
Vol.16 No.2 J. Comput. Sci. & Technol. Mar. 2001

Semantics of Constructions (II)

| The Initial Algebraic Approach

FU Yuxi (���)

Department of Computer Science, Shanghai Jiao Tong University, Shanghai 200030, P.R. China

E-mail: fu-yx@cs.sjtu.edu.cn

Received January 11, 1999; revised April 14, 2000.

Abstract Inductive types can be formulated by incorporating the idea of

initial T -algebra. The interpretation of an inductive type of this kind boils down to

�nding out the initial T -algebra de�ned by the inductive type. In this paper the issue

in the semantic domain of omega sets is examined. Based on the semantic results, a

new class of inductive types, that of local inductive types, is proposed.

Keywords type theory, inductive type, !-set, T -algebra

1 Introduction

Inductive types play an important role in type theory. In Martin-L�of type theory[1],

all types are inductive types. The idea of inductive types is very much set theoretical.

Recursion rules for inductive types, for example, are type theoretical version of set recursion

in classical set theory. As a matter of fact, inductive types in Martin-L�of type theory have

set theoretical semantics in classical set theory. The situation is di�erent in the calculus

of constructions[2]. As the language is impredicative, a set theoretical model is impossible.

But impredicativity does not rule out a constructive set theoretical semantics. In [3] an

!-set semantics is given for generalized inductive types in the calculus of constructions. The

model is obtained by e�ectivizing, so to speak, the classical models of inductive types of

Martin-L�of type theory.

There is another way of formalizing the ideas embodied in the generalized inductive

types by using initial T -algebras. For this formulation to be possible, the calculus must be

extensional. The reason is that we use functors to de�ne rules about the inductive types and

the functoriality of a type constructor is equivalent to the extensionality of the de�nitional

equality associated with that type constructor. The initial algebraic approach is studied in

[4]. Unfortunately the semantics de�ned in [4] is not sound. The mistake made in [4] is

that the author assumed that a continuous endofunctor on the category of !-sets always

has an initial T -algebra. It is true that a continuous endofunctor on the category of sets

always has an initial T -algebra because there is a unique mediating functor from a T -algebra

to the initial T -algebra. But this functor is not always e�ective; there is not necessarily a

computable function that tracks the mediating functor. This says that the mediating functor

in case of !-sets does not necessarily exist. The purpose of this paper is to give a more formal

treatment of the initial algebraic semantics in the category of !-sets.

In this paper the rules for mutually dependent inductive types are �rst spelled out.

Two examples are given to illustrate the usage of these rules. Then a general method to

construct interpretations of these types is illustrated, based on a generalization of a well-

known result. The construction then motivates the de�nition of a new class of inductive

types to be described in the next section.

This work is funded by the National Natural Science Foundation of China (No.69973030). It is also

supported by BASICS, Center of Basic Studies in Computing Science, sponsored by Shanghai Education

Committee. BASICS is aÆliated to the Department of Computer Science at Shanghai Jiao Tong University.

138 FU Yuxi Vol.16

This paper is a sequel to [3]. It is not self-contained. The reader is referred to [3] for

background information on the !-set semantics of type theory.

2 The Language

De�nition 2.1. Suppose X : Typei ` �(X) : Typei. We say �(X) is strictly positive

with respect to X if X does not occur in � or � = X or � = �x : K:�0(X), where X

does not occur in K and �0(X) is strictly positive with respect to X. Clearly �(X) in

X : Typei ` �(X) : Typei is strictly positive if X does not occur in �(X) or �(X) = �x1 :

K1: � � ��xm : Km:X (m 2 !) such that X does not occur in any of K1; : : : ;Km.
Formation

�; X1 : Typei; : : : ; Xn : Typei `M1 : Typei; : : : ;�; X1 : Typei; : : : ; Xn : Typei `Mn : Typei

� ` �i
!

X :(M1; : : : ;Mn)j : Typei

where X1; : : : ;Xn appear strictly positively in M1; : : : ;Mn.
Introduction

�; X1 : Typei; : : : ; Xn : Typei `M1 : Typei; : : : ; �; X1 : Typei; : : : ; Xn : Typei `Mn : Typei;

� ` N : Mj [�
i
1=X1; : : : ; �

i
n=Xn]

� ` intro
�i

j (N) : �i
!

X :(M1; : : : ;Mn)j

where we have abbreviated �i
!

X :(M1; : : : ;Mn)j to �
i
j .

Recursion

�; x1 : �
i
!

X :(
!

M)1 ` C1 : Typei; : : : ;�; xn : �i
!

X :(
!

M)n ` Cn : Typei

� ` f1 : �z :M1[�x1 : �
i
1:C1=X1; : : : ;�xn : �in:Cn=Xn]:C1[intro

�i

1
((M?

1 (
!

�1))z)=x1]
...

� ` fn : �z :Mn[�x1 : �
i
1:C1=X1; : : : ;�xn : �in:Cn=Xn]:Cn[intro

�i

n ((M?
n(
!

�1))z)=xn]

� ` rec
�i

j (
!

f) : �xj :�
i
!

X :(M1; : : : ;Mn)j :Cj

where
!

�1
def
= �w1 : (�x1 : �

i
1:C1):�1w1; : : : ; �wn : (�xn : �in:Cn):�1wn. M

?
j , j 2 [1; : : : ; n], is

the n-ary functor given by Mj . It is covariant because Mj is strictly positive with respect

to X1; : : : ;Xn.
Computation

�; x1 : �
i
!

X :(
!

M)1 ` C1 : Typei; : : : ;�; xn : �i
!

X :(
!

M)n ` Cn : Typei
� ` N : Mj [�

i
1
=x1; : : : ; �

i
n=xn]

� ` f1 : �z :M1[�x1 : �
i
1
:C1=X1; : : : ;�xn : �in:Cn=Xn]:C1[intro

�i

1
((M?

1
(
!

�1))z)=x1]

.

.

.

� ` fn : �z :Mn[�x1 : �
i
1
:C1=X1; : : : ;�xn : �in:Cn=Xn]:Cn[intro

�i

n ((M?
n(
!

�1))z)=xn]

�`recj(
!

f)(intro
�i

j
(N)) =fj(M

?
j
(�z :�i

1
:hz; rec

�i

1
(
!

f)zi; : : : ; �z : �in:hz; rec
�i

n (
!

f)zi))(N) : Cj [intro
�i

j
(N)=xj]

for j 2 [1; : : : ; n].
Extensionality

�; x1 : �
i
!

X :(
!

M)1 `� C1 : Typei; : : : ;�; xn : �i
!

X :(
!

M)n `� Cn : Typei

� ` �z : �i1:g1(intro
�i

1 (z)) = �z : �i1:f1(M
?
1 (hi~d; gi)z) 2 �x1 : �

i
!

X :(M1; : : : ;Mn)1:C1

...

� ` �z : �in:gn(intro
�i

n (z)) = �z : �in:fn(M
?
n(hi~d; gi)z) 2 �xn : �i

!

X :(M1; : : : ;Mn)n:Cn

� ` f1 : �z :M1[�x1 : �
i
1:C1=X1; : : : ;�xn : �in:Cn=Xn]:C1[intro

�i

1 ((M?
1 (
!

�1))z)=x1]
...

� ` fn : �z :Mn[�x1 : �
i
1:C1=X1; : : : ;�xn : �in:Cn=Xn]:Cn[intro

�i

n ((M?
n(
!

�1))z)=xn]

� ` rec
�i

j (
!

f) = gj : �xj :�
i
!

X :(M1; : : : ;Mn)j :Cj

No.2 Semantics of Constructions (II) | The Initial Algebraic Approach 139

where hi~d; gi
def
= �z : �in:hz; gnzi; : : : ; �z : �

i
n:hz; gnzi.

Fig.1 helps to understand the rules concerning the inductive types.

Fig.1

Example 2.2. The best-known mutually dependent inductive type is the data type of

trees and forests. Using Hagino's notation[5], it is de�ned as follows (intuitively, a tree

consists of a forest and a root; there exists an empty forest; adjoining a tree to a forest

creates a new forest):

hT; F i � sum (X;Y) with constructors

span : A� Y �! X;

join : X � Y �! Y ;

empty : 1 �! Y ;

end:

In our notation, some of the rules are as follows:

X : Typei; Y : Typei ` A� Y : Typei X : Typei; Y : Typei ` 1+X � Y : Typei

` Tree(A)
def
= �

i(X; Y):(A� Y;1+X � Y)1

X : Typei; Y : Typei ` A� Y : Typei X : Typei; Y : Typei ` 1+X � Y : Typei

` Forest(A)
def
= �

i(X; Y):(A � Y;1+X � Y)2

X : Typei; Y : Typei ` A� Y : Typei X : Typei; Y : Typei ` 1+X � Y : Typei ` t : A� Forest(A)

` tree(t) : Tree(A)

X :Typei; Y :Typei ` A�Y :Typei X :Typei; Y :Typei ` 1+X�Y :Typei ` f :1+Tree(A)�Forest(A)

` forest(f) : Forest(A)

` f : 1+ Tree(A) � Forest(A)

xT : Tree(A) ` CT : Typei xF : Forest(A) ` CF : Typei
` fT : �z :A� (�xF : Forest(A):CF):CT [tree(h�1z; �1�2zi)=xT]

` fF : �z :1+ (�xT : Tree(A):CT)� (�xF : Forest(A):CF):

CF [forest(case(z; �w : 1:inl(w); �w : (�xT : Tree(A):CT)�

(�xF : Forest(A):CF):inr(h�1�1w; �1�2wi)))=xF]

` recF (fT ; fF)(forest(f)) =
fF (case(f; inl(x):In(?); inr(x):hh�1x; recT (fT ; fF)(�1x)i;

h�2x; recF (fT ; fF)(�2x)ii)) : CF [forest(f)=xF]

` t : A� Forest(A)

xT : Tree(A) ` CT : Typei xF : Forest(A) ` CF : Typei
` fT : �z :A� (�xF : Forest(A):CF):CT [tree(h�1z; �1�2zi)=xT]

` fF : �z :1+ (�xT : Tree(A):CT)� (�xF : Forest(A):CF):

CF [forest(case(z; �w : 1:inl(w); �w : (�xT : Tree(A):CT)�

(�xF : Forest(A):CF):inr(h�1�1w; �1�2wi)))=xF]

` recT (fT ; fF)(tree(t)) = fT (h�1t; h�2t; recF (fT ; fF)(�2t)ii) : CT [tree(t)=xT]

The rules are not as complicated as they appear to be.

Example 2.3. (continued) Suppose A is the type of natural numbers N . We can compute

the sum of all the nodes and leaves of a tree and the sum of all the nodes and leaves of all

the trees in a forest. The two mutually recursive programmes are derived as follows:

140 FU Yuxi Vol.16

` t : N � Forest(N)

` fT
def
= �x : N � (Forest(N)�N):�1x+ �2�2x : N � (Forest(N)�N)! N

` fF
def
= �x : 1+ (Tree(N)�N)� (Forest(N)�N):

case(x; inl(z):0; inr(z):�2�1z + �2�2z) : 1+ (Tree(N)�N)� (Forest(N)�N)! N

` recF (fT ; fF)(forest(f)) =
fF (case(f; inl(x):In(?); inr(x):hh�1x; recT (fT ; fF)(�1x)i;

h�2x; recF (fT ; fF)(�2x)ii)) : N

` t : N � Forest(N)

` fT
def
= �x : N � (Forest(N)�N):�1x+ �2�2x : N � (Forest(N)�N)! N

` fF
def
= �x : 1+ (Tree(N)�N)� (Forest(N)�N):

case(x; inl(z):0; inr(z):�2�1z + �2�2z) : 1+ (Tree(N)�N)� (Forest(N)�N)! N

` recT (fT ; fF)(tree(t)) = fT (h�1t; h�2t; recF (fT ; fF)(�2t)ii) : N

The conclusion is reducible to recF (forest(f)) = case(f; inl(x):0; inr(x):recT (�2�1x) +

recF (�2�2x)) in the �rst case and recT (tree(t)) = �1t+ recF (�2t) in the second.

3 Constructing Initial T -Algebras

The inductive types as given in previous section are of course modeled by appropriate

initial T -algebras. So the question is: given a concrete model of the Calculus of Constructions

(or ECC or Martin-L�of's set theory) and an endofunctor F on the category within which

the model is taken, how do we construct the initial F -algebra? The answer is given by the

following Theorem 3.2. This theorem generalizes a result in [6]. The proof of Theorem 3.2

also generalizes that in [6].

Suppose T is an endofunctor on C. A T -algebra is a pair (A;TA
f
�! A), where A is an

object inC and f a morphism inC. A homomorphism from (A;TA
f
�! A) to (B;TB

g
�! B)

is a morphism h : A �! B such that f ;h = T (h); g. An initial T -algebra is the initial

object in the category of T -algebras. Duly, we can de�ne (terminal) T -coalgebras (notation

(C
h
�! TC;C)). A twisted homomorphism from a T -coalgebra (h;C) to a T -algebra (A; f)

is a morphism l : C �! A that satis�es the equation l = h;T (l); f , while a cotwisted

homomorphism from (A; f) to (h;C) is a morphism n : A �! C such that Tn = f ;n;h.

From now on suppose that C has �ltered colimits (we assume it is equipped with speci�c

colimiting cocones). We are ready to describe two important constructions.

Construction 1. The chain induced by a T -coalgebra (a0;1; A0) is constructed as fol-

lows:
� The head of the chain is just a0;1 : A0 �! TA0 = A1.

� For a successor ordinal i, Ai+1 is de�ned as TAi and ai;i+1 as Tai�1;i.

� For a limit ordinal
, de�ne A
 to be the limit of the chain constructed so far. For i 2
,

ai;
 : Ai �! A
 is obtained from the cocone.

� For the same limit ordinal
, a
;
+1 is the unique mediating morphism as shown in Fig.2:

Fig.2

Here a�+1;
+1 is de�ned as Ta�;
 . For limit ordinal � 2
, we de�ne a�;
+1 to be

a�;�+1;Ta�;
 . It is easily seen that we get a new cocone over the same diagram.

No.2 Semantics of Constructions (II) | The Initial Algebraic Approach 141

We say the chain closes at � if a�;�+1 is an isomorphism and for no � 2 �, a�;�+1 is an

isomorphism. � is called the closure ordinal.

Lemma 3.1. If the chain closes at �, then for any � � �, a�;�+1 is an isomorphism

and for any two ordinals � � � <
, where
 is a limit ordinal, a�;
 is an isomorphism.

Construction 2. Suppose (X; f) is a T -algebra and r is a twisted homomorphism from

the T -coalgebra (a0;1; A0) to (X; f). The r-induced cocone over the (a0;1; A0)-induced chain

is constructed as follows:
� r0 is the morphism r. Let r1

def
= T (r0); f . We can verify a0;1; r1 = a0;1;T (r0); f = r0.

� For a successor ordinal i, let ri+1
def
= Tri; f . We obtain

ai;i+1; ri+1 = T (ai�1;i);T (ri); f = T (ai�1;i; ri); f = T (ri�1); f = ri

� Let
 be a limit ordinal. Because what we have constructed so far forms a cocone, we can

de�ne r
 to be the unique mediating morphism.

� For the same limit ordinal
, let r
+1
def
= T (r
); f as shown in Fig.3.

Fig.3

Applying T to the cocone diagram so far constructed, we have for each i 2

ai;
 ; a
;
+1; r
+1 = ai;i+1; ai+1;
+1;T (r
); f = ai;i+1;T (ai;
);T (r
); f

= ai;i+1;T (ai;
 ; r
); f = ai;i+1;T (ri); f = ai;i+1; ri+1 = ai;
 ; r

By the uniqueness of the mediating morphism, we conclude that a
;
+1; r
+1 = r
 .

Theorem 3.2. Suppose (a0;1; A0) and (X; f) are the same as those in the above con-

struction. There is a bijective correspondence between the class of twisted homomorphisms

from (a0;1; A0) to (X; f) and the class of twisted homomorphisms from (a�;�+1; A�) to (X; f)

for every ordinal �.

Proof. The construction 2 prescribes a function:

G� : H[(a0;1; A0); (X; f)] �! H[(a�;�+1; A�); (X; f)]

1) G� is surjective. Suppose s� : (a�;�+1; A�) �! (X; f) is a twisted homomorphism.

Let s0
def
= a0;�; s�. It is readily veri�ed that s0 2M[(a0;1; A0); (X; f)]. We only have to show

that the last leg of the s0-induced cocone is s�. We will de�ne a twisted homomorphism

si : (ai;i+1; Ai) �! (X; f) for each i 2 � and prove by trans�nite induction that (i) si =

ai;i+1; si+1 for successor ordinals and si = ai;
 ; s
 for limit ordinals and (ii) ai;�; s� = si.

� De�ne s1
def
= T (s0); f .

s1 = T (s0); f = T (a0;�; s�); f = a1;�+1;Ts�; f = a1;�; s�

a0;1; s1 = a0;1;T (a0;�; s�); f = a0;�; a�;�+1;T (s�); f = a0;�; s� = s0

� For a successor ordinal i, de�ne si+1
def
= T (si); f .

ai;i+1; si+1 = ai;i+1;T (si); f = ai;i+1;T (ai;�; s�); f = ai;�; a�;�+1;T (s�); f = ai;�; s� = si

si+1 = T (si); f = T (ai;�; s�); f = ai+1;�; a�;�+1;T (s�); f = ai+1;�; s�

�
 2 � is a limit ordinal. s
 is de�ned as the mediating morphism. As si = ai;
 ; s
 , we get

ai;
 ; a
;�; s� = ai;�; s� = si = ai;
 ; s
 . It follows that a
;�; s� = s
 .

142 FU Yuxi Vol.16

� For the limit ordinal
, s
+1
def
= T (s
); f . That a
;
+1; s
+1 = s
 is established in the same

way as in Construction 2. The proof of s
+1 = a
+1; s
 is the same as in the second case.

If � is a successor ordinal, T (s��1); f = T (a��1;�; s�); f = a�;�+1;T (s�); f = s�. Oth-

erwise what we have shown is that s� is the mediating morphism. In both cases s� is just

what we would have de�ned.

2) G� is injective. Let r0 and t0 be two di�erent twisted homomorphisms from (a0;1; A0)

to (X; f). It is clear that r1 6= t1 for otherwise r0 = a0;1; r1 = a0;1; t1 = t0. In general,

ri 6= ti for successor ordinals. But then r
 6= t
 for limit ordinals because they are mediating

morphisms induced by two di�erent cocones. Hence r� 6= t�. 2

If C is also co�ltered complete, we can construct duly the r-induced cone over the

(B0; b1;0)-induced cochain from a twisted homomorphism r : (a0;1; A0) �! (B0; b0;1). It

is easy to see that we get a commutative diagram as shown in Fig.4:

Fig.4

It is a simple consequence of the theorem that

H[(a0;1; A0); (Bi; bi+1;i)] ' H[(aj;j+1; Aj); (B0; b1;0)]

holds for all ordinals i; j. As we mentioned, Theorem 3.2 generalizes nicely a result in [6]

which is

Corollary 3.3. Suppose C is �ltered cocomplete with the initial object ; and T an

endofunctor on C. If the (;
!

�! T;; ;)-induced chain closes at �, then (T�;; (T�(!))�1) is

the initial T -algebra.

4 Monotonic Functors on !-SET

Let F : Set �! Set be a monotonic functor; that is F (A ,! B) is an inclusion whenever

A ,! B is. Then we can construct a sequence as shown in Fig.5:

Fig.5

For a limit ordinal �, the colimit is de�ned by taking the union of the sets previously

constructed. Suppose A is the vertex of a cocone. Then the mediating morphism f can be

obviously de�ned.

If M [X] is a type strictly positive with respect to X, then it can be interpreted as a

monotonic functor on Set. This functor is bounded upwards for simple cardinality reason.

So we can interpret �X:M [X] as the initial T -algebra. This is the model given in [7].

The situation in !-Set is di�erent. The problem is that [�<�F
�(;), when � is a limit

ordinal, is not necessarily a colimit (!-Set does not have all colimits). We still have the

underlying function f as shown in Fig.5, but in general it is not guaranteed that there is a

recursive function that tracks it.

No.2 Semantics of Constructions (II) | The Initial Algebraic Approach 143

As in the previous case, a strictly positive type constructor gives rise to a monotonic

functor on !-Set. What is unsatisfactory is that Corollary 3.3 is no longer applicable. So

the construction of an initial T -algebra from a monotonic functor on Set does not generalize

to the case of !-Set. In [4], the author assumes that every bounded monotonic functor on

!-Set generates an initial T -algebra, but does not explain why.

Some bounded monotonic functors on !-Set however do have initial T -algebras.

De�nition 4.1. We say an !-set A = (A;`A) is decidable if the identity endomor-

phism IdA is tracked by some recursive function de�ned only on the set R(A)
def
= fnjn `A

a for some a 2 Ag of its realizers (or equivalently, IdA is tracked by the identity recursive

function de�ned only on R(A)).

De�nition 4.2. We say a monotonic functor on !-Set is decidable if it maps decidable

!-sets to decidable !-sets. It is continuous if it is a bounded decidable monotonic functor

whose closure ordinal is countable.

Proposition 4.3. Suppose F : !-Set�! !-Set is a continuous functor. Then it has

an initial T -algebra.

Proof. The initial !-set is decidable. By assumption, F i(;) is decidable. We need to

show that [i2�F
i(;) is decidable for some limit ordinal � < @1. As F i(;) is decidable,

IdF i(;) is tracked by some di that is de�ned only on R(F i(;)) for each i 2 �. Id[i2�F i(;) is

then tracked by the following Turing machine:
� For any given x 2 !, it imitates the �rst step of d0 on x at the �rst stage.

� At the second stage, it imitates the �rst step of d1 on x and the second step of d0 on x.

� At the third stage, it imitates the �rst step of d2, the second step of d1 and the third step of

d0.

� And so on and so forth. As � is countable, this diagonal method gives rise to a Turing machine.

Clearly this machine stops only on inputs that are in R([i2�F
i(;)). So F�(;) is decid-

able. Next we must show that F�(;) is the colimit. Suppose ffigi2� is a cocone and for

each i 2 �, fi is tracked by ci. Then by the above analysis, for each i 2 �, fi is also tracked

by some ei that is de�ned only on R(F i(;)). In view of what we have mentioned, we only

have to �nd a recursive function that tracks the mediating function. This can be done by

applying the above diagonal argument to ffigi2�. 2

The continuous functors can be seen as the !-Set counterparts of �-continuous functors.

Notice that if the ambient category is Per, the countability condition can be dropped.

De�nition 4.4. Suppose X : Typei ` �(X) : Typei. We say �(X) is rigidly positive

with respect to X if (i) � = C such that the standard interpretation of C in !-Set is a

decidable !-set or (ii) � = X or (iii) � = �1
 �2 such that both �1 and �2 are rigidly

positive with respect to X, where
 is either � or +.

Proposition 4.5. Suppose F (X) is a type and X occurs in it rigidly positively. Then

the denotation of F in !-Set (Per) is a continuous functor.

It should be clear that, when restricted to the rigidly positive type constructors, the

language de�ned in Section 2 does have an interpretation in !-Set.

5 Local Inductive Types

In some typed calculi or programming languages, say object-oriented languages, there is a

natural notion of subtyping relation �. In such a language, we can de�ne a type, inductively,

that contains another type. We assume that coercions are implicit; that is a : B whenever

A � B and a : A. The following rules describe how local inductive types are formed and

manipulated.
Formation

� ` B : Type �; X : Type `M : Type � ` B �M [B=X] : Type

� ` B � �X:[B "M] : Type

144 FU Yuxi Vol.16

where X appears strictly positively in M . The same restriction applies to other rules.
Introduction

� ` N :M [�X:[B "M]=X]

� ` intro�(N) : �X:[B "M]

Elimination

� ` B : Type �; X : Type `M : Type � ` B �M [B=X] : Type

� ` h : �x :B:C � ` f : �z :M [�x : �:C=X]:C[intro�(M
?(�1)z)]

� ` �x : B:f(M?(h�x : B:x; hi)x) = h : �x :B:C

� ` rec�(f " h) : �x :�X:[B "M]:C

Computation

� ` B : Type �; X : Type `M : Type � ` B �M [B=X] : Type

� ` h : �x :B:C � ` f : �z :M [�x : �:C=X]:C[intro�(M
?(�1)z)]

� ` �x :B:f(M?(h�x : B:x; hi)x) = h : �x :B:C

� ` a : B

� ` rec�(f " h)(a) = h(a) : C[a]

� ` B : Type �; X : Type `M : Type � ` B �M [B=X] : Type

� ` h : �x :B:C � ` f : �z :M [�x : �:C=X]:C[intro�(M
?(�1)z)]

� ` �x : B:f(M?(h�x : B:x; hi)x) = h : �x :B:C

� ` a :M [�X:[B "M]]

� ` rec�(f " h)(intro�(a)) = f(M?(rec�(f " h))(a)) : C[intro�(M
?(�1)a)]

The formulation of the above rules is motivated by Theorem 3.2. Fig.6 helps to understand

the above rules:

Fig.6

The local inductive types can also be formulated in the traditional style. Without losing

any generality, we explain only the rules for local W -types.
Formation

�; x : A ` B : Type � ` D : Type

� ` D �WDx :A:B : Type

Introduction
� ` a : A � ` b : B[a]!WDx :A:B

� ` sup(a; b) :WDx :A:B

Elimination

�; z :WDx :A:B ` C : Type

� ` f0 : �z :D:C

� ` f1 : �x :A:�y : (B !WDx :A:B):�h : (�b :B:C[y(b)]):C[sup(x; y)]

� ` recWDx:A:B(f0; f1) : �z : (WDx :A:B):C

Computation

�; z :WDx :A:B ` C : Type

� ` f0 : �z :D:C

� ` f1 : �x :A:�y : (B !WDx :A:B):�h : (�b :B:C[y(b)]):C[sup(x; y)]

� ` d : D

� ` recWDx:A:B(f0; f1)(d) = f0(d) : C[d]

No.2 Semantics of Constructions (II) | The Initial Algebraic Approach 145

�; z :WDx :A:B ` C : Type

� ` f0 : �z :D:C

� ` f1 : �x :A:�y : (B !WDx :A:B):�h : (�b :B:C[y(b)]):C[sup(x; y)]

� ` a : A � ` b : B[a]!WDx : A:B

� ` recWDx:A:B(f0; f1)(sup(a; b)) = f1(a; b; �x : B[a]:recWDx:A:B(f0; f1)(b(x))) : C[sup(a; b)]

The !-Set model as described in [3] can be extended to interpret the local W -types.
For � 2 j�j, the rule set R� is de�ned as the following set:

n
d

��� d 2 jDj

o
[

8<
:

range(b)

hnsup; a; bi

������
a 2 jA(�)j^

b 2 jB(�; a)j ! V�

9=
;

The e�ective procedure for getting !(I(R�)) remains almost unchanged except that this
time we take !0 to be D. The graph F� is

Graph(f0(�)) [

8<
:

fhb(x); h(x)i j x 2 jB(�; a)jg

hhnsup; a; bi; f1(�)(a; b; h)i

�����
a 2 jA(�)j^

b 2 jB(�; a)! !(I(R�))j^

h 2 j�(B(�; a); C(�; b()))j

9=
;

Assume the elements are distinguished by a code. A recursive function that tracks I(F�)

can be found similarly. The only di�erence is that there should be a branching programme

that will perform di�erent actions depending on whether the input datum is in D or not.

6 Conclusion and Further Work

There are two ways to de�ne an inductive set: one is to take the smallest closure of a

rule set and the other is to take the least �xed point of a bounded monotonic functor. In

this paper, we have explained how to interpret the generalized inductive types in !-Set by

e�ectivizing the notion of rule sets. We have also noticed that the notion of �-continuous

functors on Set cannot be transplanted to !-Set without considerable restriction. At

the moment, we do not know if the continuous functors are a general enough de�nition.

The interpretation given in [3] involves a huge amount of encoding. Is there a civilized or

categorical description? Is it possible to give an internal account of what is done in [3]?

These questions are closely related to a much harder one: what are the endofunctors on

!-Set that have initial T -algebras?

References

[1] Nordstr�om B, Petersson K, Smith J. Programming in Martin-L�of's type theory | An introduction. In

International Series of Monographs on Computer Science 7, Oxford University Press, 1990.

[2] Coquand T, Huet G. The calculus of constructions. Information and Computation, 1998, 76(1): 95{120.

[3] Fu Y. Semantics of constructions (I) | The traditional approach. Journal of Computer Science and

Technology, 2001, 16(1): 13{24.

[4] Ore C. The extended calculus of constructions (ECC) with inductive types. Information and Compu-

tation, 1992, 99(1): 231{264.

[5] Hagino S. A typed lambda calculus with categorical type constructions. In Category Theory in Computer

Science, Lecture Notes in Computer Science 283, Springer, 1987, pp.140{157.

[6] Ad�amek J, Koubek V. Least �xed point of a functor. Journal of Computer Systems, 1979, 19(1):

163{178.

[7] Coquand T, Paulin-Mohring C. Inductively De�ned Types. In COLOG'88, Lecture Notes in Computer

Science 417, Springer-Verlag, 1990, pp.50{66.

For the biography of FU Yuxi, please refer to p.24, No.1, Vol.16 of this journal.

