SCIE, EI, Scopus, INSPEC, DBLP, CSCD, etc.
Citation: | Kai Huang, Li-Qing Zhang. Semisupervised Sparse Multilinear Discriminant Analysis[J]. Journal of Computer Science and Technology, 2014, 29(6): 1058-1071. DOI: 10.1007/s11390-014-1490-1 |
[1] |
Sirovich L, Kirby M. Low-dimensional procedure for the characterization of human faces. Journal of the Optical Society of America A, 1987, 4(3): 519-524.
|
[2] |
Kirby M, Sirovich L. Application of the Karhunen-Loéve procedure for the characterization of human faces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(1): 103-108.
|
[3] |
Turk M, Pentland A. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 1991, 3(1): 71-86.
|
[4] |
Hyvöarinen A. Survey on independent component analysis. Neural Computing Surveys, 1999, 2:94-128.
|
[5] |
Liu Q S, Lu H Q, Ma S D. Improving kernel Fisher discriminant analysis for face recognition. IEEE Transactions on Circuits and Systems for Video Technology, 2004, 14(1): 42-49.
|
[6] |
Zhao Q B, Zhang L Q. ECG feature extraction and classification using wavelet transform and support vector machines. In Proc. International Conference on Neural Networks and Brain, October 2005, pp.1089-1092.
|
[7] |
Jen K K, Hwang Y R. ECG feature extraction and classification using cepstrum and neural networks. Journal of Medical and Biological Engineering, 2008, 28(1): 31-37.
|
[8] |
Pasolli E, Melgani F. Active learning methods for electrocardiographic signal classification. IEEE Transactions on Information Technology in Biomedicine, 2010, 14(6): 1405-1416.
|
[9] |
Zhang H, Zhang L Q. ECG analysis based on PCA and support vector machines. In Proc. International Conference on Neural Networks and Brain, October 2005, pp.743-747.
|
[10] |
Wu Y, Zhang L Q. ECG classification using ICA features and support vector machines. In Lecture Notes in Computer Science 7062, Lu B L, Zhang L Q, Kwok J T (eds.), 2011, Springer, pp.146-154.
|
[11] |
Huang K, Zhang L Q, Wu Y. ECG classification based on non-cardiology feature. In Proc. the 9th International Symposium on Neural Networks, July 2012, pp.179-186.
|
[12] |
Zhao W Y, Chellappa R, Phillips P J, Rosenfeld A. Face recognition: A literature survey. ACM Computing Surveys, 2003, 35(4): 399-458.
|
[13] |
Yang J, Zhang D, Frangi A F, Yang J Y. Two-dimensional PCA: A new approach to appearance-based face representation and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(1): 131-137.
|
[14] |
Yang J, Zhang D, Yong X, Yang J Y. Two-dimensional discriminant transform for face recognition. Pattern Recognition, 2005, 38(7): 1125-1129.
|
[15] |
Ye J P. Generalized low rank approximations of matrices. Machine Learning, 2005, 6(1/2/3): 167-191.
|
[16] |
Ye J P, Janardan R, Li Q. Two-dimensional linear discriminant analysis. In Proc. the 18th Annual Conf. Neural Information Processing Systems, December 2004, pp.1569-1576.
|
[17] |
Tao D C, Li X L, Wu X D, Maybank S J. General tensor discriminant analysis and Gabor features for gait recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(10): 1700-1715.
|
[18] |
Lu H P, Plataniotis K N, Venetsanopoulos A N. Multilinear principal component analysis of tensor objects for recognition. In Proc. the 18th International Conference on Pattern Recognition, August 2006, pp.776-779.
|
[19] |
Lu H P, Plataniotis K N, Venetsanopoulos A N. Uncorrelated multilinear principal component analysis through successive variance maximization. In Proc. the 25th International Conference on Machine Learning, July 2008, pp.616-623.
|
[20] |
Lu H P, Plataniotis K N, Venetsanopoulos A N. Uncorrelated multilinear principal component analysis for unsupervised multilinear subspace learning. IEEE Transactions on Neural Networks, 2009, 20(11): 1820-1836.
|
[21] |
Tao D C, Li X L, Wu X D, Maybank S. Tensor rank one discriminant analysis——A convergent method for discriminative multilinear subspace selection. Neurocomputing, 2008, 71(10/11/12): 1866-1882.
|
[22] |
Yan S C, Xu D, Yang Q, Zhang L, Tang X, Zhang H J. Discriminant analysis with tensor representation. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, June 2005, pp.526-532.
|
[23] |
Lu H P, Plataniotis K N, Venetsanopoulos A N. A survey of multilinear subspace learning for tensor data. Pattern Recognition, 2011, 44(7): 1540-1551.
|
[24] |
Li D, Huang K, Zhang H L, Zhang L Q. UMPCA based feature extraction for ECG. In Proc. the 10th International Symposium on Neural Networks, July 2013, pp.383-390.
|
[25] |
Cheng B F, Huang K, Zhang L Q. Tensor-based feature extraction method for ECG. In Proc. International Conference on Medical Physics and Biomedical Engineering, September 2012, pp.383-390.
|
[26] |
Huang K, Zhang L Q. Optimal calculation of tensor learning approaches. In Proc. the 10th International Symposium on Neural Networks, July 2013, pp.326-333.
|
[27] |
Zhang Y, d'Aspremont A, Ghaoui L E. Sparse PCA: Convex relaxations, algorithms and applications. In Handbook on Semidefinite, Cone and Polynomial Optimization: Theory, Algorithms, Software and Applications, Anjos M, Lasserre J B (eds.), 2011, pp.915-940.
|
[28] |
Clemmensen L. Sparse discriminant analysis (sparseLDA) software in Matlab, version 2.0. May 2008. http://www2.imm.dtu.dk/projects/spasm/, May 2014
|
[29] |
Lai Z H, Xu Y, Yang J, Tang J H, Zhang D. Sparse tensor discriminant analysis. IEEE Transactions on Image Processing, 2013, 22(10): 3904-3915.
|
[30] |
Cai D, He X F, Han J W. Semi-supervised discriminant analysis. In Proc. the 11th IEEE International Conference on Computer Vision, October 2007, pp.1-7.
|
[31] |
Qu W, Song K S, Zhang Y F, Feng S, Wang D L, Yu G. A novel approach based on multi-view content analysis and semi-supervised enrichment for movie recommendation. Journal of Computer Science and Technology, 2013, 28(5): 776787.
|
[32] |
Kobayashi T, Watanabe K J, Otsu N. Logistic label propagation. Pattern Recognition Letters, 2012, 33(5): 580-588.
|
[33] |
Huang K, Zhang L Q. ECG representation with simulated 2D and 3D VCG using prior knowledge based weighted PCA. In Proc. International Conference on Medical Physics and Biomedical Engineering, September 2012, pp.383-390.
|
[34] |
Allen J B, Rabiner L R. A unified approach to short-time Fourier analysis and synthesis. Proceedings of IEEE, 1977, 65(11): 1558-1564.
|
[35] |
Miwakeichi F, Martínez-Montes E, Valdés-Sosa P, Nishiyama N, Mizuhara H, Yamaguchi Y. Decomposing EEG data into space-time-frequency components using parallel factor analysis. NeuroImage, 2004, 22(3): 1035-1045.
|
[36] |
Vos M D, Vergult A, Lathauwer L D, Clercq W D, Huffel S V, Dupont P, Palmini A, Paesschen W V. Canonical decomposition of ictal scalp EEG reliably detects the seizure onset zone. NeuroImage, 2007, 37(3): 844-854.
|
[37] |
Acar E, Aykut-Bingol C, Bingol H, Bro R, Yener B. Multiway analysis of epilepsy tensors. In Proc. the 15th International Conference on Intelligent Systems for Molecular Biology (ISMB) & the 6th European Conference on Computational Biology (ECCB), July 2007, pp.10-18.
|
[38] |
Zhu X j. Semi-supervised learning literature survey. Technical Report, Department of Computer Sciences University of Wisconsin, Madison, 2005. http://pages.cs.wisc.edu/~jerryzhu/pub/ssl survey.pdf, Sept. 2014
|
[39] |
Belkin M, Niyogi P, Sindhwani V. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research, 2006, 7: 2399-2434.
|
[40] |
Chung F R K. Spectral Graph Theory (CBMS Regional Conference Series in Mathematics, No.92). American Mathematical Society, 1996.
|
[41] |
Song F X, Zhang D, Mei D, Guo Z W. A multiple maximum scatter difference discriminant criterion for facial feature extraction. IEEE Transactions on Systems Man and Cybernetics, Part B: Cybernetics, 2007, 37(6): 1599-1606.
|
[42] |
Gao J, Xiang L. Laplacian maximum scatter difference discriminant criterion. In Communications in Computer and Information Science 224, Zeng D (ed.), Springer 2011, pp.691-697.
|
[43] |
Leiva-Murillo J M, Artes-Rodríguez A. Maximization of mutual information for supervised linear feature extraction. IEEE Transactions on Neural Networks, 2007, 18(5): 14331441.
|
[44] |
Dhir C, Lee S. Discriminant independent component analysis. In Lecture Notes in Computer Science 5788, Corchado E, Yin H (eds.), 2009, Springer, pp.219-225.
|
[45] |
Tao D C, Li X L, Hu W M, Maybank S J, Wu X D. Supervised tensor learning. In Proc. the 5th IEEE International Conference on Data Mining, Nov. 2005, pp.450-457.
|
[46] |
He Y H. Solving undersampled problem of LDA using GramSchmidt orthogonalization procedure in difference space. In Proc. International Conference on Advanced Computer Control, January 2009, pp.153-157.
|
[1] | Yi-Qiang Chen, Teng Zhang, Xin-Long Jiang, Qian Chen, Chen-Long Gao, Wu-Liang Huang. FedBone: Towards Large-Scale Federated Multi-Task Learning[J]. Journal of Computer Science and Technology, 2024, 39(5): 1040-1057. DOI: 10.1007/s11390-024-3639-x |
[2] | Andrea Caroppo, Alessandro Leone, Pietro Siciliano. Comparison Between Deep Learning Models and Traditional Machine Learning Approaches for Facial Expression Recognition in Ageing Adults[J]. Journal of Computer Science and Technology, 2020, 35(5): 1127-1146. DOI: 10.1007/s11390-020-9665-4 |
[3] | Tong Lin, Yao Liu, Bo Wang, Li-Wei Wang, Hong-Bin Zha. Nonlinear Dimensionality Reduction by Local Orthogonality Preserving Alignment[J]. Journal of Computer Science and Technology, 2016, 31(3): 512-524. DOI: 10.1007/s11390-016-1644-4 |
[4] | Yang-Sheng Ji, Jia-Jun Chen, Gang Niu, Lin Shang, Xin-Yu Dai. Transfer Learning via Multi-View Principal Component Analysis[J]. Journal of Computer Science and Technology, 2011, 26(1): 81-98. DOI: 10.1007/s11390-011-1113-z |
[5] | Xiao-Chen Li, Wen-Ji Mao, Daniel Zeng, Peng Su, Fei-Yue Wang. Performance Evaluation of Machine Learning Methods in Cultural Modeling[J]. Journal of Computer Science and Technology, 2009, 24(6): 1010-1017. |
[6] | Xu Sun, Hou-Feng Wang, Bo Wang. Predicting Chinese Abbreviations from Definitions: An Empirical Learning Approach Using Support Vector Regression[J]. Journal of Computer Science and Technology, 2008, 23(4): 602-611. |
[7] | XI Haifeng, LUO Yupin, YANG Shiyuan. An Approach to Active Learning for Classifier Systems[J]. Journal of Computer Science and Technology, 1999, 14(4): 372-378. |
[8] | Yao Shu, Zhang Bo. The Learning Convergence of CMAC in Cyclic Learning[J]. Journal of Computer Science and Technology, 1994, 9(4): 320-328. |
[9] | Wu Xindong. Inductive Learning[J]. Journal of Computer Science and Technology, 1993, 8(2): 22-36. |
[10] | Harald E. Otto. UNDO, An Aid for Explorative Learning?[J]. Journal of Computer Science and Technology, 1992, 7(3): 226-236. |