-apps
https://developer.gm.com/in-vehicle-apps
https://developer.gm.com/in-vehicle-apps
https://developer.gm.com/in-vehicle-apps
https://developer.gm.com/in-vehicle-apps
https://toyotaconnected.co.jp/en/service/connectedplatform.html
https://covesa.global/about-covesa
https://covesa.global/about-covesa
https://covesa.global/about-covesa
https://autoware.org/
https://github.com/ApolloAuto/apollo
https://developer.nvidia.com/drive
https://architecture.docs.soafee.io/en/latest/contents/introduction.html
https://www.blackberry.com/us/en/products/automotive/blackberry-ivy#features
https://www.blackberry.com/us/en/products/automotive/blackberry-ivy#features
https://www.blackberry.com/us/en/products/automotive/blackberry-ivy#features
https://github.com/genivi

challenges, necessitating significant technical exper-

tise and thorough validation for autonomous driving

application development.

BlackBerry IVY⑲. Being a collaboration between

BlackBerry and AWS, BlackBerry IVY is a scalable,

cloud-connected software platform designed to en-

hance driver and passenger experiences in connected

vehicles using the BlackBerry QNX and AWS tech-

nology. IVY provides scalable APIs and tools sup-

porting various sensing devices and vehicle models.

With its high security and stability, BlackBerry IVY

is ideal for medium-to-large enterprises, though it re-

quires enterprise authorization.

ROS[16]. The Robot Operating System (ROS) is a

free, open-source software platform for robotic and

autonomous systems development, supporting multi-

ple programming languages and platforms. ROS of-

fers an extensive suite of APIs and tools known for its

ease of use and learning. Nonetheless, its performance

and stability are areas that require further improve-

ment.

In summary, although the methods mentioned

above have unique features, they cannot meet the fu-

ture development needs of VC. For this reason, we

are the first to propose a comprehensive standard pro-

gramming interface specifically designed to meet the

requirements of VC. Simultaneously, in light of the

development requirements for future VC applications,

we have thoroughly considered the API design philos-

ophy of the Open Vehicular Data Analytics Platform

(OpenVDAP)[5]. We have meticulously analyzed and

designed a set of programming development inter-

faces tailored to VC application development needs.

This suite of VPIs represents the first attempt of its

kind.

3 Vehicle Programming Interface Design

The design philosophy of VPI revolves around

conceptualizing the vehicle as a platform for computa-

tion, storage, power management, and sensing. This

concept is increasingly crucial in the realm of automo-

tive technology. VPI is intended to harness modern

vehicles' advanced computational capabilities and rich

sensor resources. It aims to integrate vehicles' compu-

tational, storage, power management, and sensing ca-

pabilities, providing a unified programming interface.

This interface supports the development of advanced

applications in connected vehicles, such as au-

tonomous driving, Vehicle-to-Everything (V2X) com-

munications, and advanced infotainment systems.

To optimally design VPIs, it is imperative to com-

prehend the data analysis architecture of future Con-

nected and Autonomous Vehicles (CAVs)[17], along

with the VPI design considerations predicated on this

framework. OpenVDAP[5] provides a roadmap for it,

which is an edge computing based platform. It inte-

grates onboard heterogeneous computing units, a spe-

cialized operating system for vehicles, and an edge-

aware application library. This platform supports a

dual-tier architecture that enables dynamic service as-

sessment and optimal offloading decisions for timely

processing. Most importantly, unlike the proprietary

platforms, the OpenVDAP design offers an open and

free edge-aware library that contains how to access

and deploy edge computing based vehicle applica-

tions and various common used AI models, which will

enable the researchers and developers in the commu-

nity to deploy, test, and validate their applications in

the real environment.

In the increasingly complex automotive industry,

VPI adheres to the key design principles for optimal

functionality:

● Layered: assigns responsibilities across multiple

layers, ranging from hardware abstraction to the user

interface;

● Decoupled: minimizes dependencies between la-

yers to enhance flexibility and maintainability;

● Standardized: ensures compatibility and integra-

tion with uniform interfaces and protocols;

● Open: promotes extensive integration and inno-

vation by supporting an open design for third-party

contributions.

3.1 Overview of Vehicle Programming

Interface

The VPIs of connected vehicles in the era of VC

can be conceptualized into five key categories: Hard-

ware, Data, Computation, Service, and Management,

which is shown in Fig.2. This layered approach signi-

fies a progressive transition from the fundamental

hardware to user-facing services, ensuring the scalabil-

ity and flexibility of the system.

● Hardware. Hardware VPIs form the foundation

of the connected vehicle system. They serve to shield

Bao-Fu Wu et al.: VPI: Vehicle Programming Interface for Vehicle Computing 27

⑲https://www.blackberry.com/us/en/products/automotive/blackberry-ivy#features, Jan. 2024.

https://www.blackberry.com/us/en/products/automotive/blackberry-ivy#features
https://www.blackberry.com/us/en/products/automotive/blackberry-ivy#features
https://www.blackberry.com/us/en/products/automotive/blackberry-ivy#features

the hardware differences among autonomous vehicles

from different manufacturers, providing a unified in-

terface for direct access to sensors, communication

systems, controllers, actuators, energy management,

and intelligent cockpit hardware. This facilitates the

rapid development and integration of advanced appli-

cations.

● Data. Data VPIs focus on acquiring and pro-

cessing real-time and historical sensor data, which is

crucial for the vehicle's dynamic adaptation and intel-

ligent decision-making. They manage data from the

vehicle itself, surrounding devices, other vehicles, road

infrastructure, cloud, and driver data, ensuring a uni-

fied approach to data management.

● Computation. Computation VPIs are responsi-

ble for data processing and decision support. They

support the computational capabilities of core au-

tonomous driving modules like obstacle detection,

end-to-end autonomous driving, and automatic detec-

tion. Computation VPIs also prioritize the coordinat-

ed allocation of computational resources from the ve-

hicle, surrounding devices, road infrastructure, and

cloud.

● Service. Service VPIs represent the functionally

integrated module of VC for application developers,

simplifying the invocation of high-level functionalities

such as autonomous driving. Key services include Ad-

vanced Driver Assistance Systems (ADAS), au-

tonomous driving, emergency response, and entertain-

ment services.

● Management. Management VPIs act as a com-

prehensive control center for autonomous vehicles, in-

tegrating device and service connections, access con-

trol, system monitoring, and OTA (Over-the-Air

technology) upgrade support. This ensures seamless,

secure, and efficient management of the vehicle's

overall performance and resources.

Through the collaborative efforts of these five cat-

egories of VPIs and the seamless flow of data, the

connected vehicle system achieves efficient data pro-

cessing, precise control decisions, and rich user inter-

action experiences, revolutionizing autonomous driv-

ing and intelligent transportation in the VC era.

3.2 Hardware VPIs

Due to the hardware variations among different

vehicles, designing Hardware VPIs in VC is necessary

to shield the underlying differences, supporting the

development of advanced software. Centered around

VC needs, the design of the Hardware VPIs should

include the direct access and control of the vehicle's

sensors, communication systems, controllers, various

electronic control units (ECUs), and onboard enter-

tainment devices. The specific Hardware VPIs are de-

tailed in Appendix Table A1, which outlines the func-

tionalities and interface designs of the VPI. Below, we

provide a summarized explanation of these VPIs.

listSensors configureSensor calibrateSen
sor

● Sensors. Sensors are crucial for gathering data

from the vehicle’s environment. VPIs such as

, , and -

 enable the enumeration, configuration, and cali-

bration of various sensors. These functions are vital

for ensuring the accuracy and reliability of the data

collected by sensors, which include cameras, radars,

and LiDARs, essential for functions like navigation,

obstacle detection, and driver assistance.

controlActuator configureActuator

● Actuators. Actuators play a key role in convert-

ing electronic signals into physical actions. VPIs like

 and manage

the operation and configuration of actuators, which

are responsible for actions such as steering, braking,

and throttle control. These VPIs ensure precise and

responsive actuation based on sensor inputs and con-

trol commands.

● ECUs (Electronic Control Units). ECUs are the

Hardware Sensor Control ECU Communication Energy

Data Logs
V2X
Data

Computation Autonomous
Driving Core

AI Model
Support

V2X Analytics
Support

Service ADAS Service Auto Service Emergency Response

Infotainment

Management

Access Control

System Status
Monitoring

OTA Upgrade

Device
Data

Data
Preprocessing

Infotainment Service

Device & Service
Connection

Sensor
Data

User
Data

Cloud &
3rd Party

Resource
Allocation Personalized Mode

Fig.2. Structure of VPIs. VPIs are composed of five main categories: Hardware, Data, Computation, Service, and Management.

28 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

listECUs controlECU
configureECU

controlLighting

brains behind the vehicle's electronic systems. With

VPIs such as , , and

, the vehicle can monitor and manage

various ECUs, including those for engine control,

transmission, and safety systems. Additionally, spe-

cialized VPIs like manage specific

functions like vehicle lighting, illustrating the versatil-

ity of ECU management.

listCommDevices configureCommDevice togg
leV2X

● Communication. This category focuses on man-

aging the vehicle’s communication systems. VPIs like

, , and -

 are essential for controlling various communi-

cation devices, including cellular, Wi-Fi, and V2X

communication systems. These functions enable the

vehicle to stay connected and communicate with ex-

ternal networks and devices, facilitating features like

telematics and connected services.

controlCharging controlPowerOutput

● Energy. Managing the vehicle’s energy systems,

especially in electric vehicles, is critical. VPIs such as

 and manage

the battery charging process and power distribution

to external systems. These functions are essential for

optimizing battery life, ensuring energy efficiency, and

even supporting vehicle-to-grid (V2G) capabilities.

configureDisplay configureAudio

● Infotainment. The infotainment system en-

hances the in-vehicle experience. VPIs like

 and manage the

settings of the vehicle's display and audio systems,

ensuring an engaging and customizable entertain-

ment experience for passengers. These functions cater

to user preferences in media consumption, navigation,

and connectivity.

These Hardware VPIs are unique and essential in

the context of VC due to their focus on direct hard-

ware control and management. They differ from exist-

ing interfaces by providing specialized control and ac-

cess to vehicle hardware components, allowing for ad-

vanced software development tailored to the specific

needs of autonomous vehicles. The benefits of these

interfaces include enhanced flexibility, customization,

and optimization of vehicle functionalities, which are

crucial for the advancement of VC and the realiza-

tion of advanced autonomous driving systems.

3.3 Data VPIs

In the vehicle system architecture, Data VPIs

hold a critical position. They are principally responsi-

ble for gathering, managing, and preprocessing data

from both the vehicle itself and external sources. This

ensures efficient access and utilization of data across

various system components. Data VPIs facilitate dy-

namic environmental adaptation and informed deci-

sion-making by offering unified management of data

from the vehicle, surrounding devices, other vehicles,

roadways, cloud sources, and the driver. The detailed

design of Data VPIs is illustrated in Appendix Table

A2. Data VPIs are categorized into following key ar-

eas based on their responsibilities.

getSensorData
getHistSensorData

● Sensor Data. Centered around acquiring and

processing real-time and historical sensor data, these

VPIs are crucial for dynamic environmental adapta-

tion and informed decision-making. For instance,

 captures immediate environmental

data, while allows for retrospec-

tive analysis of sensor readings. This category is vital

for enhancing the vehicle's awareness and responsive-

ness to its surroundings, supporting functions like ob-

stacle detection and navigation.

getDeviceData

storeDeviceData

● Device Data. Addressing the increasing inter-

connectivity in vehicular ecosystems, these VPIs facil-

itate seamless data communication with external de-

vices. Key functionalities include for

ingesting data from devices such as smartphones and

 for preserving such information.

This category underscores the vehicle’s role in the

broader IoT landscape, enhancing user convenience

and expanding the vehicle's operational capabilities

beyond traditional boundaries.

getOperationalLogs
● Logs. Focused on collecting and storing opera-

tional logs, these VPIs, such as ,

offer deep insights into the vehicle’s performance and

usage patterns. They are instrumental in predictive

maintenance, troubleshooting, and long-term perfor-

mance optimization, making them integral for main-

taining vehicle health and efficiency.

getUserData

● User Data. Tailoring the vehicle experience to

individual preferences, VPIs in this category, like

, cater to the personalization aspect of

modern vehicles. They handle the storage and re-

trieval of user-specific settings and preferences, ensur-

ing each journey is aligned with the user's comfort

and convenience.

getMediaContent
● Infotainment Data. Enhancing the in-cabin ex-

perience, VPIs such as manage di-

verse forms of entertainment content. They play a

pivotal role in delivering a versatile and enjoyable in-

vehicle infotainment experience, from streaming me-

dia to interactive navigation interfaces.

syncDataFromCloud
● Cloud & 3rd Party Data. These VPIs, exempli-

fied by , represent the vehicle's

capability to integrate with cloud-based services and

Bao-Fu Wu et al.: VPI: Vehicle Programming Interface for Vehicle Computing 29

third-party data sources. They ensure the vehicle re-

mains at the forefront of technological integration,

leveraging external computational power and expan-

sive datasets for enhanced functionalities.

getV2XData
● V2X Data. Encompassing VPIs such as

, this category is essential for enabling in-

teractive and cooperative functionalities with other

vehicles, pedestrians, and road infrastructure. They

foster a connected and cooperative road environment,

enhancing safety, traffic management, and overall

driving experience.

These Data VPIs are integral in the context of

VC as they differ from existing interfaces by provid-

ing specialized data handling capabilities tailored to

the unique requirements of autonomous vehicles and

connected transportation systems. Their benefits en-

compass efficient data storage, data retrieval, and

sharing, which are essential for enhancing the perfor-

mance and functionality of VC systems. By provid-

ing these specialized interfaces, the architecture is op-

timized for VC, ensuring that data from various

sources is effectively collected, processed, and shared,

thus contributing to the advancement of autonomous

and connected vehicles.

3.4 Computation VPIs

In the vehicular system, Computation VPIs act as

the “brain”, orchestrating advanced data processing

and decision-making support. They enable essential

autonomous functions, such as route planning and ob-

stacle detection, and manage the allocation of compu-

tational resources across the vehicle, surrounding de-

vices, and cloud services. These VPIs are crucial for

integrating AI support into the vehicle's operational

framework, enhancing its autonomous capabilities and

environmental interaction. As shown in Appendix Ta-

ble A3, the followings are the main Computation

VPIs components.

cleanData
formatData

● Data Preprocessing. This category lays the

groundwork for all subsequent data-driven operations

within the vehicle system. VPIs like and

 are vital in refining raw data, removing

inaccuracies, and transforming them into formats

suitable for advanced analysis. These functions en-

sure data integrity and consistency, which are critical

for accurate sensor data interpretation and reliable

vehicle operations.

● Autonomous Driving Core. Central to the vehi-

cle's self-driving capabilities, this category involves

complex data fusion and processing. VPIs such as

earlyFusion intermFusion lateFusion

getFusedBEVResult
get360View

, , and deal

with integrating various data streams, including cam-

era, Radar, and LiDAR inputs at different stages for

nuanced perception[18]. VPIs provide enhanced situa-

tional awareness like [19] and

, which generate comprehensive visual

representations of the vehicle's surroundings, crucial

for safe autonomous navigation and obstacle avoid-

ance.

processAIInference runAIModel

● AI Model Support. Reflecting the vehicle's ad-

vanced intelligence, this category encompasses VPIs

that facilitate sophisticated AI tasks. Functions such

as and showcase

the vehicle's prowess in handling complex AI algo-

rithms, ranging from real-time image processing to

predictive analytics. These VPIs empower the vehicle

with capabilities like object recognition, behavior pre-

diction, and even personalized user interaction, en-

hancing the overall autonomy and user experience.

reqCloudCompute reqDeviceCompute

● V2X Analytics Support. Emphasizing collabora-

tive computation, this category includes VPIs like

 and , which en-

able the vehicle to extend its computing capabilities

beyond its physical confines. By utilizing external

computational resources such as cloud services, near-

by devices, or other vehicles, these VPIs allow for

more extensive and complex data processing tasks.

This collaborative approach enhances the vehicle's

ability to make more informed decisions, adapt to dy-

namic environments, and offer enriched services like

traffic management and environmental monitoring.

allocateRe
sources

● Resource Allocation. This category focuses on

the efficient management of the vehicle's onboard

computational resources. VPIs such as -

 dynamically balance CPU, GPU, and memo-

ry usage, optimizing the performance for varying com-

putational loads. This ensures that the vehicle's com-

puting system operates efficiently, conserving energy

while maintaining high performance, which is particu-

larly critical in resource-intensive scenarios like high-

definition mapping and real-time sensor data process-

ing.

Computation VPIs are unique in the context of

VC as they differ from existing interfaces by provid-

ing specialized computational support tailored to the

complex demands of autonomous driving and connect-

ed vehicles. Their benefits encompass advanced data

processing, enhanced decision-making, and efficient

resource management, all of which are crucial for real-

izing the potential of VC and enabling advanced self-

driving capabilities. By offering these specialized in-

30 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

terfaces, the architecture is optimized to handle the

specific computational requirements of autonomous

vehicles, contributing to their safe and efficient opera-

tion.

3.5 Service VPIs

Various components and services are required in

vehicle system applications to ensure effective interac-

tion between the system and the end users. Service

VPIs encompass the user interface design and a range

of advanced applications and services. By offering

these components and services, Service ensures that

vehicle systems can meet the diverse needs of modern

driving and provide users with a highly personalized

driving experience. Application developers can utilize

these services for secondary development without de-

signing underlying implementations from scratch,

thereby enhancing development efficiency. As shown

in Appendix Table A4, Service VPIs should include

the following aspects.

startADAS stopADAS
configADAS

● Advanced Driver Assistance Systems (ADAS)

Service. This category is pivotal in enhancing road

safety and driver assistance capabilities. The ADAS

Service VPIs, including , , and

, are designed to activate, manage, and

customize various driver-assistance functionalities like

automatic braking, lane keeping, and adaptive cruise

control. Each VPI in this category is tailored to re-

spond to real-time driving conditions, ensuring height-

ened safety and situational awareness.

startAutoMode configAutoMode

startAutoModewithV2X

● Auto Service. Central to the autonomous driv-

ing experience, this category encompasses VPIs cru-

cial for managing the vehicle’s self-driving features.

VPIs such as and

facilitate the seamless transition between the manual

and autonomous driving modes. With the integration

of V2X communication in ,

these services empower vehicles to interact intelligent-

ly with their surroundings, enhancing navigation, traf-

fic management, and overall driving efficiency.

initEmergencyCall sendEmergencyAlert

● Emergency Response. This category addresses

urgent safety and emergency scenarios, underscoring

the vehicle's responsiveness in critical situations. VPIs

like and

are designed to ensure rapid and effective communica-

tion during emergencies, automatically contacting

emergency services and alerting predefined contacts,

thereby offering an essential lifeline in times of need.

● Infotainment Service. Tailored to enrich the in-

vehicle entertainment experience, this category in-

playMedia pauseMedia
cludes VPIs that manage various forms of media con-

tent. Functions such as and

reflect the vehicle's role as an entertainment hub, pro-

viding passengers with access to a wide range of mul-

timedia content and interactive infotainment options,

thereby transforming the vehicle into a space of relax-

ation and enjoyment.

Service VPIs play a crucial role in VC by offering

interfaces and services that cater to the unique re-

quirements of modern driving. These interfaces differ

from existing ones by providing advanced driver assis-

tance, autonomous driving capabilities, and personal-

ized services, which are essential for enhancing the

driving experience and safety. By incorporating these

specialized interfaces, the vehicle system can offer fea-

tures that go beyond traditional vehicle functionali-

ties, improving the overall driving experience and

aligning with the expectations of modern users.

3.6 Management VPIs

Management VPIs play a crucial role in oversee-

ing and enhancing the overall functionality of the con-

nected vehicle system. As detailed in Appendix Table

A5, management VPIs are responsible for integrating

device and service connections, access control, system

monitoring, and OTA upgrades, thereby ensuring

seamless, secure, and efficient management of the ve-

hicle's overall performance and resources. By provid-

ing precise control and monitoring capabilities, these

VPIs ensure the reliability and safety of the vehicle

system in all aspects, offering users a highly depend-

able and satisfying driving experience.

pairWithDevice connectCloud

● Device & Service Connection. This category is

fundamental to the vehicle's ability to integrate and

interact with external devices and services. Critical

VPIs such as and en-

able seamless conline-height-add:0.4ptnectivity and

authentication with a variety of devices and cloud ser-

vices. These functions are essential for maintaining a

connected ecosystem, allowing the vehicle to leverage

external computing power, access a broader range of

services, and enhance the in-vehicle experience.

authenticate
User setAccessControl

● Access Control. Centered around the security of

the vehicle's systems, this category incorporates so-

phisticated VPIs for robust user authentication and

data protection. Key functions like -

 and ensure that the access

to the vehicle’s systems and data is securely regulat-

ed. These VPIs are critical in safeguarding against

Bao-Fu Wu et al.: VPI: Vehicle Programming Interface for Vehicle Computing 31

unauthorized access and potential security breaches,

thereby maintaining the integrity and confidentiality

of sensitive information.

monitorHWStatus monitorCompResourceUse

● System Status Monitoring. Focused on continu-

ous monitoring and maintenance of the vehicle's

health, this category includes VPIs that provide real-

time insights into the status of various hardware com-

ponents and resource usage. VPIs like

 and are

instrumental in preemptive maintenance and re-

source optimization, ensuring the vehicle operates at

peak efficiency and reliability.

startPersonalMode configPersonalMode

● Personalized Mode. Reflecting the increasing de-

mand for personalized experiences in vehicles, this

category includes VPIs that enable users to tailor the

vehicle's settings to their preferences. Functions such

as and al-

low for customization of user profiles and modes, en-

hancing comfort and convenience for each user. This

personalization extends from driving preferences to in-

fotainment settings, offering a bespoke user experi-

ence.

scheduleOTAUpdate
verifyOTAUpdate

● OTA Upgrade. Ensuring the vehicle's software

remains up-to-date and secure, this category compris-

es VPIs dedicated to the management of over-the-air

software updates. VPIs such as

and streamline the update process,

from scheduling and downloading to installation and

verification. This continuous updating process is cru-

cial for enhancing features, fixing bugs, and improv-

ing the vehicle's overall security.

Management VPIs are essential components of VC

as they differ from existing interfaces by providing

centralized control over access, monitoring system

status, and managing OTA updates. They ensure that

every aspect of vehicle management, from device con-

nectivity to system monitoring and user personaliza-

tion, is executed with precision and user-centric focus,

thereby playing a pivotal role in the evolution of

smart and connected vehicles.

4 VPI Implementation

This section introduces the experimental scenario

design for deploying VPI to conduct subsequent ex-

perimental evaluations. It consists of two main parts:

the hardware deployment, which involves the indoor

autonomous driving vehicle Zebra, and the software

deployment, which includes the implementation of the

VPI-driven system OpenVDAP.

4.1 Hardware: Zebra

×

±

In this study, we used the Zebra hardware plat-

form which is implemented to emulate real au-

tonomous vehicles to evaluate the performance of

VPIs (as shown in Fig.3). A general autonomous driv-

ing system includes the computing unit, perception

sensors, the drive-by-wire (DBW) system, and the

battery management system (BMS). On Zebra, the

computing unit is the NVIDIA Jetson AGX Xavier

Developer Kit. Jetson AGX Xavier⑳ is a compact,

high-performance computing device designed for au-

tonomous machines, offering up to 32 TOPS of AI

performance with its 512-core NVIDIA Volta GPU,

64 Tensor cores, and an 8-core ARM v8.2 64-bit

CPU. Besides, we deployed two sensors on Zebra. The

first is the Intel RealSense Depth Camera D435i,

which features an RGB sensor, providing a maximum

RGB resolution of 1 920 1 080. The second is Velo-

dyne VLP-16, a compact and high-value 3D LiDAR

sensor offering a 100 m range and 16-channel high-

definition environmental mapping with an accuracy of

3 cm. The chassis of Zebra is the hunter robot of

AgileX, which integrates an Ackermann control based

DBW and a BMS for reading energy-related informa-

tion.

Camera LiDAR Jetson AGX Xavier

Fig.3. Zebra: general usage indoor robot vehicle. The sensor
camera is realsense D435i and LiDAR is Velodyne VLP-16. The
computation unit is NVIDIA Jetson AGX Xavier.

32 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

⑳NVIDIA. NVIDIA Jetson Xavier: A breakthrough in embedded applications. 2023. https://www.nvidia.com/en-us/au-
tonomous-machines/embedded-systems/jetson-xavier-series/, Jan. 2024.

https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-series/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-series/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-series/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-series/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-series/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-series/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-series/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-series/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-series/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-series/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-series/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-series/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-series/

4.2 Software: OpenVDAP

In this subsection, we developed a VPI verifica-

tion software prototype platform㉑, OpenVDAP[5],

which is designed to optimize vehicle applications

through a multi-layered architecture approach. Fig.4

details the architecture and the components involved.

The framework of the VPI supporting system, de-

signed for connected autonomous vehicles (CAVs),

centers around the OpenVDAP on CAVs, efficiently

structured into distinct containers for specific func-

tions: a server container as the central hub, an ROS2

container for managing sensor data, an ROS1 contain-

er for vehicle control, and a database container for

storing essential configurations. Key components in-

clude VPIs for vehicle function access, hardware con-

trol for hardware interaction, data management for

integrity and storage, algorithm processing for real-

time data computation, and application deployment

for seamless integration.

In terms of implementation, OpenVDAP utilizes

C++ and Python for effective integration with the

ROS1 and ROS2 systems, employing Docker contain-

ers for modularity. Data flows through the system via

sensor nodes in ROS2 for processing, algorithm nodes

for decision-making, and control nodes in ROS1 for

executing vehicle commands. The system's configura-

tion and management are streamlined through the

AD manager, which provides a comprehensive inter-

face for system updates and maintenance.

getCameraData getLiDARdata getHistCameraData
getHistLiDARdata

controlVehicle runAIModel
startADAS stopADAS

checkAccess validate
Token

OpenVDAP is a prototype platform and still

needs to complete the development of all VPIs. The

first version includes libraries for data-related VPIs

(, , ,

and), vehicle computation related

VPIs (and), services-re-

lated VPIs (and), and access

control related VPIs (and -

). We have developed applications based on

VPI, such as lane-keeping, remote control, and re-

mote lane inspection. Subsequently, we will conduct

performance evaluations for some of these developed

applications.

5 Evaluation

This evaluation section systematically examines

the capabilities and performance of the vehicle pro-

gramming interfaces (VPIs) in real-world au-

tonomous driving applications.

OpenVDAP

Running on CAVs

Control Nodes Algorithm Nodes

VPIs Service Computation Data

Server Container

ROS1 Container

Sensor Nodes

ROS2 Container

Database Container

Sensor
Configuration

Model
Configuration

Control
Configuration

Provided by
 AD Manager

Sensor
Configuration File

Model
Configuration File

Control
Configuration File

Hardware

Vehicle Applications

Management

Fig.4. Framework of VPI supporting system.

Bao-Fu Wu et al.: VPI: Vehicle Programming Interface for Vehicle Computing 33

㉑https://github.com/thecarlab/vpi, Jan. 2024.

https://github.com/thecarlab/vpi

5.1 Simpler Coding: VPI vs AUTOSAR

Lane keeping, a critical feature in ADAS for au-

tonomous driving, particularly in high-speed scenar-

ios, has been implemented using VPIs. The listing 1

code segment demonstrates the VPI approach.

Listing 1. Lane Keeping with VPI

 1 import vpi

 2

 3 modelID = “E2E_Lane_Keeping”
 4

 5 # Get front camera data

 6 front_camera_data = vpi.getCameraData(“front”)
 7

 8 # Run AI model for lane keeping

 9 ai_model_output = vpi.runAIModel(modelID,

　　front_camera_data, params = {})
10

11 # Control vehicle using the output twist

12 vehicle_control_status =

　　vpi.controlVehicle(ai_model_output[“twist”])
13

14 return vehicle_control_status

Comparatively, we provide a foundational frame-

work demonstrating how AUTOSAR API concepts

can be utilized in C++. It is important to note that

this is a conceptual example. Listing 2 code segment

is a rudimentary example illustrating the definition of

the lane keeping service interface and a basic service

implementation.

When comparing VPI with AUTOSAR API for

implementing lane-keeping functionality, using VPI,

the task can be accomplished with only 14 lines of

code, while AUTOSAR requires at least 35 lines. This

difference is not merely due to language syntax but

stems from the need in AUTOSAR to implement the

service interface for functionality. In contrast, VPI fo-

cuses on interface functionalities and the basic work-

flow logic without delving into the underlying imple-

mentation.

The primary advantage of VPI lies in its simplici-

ty and ease of use. Written in Python, VPI offers an

intuitive and user-friendly interface, facilitating rapid

development and prototyping. This approach suits

scenarios that demand quick iterations and simplified

system integration. In contrast, while AUTOSAR

API provides more advanced customization capabili-

ties and safety features suitable for complex and safe-

ty-critical applications, it comes with a steeper learn-

ing curve and greater complexity. Therefore, for

projects prioritizing development efficiency and a

streamlined programming experience, VPI stands out

as a more efficient and accessible option.

5.2 Case Study: Remote Control and Latency

Evaluation

This case will demonstrate the remote transmis-

sion and remote control. The L4-level autonomous ve-

hicles currently in trial operation cannot still cope

Listing 2. Lane Keeping with AutoSAR

 1 #include <ara/com/com.h>
 2 #include <ara/core/future.h>
 3 #include <iostream>
 4

 5 // Service interface for lane keeping

 6 namespace ara::com::sample {
 7 　class LaneKeepingServiceInterface {
 8 　public:

 9 　　virtual ~LaneKeepingServiceInterface() =

　　　default;

10

11 　　// Method to activate lane keeping

12 　　virtual ara::core::Future<void> KeepLane()

　　　= 0;

13 　};
14 }
16 // Service implementation

17 class LaneKeepingServiceImpl : public

　ara::com::sample::LaneKeepingServiceInterface

　{
18 public:

19 　// Lane keeping logic implementation

20 　ara::core::Future <void> KeepLane() override {
21 　　std::cout << “Keeping the lane...” <<
　　　std::endl;

22 　　// Placeholder for actual lane keeping

　　　logic

23 　　return

　　　ara::core::Promise<void>().get_future();

24 　}
25 };
26

27 int main() {
28 　// Service instance creation

29 　LaneKeepingServiceImpl laneKeepingService;

30

31 　// Activating lane keeping service

32 　auto future = laneKeepingService.KeepLane();

33 　future.wait(); // Waiting for service execution

34 　return 0;

35 }

34 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

with all scenarios, and manual takeover is necessary.

It is an economical and effective option to centralize

the driver to drive the vehicles that need to be taken

over remotely. We use the OpenVDAP platform to

implement the remote control demo. The remote con-

trol center application is deployed in Intel Fog Refer-

ence㉒, which acts as a center station.

getCameraData(vehicleID, ′front′)

web_stream_node
front_camera_node

front_camera_msg

controlVehicle
(vehicleID, ′twist′)

control_service_node
steer_control_msg

Fig.5 outlines the workflow within a remote con-

trol application. Initially, the remote control applica-

tion in the center station submits a query to the ac-

cess manager to obtain visual data from the vehicle's

front camera ()

(step 1). Upon gaining authorization (step 2), the

 is launched, which, in turn, acti-

vates the responsible for stream-

ing the back to the remote appli-

cation, as depicted in step 5. Concurrently, the appli-

cation requests control access (

) shown in step 6. Once allowed

(step 7), the comes online to

manage the , channeling the con-

control_nodetrol signals to the . This node then

communicates the commands through the CAN bus

to execute the vehicle's control actions, completing

the process at step 8.

×

Communication latency is a pivotal metric for the

operation of indoor remote-controlled vehicles, main-

ly when it involves transmitting high-definition video

data. The experiment demonstrates that when using

Wi-Fi communication, our system can maintain an

end-to-end latency with a median value of 1.54 sec-

onds for commands to retrieve front camera data.

This latency persists across the transmission of a

high-definition video stream at a resolution of 1 920

1 080 and a frame rate of 30 Hz from the vehicle to

the backend.

The cumulative distribution function (CDF) de-

picted in Fig.6 indicates that 90% of the commands

are executed with a latency of up to 1.77 seconds, es-

tablishing a significant reliability benchmark for the

system. This latency profile is considered acceptable

within the context of indoor environments, where the

Front Camera

/front_camera_msg

front_camera_node

web_stream_node

1. Query 8. Control 5. Video Stream

getCameraData(vehicleID,’front’)

Access Manager

2. If Allowed,

Start ROS2 Nodes

controlVehicle(vehicleID,’twist’)

control_node

control_service_node

CAN

/steer_control_msg

7. If Allowed,

Start ROS2 Nodes

Remote Control App

6. Query

Fig.5. Workflow of remote control.

Bao-Fu Wu et al.: VPI: Vehicle Programming Interface for Vehicle Computing 35

㉒Intel. Intel’s Fog Reference Design overview. 2018. https://www.reflexces.com/wp-content/uploads/2018/11/fog-reference-de-
sign-overview-guide.pdf, Jan. 2024.

https://www.reflexces.com/wp-content/uploads/2018/11/fog-reference-design-overview-guide.pdf
https://www.reflexces.com/wp-content/uploads/2018/11/fog-reference-design-overview-guide.pdf
https://www.reflexces.com/wp-content/uploads/2018/11/fog-reference-design-overview-guide.pdf
https://www.reflexces.com/wp-content/uploads/2018/11/fog-reference-design-overview-guide.pdf
https://www.reflexces.com/wp-content/uploads/2018/11/fog-reference-design-overview-guide.pdf
https://www.reflexces.com/wp-content/uploads/2018/11/fog-reference-design-overview-guide.pdf
https://www.reflexces.com/wp-content/uploads/2018/11/fog-reference-design-overview-guide.pdf
https://www.reflexces.com/wp-content/uploads/2018/11/fog-reference-design-overview-guide.pdf
https://www.reflexces.com/wp-content/uploads/2018/11/fog-reference-design-overview-guide.pdf
https://www.reflexces.com/wp-content/uploads/2018/11/fog-reference-design-overview-guide.pdf
https://www.reflexces.com/wp-content/uploads/2018/11/fog-reference-design-overview-guide.pdf
https://www.reflexces.com/wp-content/uploads/2018/11/fog-reference-design-overview-guide.pdf

need for real-time control is not so critical as in out-

door or high-speed scenarios[20]. It enables a balance

between high-quality video transmission and the re-

sponsiveness of the control system.

In conclusion, while the system exhibits higher la-

tency than might be desired for real-time applications,

it remains within a tolerable range for its intended

use case. The reliable transmission of high-definition

video is achieved, suggesting that the current setup is

suited for applications where a slight delay is permis-

sible. This reliability and performance balance under-

scores the system’s potential for indoor remote-con-

trolled operations where high-resolution visual feed-

back is required, and a marginal delay in lab environ-

ment is operationally acceptable[20].

6 Discussion

In this paper, our primary focus has been on de-

signing and developing programming interfaces for ve-

hicle computing (VC). We have presented a compre-

hensive framework of vehicle programming interfaces

(VPIs) that cover various aspects of connected vehi-

cle systems, from hardware management to service in-

teractions. Our work has aimed to provide a struc-

tured and standardized approach to enable efficient

application development for autonomous vehicles.

It is important to note that while performance op-

timization is a critical aspect of VC, it was not the

primary objective of this paper. Our emphasis has

been on defining clear and standardized interfaces to

facilitate seamless communication and interaction be-

tween different components of the vehicle system.

These interfaces aim to address the challenges associ-

ated with the diversity of autonomous vehicles and

the need for collaborative development.

Performance improvement remains an important

consideration in VC, and we acknowledge that there

is room for enhancing the performance aspects of the

proposed interfaces. This includes optimizing compu-

tational tasks, reducing latency, and ensuring effi-

cient resource utilization. However, we view perfor-

mance enhancement as part of future work, and we

believe that the foundation provided by our standard-

ized programming interfaces will enable researchers

and developers to build upon it and further improve

the performance of autonomous vehicle systems.

After all, this paper has laid the groundwork for a

structured approach to VC through the development

of programming interfaces. While performance opti-

mization is a critical aspect of connected vehicle sys-

tems, our main contribution lies in providing a clear

and standardized framework for application develop-

ment. We look forward to future research endeavors

aimed at enhancing the performance aspects of VC

while building upon the foundations established in

this work.

7 Conclusions

In response to the urgent need for rapid applica-

tion development centered around vehicle computing

(VC), we delineated and proposed a comprehensive

set of standardized vehicle programming interfaces

(VPIs) with five main sets: Hardware, Data, Compu-

tation, Service, and Management. We developed an

OpenVDAP prototype, in which we experimentally

validated the efficiency of programming in VC appli-

cation development using the proposed VPIs. Addi-

tionally, through a remote control example, we

demonstrated the underlying workflow in the Open-

VDAP platform after invoking VPI and analyzed the

end-to-end latency characteristics of this example.

Our work represents an essential contribution to the

development of VC applications and highlights the

importance of interdisciplinary collaboration. In the

future, we plan to further enrich and refine the de-

sign of VPIs according to emerging requirements, ex-

pand the functionalities of OpenVDAP, and optimize

its performance.

Conflict of Interest Weisong Shi is an editori-

al board member for Journal of Computer Science

and Technology and was not involved in the editorial

review of this article. All authors declare that there

are no other competing interests.

1.0 1.2 1.4 1.6 1.8 2.0

0.0

0.2

0.4

0.6

0.8

1.0

End2end Latency (s)

C
D

F

 ---CDF 0.5 at 1.54 seconds
CDF 0.9 at 1.77 seconds---

Fig.6. CDF of remote control end2end latency.

36 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

References

 Liu Z W, Zhang W, Zhao F Q. Impact, challenges and

prospect of software-defined vehicles. Automotive Innova-

tion, 2022, 5(2): 180–194. DOI: 10.1007/s42154-022-00179-z.

[1]

 Lu S D, Shi W S. Vehicle as a mobile computing plat-

form: Opportunities and challenges. IEEE Network, 2023.

DOI: 10.1109/MNET.2023.3319454.

[2]

 Lu S D, Shi W S. The emergence of vehicle computing.

IEEE Internet Computing, 2021, 25(3): 18–22. DOI: 10.

1109/MIC.2021.3066076.

[3]

 Dong Z, Shi W S. Vehicle computing. IEEE Internet

Computing, 2023, 27(5): 5–6. DOI: 10.1109/MIC.2023.3310

367.

[4]

 Zhang Q Y, Wang Y F, Liu L K, Wu X P, Shi W S,

Zhong H. OpenVDAP: An open vehicular data analytics

platform for CAVs. In Proc. the 38th IEEE International

Conference on Distributed Computing Systems, Jul. 2018,

pp.1310–1320. DOI: 10.1109/ICDCS.2018.00131.

[5]

 Liu L K, Lu S D, Zhong R, Wu B F, Yao Y T, Zhang Q

Y, Shi W S. Computing systems for autonomous driving:

State of the art and challenges. IEEE Internet of Things

Journal, 2021, 8(8): 6469–6486. DOI: 10.1109/JIOT.2020.

3043716.

[6]

 Padmaja B, Moorthy C V K N S N, Venkateswarulu N,

Bala M M. Exploration of issues, challenges and latest de-

velopments in autonomous cars. Journal of Big Data,

2023, 10(1): Article No. 61. DOI: 10.1186/s40537-023-

00701-y.

[7]

 Macenski S, Foote T, Gerkey B, Lalancette C, Woodall

W. Robot operating system 2: Design, architecture, and

uses in the wild. Science Robotics, 2022, 7(66): eabm6074.

DOI: 10.1126/scirobotics.abm6074.

[8]

 Pham M, Xiong K Q. A survey on security attacks and

defense techniques for connected and autonomous vehi-

cles. Computers & Security, 2021, 109: 102269. DOI: 10.

1016/j.cose.2021.102269.

[9]

 Sun X Q, Yu F R, Zhang P. A survey on cyber-security

of connected and autonomous vehicles (CAVs). IEEE

Trans. Intelligent Transportation Systems, 2022, 23(7):

6240–6259. DOI: 10.1109/TITS.2021.3085297.

[10]

 Fürst S, Bechter M. AUTOSAR for connected and au-

tonomous vehicles: The AUTOSAR adaptive platform. In

Proc. the 46th Annual IEEE/IFIP International Confer-

ence on Dependable Systems and Networks Workshop,

Jul. 2016, pp.215–217. DOI: 10.1109/DSN-W.2016.24.

[11]

 Liu L, Zhao M, Yu M, Jan M A, Lan D P, Taherkordi A.

Mobility-aware multi-hop task offloading for autonomous

driving in vehicular edge computing and networks. IEEE

Trans. Intelligent Transportation Systems, 2023, 24(2):

2169–2182. DOI: 10.1109/TITS.2022.3142566.

[12]

 Luo Q Y, Li C L, Luan T H, Shi W S. Collaborative da-

ta scheduling for vehicular edge computing via deep rein-

forcement learning. IEEE Internet of Things Journal,

2020, 7(10): 9637–9650. DOI: 10.1109/JIOT.2020.2983660.

[13]

 Liu L, Feng J, Mu X Y, Pei Q Q, Lan D P, Xiao M.

Asynchronous deep reinforcement learning for collabora-

tive task computing and on-demand resource allocation in

vehicular edge computing. IEEE Trans. Intelligent Trans-

portation Systems, 2023, 24(12): 15513–15526. DOI: 10.

1109/TITS.2023.3249745.

[14]

 Martínez-Fernández S, Ayala C P, Franch X, Nakagawa

E Y. A survey on the benefits and drawbacks of AU-

TOSAR. In Proc. the 1st International Workshop on Au-

tomotive Software Architecture, May 2015, pp.19–26.

DOI: 10.1145/2752489.2752493.

[15]

 Quigley M, Conley K, Gerkey B, Faust J, Foote T, Leibs

J, Leibs J, Wheeler R, Ng A. ROS: An open-source robot

operating system. In Proc. the 2009 ICRA Workshop on

Open Source Software, Jan. 2009.

[16]

 Rana M M, Hossain K. Connected and autonomous vehi-

cles and infrastructures: A literature review. Internation-

al Journal of Pavement Research and Technology, 2023,

16(2): 264–284. DOI: 10.1007/s42947-021-00130-1.

[17]

 Tang Q, Liang J, Zhu F Q. A comparative review on mul-

ti-modal sensors fusion based on deep learning. Signal

Processing, 2023, 213: 109165. DOI: 10.1016/j.sigpro.2023.

109165.

[18]

 Chang C, Zhang J W, Zhang K P, Zhong W Q, Peng X

Y, Li S, Li L. BEV-V2X: Cooperative birds-eye-view fu-

sion and grid occupancy prediction via V2X-based data

sharing. IEEE Trans. Intelligent Vehicles, 2023, 8(11):

4498–4514. DOI: 10.1109/TIV.2023.3293954.

[19]

 Liu L K, Wu B F, Shi W S. A comparison of communica-

tion mechanisms in vehicular edge computing. In Proc.

the 3rd USENIX Workshop on Hot Topics in Edge Com-

puting, Jan. 2020.

[20]

Bao-Fu Wu is pursuing his Ph.D.

degree in computer science at the

School of Computer Science and Tech-

nology, Hangzhou Dianzi University,

Hangzhou. He visited Professor

Weisong Shi's CAR Lab from 2020 to

2023, where he engaged in research on

cooperative vehicle infrastructure systems (CVIS). He

specializes in edge computing, parallel computing, and

CVIS. His work is particularly centered on advancing

the technology behind CVIS, aiming to improve vehicu-

lar communication systems for a smarter and more effi-

cient transportation infrastructure.

Bao-Fu Wu et al.: VPI: Vehicle Programming Interface for Vehicle Computing 37

https://doi.org/10.1007/s42154-022-00179-z
https://doi.org/10.1007/s42154-022-00179-z
https://doi.org/10.1007/s42154-022-00179-z
https://doi.org/10.1007/s42154-022-00179-z
https://doi.org/10.1007/s42154-022-00179-z
https://doi.org/10.1007/s42154-022-00179-z
https://doi.org/10.1007/s42154-022-00179-z
https://doi.org/10.1109/MNET.2023.3319454
https://doi.org/10.1109/MIC.2021.3066076
https://doi.org/10.1109/MIC.2021.3066076
https://doi.org/10.1109/MIC.2023.3310367
https://doi.org/10.1109/MIC.2023.3310367
https://doi.org/10.1109/ICDCS.2018.00131
https://doi.org/10.1109/JIOT.2020.3043716
https://doi.org/10.1109/JIOT.2020.3043716
https://doi.org/10.1186/s40537-023-00701-y
https://doi.org/10.1186/s40537-023-00701-y
https://doi.org/10.1186/s40537-023-00701-y
https://doi.org/10.1186/s40537-023-00701-y
https://doi.org/10.1186/s40537-023-00701-y
https://doi.org/10.1186/s40537-023-00701-y
https://doi.org/10.1186/s40537-023-00701-y
https://doi.org/10.1126/scirobotics.abm6074
https://doi.org/10.1016/j.cose.2021.102269
https://doi.org/10.1016/j.cose.2021.102269
https://doi.org/10.1109/TITS.2021.3085297
https://doi.org/10.1109/DSN-W.2016.24
https://doi.org/10.1109/DSN-W.2016.24
https://doi.org/10.1109/DSN-W.2016.24
https://doi.org/10.1109/TITS.2022.3142566
https://doi.org/10.1109/JIOT.2020.2983660
https://doi.org/10.1109/TITS.2023.3249745
https://doi.org/10.1109/TITS.2023.3249745
https://doi.org/10.1145/2752489.2752493
https://doi.org/10.1007/s42947-021-00130-1
https://doi.org/10.1007/s42947-021-00130-1
https://doi.org/10.1007/s42947-021-00130-1
https://doi.org/10.1007/s42947-021-00130-1
https://doi.org/10.1007/s42947-021-00130-1
https://doi.org/10.1007/s42947-021-00130-1
https://doi.org/10.1007/s42947-021-00130-1
https://doi.org/10.1016/j.sigpro.2023.109165
https://doi.org/10.1016/j.sigpro.2023.109165
https://doi.org/10.1109/TIV.2023.3293954

Ren Zhong has been pursuing his

Ph.D. degree in computer science at

Wayne State University, Detroit, un-

der the supervision of Dr. Weisong Shi

since 2019. His research focuses on au-

tonomous driving, especially high-defi-

nition map building and maintenance.

He received his M.S. degree in software engineering from

University of Science and Technology of China, Suzhou,

in 2016, and his B.S. degree in electrical engineering

from Chongqing University, Chongqing, in 2013.

Yuxin Wang is a first-year Ph.D.

student at the University of Delaware

in The CAR Lab (Connected and Au-

tonomous Research Laboratory), un-

der the guidance of Professor Weisong

Shi. She earned her Master's degree in

electrical engineering from the Univer-

sity of Pennsylvania, Philadelphia. Her academic jour-

ney has primarily focused on embedded intelligence, par-

ticularly on microcontrollers and machine learning algo-

rithms. As she transitions into the Ph.D., her research

delves into the realms of vehicle computing systems to

autonomous vehicles.

Jian Wan received his Ph.D. de-

gree in computer application technolo-

gy from Zhejiang University, Hangzh-

ou, in 1989. His research interests in-

clude grid computing, service comput-

ing, and cloud computing. He is cur-

rently a professor in software engineer-

ing with the School of Computer Science and Technolo-

gy, Hangzhou Dianzi University, Hangzhou.

Ji-Lin Zhang received his Ph.D. de-

gree in computer application technolo-

gy from University of Science Technol-

ogy Beijing, Beijing, in 2009. His re-

search interests include high-perfor-

mance computing and cloud comput-

ing. He is currently a professor in

School of Computer Science and Technology, Hangzhou

Dianzi University, Hangzhou.

Weisong Shi is a professor and the

Chair of the Department of Computer

and Information Sciences, the Univer-

sity of Delaware (UD), Newark, where

he leads the Connected and Autonom-

ous Research Laboratory (CAR Lab).

Before he joined UD, he was a profes-

sor at Wayne State University (2002–2022) and served

in multiple administrative roles, including an associate

dean for Research and Graduate Studies at the College

of Engineering and the interim chair of the Computer

Science Department. He is an internationally renowned

expert in edge computing, autonomous driving, and con-

nected health. His pioneer article titled ``Edge Comput-

ing: Vision and Challenges'' has been cited more than 7 000

times.

38 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

Appendix

Table A1. Hardware VPIs Specifications

VPI Type VPI Method Parameter Return Value Functionality

Sensor listSensors(vehicleId) vehicleId: String (default: self) List Enumerates vehicle sensors

configureSensor(vehicleId,
sensorId, config)

vehicleId: String (default: self),

sensorId: String, config: Object

Boolean Configures a sensor

calibrateSensor(vehicleId,
sensorId)

vehicleId: String (default: self),

sensorId: String

Boolean Calibrates a sensor

Actuator controlActuator(vehicleId,
actuatorId, command)

vehicleId: String (default: self),

actuatorId: String, command:

Object

Boolean Controls an actuator

configureActuator(vehicleId,
actuatorId, config)

vehicleId: String (default: self),

actuatorId: String, config: Object

Boolean Configures an actuator

ECU listECUs(vehicleId) vehicleId: String (default: self) List Lists vehicle ECUs

controlECU(vehicleId,
ecuId, command)

vehicleId: String (default: self),

ecuId: String, command: Object

Boolean Sends command to an ECU

configureECU(vehicleId,
ecuId, config)

vehicleId: String (default: self),

ecuId: String, config: Object

Boolean Configures an ECU

controlLighting(vehicleId,
ecuId, lightingSettings)

vehicleId: String (default: self),

ecuId: String, lightingSettings:

Object

Boolean

controlLighting

Controls the lighting ECU

with specified settings.

 is an

example of a VPI for

managing common devices,

similar to VPIs for

controlling air conditioning

and windows

Communication listCommDevices(vehicleId) vehicleId: String (default: self) List Lists communication devices

configureCommDevice(vehicleId,
deviceId, config)

vehicleId: String (default: self),

deviceId: String, config: Object

Boolean Configures a communication

device

toggleV2X(vehicleId, enable) vehicleId: String (default: self),

enable: Boolean

Boolean Toggles V2X communication

Energy controlCharging(vehicleId,
action)

vehicleId: String (default: self),

action: String

Boolean Controls battery charging

process

controlPowerOutput(vehicleId,
action, params)

vehicleId: String (default: self),

action: String, params: Object

Boolean Controls power output to

external systems

Infotainment configureDisplay(vehicleId,
settings)

vehicleId: String (default: self),

settings: Object

Boolean Configures the display

settings

configureAudio(vehicleId,
settings)

vehicleId: String (default: self),

settings: Object

Boolean Configures the audio system

Table A2. Data VPIs Specifications

VPI Type VPI Method Parameter Return Value Functionality

Sensor Data getSensorData(vehicleId,
sensorType, sensorId, params)

vehicleId: String (default: self),
sensorType: String, sensorId:
String, params: Object

Sensor data Retrieves real-time data from a
specified sensor based on type
and ID

getCameraData(vehicleId,
cameraID, params)

vehicleId: String (default: self),
cameraID: String, params:
Object

Camera data

getLiDARData getRadarData
getGPSData

Retrieves real-time data from a
specified camera, similar to

, ,
and

storeSensorData(vehicleId,
sensorType, sensorId, data)

vehicleId: String (default: self),
sensorType: String, sensorId:
String, data: Object

Boolean Stores real-time data from a
specified sensor based on type
and ID

storeCameraData(vehicleId,
cameraID, data)

vehicleId: String (default: self),
cameraID: String, data: Object

Boolean

storeLiDARData
storeRadarData
storeGPSData

Stores real-time data from a
specified camera, similar to

,
, and

(to be continued)

Bao-Fu Wu et al.: VPI: Vehicle Programming Interface for Vehicle Computing 39

Table A2. Data VPIs Specifications (Continued)

VPI Type VPI Method Parameter Return Value Functionality

getHistSensorData(vehicleId,
sensorType, timeRange, params)

vehicleId: String (default: self),
sensorType: String, timeRange:
TimeRange, params: Object

Sensor data Retrieves historical data from
a specified sensor within a
defined time range

getHistCameraData(vehicleId,
cameraID, timeRange, params)

vehicleId: String (default: self),
cameraID: String, timeRange:
TimeRange, params: Object

Camera data

getHistLiDARData
getHistRadarData
getHistGPSData

Retrieves historical data from
a specified camera, similar to

,
, and

Device Data getDeviceData(vehicleId,
deviceId)

vehicleId: String (default: self),
deviceId: String

Object Receives data from a
connected external device, for
example, a body-worn camera
or a smartphone

storeDeviceData(vehicleId,
deviceId, data)

vehicleId: String (default: self),
deviceId: String, data: Object

Boolean Stores data from specified
nearby devices

shareDataToDevice(vehicleId,
deviceId, data)

vehicleId: String (default: self),
deviceId: String, data: Object

Boolean Sends data to a connected
external device

Logs getOperationalLogs(vehicleId,
params)

vehicleId: String (default: self),
params: Object

Object Retrieves operational logs

storeOperationalLogs
(vehicleId, data)

vehicleId: String (default: self),
data: Object

Boolean Stores vehicle operational data
like speed, fuel consumption

User Data getUserData(vehicleId,
userId, params)

vehicleId: String (default: self),
userId: String, params: Object

User data Accesses user-related
information within the vehicle,
including settings and
preferences

storeUserData(vehicleId,
userId, data)

vehicleId: String (default: self),
userId: String, data: Object

Boolean Stores user-related information
within the vehicle, including
settings and preferences

Infotainment
Data

getMediaContent(vehicleId,
mediaId)

vehicleId: String (default: self),
mediaId: String

Object Retrieves stored media content

storeMediaContent(vehicleId,
mediaData)

vehicleId: String (default: self),
mediaData: Object

String Stores media content like
music and videos

Cloud & 3rd
Party Data

syncDataFromCloud(vehicleId,
sourceId, params)

vehicleId: String (default: self),
sourceId: String, params: Object

Shared data Retrieves data shared from
cloud sources or other vehicles

syncDataWithCloud(vehicleId,
destinationId, data)

vehicleId: String (default: self),
destinationId: String, data:
Object

Boolean Shares data from the vehicle to
a specified destination, such as
cloud service

getHDMap(vehicleId, location,
detailLevel)

vehicleId: String (default: self),
location: Location, detailLevel:
String

MapData Fetches high-definition map
data for a specified location
with desired level of detail

getWeatherData(vehicleId,
location)

vehicleId: String (default: self),
location: Location

WeatherData Provides current weather
information for the vehicle's
location, including forecasts

V2X Data getV2XData(vehicleId) vehicleId: String (default: self) V2XData Receives and processes
incoming V2X data via C-
V2X, DSRC

sendV2XData(vehicleId, type,
content)

vehicleId: String (default: self),
type: String, content: Object

Boolean Sends V2X messages with
specified content for
communication

storeV2XData(vehicleId, data) vehicleId: String (default: self),
data: Object

Boolean Stores road and vehicle
information received through
V2X communications

getNearbyVehicles(vehicleId) vehicleId: String (default: self) VehicleInfo Retrieves information of
nearby vehicles from V2X
messages

getSafetyAlert(vehicleId) vehicleId: String (default: self) SafetyAlert Receives and acts on safety
alerts from surrounding sources

getTrafficSignals(vehicleId) vehicleId: String (default: self) TrafficSignalInfo Obtains traffic signal status
from V2X infrastructure

getEnviroInfo(vehicleId) vehicleId: String (default: self) EnvironmentalInfo Collects environmental data
via V2X sensors

(to be continued)

40 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

Table A2. Data VPIs Specifications (Continued)

VPI Type VPI Method Parameter Return Value Functionality

getParkingInfo(vehicleId) vehicleId: String (default: self) ParkingInfo Retrieves available parking
spot information and
recommendations from V2X
messages

getMapData(vehicleId, area) vehicleId: String (default: self),
area: Area

MapData Obtains detailed map data for
a specified area, including
roads, landmarks, and traffic
conditions from V2X messages

getRoadConditions(vehicleId) vehicleId: String (default: self) RoadConditions Gathers information about
current road conditions, such
as construction, closures, or
hazards from V2X messages

Table A3. Computation VPIs Specifications

VPI Type VPI Method Parameter Return Value Functionality

Data
Preprocessing

cleanData(dataType, rawData,
params)

dataType: String, rawData:
Object, params: Object

Cleaned data Performs data cleansing
operations on raw data to
remove inaccuracies and
inconsistencies

formatData(inputFormat,
outputFormat, data, params)

inputFormat: String,
outputFormat: String, data:
Object, params: Object

Formatted data Converts data from one format
to another, ensuring data
consistency across systems

Autonomous
Driving Core

earlyFusion(vehicleId,
sensorTypes, params)

vehicleId: String (default: self),
sensorTypes: Array, params:
Object

Early fused data Integrates raw data from
diverse sensors like cameras,
radars, and LiDARs for initial
insights

intermFusion(vehicleId,
sources, params)

vehicleId: String (default: self),
sources: Array, params: Object

Intermediate fused
data

Fuses partially processed data
from sources like navigation
and environmental sensors for
enhanced analysis

lateFusion(vehicleId, data,
params)

vehicleId: String (default: self),
data: Array, params: Object

Late fused data Merges fully processed data
from systems including V2X
and diagnostics for
comprehensive decisions

getFusedBEVResult(vehicleId) vehicleId: String (default: self) Fused bird view
result

Provides a fused overhead view
of the vehicle's surroundings

get360View(vehicleId) vehicleId: String (default: self) Fused 360 view
result

Provides a comprehensive 360-
degree fused view of the
vehicle's surroundings,
integrating data from all
around-view cameras

getFusedLocation(vehicleId) vehicleId: String (default: self) Fused location
result

Retrieves the fused location
data of the vehicle, combining
GPS, IMU, map data, and
sensor data

getDrivableAreas(vehicleId) vehicleId: String (default: self) Drivable areas
result

Identifies drivable areas around
the vehicle by fusing data from
cameras, radars, LIDARs, and
maps

predictPaths(vehicleId,
trafficData, params)

vehicleId: String (default: self),
trafficData: Object, params:
Object

Path predictions
result

Forecasts the driving paths of
surrounding vehicles based on
current traffic data and
specified parameters, enhancing
proactive driving strategies

planRoute(vehicleId,
destination, params)

vehicleId: String (default: self),
destination: Location, params:
Object

Route plan result Generates an optimized route
plan considering traffic, safety,
and efficiency

decideMotion(vehicleId,
situationData, params)

vehicleId: String (default: self),
situationData: Object, params:
Object

Decision result Processes real-time data to
make driving motion decisions
in response to road conditions

(to be continued)

Bao-Fu Wu et al.: VPI: Vehicle Programming Interface for Vehicle Computing 41

Table A3. Computation VPIs Specifications (Continued)

VPI Type VPI Method Parameter Return Value Functionality

controlVehicle(vehicleId,
twist)

vehicleId: String (default: self),
twist: Object (containing linear
and angular velocity
components)

Boolean Sends control commands to the
vehicle based on the twist data
for precise movement and
navigation control

AI Model
Support

processAIInference(vehicleId,
taskType, data)

vehicleId: String (default: self),
taskType: String, data: Object

Inference result Performs AI inference tasks,
such as image recognition or
natural language processing

runAIModel(vehicleId, modelID,
inputData, params)

vehicleId: String (default: self),
modelID: String, inputData:
Object, params: Object

AI output Runs a specified AI model on
input data, providing
intelligent analysis

runE2EDriving(vehicleId,
params, environmentData)

vehicleId: String (default: self),
params: Object,
environmentData: Object

Boolean Executes comprehensive end-to-
end driving tasks, integrating
perception, planning, and
control based on real-time
environmental data

runDiagnostics(vehicleId) vehicleId: String (default: self) Diagnostic report Runs a full diagnostic check of
the vehicle

processVoiceCommand
(vehicleId, audioData)

vehicleId: String (default: self),
audioData: Data

Boolean Processes voice commands

V2X
Analytics
Support

reqCloudCompute(vehicleId,
task, data)

vehicleId: String (default: self),
task: String, data: Object

Task result Sends data to the cloud for
processing or analysis and
retrieves the results

reqDeviceCompute(vehicleId,
deviceId, task, data)

vehicleId: String (default: self),
deviceId: String, task: String,
data: Object

Compute result Utilizes computation resources
of a nearby device like a
smartphone for specified tasks

reqVehicleCompute(vehicleId,
targetVehicleID, task, data)

vehicleId: String (default: self),
targetVehicleID: String, task:
String, data: Object

Compute result Accesses computation resources
of a nearby vehicle for data
processing or analysis

reqInfraCompute(vehicleId,
infraId, task, data)

vehicleId: String (default: self),
infraId: String, task: String,
data: Object

Compute result Leverages computational power
of road infrastructure for
complex data tasks

Resource
Allocation

allocateResources(vehicleId,
resourceType, params)

vehicleId: String (default: self),
resourceType: String, params:
Object

Allocation status Dynamically allocates
computational resources based
on current needs and priorities

Table A4. Service VPIs Specifications

VPI Type VPI Method Parameter Return Value Functionality

ADAS Service startADAS(vehicleId, functId,
params)

vehicleId: String (default:
self), functId: String,
params: Object

Boolean Activates a specific ADAS function
such as automatic braking or lane
keeping

stopADAS(vehicleId, functId) vehicleId: String (default:
self), functId: String

Boolean Deactivates a specific ADAS function

configADAS(vehicleId, functId,
settings)

vehicleId: String (default:
self), functId: String,
settings: Object

Boolean Configures settings for an ADAS
function, allowing customization based
on user preferences

startACC(vehicleId, params) vehicleId: String (default:
self), params: Object

Boolean

startLKA
startNVA

Activates a specific ADAS function
Adaptive Cruise Control (ACC),
similar to VPI for Lane
Keeping Assist (LKA), VPI
for Night Vision Assist (NVA)

stopACC(vehicleId) vehicleId: String (default:
self)

Boolean
stopLKA stopNVA

Deactivates a specific ADAS function
ACC, similar to ,

configACC(vehicleId, settings) vehicleId: String (default:
self), settings: Object

Boolean

configLKA configNVA

Configures settings for an ADAS
function ACC, allowing customization
based on user preferences, similar to

,

(to be continued)

42 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

Table A4. Service VPIs Specifications (Continued)

VPI Type VPI Method Parameter Return Value Functionality

Auto
Service

startAutoMode(vehicleId,
settings)

vehicleId: String (default:
self), destinationParams:
Object

Boolean Activates the vehicle's autonomous
driving mode with minimal driver
intervention

stopAutoMode(vehicleId) vehicleId: String (default:
self)

Boolean Deactivates the autonomous driving
mode, returning control to the driver

startAutoModewithV2X
(vehicleId, destinationParams)

vehicleId: String (default:
self), params: Object

Boolean Activates the vehicle's autonomous
driving mode with V2X capabilities

stopAutoModewithV2X
(vehicleId)

vehicleId: String (default:
self)

Boolean Deactivates the autonomous driving
mode, returning control to the driver

configAutoMode(vehicleId,
settings)

vehicleId: String (default:
self), settings: Object

Boolean Configures settings for the autonomous
driving mode

Emergency
Response

initEmergencyCall(vehicleId,
emergencyType)

vehicleId: String (default:
self), emergencyType:
String

Boolean Automatically contacts emergency
services with vehicle details and
location

sendEmergencyAlert(vehicleId,
alertData)

vehicleId: String (default:
self), alertData: Object

Boolean Sends an emergency alert to predefined
contacts or systems

Infotainment
Service

playMedia(vehicleId,
mediaId)

vehicleId: String (default:
self), mediaId: String

Boolean Plays a media file

pauseMedia(vehicleId) vehicleId: String (default:
self)

Boolean Pauses the currently playing media

Table A5. Management VPIs Specifications

VPI Type VPI Method Parameter Return Value Functionality

Device &
Service
Connection

pairWithDevice(vehicleId,
deviceId, authCredentials)

vehicleId: String (default: self),
deviceId: String, authCredentials:
Object

Boolean Pairs the vehicle with an
external device with
necessary authentication
credentials

unpairDevice(vehicleId, deviceId) vehicleId: String (default: self),
deviceId: String

Boolean Unpairs the vehicle from
the external device

checkDevConnStatus(vehicleId,
deviceId)

vehicleId: String (default: self),
deviceId: String

[DevConnStatus] Checks the current
connection status of the
specified external device

checkV2XConnStatus(vehicleId) vehicleId: String (default: self) [V2XConnStatus] Retrieves the status of
nearby V2X-enabled
devices, including type,
connection quality, and
sharing capability

connectCloud(vehicleId,
serviceId, credentials)

vehicleId: String (default: self),
serviceId: String, credentials:
Object

Boolean Connects the vehicle to a
specified cloud service
with authentication

disconnectCloud(vehicleId,
serviceId)

vehicleId: String (default: self),
serviceId: String

Boolean Disconnects the vehicle
from a specified cloud
service

Access
Control

authenticateUser(userId,
credentials)

userId: String, credentials: Object Boolean Validates user identity to
ensure authorized access

setAccessControl(policyDetails) policyDetails: Object Boolean Defines access control
policies for resources

checkAccess(userId, resource) userId: String, resource: String Access
permission

Determines if a user has
access to a specific
resource

logAccess(userId, resource,
accessDetails)

userId: String, resource: String,
accessDetails: Object

Boolean Records access attempts
and details for auditing

encryptData(data)
decryptData(encryptedData)

, data: Object, encryptedData:
Object

Processed data Encrypts or decrypts data
for security purposes

generateToken(credentials)
validateToken(token)

, credentials: Object, token: String Token/
validation

Generates/validates
tokens for access control

(to be continued)

Bao-Fu Wu et al.: VPI: Vehicle Programming Interface for Vehicle Computing 43

Table A5. Management VPIs Specifications (Continued)

VPI Type VPI Method Parameter Return Value Functionality

System
Status
Monitoring

monitorHWStatus(vehicleId,
componentId, params)

vehicleId: String (default: self),
componentId: String, params:
Object

Hardware status Monitors and reports the
health, performance, and
operational status of
specific hardware
components in the vehicle

monitorSensorStatus(vehicleId,
sensorId, params)

vehicleId: String (default: self),
sensorId: String, params: Object

Sensor status

monitorSensorStatus
monitorActuatorStatus
monitorECUStatus
monitorChargingStatus

Retrieves the current
status of a specified
hardware device, for
example,

,
,

,

monitorEnergyUse(vehicleID,
functID, params)

vehicleId: String (default: self),
functID: String, params: Object

Energy usage Monitors the energy when
running a function

monitorCompResourceUse(vehicleId,
functID, params)

vehicleId: String (default: self),

functID: String, params: Object

Resource usage Monitors the usage of

CPU, GPU, and memory
when running a function

Personalized
Mode

startPersonalMode(vehicleId,
userId, modeID)

vehicleId: String (default: self),
userId: String, modeID: String

Boolean Activates a user-specific
mode in the vehicle with a
single click, providing a
tailored experience based
on individual preferences

stopPersonalMode(vehicleId,
userId, modeID)

vehicleId: String (default: self),
userId: String, modeID: String

Boolean Deactivates the currently
active mode for a specific
user, reverting to standard
or predefined settings

switchMode(vehicleId, userId,
currentModeID, newModeID)

vehicleId: String (default: self),
userId: String, currentModeID:
String, newModeID: String

Boolean Switches between modes
for a specific user,
facilitating seamless
transitions tailored to
individual preferences

configPersonalMode(vehicleId,
userId, modeID, settings)

vehicleId: String (default: self),
userId: String, modeID: String,
settings: Object

Boolean Configures personalized
modes for a specific user,
such as comfort mode,
gaming mode, and so on,
according to their
preferences

OTA
Upgrade

scheduleOTAUpdate(vehicleId,
updateContent, params)

vehicleId: String (default: self),
updateContent: String, params:
Object

Boolean Schedules OTA updates
for hardware drivers,
software, and algorithms

downloadOTAUpdate(vehicleId,
updateContent, params)

vehicleId: String (default: self),
updateContent: String, params:
Object

Download
status

Manages the downloading
process for OTA update
packages

installOTAUpdate(vehicleId,
updateContent, params)

vehicleId: String (default: self),
updateContent: String, params:
Object

Installation
status

Executes the installation
process for OTA updates

verifyOTAUpdate(vehicleId,
updateContent, params)

vehicleId: String (default: self),
updateContent: String, params:
Object

Verification
status

Verifies the results of
OTA updates and
provides system-level
feedback

44 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

	1 Introduction
	2 Related Work
	3 Vehicle Programming Interface Design
	3.1 Overview of Vehicle Programming Interface
	3.2 Hardware VPIs
	3.3 Data VPIs
	3.4 Computation VPIs
	3.5 Service VPIs
	3.6 Management VPIs

	4 VPI Implementation
	4.1 Hardware: Zebra
	4.2 Software: OpenVDAP

	5 Evaluation
	5.1 Simpler Coding: VPI vs AUTOSAR
	5.2 Case Study: Remote Control and Latency Evaluation

	6 Discussion
	7 Conclusions
	Conflict of Interest
	Appendix
	References

