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Abstract    The historical interaction sequences of users play a crucial role in training recommender systems that can ac-

curately predict user preferences. However, due to the arbitrariness of user behaviors, the presence of noise in these se-

quences poses a challenge to predicting their next actions in recommender systems. To address this issue, our motivation is

based on the observation that training noisy sequences and clean sequences (sequences without noise) with equal weights

can impact the performance of the model. We propose the novel self-supervised Auxiliary Task Joint Training (ATJT)

method aimed at more accurately reweighting noisy sequences in recommender systems. Specifically, we strategically se-

lect  subsets  from users’ original  sequences  and  perform random replacements  to  generate  artificially  replaced  noisy  se-

quences. Subsequently, we perform joint training on these artificially replaced noisy sequences and the original sequences.

Through effective reweighting, we incorporate the training results of the noise recognition model into the recommender

model. We evaluate our method on three datasets using a consistent base model. Experimental results demonstrate the ef-

fectiveness of introducing the self-supervised auxiliary task to enhance the base model’s performance.

Keywords    auxiliary task learning, recommender system, sequence denoising

  

1    Introduction

Recommender  systems  play  a  crucial  role  in  to-

day’s Internet and e-commerce domains, offering users

improved  information  retrieval  and  shopping  experi-

ences,  while  also  yielding  substantial  economic  bene-

fits  for  businesses[1–3].  Click-through rate  (CTR) pre-

diction  holds  a  significant  role  within  personalized

recommender systems[4–7]. By analyzing users’ histori-

cal  interaction  sequences,  these  systems  recommend

products  aligned  with  user  interests  and  preferences,

facilitating the discovery of potentially engaging con-

tent[8].  This method enhances user experience, fosters

sales  and  propagates  content[9, 10].  In  the  context  of

sequence-based  recommendation,  the  issue  of  noise

present  in  sequences  significantly  impacts  the  estab-

lishment  of  accurate  and  reliable  recommender  mod-

els, presenting a complex and pivotal challenge with-

in  the  field.  Sequence  noise  can  arise  from  various

sources, including user curiosity, data collection inac-

curacies  and environmental  shifts,  consequently  lead-

ing  to  misjudgments  of  user  interests  and  inaccurate

recommender  model  outcomes[7, 11–17].  Models  trained

on  clean  sequences  significantly  outperform  those

trained  on  original,  noise-containing  sequences.  This

underscores  the  imperative  of  exploring  denoising

strategies in recommender systems[18].

To  address  the  challenges  mentioned  above,  de-

noising  of  sequences  has  garnered  increasing  atten-

tion  from  researchers.  Recent  studies  demonstrate

that  using  denoising  methods  in  recommender  sys-

tems  can  lead  to  more  efficient  model  training  and
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better  performance  at  a  reasonable  computational

cost[19–21]. The existing denoising process involves two

steps: recognizing noise and handling noisy sequences.

In  practice,  recognizing  for  noise  typically  judges

sequences  with  high  loss  values  as  noisy  sequences.

Based  on  the  handling  of  noisy  sequences,  existing

methods can be categorized into two types: truncated

denoising and reweighted denoising. For truncated de-

noising methods[22, 23],  the objective is to train a net-

work  capable  of  recognizing  noise  and  discarding

noisy  sequences,  allowing  the  models  to  only  learn

from  clean  sequences.  Regarding  reweighted  denois-

ing  methods[18, 24],  once  noisy  sequences  are  recog-

nized, these methods tend to assign smaller weights to

these sequences throughout the entire model training

process, thereby reducing the contribution of these se-

quences to the recommender models.

Although  these  denoising  methods  improve  the

performance  of  the  recommender  model,  user  behav-

iors  encompass  diverse  interests  and  motivations.

Some  interactions  may  be  temporary,  random or  in-

fluenced by other factors, which increases the difficul-

ty  of  recognizing between noisy  and clean sequences.

Moreover,  due  to  complex  data  distributions  and  in-

herent  learning  difficulties,  high  loss  values  do  not

necessarily  indicate  noisy  sequences.  Additionally,

thresholds in the truncated denoising method heavily

relies  on  the  sampling  distribution  during  the  deci-

sion-making process, inevitably discarding many clean

sequences  and  potentially  exhibiting  biased

selections[18].  Reweighted  denoising  methods  require

specific  configurations  for  a  given  model  or  recom-

mendation  task,  which  can  be  time-consuming  and

challenging to transfer to other settings[25].

To address the aforementioned issues, from an in-

tuitive perspective, we posit that using a noise recog-

nition model to identify noise sequences and then as-

signing  smaller  weights  to  these  sequences  to  miti-

gate  their  influence  can  enhance  the  performance  of

the  recommender  model.  Unlike  traditional  noise

recognition  methods,  we  propose  a  direct  method  by

constructing  a  noise  recognition  model  as  an  auxil-

iary  task  to  specifically  identify  noisy  sequences.

Moreover, to mitigate the impact of reduced training

data  on  the  recommender  model,  we  use  a  novel

adaptive  reweighting  method:  training  the  noise

recognition model and the recommender model joint-

ly.  This  method  allows  for  assigning  the  most  suit-

able  weights  for  different  sequences,  optimizing  the

performance of the recommender model.

Initially, we construct a noise recognition model to

differentiate between clean and noisy sequences in the

original  dateset.  Given  the  difficulty  of  identifying

noisy sequences within the original dataset[25], we arti-

ficially  create  noisy  sequences  by  replacing  historical

click items of the original sequences with random da-

ta. Due to the inherent limitations of human interven-

tion, the artificially replaced noisy sequences may not

fully  replicate  the  authentic  noisy  sequences  present

in  the  original  sequences.  However,  since  certain  au-

thentic  noisy  sequences  also  result  from  users’ spo-

radic, unintentional clicks, there are some similarities

between them.  Based on the  assumption  of  the  exis-

tence of certain similarities, we believe that the artifi-

cially  replaced  noisy  sequences  can  represent  a  por-

tion  of  the  original  noisy  sequences,  and thus  we  re-

gard the artificially replaced noisy sequences as noise

data. Given the scarcity of true noise data within the

original sequences, we regard the original sequences as

clean  data.  At  this  point,  we  can  conduct  labeled

training for the noise recognition model.

Furthermore,  we cannot  simply  discard the  noisy

sequences  from the original  sequences,  as  these  noisy

sequences  may contain  factors  that  are  beneficial  for

the training of the recommender model, and different

noisy sequences have varying impacts on the training

of the recommender model. Therefore, we use a novel

adaptive  reweighting  method.  Taking  into  account

that  a  fixed  weighting  strategy  does  not  adapt  to

model  variations  and  that  the  contributions  of  noisy

data to model training are not uniform, we opt to de-

sign the sequence weights as learnable parameters as-

sociated  with  the  denoising  method,  which  is  benefi-

cial  for  the  performance  of  the  recommender  model.

Specifically,  we train  the  noise  recognition model  us-

ing  original  sequences  and  randomly  replaced  noisy

sequences.  The  noise  recognition  model  then  weights

non-overlapping  original  sequences  not  used  in  its

training.  These  weighted  sequences  are  subsequently

used  to  train  the  recommender  model.  This  joint

training  is  accomplished  through  the  auxiliary  task,

ensuring  that  the  noise  recognition  model  accurately

identifies noisy sequences while optimizing the results

of sequence reweighting.

After  training  the  noise  recognition  model,  the

noise  recognition  model  becomes  adept  at  accurately

distinguishing  between  these  two  types  of  sequences.

In  other  words,  the  noise  recognition model  tends  to
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classify the original sequences it is trained on as clean

sequences,  which  results  in  the  inability  to  recognize

the noisy sequences in the original sequences. Taking

this  issue  into  consideration,  we  choose  to  use  the

non-overlapping  original  sequences  that  are  not  in-

volved in the training of  the noise  recognition model

as inputs for the recommender model allow us to de-

termine which of the input sequences used during the

training of the recommender model contain noise.

The main contributions of this work are as follows.

● We  introduce  the  novel  self -supervised  Auxil-

iary Task Joint Training (ATJT) method, where the

weights  obtained from the joint  training of  the noise

recognition  model  and  the  recommender  model  are

reweighted  onto  the  sequences  used  for  training  the

recommender  model.  This  method  enhances  the  per-

formance of the recommender model.

● The  ATJT method is  versatile  and  can  be  ap-

plied to various underlying recommender models.

● We  evaluate  the  ATJT  method  on  three

datasets using a consistent base model. Experimental

results  show  that  our  method  improves  the  perfor-

mance of the recommender model.

The paper is structured as follows. Section 2 intro-

duces related work, focusing on CTR models and de-

noising  methods. Section 3 presents  the  preliminary

work,  describes  the  training  processes  for  both  the

noise  recognition  and  recommender  models,  and  ex-

plains  the  ATJT  method. Section 4 presents  the  ex-

perimental  setup,  results  and model  analysis. Section

5 concludes  the  paper  with  a  summary  of  our  work

and discusses future research directions. 

2    Related Work

In this section, we introduce the CTR models and

provide a comprehensive overview of the methods re-

lated to sequence denoising in CTR models. 

2.1    CTR Models

In  recent  years,  deep learning  based models  have

gained  significant  traction  in  CTR  prediction[15].

These  models  exhibit  strong  representation  learning

capabilities,  enabling  them to  capture  more  intricate

and  challenging  patterns  and  features.  Existing  deep

learning  based  recommender  models  can  be  broadly

categorized into two types: sequence-based[7, 26–34] and

graph-based[35–37] models.  We  propose  a  sequence-

based  denoising  method  in  this  paper.  This  subsec-

tion  focuses  on  sequence-based  recommender  models.

Wide  &  Deep[11] and  DCN[14] leverage  the  memory

and  generalization  capabilities  of  feature  interactions

by  combining  traditional  generalized  linear  models

with  deep  neural  networks.  DIN[7] uses  self-attention

mechanisms to enhance the representation of user in-

terests.  SASRec[38] and  S3Rec[39] utilize  a  multi-head

self-attention mechanism to model relationships with-

in  sequences.  PS-SA[40] employs  a  learnable  progres-

sive  sampling  strategy  to  identify  the  most  valuable

items.  FEARec[41] enhances  recommendation  by  con-

verting  user  historical  behavior  sequences  into  fre-

quency  domain  representations  and  combining  them

with a self-attention mechanism.

CTR  models  leverage  self-supervised  learning[42]

methods  to  improve  data  utilization  and  learn  fea-

ture  representations.  For  instance,  DuoRec[43] and

MPT[44] enhance  item  embedding  distributions

through  contrastive  learning.  ICL[45] and  simple  CL

method[46] address  data  sparsity  and  popularity  bias

by  learning  user  intent  representations.  Pre-training

GNN[47], multi-channel hypergraph convolutional net-

work[48],  DHCN[49],  and  self-supervised  tri-training[50]

integrate  self-supervised  learning  with  other  relevant

techniques  to  enhance  the  performance  of  recom-

mender systems. 

2.2    Denoising Methods

Identifying noisy sequences is  an essential  step in

sequence  denoising.  DROP[51] and  three  instance  se-

lection methods[52] discuss how to reduce the number

of sequences in the training set without affecting clas-

sification  accuracy.  AutoDenoise[25] deletes  sequences

that have a counteractive effect on the model through

rewards.  Hierarchical  reinforcement  learning  for

course  recommendation  in  MOOCs[53] removes  noisy

courses  by  jointly  training  a  hierarchical  reinforce-

ment  learning  based  modifier  and  a  basic  recom-

mender  model.  DeCA[24] determines  noisy  sequences

by analyzing the discrepancies in user preferences pre-

dicted  by  two  recommender  models.  MMInfoRec[54]

and  ContrastVAE[55] address  issues  such  as  sparsity

and uncertainty in  recommender  systems by leverag-

ing  contrastive  learning  techniques.  DT4SR[56] effec-

tively resolves the problem of neglecting user dynam-

ic  preferences  and  item  relationships  in  traditional

methods  by  introducing  uncertainty  into  sequential
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modeling. The SDK framework[57] deals with the chal-

lenges of knowledge graphs (KGs) in knowledge-aware

recommendation  by  modeling  hyper-relational  facts

and  using  self-supervised  learning  mechanisms.

SGL[58] improves the recommendation performance of

long-tail items and the robustness against interaction

noises  by  using  an  auxiliary  self-supervised  learning

task. We propose a denoising auxiliary task that nei-

ther requires considering the impact on the model nor

adds excessive  additional  training steps.  We define  a

model  capable  of  recognizing  noise,  thereby  enhanc-

ing the model’s performance.

After recognizing noisy sequences, we need to han-

dle  them  to  improve  the  performance  of  the  recom-

mender  model.  Existing  methods  for  handling  noisy

sequences  can be  classified  into  two categories:  trun-

cated  denoising[18, 19, 21] and  reweighted  denoising[18].

WBPR[19] and T-CE[18] define thresholds for samples,

truncating sequences with loss values higher than the

threshold  at  each  iteration.  IR[21] modifies  labels  to

train downstream modules for recommendation tasks.

In R-CE[18],  smaller  weights are assigned to high-loss

sequences to prevent the model from fitting them too

quickly.  However,  truncated  denoising  methods  risk

filtering  out  many  clean  sequences,  while  reweighted

denoising methods suffer  from limited transferability.

We  propose  ATJT  similar  to  reweighted  denoising

methods,  but  it  addresses  limitations  by  adaptively

adjusting the weighting degree. 

3    Methodology

We  introduce  the  preliminary  work  and  discuss

the training processes for the noise recognition model

and  the  recommender  model,  and  provide  a  detailed

explanation of how to implement the ATJT method. 

3.1    Preliminary

bIn this  paper,  we use  batch  composed of  train-

ing sequences as the input for both the noise recogni-

tion  model  and the  recommender  model.  Each batch

has a size M, and the sequences have a length N.

BR

BD

bRi = {si, 1, . . . , si,m, . . . , si,M} ∈ BR

All  batches  are  divided  into  two  groups,  and

.  The  batch  in  the  first  group,  denoted  as

,  undergoes  ob-

taining the weights of historical interaction sequences

through the noise recognition model. We then use the

reweighted sequences to train the recommender mod-

si i

BR

bDj = {sj, 1, . . . ,
sj,m, . . . , sj,M} ∈ BD

sj
j

BD

BR ∪ BD = B BR ∩ BD = ∅

el.  We  use  to  represent  the  sequences  of  the -th

batch  that  are  used  for  training  the  recommender

model.  And  consists  of  a  total  of I batches.  The

batch in the second group, denoted as 

, is used to train the noise recog-

nition  model  capable  of  accurately  recognizing  noisy

sequences.  We  use  to  represent  the  sequences  of

the -th  batch  that  are  used  for  training  the  noise

recognition  model.  And  consists  of  a  total  of J
batches. In summary,  and .

bDj
b
D(+)

j b
D(−)

j b
D(+)

j

bDj b
D(−)

j =
{
s

′

j, 1, . . . ,

s
′

j,m, . . . , s
′

j,M

}
bDj

s
′

j,m =
{
v1, . . . , v

′

n, . . . , vN
}

m

j

s
′

j,m v
′

n
n

bDj = {sj, 1, . . . ,
s

′

j,m, . . . , sj,M
}
∈ BD b

D(+)

j ∪ b
D(−)

j = bDj
b
D(+)

j ∩ b
D(−)

j = ϕ

We further divide the batch  into two batches,

 and .  represents the clean batch with-

in  consisting of original sequences. 

 represents  noisy  batch  consisting  of

randomly  replaced  sequences  from ,  where

 represents  the -th  noisy

sequence  that  has  undergone  random replacement  in

the -th batch of the noise recognition model. Within

the  sequence ,  represents  the -th  interaction

item that has been randomly replaced. At this point,

the  second  batch  transforms  into 

.  In  summary, 

and .

f(·; ΘR)

g(·; ΘD)

(u, si) ∈ bRi
f(u, si; ΘR)

(u, sj) ∈ bDj
g(u, sj; ΘD)

We  use  to  represent  the  recommender

model and  to represent the noise recognition

model.  Given  the  users’ historical  interaction  se-

quences , the recommender model can pre-

dict  the  probabilities  of  clicks.  Similarly,

given ,  the  noise  recognition  model  can

predict the probabilities  of noise contami-

nation.

wi

si f(·; ΘR)

g(·; ΘD)

Summarily, we enhance the recommender model’s
performance by obtaining accurate weights  for the

sequences  from  the  joint  training  of  and

. 

3.2    Recommender Model

bRi ∈ BR

si
wi

In the training process of the recommender model,

as  shown  in Fig.1,  given  a  batch ,  the  se-

quences  in  the  batch  initially  pass  through  the

noise  recognition model  to  obtain weights .  Subse-

quently,  the  reweighted  sequences  are  used  to  train

the parameters of the recommender model. It is worth

noting  that  the  recommender  model  can  be  chosen

based on specific requirements, such as DIN or DCN.

Its training process aligns with these base models.

The  CTR  prediction  of  the  recommender  model
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can  be  viewed  as  a  supervised  binary  classification

task. Therefore, we optimize the recommender model

using a binary cross-entropy loss function. Additional-

ly,  considering  the  impact  of  noisy  sequences  on  the

training of  the  recommender  model,  it  is  essential  to

recognize  and  assign  smaller  weights  to  mitigate  the

influence of noisy sequences. Consequently, we define

the loss function for the recommender model as:
 

LR
i = − 1

|bRi |

|bRi |∑
si∈bRi

(wi(yi log f(u, si; ΘR) +

(1− yi) log(1− f(u, si; ΘR)))),

(1)

yi f(u, si; ΘR)

si bRi wi

si
wi

wi

where  and  represent  the  labels  for

clicks and the predicted probabilities of clicks for the

sequences  in ,  respectively.  represents  the

weights of . Typically, noisy sequences have smaller

weights  compared  with  clean  sequences  in  model

training  (as  shown  in  our  experiments  in Subsection

4.2.4). This approach reduces the impact of noisy se-

quences  on  model  performance[18, 24].  We  will  elabo-

rate  on  how  to  determine  the  sequence  weights 

that  improve  the  performance  of  the  recommender

model in Subsection 3.3.2 and Subsection 3.4.2. 

3.3    Noise Recognition Model

To build a noise recognition model capable of ac-

curately distinguishing noisy sequences from clean se-

quences  and  weighting  the  sequences  for  the  recom-

mender  model,  we  opt  for  a  self-supervised  training

method. In this subsection, we focus on two essential

components: data replacement and weight generation. 

3.3.1    Data Replacement

bDj = b
D(+)

j ∪ b
D(−)

j

b
D(+)

j

b
D(−)

j

b
D(−)

j bDj

b
D(+)

j

b
D(−)

j

b
D(+)

j

b
D(−)

j

b
D(+)

j

b
D(−)

j

b
D(−)

j

As  shown  in Fig.2(a),  we  use  the  batch

 as  the  input  for  the  noise  recogni-

tion  model,  where  represents  the  clean  batch

consisting  of  original  sequences,  labeled  as  1. 

represents the noisy batch composed of randomly re-

placed noisy sequences, labeled as 0. While the selec-

tion of  from  is not fixed, it should not be too

scant. Specifically, we assume that there are very few

noisy  sequences  in .  If  we  select  too  few  se-

quences in , it may lead to a situation where the

extremely few noisy sequences in  outnumber the

sequences  in ,  meaning  that  the  number  of  se-

quences in  labeled as 1 while actually being 0 is

greater than the number of sequences in  labeled

as 0. This situation could make the noise recognition

model  incorrectly  learn  noisy  sequences  as  positive

(labeled as 1). Hence, it is essential to ensure an ade-

quate number of sequences in  to avoid an unsta-
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Fig.1.  The ATJT method consists of two main components: 1) training the noise recognition model (composed of Noise Recognition
Training Only and Noise Recognition Training and Inference), 2) training the recommender model using reweighted sequences (com-
posed of Recommender Training, Noise Recognition Inference Only, and Noise Recognition Training and Inference).
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ble  situation  that  could  make  the  noise  recognition

model learn in the wrong direction. Up to this point,

we have discussed the training method for the recom-

mender model and how input sequences for the noise

recognition model are generated. 

3.3.2    Weight Generation

wi

bDj ∈ BD sj ∈ bDj sj
N

sj

(e1, . . . , en, . . . , eN , eT)

en n

sj

sj

In this subsection, we will describe the method for

generating weights . As depicted in Fig.1, the noise

recognition  model  is  a  sequence-to-value  model.  The

model takes  as input. For , where 

consists of items with length  and a target item to

be  predicted,  first  passes  through  the  neural  net-

work’s  embedding  layer. Sj is  then  transformed  into

the sequences of embeddings ,

in  which  represents  the  embedding  of  the -th

item in the sequences  after passes through the neu-

ral network’s embedding layer. Then, we pass embed-

dings  through  the  attention  network  to  obtain  user

hidden representation of the sequences :
 

h =
N∑

n=1

anen,

where
 

an =
MLP (en||eT)

N∑
n′=1

MLP (en′||eT)

,

||

h eT

wj

MLP()  represents  the  fully  connected  layers  (also

known as multilayer perceptron, MLP), and  repre-

sents the concatenation of embeddings. Subsequently,

we  concat  with  the  embedding  of  the  target

item,  and  then  pass  the  results  through  an  MLP  to

produce the weights . Given that our noise recogni-

tion method can be viewed as a self-supervised bina-

ry classification task, we use the binary cross-entropy

loss function for optimization:
 

LD
j =− 1

|bDj |

|bDj |∑
sj∈bDj

(yj log g(u, sj; ΘD)+

(1− yj) log(1− g(u, sj; ΘD))),

(2)

yj g(u, sj; ΘD) = wj

sj bDj

where  and  represent the labels for

noise  and  the  predicted  probabilities  of  noise  for  the

sequences  in , respectively.

bRi ∈ BR

g(u, si; ΘD)

wi

The  noise  recognition  model  similarly  uses  train-

ing set , which is used in training the recom-

mender model, as input. This set of sequences is non-

overlapping  with  the  training  sequences  used  for  the

noise  recognition  model,  which  will  be  explained  in

detail  in Subsection 3.4.1.  At  this  point,  we  can  use

the results  output by the noise recognition

model as the weights for the training sequences of the

recommender model, namely the weights  in (1).

Furthermore,  the  noise  recognition  model  is  used

only  during  the  training  phase  to  help  the  recom-

mender model learn better parameters. It is not used

during  the  evaluation  phase.  Therefore,  the  ATJT

method  does  not  increase  the  number  of  parameters

in the recommender model. 

3.4    ATJT Method
 

3.4.1    Data Partition

BR

BD BD

BR

To fully use the data, after fitting the parameters

of both the recommender model and the noise recog-

nition model, we can reverse the training data for 

and .  This  means  that  optimizes  the  recom-

mender  model  while  optimizes  the  noise  recogni-

tion model.  It is worth noting that the recommender

model continues to use the original model in the sub-

sequent training, while the noise recognition model is

trained using a duplicate model.  The purpose of  this

is to ensure that all data can be used to train the rec-

ommender  model,  while  the  noise  recognition  model

does not fit all the data. Throughout the training pro-

cess,  the  reweighted  recommender  model  and  the

 

(b)



(a)

-th Batch

BR

BD

Fig.2.  (a) Division of noisy and clean sequences within a batch in the noise recognition model, following a 1:1 ratio. (b) Partitioning
of  training  data  for  the  recommender  model  and  the  noise  recognition  model.  (Blue  represents  training  data  for  the  recom-
mender model, and green represents training data  for the noise recognition model).
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noise recognition model are trained together. This en-

sures that the noise recognition model can accurately

recognize  noisy  sequences  while  optimizing  the  re-

sults of sequence reweighting.

|BR ∪ BD|

Two  important  points  are  noted.  First,  we  only

use  the  original  sequences  to  train  the  recommender

model, and the noise recognition model is trained with

original  sequences  and  randomly  replaced  noisy  se-

quences. Second, if there is a need to make more ex-

tensive use of the data, the training set sequences can

be  divided  into N groups  instead  of  two  groups.  As

shown in Fig.2(b), we demonstrate a training method

where the training set is divided into four groups. In

extreme  cases,  only  one  sequence  receives  the  best

reweighting  output  by  the  noise  recognition  model

and trains the recommender model,  while  the rest  of

the  sequences  are  input  into  the  noise  recognition

model to achieve the best recognition performance in

training.  However,  this  method increases the number

of duplicate models for training the noise recognition

model.  Therefore,  the  minimum  grouping  is  two

groups, and the maximum grouping is the size of the

training  set  sequences .  The  specific  group-

ing  can  be  chosen  based  on  available  resources  and

performance considerations. 

3.4.2    Loss Function

|BR| : |BD| = 1 : N − 1

1 : N − 1

We  focus  on  how  to  jointly  train  the  recom-

mender  model  with  the  noise  recognition  model  by

computing  the  loss  value.  When  we  partition  the

training  set  sequences  into N groups,  due  to

,  the  batches  used  for  training

the  recommender  model  should  be  in  a  ratio  of

 compared  with  those  for  training  the  noise

recognition  model,  as  illustrated  in Fig.3.  The  loss

function for the noise recognition model should be:
 

LD
i =

1

N − 1

(i+1)(N−1)−1∑
i×(N−1)

LD
j ,

i

N − 1

LD
j

j

where  represents the index of the batch used by the

recommender model.  represents the number of

batches  used  by  the  noise  recognition  model  corre-

sponding  to  one  batch  of  data  used  for  training  the

recommender  model,  and  represents  the  binary

cross-entropy  loss  function  when  training  the  noise

recognition  model  with  the -th  batch  of  data.  Dur-

ing  the  training  process,  we  combine  the  loss  of  the

recommender model with the loss of the noise recogni-

αtion model using a scaling factor  to obtain the to-

tal loss for model training:
 

Lsum
i = LR

i + αLD
i ,

α

wi si bRi

where  represents  a  tunable  parameter  that  allows

us  to  control  the  learning  rates  of  the  recommender

model  and  the  noise  recognition  model,  thereby

achieving the goal of joint training. Joint training en-

ables the noise recognition model to learn the weights

 for sequences  in  (as defined in (1)), which is

more  suitable  for  training  the  recommender  model

while  accurately  recognizing  noise.  This  enables  the

recommender  model  to  achieve  better  performance

with the weighted sequences. 

3.4.3    Overall  Optimization  Algorithm  of  Model

Training

LR
i

LD
i

f(·; ΘR)

i

i

g(·; ΘD)

wi

LR
i

i(N − 1) (i+ 1)(N − 1)− 1

The  joint  training  process  is  illustrated  in Algo-

rithm 1. The joint training consists of two parts:  the

calculation  of  the  for  the  recommender  model

(lines 6 and 7) and the calculation of the  for the

noise recognition model (lines 8–14). We achieve joint

training  by  summing  the  loss  values  from  these  two

parts  (line  15).  Specifically,  we  start  by  initializing

the recommender model  (line 2). Next, we it-

erate  over  all  groups in  the training set  as  described

in Subsection 3.4.1 (line  3).  We  then  initialize  the

noise recognition model (line 4) and retrieve the -th

batch from the training set of the recommender mod-

el  (line  5).  The  sequences  from  the -th  batch  are

passed  through  the  noise  recognition  model 

to  determine  their  weights  (line  6).  These  se-

quences are then input into the recommender model,

and  the  weighted  loss  is  calculated.  After  averaging

the loss for all sequences in the batch, we obtain 

(line  7).  Subsequently,  we  iterate  over  the  batches

from the  ( )-th  to  the  ( )-th

in the training set of the noise recognition model (line

9). From the batch of the noise recognition model, we

select  half  of  the  sequences.  For  these  sequences,  we

 

······

···



i
BR

BD [i(N−1), (i+ 1)(N − 1)−1]

BR

Fig.3.  When training the recommender model with the -th set
of  data  from ,  the  noise  recognition  model  with  data  from

 in  the  range  is  concurrently
trained.  Green  represents  training  data  for  the  noise  recogni-
tion model,  and blue  represents  training  data  for  the  rec-
ommender model.
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bDj

LD
j

LD
j

LD
i

LR
i LD

i Lsum
i

Lsum
i

perform  random  replacements  of  items,  considering

them as noisy sequences (lines 10 and 11). The origi-

nal sequences and the noisy sequences from set  are

input into the noise recognition model, and the loss is

calculated.  After  averaging  the  loss  for  all  the  se-

quences  in  the  batch,  we  obtain  (line  12).  Next,

we accumulate all  values during the iteration on-

to  to obtain the final noise recognition model loss

(line 13). Finally, we add  and  to obtain 

(line  15).  At  this  point,  we  can  jointly  optimize  the

recommender  model  and  the  noise  recognition  model

based  on  (lines  16  and  17).  At  this  point,  we

complete  the  training  of  the  noise  recognition  model

and explain how to implement the ATJT method.

Algorithm 1. Overall Optimization of Model Training

bRi ∈ BR bDj ∈ BD j(·; ΘR)
g(·; ΘD)

LR
i

LD
j

LD
i Lsum

i

Require: , ,  recommender  model ,  noise

  recognition  model ,  dataset  groups N,

  reweighted recommender model loss , noise recogni-

  tion model loss , (N-1) batches of noise recognition

  model loss , sum loss 

f ∗(·; ΘR)Ensure: trained recommender model 

LR
i LD

j
Lsum

i
1: Create , , 

f(·; ΘR)2: Initialize 

n ∈ [1, N ]3: for  do

g(·; ΘD)4: 　Initialize 

i ∈ [1, |BR|]5: 　for  do

wi g(·; ΘD)6: 　　Estimate  using noise recognition model 

LR
i

7: 　　Get  by (1)

LD
i ← 08: 　　

j ∈ [i(N − 1), (i+ 1)(N − 1)− 1]9: 　　for  do

bDj = b
D(+)

j ∪ b
D(−)

j |bD(+)

j | = |bD(−)

j |10: 　　　 , 

s
′

j = (v1, . . . , v
′

n, . . . , vN) ∈ b
D(−)

j11: 　　　  represents the replaced
  sequence as described in Subsection 3.1

LD
j

12: 　　　Get  by (2)

LD
i += LD

j
13: 　　　

14: 　　end for

Lsum
i ← LR

i + α 1

N−1
LD

i
15: 　　

ΘR16: 　　Update 

ΘD17: 　　Update 

18: 　end for
19: end for
 

4    Experiments

We conduct extensive experiments to address the

following three questions.

● RQ1:  how  does  the  performance  of  the  ATJT

method compared with the base model?

● RQ2:  what  is  the  impact  of  different  types  of

noisy sequences generation on performance?

● RQ3:  how  does  different  sequence  weighting

training methods affect performance? 

4.1    Experimental Setting
 

4.1.1    Datasets and Baselines

We  evaluate  our  method  using  datasets  Movie-

Lens20M①,  Amazon  (Electro)②,  and  Yelp③.  We  se-

lect these datasets for two reasons. 1) They represent

diverse  scenarios,  namely  an  online  movie  platform

and  an  e-commerce  platform,  with  varying  levels  of

product  diversity.  2)  They  differ  in  size  and  charac-

teristics.  The  statistical  data  for  MovieLens20M,

Amazon  (Electro),  and  Yelp  are  shown  in Table 1.

Datasets  MovieLens20M and  Amazon  (Electro)  both

consist of features such as user ID, historicalin-terac-

tion  item  IDs,  and  their  correspondingcate-gories.  In

the Yelp dataset, each item has featuresin-cluding its

business_id,  city,  postal_code,  star  rating,and  cate-

gories.  Each  user  has  features  including  theuser_id,

useful, funny, cool and average star rating.
 
 

Table  1.    Statistical Information for Datasets

Dataset #Users #Items #Samples

MovieLens20M 138 493 27 278 20 000 263

Amazon (Electro) 192 403 63 001 1 689 188

Yelp 1 987 929 150 346 6 990 280

Note: # represents number of.
 

We  employ  several  advanced  recommender  mod-

els  as  base  models,  including  Wide  &  Deep[11],

DCN[14], DIN[7], SASRec[38], S3Rec[39] and FEARec[41].

We use the results of  these six base models on three

datasets  as  the  baseline  and  compare  them with  the

ATJT method.

×
We  conduct  a  total  of  6  (the  number  of  recom-

mender models) 2 (the number of contrastive mod-

els)  experiments  to  assess  the  performance  improve-

ment of ATJT on three specified datasets for the rec-

ommender model. 

4.1.2    Evaluation Protocol

To  accurately  assess  the  performance  of  the  rec-
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③https://www.kaggle.com/datasets/yelp-dataset/yelp-dataset/data, Jun. 2024.
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ommender  model,  we  first  divide  users’ historical  in-

teraction sequences into the training and testing sets

in a 4:1 ratio. In this setup, we use the training set to

train both the noise recognition model and the recom-

mender model, while the testing set is used to evalu-

ate  the  performance  of  the  recommender  model.  No-

tably, we need to ensure that users’ historical interac-

tion  sequences  in  the  training  and  testing  sets  are

non-overlapping.  Additionally,  to  avoid  the  issue  de-

scribed  in Subsection 3.4.1,  where  the  noise  recogni-

tion model fits the training data, we also need to en-

sure that the historical interaction sequences used for

training the recommender model and the noise recog-

nition model are non-overlapping.

We evaluate  the  testing  set  using  standard  AUC

(relative  improvement  area  under  the  ROC  curve)

scores,  HR@5  and  NDCG@5,  which  are  are  widely

used in click prediction tasks[7, 8]. Higher values for all

three metrics indicate superior model performance. 

4.1.3    Implementation Details

The construction of the ATJT method is based on

the  PyTorch  framework.  We  encapsulate  the  noise

recognition model into a class, allowing it to be inte-

grated  as  a  plugin  with  most  recommender  models.

The  implementation  of  the  noise  recognition  model

follows  a  unified  structure  when  integrated  with  dif-

ferent  underlying  recommender  models.  The  imple-

mentation of the noise recognition model relies on an

attention mechanism. Specifically, we implement it as

an  attention  model  with  embedding  and  output  lay-

ers.  The  attention  part  consists  of  two  layers  of  the

MLP.  For  the  first  layer,  we  set  the  dimensions  as

(64, 32), and for the second layer, we set the dimen-

sions as (32, 1). Each layer consists of a linear layer, a

PReLU activation  function,  and a  dropout  operation

(rate=0.5).  The  output  part  after  SUM pooling  con-

sists  of  three  layers  of  the  MLP.  For  the  first  layer,

we set the dimensions as (40, 256); for the second lay-

er,  we  set  the  dimensions  as  (256,  64);  for  the  third

layer, we set the dimensions as (64, 1). The structure

of  each  layer  is  identical  to  the  attention  part.  The

structure  of  MLPs  is  identical  to  the  attention  part.

The output layer is implemented with a sigmoid func-

tion, with a dimension of 1, in order to obtain differ-

ent weights for training the recommender model with

noisy and clean sequences. The noise recognition mod-

el is uniformly optimized using the Adagrad optimiz-

er, and a learning rate search is conducted from {0.1,

0.01, 0.001, 0.000 1}.

When training recommender models, each method

follows  the  following  steps.  1)  When  training  the

DCN and Wide & Deep models, we treat historical in-

teractions  as  item  features.  The  DNN  architectures

for DCN and Wide & Deep are set as (128, 128) and

(256, 128), respectively. 2) For the DIN model, we use

user ID, historical interaction item IDs, and their cor-

responding categories  as  input features,  following [7].

3) For the SASRec and S3Rec models, we use histori-

cal  interaction  item  IDs  as  input  features,  following

[38]  and  [39].  4)  When  training  the  FEARec  model,

our input features are the same as those used in the

DIN model. Additionally, we use the default hyperpa-

rameter  configurations  provided  by  the  original  au-

thors of the model on GitHub④. 

4.2    Experimental Results
 

4.2.1    Overall Performance (RQ1)

We propose  the  ATJT method based on six  fun-

damental recommender models and compare the per-

formance of the models using the ATJT method with

that of the base recommender models on three differ-

ent  datasets.  Experimental  results  show  that  the

ATJT  method  outperforms  base  models  in  terms  of

AUC, HR@5, and NDCG@5, as shown in Table 2.

We find that the ATJT method yields better im-

provements  in  the  DCN  and  Wide  &  Deep  models

compared  with  the  DIN,  SASRec,  S3Rec,  and

FEARec models. This phenomenon can be attributed

to  the  attention  mechanism possessed  by  DIN,  SAS-

Rec,  S3Rec,  and  FEARec,  which  adaptively  learns

users’ interest  representations  from  the  historical  in-

teraction sequences, and thus mitigates the impact of

behaviors  unrelated  to  users’ interest

representations[7].  Furthermore,  the  enhancement  of

the ATJT method is more pronounced in the Wide &

Deep model than in the DCN model. The reason may

lie in that when we process the input features of the

DCN model, we regard historical interactions as item

features.  Therefore,  the  cross  network  captures  fea-

ture  interactions  and  mitigates  the  impact  of  irrele-

vant  features  on  model  performance  during

training[14].  The  Wide  &  Deep  model  lacks  attention

mechanisms like DIN, the multi-head attention mech-

anism like SASRec, S3Rec, and FEARec or the cross
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network like the DCN model, which can filter out ir-

relevant or negative behaviors on model optimization.

The ATJT method compensates for the Wide & Deep

model’s  inability  to  filter  out  irrelevant  or  negative

behaviors within user actions, resulting in a more no-

ticeable performance improvement.

ATJT  demonstrates  superior  performance  on  the

Yelp  dataset  compared  with  the  MovieLens20M and

Amazon (Electro)  datasets.  This  observation may be

attributed  to  the  relatively  larger  size  of  the  Yelp

dataset,  which  provides  more  data  for  training  more

complex  models  after  denoising.  The  MovieLens20M

dataset  is  also  substantial  in  size,  whereas  the  Ama-

zon (Electro) dataset is relatively smaller, potentially

impacting  the  model’s  performance  after  denoising.

However,  the  ATJT  method  exhibits  significant  im-

provements across various base models and data sizes.

Furthermore,  experiments  conducted  with  six  differ-

ent  recommender  models  indicate  the  adaptability

and efficacy of the ATJT method. 

4.2.2    Noise Generation Analysis (RQ2)

In this subsection, we analyze the effect of select-

ing  how  many  sequences  in  the  training  data  of  the

noise  recognition  model  to  replace,  and  the  effect  of

replacing  a  different  number  of  historical  click  items

in  the  artificially  replaced  noisy  sequences. Fig.4

shows  the  impact  of  selecting  0.1,  0.3,  0.5,  0.7,  and

0.9  of  the  data  in  the  noise  recognition  model  train-

ing as noisy sequences on the performance of the rec-

ommender model. Table 3 shows the impact of replac-

ing 1, 2, 3, 5, and 10 historical click items in the arti-

ficially  replaced  noisy  sequences  on  the  performance

of the recommender model.

b
D(−)

j

Based  on Fig.4,  it  is  evident  that  training  the

noise  recognition  model  with  varying  number  of  se-

quences, corresponding to different quantities of 

as  described  in Subsection 3.3.1,  has  a  different  im-

pact on the fitting speed and the effectiveness of the

noise recognition model. When selecting 0.3 or 0.7 of

the  data,  there  is  a  noticeable  decrease  in  fitting

speed and performance. This is due to the use of too

few  noisy  sequences  during  the  training  of  the  noise

recognition model, which leads to its inability to accu-

rately recognize noisy sequences. Conversely, if artifi-

cially replaced noisy sequences are overly abundant, it

can  also  hinder  the  noise  recognition  model’s  ability

to  accurately  distinguish  clean  sequences.  Further-

more, when opting for a smaller number of sequences,

such as using 0.1 of the data as noisy sequences, a sit-

uation  similar  to  what  was  described  in Subsection

3.3.1 may occur,  namely  the  noise  recognition  model

struggling to differentiate between noisy and clean se-

quences.  Selecting  fewer  data  points  also  results  in

poorer fitting performance.

From Table 3,  we  observe  that  replacing  fewer

historical click items in the sequences during the noisy

recognition  model  training  leads  to  more  accurate

output weights for the sequences in the recommender

model,  resulting  in  improved  performance.  However,

as the number of replaced items increases, the perfor-

 

Table  2.    Experimental Results on Three Datasets Based on Different Recommender Models

Model MovieLens20M Amazon (Electro) Yelp

AUC HR@5 NDCG@5 AUC HR@5 NDCG@5 AUC HR@5 NDCG@5

Wide & Deep 0.821 7 0.505 2 0.111 7 0.853 5 0.568 5 0.122 4 0.750 3 0.386 6 0.085 9

Wide & Deep+ATJT 0.831 0 0.512 4 0.114 3 0.857 2 0.574 3 0.124 8 0.759 9 0.397 4 0.089 7

+RI 1.13% 1.43% 2.33% 0.43% 1.02% 1.96% 1.28% 2.79% 4.42%

DCN 0.843 8 0.509 1 0.114 5 0.872 9 0.586 5 0.137 6 0.788 1 0.382 3 0.091 2

DCN+ATJT 0.845 0 0.513 7 0.115 7 0.873 5 0.587 9 0.138 2 0.788 5 0.391 7 0.092 7

+RI 0.14% 0.90% 1.05% 0.06% 0.24% 0.44% 0.05% 2.46% 1.64%

DIN 0.851 6 0.522 2 0.116 6 0.874 8 0.601 1 0.140 6 0.803 2 0.450 6 0.101 2

DIN+ATJT 0.851 9 0.522 6 0.116 7 0.874 9 0.602 4 0.141 1 0.803 6 0.451 4 0.101 5

+RI 0.04% 0.08% 0.09% 0.01% 0.22% 0.36% 0.05% 0.18% 0.30%

SASRec 0.847 5 0.522 2 0.118 0 0.876 7 0.588 1 0.136 8 0.774 7 0.410 9 0.091 2

SASRec+ATJT 0.849 0 0.522 4 0.118 3 0.877 2 0.588 9 0.137 0 0.776 3 0.412 5 0.091 7

+RI 0.18% 0.04% 0.25% 0.06% 0.14% 0.15% 0.21% 0.39% 0.55%

S3Rec 0.849 0 0.531 1 0.117 0 0.878 4 0.603 5 0.142 0 0.803 3 0.443 8 0.099 9

S3Rec+ATJT 0.849 9 0.531 2 0.117 2 0.878 7 0.605 8 0.142 4 0.804 8 0.446 0 0.100 3

+RI 0.11% 0.02% 0.17% 0.03% 0.38% 0.28% 0.19% 0.50% 0.40%

FEARec 0.853 7 0.531 1 0.120 8 0.880 4 0.606 3 0.143 1 0.804 9 0.451 2 0.102 2

FEARec+ATJT 0.853 9 0.533 1 0.121 3 0.881 2 0.609 4 0.143 8 0.806 0 0.456 6 0.103 3

+RI 0.02% 0.38% 0.41% 0.09% 0.51% 0.49% 0.14% 1.20% 1.08%

Note: “+RI” represents the relative improvement of the ATJT method over the base models.

1132 J. Comput. Sci. & Technol., Sept. 2024, Vol.39, No.5



mance  of  the  recommender  model  starts  to  deterio-

rate. This observation suggests that the original noisy

sequences  within  the  historical  interaction  sequences

are mostly sparse. Sequences replacing fewer items ex-

hibit greater similarity to the original noisy sequences,

while sequences replacing 3 or more items show signif-

icant divergence from the original noisy sequences. 

4.2.3    Sequence Weighting Ablation

Experiments (RQ3)

To  investigate  the  impact  of  different  noisy  se-

quence weighting methods on the performance of the

recommender  model,  we  compare  three  weighting

training  methods:  Without  Auxiliary  Task  (WAT),

Direct Noise Recognition (DNR), and ATJT. The se-

quence  weights  for  the  three  methods  are  obtained

through  a  consistent  model  structure  as  described  in

Subsection 4.1.3.  In  the  DNR  method,  the  noise

recognition  model  is  first  separately  trained  to  accu-

rately distinguish artificially replaced noisy sequences

from the  original  clean sequences  as  the  training  ob-

jective.  Then,  the  training  sequences  of  the  recom-

mender  model  are  passed through this  noise  recogni-

tion  model  to  obtain  sequence  weights,  followed  by

training  the  recommender  model.  In  the  WAT

method,  the  training  sequences  of  the  recommender

model are directly passed through the targetless mod-

el  structure  to  obtain  the  sequence  weights,  followed

by training the recommender model.

As  shown  in Table 4,  the  ATJT  method  outper-

forms the other two methods, showing significant im-

provements  in  AUC,  HR@5,  and  NDCG@5  metrics.

The reason for  this  is,  in comparison with the WAT

weighted  training  method,  the  ATJT  method  takes

recognition of noise as the auxiliary goal, which helps

the training sequences of the recommender model find

suitable training weights.  Specifically,  it  assigns larg-

er  weights to clean sequences and smaller  weights to

noisy  sequences,  and  thus  mitigates  the  impact  of

noisy  sequences  on  the  performance  of  the  recom-

mender  model.  In  contrast  to  the  DNR method,  the

ATJT method not only identifies noisy sequences but

also  assigns  appropriate  weights  to  them.  In  other

words,  when  training  the  recommender  model  with

noisy  sequences,  the  goal  is  not  to  minimize  the

 

Table  3.    Impact Analysis of Replacing Historical Click Items
in  Artificially  Replaced  Noisy  Sequences  on  Recommender
Model Performance

Replacement Quantity AUC HR@5 NDCG@5

Replaced one 0.873 5 0.587 9 0.138 2

Replaced two 0.873 2 0.586 6 0.137 9

Replaced three 0.873 1 0.586 6 0.137 7

Replaced five 0.873 1 0.586 6 0.137 6

Replaced ten 0.873 0 0.586 4 0.137 6

Note:  We use  the  DCN model  as  the  base  model  and use  the
Amazon (Electro) dataset.
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Fig.4.   Analyzing the impact  of  using different  numbers  of  se-
quences as noisy sequences in the training of noise recognition
models  (base  model:  DCN).  (a)  MovieLens20M.  (b)  Amazon
(Electro). (c) Yelp.
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weights assigned to them. Instead, the objective is to

find the weights that optimize the performance of the

recommender model. It is worth noting that using the

ATJT method and the DNR method results in better

performance compared with the base model and mod-

el  trained  using  the  WAT method.  This  underscores

the  meaningfulness  of  weighting  sequences  through

the noise recognition auxiliary task. Additionally, the

reason  for  the  inferior  performance  of  the  recom-

mender  model  trained  using  the  WAT method  com-

pared with the base model is  that the WAT method

fails to capture the degree of noise in the sequences. It

exhibits confusion in the early stages of training, po-

tentially  leading  to  incorrect  weights.  This  also  indi-

cates  that  augmenting  the  complexity  of  the  model

does not lead to a significant improvement in perfor-

mance. 

4.2.4    Impact of Noise on Sequence Weights

To demonstrate  that  noisy  sequences  have  small-

er weights compared with clean sequences, we use the

DCN model  as  the  base  model  and  conduct  analysis

on  the  three  datasets.  As  shown  in Table 5,  the

weights of the noisy sequences are approximately 19%

smaller on average compared with the weights of the

clean sequences. This aligns with our expectation that

assigning  smaller  weights  to  noisy  sequences  can  en-

hance the base model’s performance. 

5    Conclusions

In this study, we proposed a novel self-supervised

ATJT  method.  This  method  leverages  the  training

outcomes of a noise recognition model to reweight se-

quences  for  training  the  recommender  model.  Addi-

tionally,  we  conducted  joint  training  of  the  recom-

mender model and the noise recognition model to ac-

quire more appropriate weights, further enhancing the

performance of the recommender model.  Our method

was evaluated on three datasets and six base models,

demonstrating  its  effectiveness.  Finally,  we  validated

the  impact  of  different  noisy  sequences  and  training

methods  on  the  performance  of  the  recommender

model  through  noise  generation  analysis  and  se-

quence weighting ablation experiments.

In the context of future prospects, through adver-

sarial  networks,  the  well-trained  noise  recognition

model  can  discriminate  between  artificially  replaced

noisy  sequences,  and  is  used  as  a  discriminator  to

learn  a  generator  that  makes  it  unable  to  recognize

whether  the  sequences  has  been  artificially  replaced

with  noise.  At  this  point,  the  generator  can  create

noisier  sequences  than  those  replaced  by  humans,

which may be more similar to the noisy sequences in

the original sequences. Therefore, using these generat-

ed sequences as noisy sequences might yield better re-

sults. 
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