SCIE, EI, Scopus, INSPEC, DBLP, CSCD, etc.
Citation: | Li-Wei Liu, Hai-Zhou Ai. Learning Structure Models with Context Information for Visual Tracking[J]. Journal of Computer Science and Technology, 2013, 28(5): 818-826. DOI: 10.1007/s11390-013-1380-y |
[1] |
Lowe D G. Robust model-based motion tracking through the integration of search and estimation. Int. J. Comput. Vis., 1992, 8(2): 113-122.
|
[2] |
Shafique K, Shah M. A non-iterative greedy algorithm for multi-frame point correspondence. IEEE Trans. Pattern Anal. Mach. Intel., 2005, 27(1): 51-65.
|
[3] |
Zhao T, Nevatia R. Tracking multiple humans in complex situations. IEEE Trans. Pattern Anal. Mach. Intel., 2004, 26(9): 1208-1221.
|
[4] |
Kass M, Witkin A, Terzopoulos D. Snakes: Active contour models. Int. J. Comput. Vis., 1988, 1(4): 321-331.
|
[5] |
Kamijo S, Matsushita Y, Ikeuchi K, Sakauchi M. Occlusion robust tracking utilizing spatio-temporal Markov random field model. In Proc. the 15th Int. Conf. Pattern Recognition, Sept. 2000, Vol.1, pp.140-144.
|
[6] |
Wang S, Lu H, Yang F et al. Superpixel tracking. In Proc. the IEEE Int. Conf. Comput. Vis., Nov. 2011, pp.1323-1330.
|
[7] |
Viola P, Jones M J. Robust real-time face detection. Int. J. Comput. Vis., 2004, 57(2): 137-154.
|
[8] |
Huang C, Ai H, Li Y, Lao S. High performance rotation invariant multiview face detection. IEEE Trans. Pattern Anal. Mach. Intel., 2007, 29(4): 671-686.
|
[9] |
Wu B, Nevatia R. Detection and tracking of multiple, partially occluded humans by Bayesian combination of edgelet based part detectors. Int. J. Comput. Vis., 2007, 75(2): 247-266.
|
[10] |
Dalal N, Triggs B. Histograms of oriented gradients for human detection. In Proc. the 2005 IEEE Conf. Comput. Vis. Pattern Recognition, Jun. 2005, Vol.1, pp.886-893.
|
[11] |
Felzenszwalb P F, Girshick R B, McAllester D, Ramanan D. Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intel., 2010, 32(9): 1627-1645.
|
[12] |
Kuo C H, Nevatia R. Robust multi-view car detection using unsupervised sub-categorization. In Proc. the 2009 Workshop Appl. of Comput. Vis., Dec. 2009, pp.1-8.
|
[13] |
Song G Y, Lee K Y, Lee J W. Vehicle detection by edge-based candidate generation and appearance-based classification. In Proc. the 2008 IEEE Intelligent Vehicles Symposium, Jun. 2008, pp.428-433.
|
[14] |
Zhang L, Li Y, Nevatia R. Global data association for multiobject tracking using network flows. In Proc. the IEEE Conf. Comput. Vis. Pattern Recognition, Jun. 2008, pp.1-8.
|
[15] |
Pirsiavash H, Ramanan D, Fowlkes C C. Globally-optimal greedy algorithms for tracking a variable number of objects. In Proc. the IEEE Conf. Comput. Vis. Pattern Recognition, Jun. 2011, pp.1201-1208.
|
[16] |
Babenko B, Yang M H, Belongie S. Visual tracking with online multiple instance learning. In Proc. the IEEE Conf. Comput. Vis. Pattern Recognition, Jun. 2009, pp.983-990.
|
[17] |
Grabner H, Grabner M, Bischof H. Real-time tracking via online boosting. In Proc. British Mach. Vis. Conf., Sept. 2006, Article No. 6.
|
[18] |
Kalal Z, Mikolajczyk K, Matas J. Tracking-learningdetection. IEEE Trans. Pattern Anal. Mach. Intel., 2012, 34(7): 1409-1422.
|
[19] |
Kwak S, Nam W, Han B, Han J H. Learning occlusion with likelihoods for visual tracking. In Proc. the IEEE Int. Conf. Comput. Vis., Nov. 2011, pp.1551-1558.
|
[20] |
Jia X, Lu H, Yang M H. Visual tracking via adaptive structural local sparse appearance model. In Proc. the IEEE Conf. Comput. Vis. Pattern Recognition, Jun. 2012, pp.1822-1829.
|
[21] |
Saffari A, Leistner C, Santner J, Godec M, Bischof H. On-line random forests. In Proc. the 12th Int. Conf. Comput. Vis. Workshops, Sept. 27-Oct. 4, 2009, pp.1393-1400.
|
[22] |
Xing J, Ai H, Liu L, Lao S. Multiple player tracking in sports video: A dual-mode two-way Bayesian inference approach with progressive observation modeling. IEEE Trans. Image Processing, 2011, 20(6): 1652-1667.
|
[1] | Jia Chen, Peng Wang, Fan Qiao, Shi-Qing Du, Wei Wang. PLQ: An Efficient Approach to Processing Pattern-Based Log Queries[J]. Journal of Computer Science and Technology, 2022, 37(5): 1239-1254. DOI: 10.1007/s11390-020-0653-5 |
[2] | Punit Kumar, Atul Gupta. Active Learning Query Strategies for Classification, Regression, and Clustering: A Survey[J]. Journal of Computer Science and Technology, 2020, 35(4): 913-945. DOI: 10.1007/s11390-020-9487-4 |
[3] | Jian-Hua Feng, Qian Qian, Jian-Yong Wang, Li-Zhu Zhou. Efficient Mining of Frequent Closed XML Query Pattern[J]. Journal of Computer Science and Technology, 2007, 22(5): 725-735. |
[4] | Zheng Fang, Wu Wenhu, Fang Ditang. A Log-Index Weighted Cepstral Distance Measure for Speech Recognition[J]. Journal of Computer Science and Technology, 1997, 12(2): 177-184. |
[5] | Gao Qingshi. A Unified O(log N) and Optimal Sorting Vector Algorithm[J]. Journal of Computer Science and Technology, 1995, 10(5): 470-475. |
[6] | Hock C. Chan. Translational Semantics for a Conceptual Level Query Language[J]. Journal of Computer Science and Technology, 1995, 10(2): 175-187. |
[7] | Zhou Aoying, Shi Baile. Query Optimization for Deductive Databases[J]. Journal of Computer Science and Technology, 1995, 10(2): 134-148. |
[8] | Li Tianzhu. A Study of Optimization and Rule/Goal Graph for a Logical Query[J]. Journal of Computer Science and Technology, 1992, 7(4): 356-362. |
[9] | Li Jianzhong. Range Query Processing in Multidisk Systems[J]. Journal of Computer Science and Technology, 1992, 7(4): 316-327. |
[10] | Sui Yuefei. Classification of the Index Sets of Low[n]~p and High [n]~p[J]. Journal of Computer Science and Technology, 1991, 6(3): 285-290. |