We use cookies to improve your experience with our site.

Indexed in:

SCIE, EI, Scopus, INSPEC, DBLP, CSCD, etc.

Submission System
(Author / Reviewer / Editor)
Li-Wei Liu, Hai-Zhou Ai. Learning Structure Models with Context Information for Visual Tracking[J]. Journal of Computer Science and Technology, 2013, 28(5): 818-826. DOI: 10.1007/s11390-013-1380-y
Citation: Li-Wei Liu, Hai-Zhou Ai. Learning Structure Models with Context Information for Visual Tracking[J]. Journal of Computer Science and Technology, 2013, 28(5): 818-826. DOI: 10.1007/s11390-013-1380-y

Learning Structure Models with Context Information for Visual Tracking

Funds: This work is supported in part by the National Natural Science Foundation of China under Grant No. 61075026 and the National Basic Research 973 Program of China under Grant No. 2011CB302203.
More Information
  • Received Date: May 04, 2013
  • Revised Date: August 12, 2013
  • Published Date: September 04, 2013
  • Tracking objects that undergo abrupt appearance changes and heavy occlusions is a challenging problem which conventional tracking methods can barely handle. To address the problem, we propose an online structure learning algorithm that contains three layers: an object is represented by a mixture of online structure models (OSMs) which are learnt from block-based online random forest classifiers (BORFs). BORFs are able to handle occlusion problems since they model local appearances of the target. To further improve the tracking accuracy and reliability, the algorithm utilizes mixture relational models (MRMs) as multi-mode context information to integrate BORFs into OSMs. Furthermore, the mixture construction of OSMs can avoid over-fitting effectively and is more flxible to describe targets. Fusing BORFs with MRMs, OSMs capture the discriminative parts of the target, which guarantees the reliability and robustness of our tracker. In addition, OSMs incorporate with block occlusion reasoning to update our BORFs and MRMs, which can deal with appearance changes and drifting problems effectively. Experiments on challenging videos show that the proposed tracker performs better than several state-of-the-art algorithms.
  • [1]
    Lowe D G. Robust model-based motion tracking through the integration of search and estimation. Int. J. Comput. Vis., 1992, 8(2): 113-122.
    [2]
    Shafique K, Shah M. A non-iterative greedy algorithm for multi-frame point correspondence. IEEE Trans. Pattern Anal. Mach. Intel., 2005, 27(1): 51-65.
    [3]
    Zhao T, Nevatia R. Tracking multiple humans in complex situations. IEEE Trans. Pattern Anal. Mach. Intel., 2004, 26(9): 1208-1221.
    [4]
    Kass M, Witkin A, Terzopoulos D. Snakes: Active contour models. Int. J. Comput. Vis., 1988, 1(4): 321-331.
    [5]
    Kamijo S, Matsushita Y, Ikeuchi K, Sakauchi M. Occlusion robust tracking utilizing spatio-temporal Markov random field model. In Proc. the 15th Int. Conf. Pattern Recognition, Sept. 2000, Vol.1, pp.140-144.
    [6]
    Wang S, Lu H, Yang F et al. Superpixel tracking. In Proc. the IEEE Int. Conf. Comput. Vis., Nov. 2011, pp.1323-1330.
    [7]
    Viola P, Jones M J. Robust real-time face detection. Int. J. Comput. Vis., 2004, 57(2): 137-154.
    [8]
    Huang C, Ai H, Li Y, Lao S. High performance rotation invariant multiview face detection. IEEE Trans. Pattern Anal. Mach. Intel., 2007, 29(4): 671-686.
    [9]
    Wu B, Nevatia R. Detection and tracking of multiple, partially occluded humans by Bayesian combination of edgelet based part detectors. Int. J. Comput. Vis., 2007, 75(2): 247-266.
    [10]
    Dalal N, Triggs B. Histograms of oriented gradients for human detection. In Proc. the 2005 IEEE Conf. Comput. Vis. Pattern Recognition, Jun. 2005, Vol.1, pp.886-893.
    [11]
    Felzenszwalb P F, Girshick R B, McAllester D, Ramanan D. Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intel., 2010, 32(9): 1627-1645.
    [12]
    Kuo C H, Nevatia R. Robust multi-view car detection using unsupervised sub-categorization. In Proc. the 2009 Workshop Appl. of Comput. Vis., Dec. 2009, pp.1-8.
    [13]
    Song G Y, Lee K Y, Lee J W. Vehicle detection by edge-based candidate generation and appearance-based classification. In Proc. the 2008 IEEE Intelligent Vehicles Symposium, Jun. 2008, pp.428-433.
    [14]
    Zhang L, Li Y, Nevatia R. Global data association for multiobject tracking using network flows. In Proc. the IEEE Conf. Comput. Vis. Pattern Recognition, Jun. 2008, pp.1-8.
    [15]
    Pirsiavash H, Ramanan D, Fowlkes C C. Globally-optimal greedy algorithms for tracking a variable number of objects. In Proc. the IEEE Conf. Comput. Vis. Pattern Recognition, Jun. 2011, pp.1201-1208.
    [16]
    Babenko B, Yang M H, Belongie S. Visual tracking with online multiple instance learning. In Proc. the IEEE Conf. Comput. Vis. Pattern Recognition, Jun. 2009, pp.983-990.
    [17]
    Grabner H, Grabner M, Bischof H. Real-time tracking via online boosting. In Proc. British Mach. Vis. Conf., Sept. 2006, Article No. 6.
    [18]
    Kalal Z, Mikolajczyk K, Matas J. Tracking-learningdetection. IEEE Trans. Pattern Anal. Mach. Intel., 2012, 34(7): 1409-1422.
    [19]
    Kwak S, Nam W, Han B, Han J H. Learning occlusion with likelihoods for visual tracking. In Proc. the IEEE Int. Conf. Comput. Vis., Nov. 2011, pp.1551-1558.
    [20]
    Jia X, Lu H, Yang M H. Visual tracking via adaptive structural local sparse appearance model. In Proc. the IEEE Conf. Comput. Vis. Pattern Recognition, Jun. 2012, pp.1822-1829.
    [21]
    Saffari A, Leistner C, Santner J, Godec M, Bischof H. On-line random forests. In Proc. the 12th Int. Conf. Comput. Vis. Workshops, Sept. 27-Oct. 4, 2009, pp.1393-1400.
    [22]
    Xing J, Ai H, Liu L, Lao S. Multiple player tracking in sports video: A dual-mode two-way Bayesian inference approach with progressive observation modeling. IEEE Trans. Image Processing, 2011, 20(6): 1652-1667.
  • Related Articles

    [1]Jia Chen, Peng Wang, Fan Qiao, Shi-Qing Du, Wei Wang. PLQ: An Efficient Approach to Processing Pattern-Based Log Queries[J]. Journal of Computer Science and Technology, 2022, 37(5): 1239-1254. DOI: 10.1007/s11390-020-0653-5
    [2]Punit Kumar, Atul Gupta. Active Learning Query Strategies for Classification, Regression, and Clustering: A Survey[J]. Journal of Computer Science and Technology, 2020, 35(4): 913-945. DOI: 10.1007/s11390-020-9487-4
    [3]Jian-Hua Feng, Qian Qian, Jian-Yong Wang, Li-Zhu Zhou. Efficient Mining of Frequent Closed XML Query Pattern[J]. Journal of Computer Science and Technology, 2007, 22(5): 725-735.
    [4]Zheng Fang, Wu Wenhu, Fang Ditang. A Log-Index Weighted Cepstral Distance Measure for Speech Recognition[J]. Journal of Computer Science and Technology, 1997, 12(2): 177-184.
    [5]Gao Qingshi. A Unified O(log N) and Optimal Sorting Vector Algorithm[J]. Journal of Computer Science and Technology, 1995, 10(5): 470-475.
    [6]Hock C. Chan. Translational Semantics for a Conceptual Level Query Language[J]. Journal of Computer Science and Technology, 1995, 10(2): 175-187.
    [7]Zhou Aoying, Shi Baile. Query Optimization for Deductive Databases[J]. Journal of Computer Science and Technology, 1995, 10(2): 134-148.
    [8]Li Tianzhu. A Study of Optimization and Rule/Goal Graph for a Logical Query[J]. Journal of Computer Science and Technology, 1992, 7(4): 356-362.
    [9]Li Jianzhong. Range Query Processing in Multidisk Systems[J]. Journal of Computer Science and Technology, 1992, 7(4): 316-327.
    [10]Sui Yuefei. Classification of the Index Sets of Low[n]~p and High [n]~p[J]. Journal of Computer Science and Technology, 1991, 6(3): 285-290.

Catalog

    Article views (18) PDF downloads (1188) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return