
Zhang Q, Wei W, Yu T. On the modeling of honest players in reputation systems. JOURNAL OF COMPUTER SCIENCE

AND TECHNOLOGY 24(5): 808–819 Sept. 2009

On the Modeling of Honest Players in Reputation Systems

Qing Zhang1 (张 晴), Wei Wei2 (卫 伟), and Ting Yu2 (于 挺), Member, ACM

1Teradata, EL Segundo, CA 90503, U.S.A.
2Department of Computer Science, North Carolina State University, Raleigh, NC 27695, U.S.A.

E-mail: qzhangqing@gmail.com; {wwei5, tyu}@ncsu.edu

Revised May 26, 2009.

Abstract Reputation mechanisms are a key technique to trust assessment in large-scale decentralized systems. The
effectiveness of reputation-based trust management fundamentally relies on the assumption that an entity’s future behavior
may be predicted based on its past behavior. Though many reputation-based trust schemes have been proposed, they can
often be easily manipulated and exploited, since an attacker may adapt its behavior, and make the above assumption invalid.
In other words, existing trust schemes are in general only effective when applied to honest players who usually act with
certain consistency instead of adversaries who can behave arbitrarily. In this paper, we investigate the modeling of honest
entities in decentralized systems. We build a statistical model for the transaction histories of honest players. This statistical
model serves as a profiling tool to identify suspicious entities. It is combined with existing trust schemes to ensure that
they are applied to entities whose transaction records are consistent with the statistical model. This approach limits the
manipulation capability of adversaries, and thus can significantly improve the quality of reputation-based trust assessment.

Keywords reputation, trust, user behavior modeling, collusion-resilient behavior testing

1 Introduction

Recently, we have witnessed the emergence and
popularity of large-scale decentralized systems which al-
low entities to interact and transact in an ad hoc man-
ner. Examples of such decentralized systems include
online-auction communities and P2P resource sharing
systems. These systems, on the one hand, offer great
advantages in terms of service variety, flexibility and
availability. On the other hand, they impose signifi-
cant security challenges. In particular, entities in large-
scale decentralized systems are often strangers. They
are from different domains and may not have any pre-
existing knowledge of each other. This leaves malicious
parties the opportunities to cheat during transactions
without being identified and punished. Therefore, be-
fore a transaction is conducted, it is paramount for two
parties to assess each other’s trustworthiness and evalu-
ate the potential risks involved during the transaction.

Inspired by social interactions between human be-
ings, reputation mechanisms have been introduced as
one of the major techniques for the establishment and
management of trust in the above mentioned decentral-
ized systems. In a reputation system, once a transac-
tion is finished, involved parties issue feedbacks that
evaluate each other’s behavior during the transaction.
Before a new transaction starts, we first assess a party’s

trustworthiness based on the feedbacks on its previous
transactions. This process can be viewed as the ap-
plication of a so-called trust function, which takes as
input the feedbacks of a party’s previous transactions,
and outputs a trust value. This trust value indicates
the party’s trustworthiness. A trust function may be
further augmented by considering other factors such as
the cost of an ongoing transaction, and the trustwor-
thiness of feedback issuers.

Reputation-based trust management is built on the
assumption that an entity’s future behavior can be pre-
dicted from its past behavior. If a party provides good
services in its past transactions (and thus obtains good
feedbacks), then it is believed that it is likely to do so
in future transactions. In other words, we expect that
an entity will behave consistently so that its reputation
can be meaningfully used to assess its trustworthiness.
Thus, the effectiveness of reputation mechanisms de-
pends on how well this assumption holds in a decen-
tralized system.

Many trust functions have been proposed in the
literature[1−9]. But often they can be easily manipu-
lated or exploited by adversaries[10]. We argue that
the essential reason for this insufficiency resides in the
fact that adversaries do not follow the above mentioned
assumption. They do not act consistently. Instead,
they may intentionally adapt their behavior to take

Regular Paper
This work is partially supported by the National Science Foundation of USA under Grant Nos. IIS-0430166 and CNS-0747247.

Qing Zhang et al.: On the Modeling of Honest Players in Reputation Systems 809

advantage of a system’s trust function. Existing trust
functions are suitable to assess the trustworthiness of
entities who behave consistently, but are vulnerable to
adversaries who may change their behavior arbitrarily.

In this paper, instead of designing yet another trust
function and applying it indistinguishably to all parties
in a system, we advocate a two-phase approach to trust
assessment. This approach integrates the modeling of
“honest players” with trust functions. By “honest play-
ers”, we mean those entities who behave consistently in
a system. In the first phase of our approach, we exam-
ine the transaction history of an entity. Only when it
follows the model of honest players, will we apply trust
functions to further determine its trustworthiness in the
second phase. Those who do not pass the first phase
may be either discarded as untrustworthy (as they ap-
pear to manipulate the reputation system) or prompted
to users for further examination.

In detail, we make the following contributions:
• We propose a statistical model of the behavior of

honest players. Specifically, we consider the number of
good transactions (those offering satisfactory services
and receiving positive feedbacks accordingly) of an ho-
nest player as a random variable x. We show that if
an entity’s behavior is consistent and not affected by
other factors, then x follows a binomial distribution
B(n, p), where n is the number of transactions a party
conducted during a period of time, and p is the percent-
age of good transactions among these n transactions.
• We identify two typical attacks which exploits exi-

sting trust functions. Attacker manipulates the trust
system by building up its reputation through a num-
ber of transactions before launching attacks. Given the
transaction history of a party, we design an algorithm
to determine with high confidence whether it follows
the behavior model of honest players.
• Attackers often rely on collusion and issue false

feedback information to boost their reputations. We
further extend the above statistical model and make it
resilient to collusion.
•We show through experiments the quality improve-

ment of trust assessment offered by the proposed two-
phase approach. Intuitively, because we compare a
party’s transaction history with the behavior model
of honest players, an adversary cannot dramatically
change its behavior without being detected. Instead, a
successful attack needs to ensure in the first place that
the resulting transaction pattern is consistent with the
honest player model. This will significantly increase the
cost of attacks.

We organize the rest of the paper as follows. In
Section 2, we present an abstract model of reputation
systems, and introduce some of the basic concepts and

notations used in the later sections. In Section 3, we
discuss the intrinsic properties of honest players and
formally model their behavior. We then present al-
gorithms to determine whether an entity is an honest
player by comparing its transaction history with the
proposed statistical model. Section 4 discusses a be-
havior model that is resistant to collusion. Their ef-
fectiveness is shown experimentally in Section 5. We
report related work in Section 6, and conclude this pa-
per in Section 7.

2 Reputation Systems

We assume that entities in a decentralized system
interact with each other through transactions. Trans-
actions are not limited to monetary interactions. They
also include activities such as retrieving information,
and downloading files. We further assume a transac-
tion is uni-directional, i.e., given a transaction, there
is a clear distinction between a service provider (the
server) and a service consumer (the client). For sim-
plicity, in this paper we only consider trust assessment
of service providers.

A feedback is a statement issued by the client about
the quality of a server in a single transaction. In gene-
ral, a feedback may be multi-dimensional, reflecting the
client’s evaluation on a variety of aspects of a service,
e.g., price, product quality and time of delivery. For
simplicity, we assume in this paper that a feedback is
one-dimensional and taken from the domain {positive,
negative}. We say a transaction is good if it gets a
positive feedback. Otherwise, it is a bad transaction.
For the purpose of our discussion, we assume all the
transaction feedbacks are available for trust assessment
(e.g., through a central server as in online auction com-
munities, or through special data organization schemes
in P2P systems[11]). In practice, our scheme can be
equally applied to systems where only portions of feed-
backs can be retrieved. We denote a feedback as a tuple
(t, s, c, r), where t is the time that a transaction hap-
pens, s the server, c the client, and r the rating from
the client.

Let F denote the set of all possible feedbacks, and V
be the set of all entities in a system. A trust function
is thus a mapping 2F × V → T , where T = [0, 1] is
the domain for trust values. A server’s trust value is
essentially a prediction of its future behavior. Without
loss of generality, we can interpret a server’s trust value
as the predicted probability that the next transaction
with the server will be satisfactory. Each client defines
its own trust threshold. Only when a server’s trust
value is above the threshold, will the client proceed to
a transaction with the server.

810 J. Comput. Sci. & Technol., Sept. 2009, Vol.24, No.5

3 Modeling of Honest Players

When we use reputation to choose good service
providers, we implicitly assume that we can safely infer
a party’s future behavior from its trustworthiness in the
past transactions. This assumption is in general true
for honest players. By honest players, we mean those
service providers who try their best to provide good ser-
vices to others. This intention does not change when
dealing with different clients or conducting transactions
at different times.

Note that a honest server does not mean that it can
be fully trusted. Instead, it may still get negative feed-
backs from time to time, due to factors that cannot be
controlled by itself. For example, a party Alice in an on-
line auction site may have delayed deliveries from time
to time. But this is not because Alice wants to do so
intentionally. Instead, it is caused by the poor services
of Alice’s local postal office, whose service quality is out
of the control of Alice. As another example, users of an
online music store may occasionally experience difficul-
ties during downloading, due to the store’s shaky file
servers.

Because of these uncontrollable factors, the outcome
of an honest player’s transactions can be viewed as a
random variable that follows a certain distribution D.
This view justifies the rationale of reputation mecha-
nisms. A server’s past transactions are essentially a
sample of D. And the goal of a reputation system is to
derive a server’s distribution through the sample. This
is also consistent with our interpretation of trust values
that a trust function outputs.

Many trust functions have been proposed in the lit-
erature. They have been proven to be effective when
assessing the trustworthiness of honest players. On the
other hand, it is also common that, given a particu-
lar trust function, dedicated attacks can be designed to
manipulate and exploit that trust function. There are
also some generic attacks against trust functions, which
we briefly discuss as follows.

Hibernating Attack. An attacker first carries out
some good transactions to build his reputation up to a
trust value T1. We call T1 the cover reputation of this
attacker. When his trust value meets the trust thresh-
old of some specific users he want to cheat, he can then
consecutively launch attacks towards his target users
without being detected.

Periodic Attacks. Every time the attacker success-
fully achieved a cover reputation T1, he will launch at-
tacks until his trust value drops to T2. Then he will pro-
vide some good services again to re-build his reputation.
It can continue doing so without being detected.

From these attacks, we see that since an attacker can
adjust its behavior arbitrarily and intentionally, its past

transaction feedbacks do not serve as an effective means
to predicting the quality of its future transactions.

The above observation suggests that it would not
be sufficient to apply trust functions indistinguishably
to servers. Instead, since trust functions are designed
to predict a server’s future behavior, it is important to
first study the behavior pattern of a server and deter-
mine whether it is indeed an honest player. There-
fore, we propose a two-phase approach to trust as-
sessment, which combines trust functions with honest
player screening. Specifically, in the first phase, we
check whether the transaction history of a server follows
the typical behavior pattern of honest players. Only
when the first phase is passed, will we apply existing
trust functions to determine whether the server is a
good service provider. Fig.1 shows the general frame-
work for the proposed two-phase approach.

Fig.1. General framework of the proposed two-phase approach.

3.1 Statistical Model of Honest Players

In this subsection we propose a statistical model to
capture the behavior pattern of honest players. Re-
call that the trustworthiness of a server is to approxi-
mate the probability that we obtain a satisfactory ser-
vice from the server. Further, this probability is caused
by factors that cannot be controlled by the server. For
simplicity, we assume this probability is static, i.e., it
does not change from transactions to transactions. Our
techniques can be easily extended to handle dynamic
cases.

Given a sequence of independent transactions,
trans1, . . . , transn, conducted by a server, let Xi de-
note the event that transi is a good transaction for
i = 1, . . . , n. Then X1, . . . , Xn is a sequence of indepen-
dent identical distributed (iid) events. The probability
of each event to happen is given by

P (Xi) =
{

p, if Xi = 1,

1− p, if Xi = 0,

where p is the trustworthiness of the server.
Clearly, given a sequence of n transactions, the

number of good transactions among them will follow

Qing Zhang et al.: On the Modeling of Honest Players in Reputation Systems 811

a binomial distribution B(n, p). Thus, it seems we only
need to perform a binomial test to determine whether
a server is honest. One subtlety here is that in prac-
tice the parameter p is not known. Further, the order of
transactions does matter for our purpose. For example,
suppose both Alice and Bob have finished 100 transac-
tions, among which 90 receive positive feedbacks. While
the bad transactions of Alice spread among the 100
transactions, those of Bob are in fact the last 10 trans-
actions he conducted. If we treat these 100 transac-
tions from Alice and Bob respectively as one sample
and perform a binomial test, they will have the same
test result, though clearly Bob seems more suspicious
in this example. This problem also shares similarity to
pseudo random sequence testing[12]. But again, we do
not know the probability p which is required by existing
pseudo random sequence testing algorithms.

Before we present our approach to server behavior
testing, we would like to have a brief discussion of pos-
sible extensions to the above statistical models.

First, as stated above, for simplicity, we assume that
a honest player’s behavior is consistent and static, i.e.,
it follows the same behavior model from transaction to
transaction. In practice, the factors that affect one’s
service quality may vary depending on the specific ap-
plication environments. For example, the network con-
dition for file sharing systems providing file service can
be workload dependent and may vary during different
time periods. We can adapt our model based on such
application-specific knowledge.

Second, in many applications feedback ratings are
not binary, or are multi-dimensional. Our model can
be easily extended to handle such feedbacks. Specifi-
cally, we only need to replace binomial distributions
in our framework with multinomial distributions for
multi-value feedbacks, or build a statistical model for
each dimension for multi-dimensional feedbacks. The
statistical model can also be temporal. We may have
different models for weekdays and weekends, or for the
time 9am to 5pm and for other time intervals. Again,
these are all application-dependent and require domain-
specific knowledge, which we will not elaborate further.
To show the mechanism of our framework concisely, we
will assume the binomial distribution model for honest
players in the rest of this paper.

Note that in reputation systems it is also possible
for attackers to launch cheat-and-run attacks. That is,
an attacker conducts one bad transaction after several
honest transactions, or even upon joining the system,
then leaves the system and never returns. It is difficult
to prevent such attacks by purely relying on reputation
mechanisms. Typically approaches are to increase the
cost of joining a system in the first place (e.g., requiring

certified IDs or membership fees) so that short affilia-
tions with a system are not cost-effective. We assume
such techniques have been deployed in a reputation sys-
tem, and thus focus on the attack such as periodic at-
tacks and hibernating attacks which requires long affil-
iations with a system.

3.2 Server Behavior Testing

Given a sequence Q of n transactions conducted by
a server S, we break Q into k = bn/mc consecutive
blocks, each with m transactions. We call each block a
transaction window. Let Gi denote the number of good
transactions in transaction window Wi, i = 1, . . . , k. If
the server is an honest player with trust value p, we will
have the following lemma.

Lemma 3.1. Given an honest server with trust
value p, for any preselected small values ε and δ, there
always exists an N such that if the total number of
transactions n > N , then the probability

P
(∑

Gi

n
− p > ε

)
< δ.

Proof. The number of good transactions in the whole
sequence is

∑
Gi. And the quality of a transaction con-

ducted by an honest player with trust value p is actually
the outcome of an Bernoulli experiment with success
probability p. Thus the inequality holds naturally fol-
lowing Bernoulli’s law of large numbers. ¤

Lemma 3.1 suggests that for an honest player with
trust value p, when the transaction history is big
enough, we can use p̂ =

∑
Gi

n to approximate p. And
{|G1|, . . . , |Gk|} forms a set of samples following the
distribution B(m, p̂). Thus, to test whether a server
is honest, we can simply check whether the number
of good transactions in each window follows B(m, p̂).
There are many ways to check if a set of samples fol-
lows a specific distribution. In this paper, we will use
L1 norm of the distribution distance d between the ac-
tual distribution of Gi and the binomial distribution
B(m, p̂). If d is less than a predetermined threshold ε,
then we can conclude that the server is honest.

The confidence of our conclusion depends on the se-
lection of distribution distance threshold ε. One way
to achieve high confidence is to derive the distribution
of L1 norm distance and select ε that corresponds to
95% confidence interval. More specifically, given a set
of samples randomly generated following B(n, p̂), we
define a random variable dist that represents the L1

norm distance between the set of samples and B(n, p̂).
Once we derive the distribution of dist, we can select ε
to be the threshold that gives 95% confidence interval.

Though theoretically simple, it is rather complex to
derive the distribution of dist. In this paper, we take

812 J. Comput. Sci. & Technol., Sept. 2009, Vol.24, No.5

an empirical approach instead. We randomly generate a
reasonably large number of sets, each of which contains
m transactions whose feedbacks are generated follow-
ing B(m, p̂). We then measure the L1 norm distances
of these sets to B(m, p̂). ε is selected such that 95% of
the distances of the generated sample sets are smaller
than ε.

Fig.2 shows the pseudocode of the behavior testing
algorithm.

Retrieve the transaction history H of a service provider;

Break H sequentially into k transaction windows, each of
which has m transactions;
for i = 1 : k do

Count the number of good transactions Gi in each win-
dow;

end for

Use L1 norm distribution distance to check whether the
distribution of all the Gi follows the binomial distribution

B(m,
∑

Gi
|H|);

if L1 norm distribution distance is bigger than ε then

Alert (“Destination peer is suspicious”);

Abort;

else

Call a user specified trust function

Return the computed trust value to user

end if

Fig.2. Two-phase behavior testing algorithm.

3.3 Multi-Testing of Server Behavior

If a server has a long transaction history, then a small
number of additional transactions will not significantly
change the statistics of the transaction history. An ad-
versary thus may still take advantage of this property to
launch hibernating attacks. Note that no matter what
trust assessment schemes are used, such attacks cannot
be prevented. For example, as an extreme case, an at-
tacker can deliver good services all the time, and then
suddenly starts cheating on clients. The first bad trans-
action in this attack can never be prevented. Thus, the
goal of a trust management system is instead to limit
the number of bad transactions that may evade trust
assessment in a short period of time.

Suppose an attacker suddenly starts conducting bad
transactions. The significance of these transactions de-
pends on the length of its transaction history. Thus, if
we reduce the number of transactions considered when
testing a server’s behavior, such abnormal increases in
bad transactions will be revealed. On the other hand, if
we only consider the most recent l transactions, it will
open doors to periodic attacks, since bad transactions
are totally discarded once they are outside of the most
recent l transactions.

The above observation suggests that we need to con-
sider both the long-term and the short-term behaviors
of a server so that we can have a balanced assessment
of its trust. Thus, we propose a multi-testing approach
to checking a server’s compliance with the behavior of
honest players. Suppose a server has conducted a to-
tal of l transactions. We first check whether the be-
havior of the server is honest when considering all l
transactions. This corresponds to a long term behavior
checking. We then perform the same test by only con-
sidering the most recent l−k transactions, where k is a
constant that controls the progress of the testing. We
continue doing so until the number of considered trans-
actions is too small to be statistically significant. For an
honest player, its behavior during any subsequence of
the transaction history should follow binomial distribu-
tions. Therefore, the failure of any test would indicate
a potentially suspicious server.

4 Collusion-Resilient Behavior Testing

In our discussion so far, it is assumed that the at-
tacker tries to achieve his goal alone without other’s
help. Therefore, we do not consider the authenticity
of a feedback. In particular, we assume that a server
can only earn positive feedback through providing good
services. However, in reputation systems, it is not un-
usual for a group of attackers to collude and boost each
other’s reputation through fake feedbacks. Without
checking the authenticity of feedbacks, a group of at-
tackers can easily evade behavior testing. For example,
whenever an attacker needs to provide a good service
in order to be conformed with the honest player model,
he can simply ask a colluder to submit a fake positive
feedback. Note that even in systems with means to
prevent arbitrary feedbacks (e.g., a seller has to pay
a fee in each transaction in eBay), the cost to obtain
a good feedback from a colluder is still much cheaper
than actually providing a good service (e.g., no actually
shipping of goods is needed for transactions between
colluders).

The above observation suggests that we have to con-
sider the pattern of feedback issuers as well when mod-
eling honest player behavior. One seemingly attrac-
tive approach is to identify as colluders those clients
who issue many positive feedbacks to a server. How-
ever, this may easily bring false positives. For ex-
ample, www.shop.com may be Alice’s favorite online
shopping website. She often shops there and keeps
having good experiences. The fact that Alice issues
many positive feedback does not mean she colludes with
www.shop.com and boost its reputation intentionally
and falsely.

In this paper, instead of trying to identify specific

Qing Zhang et al.: On the Modeling of Honest Players in Reputation Systems 813

colluders, we propose using the overall client patterns to
model an honest player. Intuitively, if an honest player
consistently provides good services, its reputation will
gradually build up and attract more clients. Therefore,
the set of clients who leave good feedbacks will expand
as time goes by. We call this set of clients the server’s
supporter base. On the other hand, if an attacker relies
on its colluders to maintain the good reputation while
cheating on other clients, its supporter base would be
relatively stable after its reputation builds up. Another
key observation is that, for an honest server, its services
will always be of high quality no matter the service con-
sumer is a frequent client or an occasional one. In other
words, given any subset of all its clients, their feedbacks
are likely to have very similar distributions. For an
attacker, the distribution of feedbacks from colluders
tends to be different from that from other clients.

Based on the above analysis, we propose the fol-
lowing technique for collusion-resilient behavior testing.
Recall that a feedback is a tuple (t, s, c, r), where t is
the time that a transaction happens, s the server, c the
client, and r the rating issued by c for this transaction.
Given a sequence Q of feedbacks for a server s, we break
them into groups by feedback issuers, and then re-order
the sequence such that groups with more feedbacks ap-
pear before those groups with fewer ones. Feedbacks
inside each group are ordered according to the time of
transactions.

Given this new feedback sequence Q′, we conduct
the distribution-based behavior testing as described in
Subsection 3.2. The intuition behind this technique is
that for an honest player the distribution of feedbacks
from frequent clients should be similar to that of oc-
casional clients. In order to pass this behavior testing,
an attacker has to increase its supporter base. In other
words, he was forced to provide good services to other
clients beyond his colluders.

Similarly, to deal with attackers who build reputa-
tions through long histories, we can also perform multi-
testing of server behavior. Specially, suppose Q has l
transactions. After behavior testing over the whole se-
quence, we choose the latest l−k transactions and per-
form a behavior testing as described above.

As noted early, in practice a server may not always
provide uniform services to all the users, even if they
are honest. For example, an online movie server in the
US may provide good services to customers in North
America, but not to those in Africa, due to network ca-
pabilities. This does not mean that any US customers
who leaves positive feedback is in collusion with the
server. To include such cases into our framework, we
may extend our scheme and apply statistical modeling
and testing to transactions in different categories. In
the above example, we may group transactions into two

categories: North America and Africa. And our testing
can be performed on each category, or only on those
in which we are interested. For example, if a user is
in North Carolina, knowing the server’s service quality
to customers in North America would suffice. On the
other hand, if some factors that affect service qualities
are unknown when we design behavior testing schemes,
then false alerts may be raised, which will help us iden-
tify such factors. Thus our scheme not only gives an
extra level of protection, but also makes it possible to
adaptively discover important factors about a system.

5 Experiments

As mentioned above, a reputation system cannot
guarantee that a client never receives bad services from
an adversary. The purpose of trust management is to
restrict the ability of an attacker, making it hard to
launch attacks without being detected. Suppose an at-
tacker wants to conduct M malicious transactions. If
these transactions can be conducted arbitrarily, espe-
cially, continuously, and meanwhile its trust value is
always maintained above clients’ trust threshold, then
we consider that the attacker succeeds in these attacks.
On the other hand, if a scheme forces an attacker to con-
duct a lot of good transactions to cover those bad ones,
such that its transaction history is statistically indis-
tinguishable from the behavior of honest players, then
we say that the scheme is resilient against attacks. The
number of good transactions an attacker needed in this
case can be treated as the cost for the attacker to fini-
sh M attacks. As a practical measurement, we will use
the total number of good transactions needed to launch
M attacks as the metrics to measure the strength of a
scheme. The bigger M is, the more cost the attacker
will have to pay, which also means that he needs to
adjust his behavior more to be like an honest user.

5.1 Server Behavior Evaluation

We design a set of experiments to show the ability
of the proposed two-phase approach, and compare it
with traditional approaches which apply a single trust
function directly. In the experiment, we will first as-
sume the attacker has pre-established a high reputa-
tion in the system, by behaving as an honest player.
Let H be the transaction history of the attacker be-
fore he launches attacks. We call these transactions the
preparation phase of the attack.

The first trust function we compare with is to simply
compute the trust value as the ratio of the number of
good transactions over the total number of transactions.
We call this trust function the average trust function.
Many existing studies are based on trust functions in
this form, and further augment it by considering other

814 J. Comput. Sci. & Technol., Sept. 2009, Vol.24, No.5

factors, such as the credibility of the source of feed-
backs, and transaction context[3,7]. As argued in [13],
the average function is often the most cost-effective in
complex systems.

The average trust function takes all transaction his-
tory for trust computation. Thus it only considers the
long-term behavior of a server. In order to capture the
dynamic behavior of servers more quickly, many tech-
niques have been proposed to discount old transactions
when deriving one’s reputation[14−16]. The second type
of trust function we compare with is the one proposed
in [15]. Let ft be the feedback of the last transaction of
a server, and Rt−1 be the trust value before considering
the last transaction. Then in their approach, the latest
trust value will be computed as Rt = λft +(1−λ)Rt−1.
We call this function the weighted trust function.

In our experiments, we suppose that an attacker has
prepared H transactions as an honest user with trust-
worthiness of 95%. We investigate how many more
good transactions are needed if the attacker wants to
launch 20 successful attacks. We call those transac-
tions after the preparation phase the attack phase. We
first apply the average trust function and the weighted
function directly as done in previous works. We then
combine them with the two behavior testing schemes,
and see how many more transactions they will force at-
tackers to conduct in order to achieve their goal. The
trust threshold of clients is set to 0.9.

We assume that attackers are strategic and aware
of the trust functions as well as the behavior testing
algorithms. Specifically, it adopts the following pro-
cedure to determine whether to provide good or poor
services in the next transaction. It first assumes that
it will conduct a bad transaction next, and considers
the resulting transaction history H ′. If H ′ is consistent
with the behavior model of honest players, and the trust
value computed from H ′ is no less than 0.9, then the
attacker will cheat in the next transaction. Otherwise,
it will provide good services.

The experimental result with the average trust func-
tion is shown in Fig.3. The x axis represents the number
of transactions that an attacker has conducted during
the preparation phase, and the y axis represents the
number of good transactions the attacker needs to con-
duct before it finishes 20 bad transactions in the at-
tack phase. “Average” denotes that the system only
uses the average trust function. “Scheme1 + Average”
and “Scheme2 + Average” denote the situations when
we combine the single-behavior testing and the multi-
behavior testing with the average trust function, re-
spectively.

We see that, if we only apply the average trust
function, as long as the ratio of the number of good

transactions over the total number of transactions ex-
ceeds the trust threshold 0.9, the attacker can always
keep conducting bad transactions, until its trust value
hits 0.9. Then it has to conduct some good transac-
tions. In general, after every 9 good transactions, the
attacker can launch an attack. When the number of
transactions in the initial transaction history is over
400, the attacker can always launch 20 attacks consec-
utively and still satisfy the trust threshold (90%). This
is a typical hibernating attack.

Fig.3. Cost of attackers when varying initial histories: average

function.

We then combine our behavior testing algorithms
with the average trust function. We choose transac-
tion window to be of size 10, and the binomial dis-
tribution B(10, p̂) is the expected behavior, where p̂
is dynamically computed from the transaction history.
From the figure we can see that when the history con-
tains 100 transactions, all schemes impose the same
cost to attackers, since the number of good transac-
tions needed in this situation is mostly determined by
the trust threshold. As the initial history size grows,
the behavior testing schemes begin to take effect, which
imposes higher cost than only using the average trust
function. We also observe that when the size of the
initial transaction history is relatively small, attacker
needs to conduct more good transactions in order to
pass the distribution test. But when the attacker pre-
pares a longer transaction history, it will need fewer
good transactions to pass the single behavior test. This
is because single behavior testing only considers the dis-
tribution over the whole transaction history. When the
size of the transaction history is large, there will be
more transaction windows. Those windows containing
bad transactions only occupy a smaller portion of the
overall transaction history. Therefore it will not affect
the distribution much. Thus, when an attacker has a
long preparation phase, single behavior testing is prone
to hibernating attacks.

Next we look at “Scheme2 + Average”. The results

Qing Zhang et al.: On the Modeling of Honest Players in Reputation Systems 815

of “Scheme2 + Average” always outperform those of
“Scheme1 + Average”. In particular, even as the at-
tacker includes more transactions in the initial trans-
action history, the number of good transactions needed
by the attacker to achieve its attacking goal remains
constant. This is because multi-testing checks both the
long term and the short term behaviors of a server. In-
creasing the size of the initial transaction history will
not buy much benefits to attackers. In other words,
multi-testing is more resilient against attacks.

Fig.4. Cost of attackers when varying initial histories: weighted

function.

Fig.4 shows the result when behavior testing algo-
rithms are combined with the weighted trust function.
In this experiment, we set λ = 0.5. We have observed
similar trends as in Fig.3. With only the weighted trust
function, the attacker essentially launches a periodic
attack. Since the most recent transaction is assigned
a much larger weight than that of others, the attacker
can never conduct two consecutive bad transactions.
Instead, after each bad transaction, the attacker needs
to conduct 2∼3 good transactions to ensure its trust
value to be over 0.9.

For approaches combining behavior testing with
trust functions, when the initial history is small, pe-
riodic attacks introduce significant statistical differ-
ence. So both “Scheme1 + Weighted” and “Scheme2
+ Weighted” perform well. When the attacker intro-
duces more transactions during the preparation phase,
“Scheme1 + Weighted” fails to constraint the attacker,
due to similar reasons as discussed above. Meanwhile,
the performance of “Scheme2 + Weighted” is not af-
fected by the size of the initial transaction history. It
imposes significant cost for the attacker to fulfill its
goal.

5.2 Evaluation of Collusion-Resilient Behavior
Testing

We conduct experiments to evaluate the effective-
ness of the proposed collusion-resilient behavior testing.
Like in Subsection 5.1, the goal of the attacker is to

conduct 20 bad transactions and maintain his reputa-
tion over 0.9. We assume among a total of 100 potential
clients, 5 of which are colluders of the attacker. During
the preparation phase, the attacker only interacts with
his colluders, and builds up a reputation of 0.95. Dur-
ing the attack phase, for each transaction, the attacker
has three choices: cheating on a client, providing a good
service to a client, or getting help from a colluder (i.e.,
ask the colluder to give a good feedback). The attacker
will strategically determine his next action, by consult-
ing both the trust function used in a system and the
above collusion-resilient behavior testing algorithm.

Different from the experiments in Subsection 5.1,
here we need to consider the list of clients who come to
the server for service, as feedback issuers are important
to behavior testing. We adopt a probabilistic approach
to generate the client list at each step. Specifically, if a
client c has never gotten service from the server s be-
fore, then the probability for c to request service from
s is a1 · p, where a1 is a constant and p is the current
reputation of s. Similarly, we have parameters a2 (and
a3) for those clients who recently got a good (or a bad)
service from s. In the experiment, we set a1 = 0.5,
a2 = 0.9 and a3 = 0.2 respectively.

Figs. 5 and 6 show the effect of single- and multi-
behavior testing to combat collusion when the simple

Fig.5. Cost of attackers with collusion: average function.

Fig.6. Cost of attackers with collusion: weighted function.

816 J. Comput. Sci. & Technol., Sept. 2009, Vol.24, No.5

average trust function and the weighted trust function
are used respectively. They show the similar observa-
tions as in Subsection 5.1. Note that the “y” axis shows
the number of good transactions that the attacker has
to provide to clients other than his colluders, which
reflects the true cost for the attacker to achieve his
goal. Compared with Figs. 3 and 4, we see that, when
there is no behavior testing, the attacker can achieve
his attacking goal without providing any good services
to the clients, due to the help of colluders. On the
other hand, our collusion-resilient behavior testing sig-
nificantly constrains the behavior of an attacker, forc-
ing him to behave more like an honest player instead
of gaming the reputation system arbitrarily. These two
figures yet again show the importance of multi-behavior
testing. While a longer preparation phase helps the at-
tacker lower his cost at the attack phase, multi-behavior
testing imposes an almost constant cost on the attacker
independent of the number of transactions in the prepa-
ration phase. This is particularly important with the
existence of collusion, because with the help of collu-
ders, the cost of the attacker in the preparation phase
is extremely low.

5.3 Detection Rate

Our scheme is based on statistical differences of the
transaction patterns. It may not achieve 100% detec-
tion rate. We design experiments to examine the de-
tection rate of the proposed two-phase behavior testing
approach. Suppose an attacker tries to keep his repu-
tation value no less than 0.9 while launching periodic
attacks according to a certain size of attack windows
N = 10, 20, . . . , 80, That is, attackers will launch
N × 0.1 attacks within every N transactions. Fig.7
shows the detection rate with respect to the attack win-
dow size.

Fig.7. Detection rate vs. attack window size.

From the result, we observe that the detection rate
decreases as the size of attack windows increases. When
the size of attack window is 10, an attacker’s behavior is

quite different from random binomial behavior. Hence,
the proposed algorithm detects this attack pattern. As
the size of attack window increases, the attack behavior
looks closer and closer to the behavior of a normal ser-
vice provider, and the detection rate also drops. This
result implies that, the closer the behavior of service
provider is to the honest player behavior model, the
less likely the service provider will be identified as a
malicious one. This is one desirable property: if the at-
tacker is forced to behave similarly to an honest player,
then it can be regarded as an honest player.

5.4 Distribution Distance

As described in Subsection 3.2, the distribution dis-
tance determines the confidence of behavior testing.
Thus we also design experiments to show how the dis-
tribution distance changes with the increase of initial
history size. We study the distribution distance under
different initial history sizes with 95% confidence, as
explained in Subsection 3.2. Fig.8 shows that the dis-
tribution distance converges very quickly as the initial
history size increases.

Fig.8. Distribution distance vs. initial history size.

5.5 Performance

Considering the large set of transaction information
available in open systems, we expect that the proposed
scheme should not degrade the performance of the trust
system severely. Next we evaluate the performance
overhead for single- and multiple-behavior testing. Let
n denote the size of the initial history. Obviously, the
time complexity of single-behavior testing is O(n), since
we only need to check the whole transaction history
once. For multi-behavior testing, the basic scheme pro-
posed in Subsection 3.3 would have a complexity of
O(n2). The analysis is straightforward: the behavior
testing will run n

k times, where k is defined in Subsec-
tion 3.3. And each run of this multi-behavior testing
will process n− k, n− 2k, . . . transactions.

For large data sets, O(n2) is not desirable. In our

Qing Zhang et al.: On the Modeling of Honest Players in Reputation Systems 817

implementation, we optimize the basic multi-behavior
testing algorithm by reusing some intermediate statis-
tics. Specifically, we first compute statistics of the
most recent n − sk window, where s = b(l

k)c. Then
when we compute the n − (s − 1)k window, we can
reuse the results for the l − sk window, and so on for
n−(s−2)k, n−(s−3)k, The complexity is reduced
to O(n) with this optimization.

Fig.9 shows the running time of each of our scheme.
The experiments are executed on a Dell desktop with
2.66GHz CPU and 4 GB memory. For showing the run-
ning time more clearly, the sizes of the initial history are
set to be from 100 000 to 800 000. Even in this case, be-
havior testing can be finished very quickly. For normal
transaction histories with less than 10 000 transactions,
the time for behavior testing is negligible.

Fig.9. Time cost vs. initial history size.

6 Related Work

Reputation-based trust management has raised a lot
of interests among researchers in recent years, and many
trust functions have been proposed. Previous work
mainly focuses on the design of trust functions based on
various feedback collection mechanisms. For example,
in [7], Xiong and Liu proposed the PeerTrust model,
in which trust is evaluated as the average of satisfied
transactions over all the transactions data, weighted
by different transaction contexts. In [3], the number of
satisfied transactions between each pair is collected to
infer a ranking over all peers in the system. There is
also some work that deals with non-binary values. In
[9], for example, Yu et al. proposed a trust combina-
tion algorithm for feedbacks that can take values from
{positive, neutral, negative}. Some recent work such as
[17] studies how to make the reputation aggregation in
decentralized systems in an efficient way. These trust
functions do not take the time of feedbacks into consid-
eration.

Some other work does consider entities’ dynamic be-
havior in the design of trust functions. Due to the

observation that once an attacker establishes its high
reputation in a system, it can abuse it to conduct ma-
licious activities, decay factors are commonly used so
that most recent feedbacks have a higher weight than
those issued long time ago. By doing so, one’s repu-
tation reflects more of its most recent behavior. Ex-
amples include [14, 16, 18–19]. The general idea is to
assign time-based weights wi to each feedback fi, such
that

∑
wi = 1.

In recent years, researchers begin to study how to
integrate richer information into reputation computa-
tion. For applications such as Wikipedia, the amount
of a user’s editing being preserved reflects his trustwor-
thiness. Adler et al. proposed a new reputation scheme
by looking at the content of the service provider’s con-
tribution directly[20] instead of taking user’s referral
scores as inputs. Inspired by h-index, Zhao et al. pro-
posed H-Trust which combines the evidence score and
the number of referrals providing that score in trust
computation[21]. In [22], cost of finding information
source was taken into consideration in the selection
process of referral. The multi-dimensional reputation
computation is discussed in [23]. In [24], Fullam et al.
studied the case when both local information and refer-
rals are available, and the algorithms of how to combine
these information are carefully designed. Despite all the
efforts to identify the factors that may affect the trust
rating, [13] analyzed many complex trust computation
mechanisms and claimed that when the target system
has a lot of dynamics and malicious peers, employing
a complex mechanism may be not worth the cost com-
paring a simple trust mechanism such as the average
function.

Hypothesis testing is an important technique in
statistics. It checks whether a set of samples follows an
expected distribution[25]. Most hypothesis testing tech-
niques assume the parameters of the expected distribu-
tion are known, which is different from the problem in
this paper. Hypothesis testing for distributions with
unknown parameters mainly focuses on normal distri-
butions. It is possible to approximate a binomial dis-
tribution with a normal distribution. However, the ac-
curacy by testing the approximate normal distribution
is questionable in the context of this problem.

7 Conclusion

A single trust function is often not sufficient to pro-
vide high quality trust assessment in reputation sys-
tems. An adversary is often able to adapt its behav-
ior arbitrarily and manipulate a specific trust func-
tion. In this paper, instead of guessing what an adver-
sary can do and trying to prevent specific attacks, we
propose a statistical model to capture the behavior of

818 J. Comput. Sci. & Technol., Sept. 2009, Vol.24, No.5

honest players. We develop algorithms to test whether
the transaction history of a server is compatible with
the behavior model of honest players. We propose a
two-phase approach to trust assessment that combines
behavior testing with trust functions. This approach
forces an adversary to behave consistently with the
model of honest players, and thus significantly limits
its manipulation capability.

Our approach is applicable when a server has a rea-
sonably long transaction history. When applying to
service providers who have only joined a system for
short period of time, the probability to classify an hon-
est player as suspicious may be significant. We do
not consider it an insufficiency of our approach. Ser-
vice providers with short histories are widely considered
high-risk groups, and a client has to be cautious when
transacting with them. In fact, there is no good solu-
tion to tell an attacker from a honest player when only
providing a short transaction history. We may have to
rely on other mechanisms to help new servers build re-
putation. For example, if we want to conduct a low-risk
transaction, we may relax behavior testing so that we
can choose service from new servers.

There are many interesting directions worth further
exploration. In particular, we are interested in develop-
ing a more realistic model that captures the behavior
of both honest servers and clients. This model should
consider not only feedbacks but also other factors of the
system that affects user behaviors, e.g., time and dates,
location, and transaction types.

References

[1] Aberer K, Despotovic Z. Managing trust in a peer-2-peer
information system. In Proc. the Ninth International
Conference on Information and Knowledge Management
(CIKM2001), Atlanta, USA, November 5–10, 2001, pp.310–
317.

[2] Golbeck J, Hendler J. Accuracy of metrics for inferring
trust and reputation in semantic Web-based social networks.
In Proc. the 14th International Conference on Knowl-
edge Engineering and Knowledge Management (EKAW2004),
Northamptonshire, UK, October 5–8, 2004, pp.116–131.

[3] Kamvar S, Schlosser M, Garcia-Molina H. EigenRep: Repu-
tation management in P2P networks. In Proc. the Twelfth
International World Wide Web Conference, Budapest, Hun-
gary, May 20–24, 2003, pp.159–166.

[4] Lee S, Sherwood R, Bhattacharjee B. Cooperative Peer
Groups in NICE. In Proc. INFOCOM, San Francisco, USA,
March 30–April 3, 2003, pp.523–544.

[5] Mui L, Mohtashemi M, Halberstadt A. A computational
model of trust and reputation. In Proc. 35th Hawaii Inter-
national Conference on System Science, Hawaii, HO, USA,
Jan. 7–10, 2002, pp.2431–2439.

[6] Richardson M, Agrawal R, Domingos P. Trust management
for the semantic Web. In Proc. the Second International Se-
mantic Web Conference, Sanibel Island, FL, USA, October
20–23, 2003, pp.351–368.

[7] Li Xiong, Ling Liu. Building trust in decentralized
peer-to-peer electronic communities. In Proc. the 5th

International Conference on Electronic Commerce Research
(ICECR2002), Montreal, Canada, October 23–27, 2002,
pp.1–15.

[8] Wang Y, Vassileva J. Bayesian network-based trust model.
In Proc. IEEE/WIC International Conference on Web In-
telligence (WI2003), Halifax, Canada, October 13–16, 2003,
pp.372–378.

[9] Yu B, Singh M P. An evidential model of distributed repu-
tation management. In Proc. the 1st International Joint
Conference on Autonomous Agents and MultiAgent Systems
(AAMAS2002), Bologna, Italy, July 15–19, 2002, pp.294–301.

[10] Srivatsa M, Xiong L, Liu L. TrustGuard: Countering vulner-
abilities in reputation management for decentralized overlay
networks. In Proc. the 14th International Conference on
World Wide Web (WWW2005), Chiba, Japan, May 10–14,
2005, pp.422–431.

[11] Aberer K. P-Grid: A self-organizing access structure for
P2P information systems. In Proc. the 9th Interna-
tional Conf. Cooperative Information Systems (CoopIS2001),
Trento, Italy, September 5–7, 2001, pp.179–194.

[12] Elaine B Barker. A Statistical Test Suite for Random and
Pseudorandom Number Generators for Cryptographic Appli-
cations. NIST Special Publication (SP 800-22), 2000.

[13] Liang Z, Shi W. Analysis of recommendations on trust in-
ference in open environment. Performance Evaluation, 2008,
65(2): 99–128.

[14] Ray I, Chakraborty S. A vector model of trust for developing
trustworthy systems. In Proc. the 9th European Symposium
on Research in Computer Security (ESORICS 2004), Sophia
Antipolis, France, September 13–15, 2004, pp.260–275.

[15] Fan M, Tan Y, Whinston A B. Evaluation and design of on-
line cooperative feedback mechanisms for reputation manage-
ment. IEEE Transactions on Knowledge and Data Engineer-
ing, 2005, 17(2): 244–254.

[16] Ismail R, Josang A. The beta reputation system. In Proc. the
15th Bled Conference on Electronic Commerce, Bled, Slove-
nia, June 17–19, 2002, pp.708–721.

[17] Zhou R, Hwang Kai. Gossip-based reputation aggregation
in unstructured P2P networks. In Proc. IEEE Interna-
tional on Parallel and Distributed Processing Symposium
(IPDPS2007), Long Beach, USA, March 26–30, 2007, pp.1–
10.

[18] Huynh T D, Jennings N R, Shadbolt N. Developing an inte-
grated trust and reputation model for open multi-agent sys-
tems. In Proc. Autonomous Agents and Multi Agent Systems
(AAMAS2004), Workshop on Trust in Agent Societies, New
York City, USA, July 19–23, 2004, pp.65–74.

[19] Selcuk A A, Uzun E, Pariente M R. A reputation-based trust
management system for P2P networks. In Proc. the 4th
IEEE/ACM International Symposium on Cluster Computing
and the Grid (CCGrid 2004), Chicago, Illinois, USA, April
19–22, 2004, pp.251–258.

[20] B Thomas Adler, Luca de Alfaro. A content-driven reputa-
tion system for the Wikipedia. In Proc. the 16th Interna-
tional World Wide Web Conference (WWW2007), Alberta,
Canada, May 8–12, 2007, pp.261–270.

[21] Zhao H, Li X. H-Trust: A robust and lightweight group repu-
tation system for peer-to-peer desktop grid. In Proc. the 28th
International Conference on Distributed Computing Systems
Workshops, Beijing, China, June 17–20, 2008, pp.235–240.

[22] Reches S, Hendrix P, Grosz B J, Kraus S. Efficiently deter-
mining the appropriate mix of personal interaction and rep-
utation information in partner choice. In Proc. the Seventh
International Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS2008), Estoril, Portugal, May 12–13,
2008, pp.583–590.

Qing Zhang et al.: On the Modeling of Honest Players in Reputation Systems 819

[23] Reece S, Rogers A, Roberts S, Jennings N. Rumours and
reputation: Evaluating multi-dimensional trust within a
decentralised reputation system. In Proc. the Sixth Interna-
tional Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS2007), Hawaii, USA, May 14–18, 2007,
pp.1–8.

[24] K Fullam, K Suzanne Barber. Dynamically learning sources
of trust information: Experience vs. reputation. In Proc. the
Sixth International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS2007), Hawaii, USA, May 14–
18, 2007, pp.164–171.

[25] Agresti A, Franklin C A. Statistics: The Art and Science of
Learning from Data. Prentice Hall, 2006.

Qing Zhang obtained his B.E.
degree in automatic control from
University of Science and Technology
of China in 2001. After that he went
to North Carolina State University
and obtained his Ph.D. degree co-
major in computer science and ope-
rations research. His Ph.D. research
spans several areas of information se-
curity and privacy, including security

of reputation systems, sensor networks, and microdata pri-
vacy protection. Currently he is developing database kernel
in Teradata, that is the world’s largest data warehouse com-
pany.

Wei Wei received his B.S. and
M.S. degrees in computer science
from Huazhong University of Science
and Technology and Shanghai Jiao-
tong University, respectively. He is
pursuing his Ph.D. degree of com-
puter science at North Carolina State
University. His major research in-
terests include distributed comput-
ing and network security.

Ting Yu is an associate profes-
sor in the Department of Computer
Science, North Carolina State Uni-
versity. He obtained his B.S. de-
gree from Peking University in 1997,
M.S. degree, from the University of
Minnesota, Twin Cities in 1998, and
Ph.D. degree, from the University
of Illinois at Urbana-Champaign in
2003, all in computer science. His re-

search interests are in trust management, data privacy and
security policies. He is a member of ACM.

