SCIE, EI, Scopus, INSPEC, DBLP, CSCD, etc.
Citation: | Bo Ren, Xu-Yun Yang, Ming C. Lin, Nils Thuerey, Matthias Teschner, Chenfeng Li. Visual Simulation of Multiple Fluids in Computer Graphics: A State-of-the-Art Report[J]. Journal of Computer Science and Technology, 2018, 33(3): 431-451. DOI: 10.1007/s11390-018-1829-0 |
[1] |
Kass M, Miller G. Rapid, stable fluid dynamics for computer graphics. ACM SIGGRAPH Computer Graphics, 1990, 24(4):49-57.
|
[2] |
Foster N, Metaxas D. Realistic animation of liquids. Graphical Models and Image Processing, 1996, 58(5):471-483.
|
[3] |
Stam J. Stable fluids. In Proc. the 26th Annu. Conf. Computer Graphics and Interactive Techniques, August 1999, pp.121-128.
|
[4] |
Foster N, Fedkiw R. Practical animation of liquids. In Proc. the 28th Annu. Conf. Computer Graphics and Interactive Techniques, August 2001, pp.23-30.
|
[5] |
Carlson M, Mucha P J, van Horn Ⅲ R B, Turk G. Melting and owing. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, July 2002, pp.167-174.
|
[6] |
Nguyen D Q, Fedkiw R, Jensen H W. Physically based modeling and animation of fire. ACM Trans. Graphics, 2002, 21(3):721-728.
|
[7] |
Bridson R. Fluid Simulation for Computer Graphics (2nd edition). CRC Press, 2015.
|
[8] |
Ihmsen M, Orthmann J, Solenthaler B et al. SPH fluids in computer graphics. In Proc. the 35th Annual Conf. the European Association for Computer Graphics, April 2014.
|
[9] |
Gissler C, Band S, Peer A, Ihmsen M, Teschner M. Generalized drag force for particle-based simulations. Computers & Graphics, 2017, 69:1-11.
|
[10] |
Keiser R, Adams B, Gasser D, Bazzi P, Dutré P, Gross M. A unified Lagrangian approach to solid-fluid animation. In Proc. the 2nd Eurographics/IEEE VGTC Conf. PointBased Graphics, June 2005, pp.125-133.
|
[11] |
Cornelis J, Ihmsen M, Peer A, Teschner M. Liquid boundaries for implicit incompressible SPH. Computers & Graphics, 2015, 52:72-78.
|
[12] |
Losasso F, Shinar T, Selle A, Fedkiw R. Multiple interacting liquids. ACM Trans. Graphics, 2006, 25(3):812-819.
|
[13] |
Kim B. Multi-phase fluid simulations using regional level sets. ACM Trans. Graphics, 2010, 29(6):Article No. 175.
|
[14] |
Solenthaler B, Pajarola R. Density contrast SPH interfaces. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, July 2008, pp.211-218.
|
[15] |
Boyd L, Bridson R. MultiFLIP for energetic two-phase fluid simulation. ACM Trans. Graphics, 2012, 31(2):Article No. 16.
|
[16] |
Zhu H B, Bao K, Wu E H, Liu X H. Stable and efficient miscible liquid-liquid interactions. In Proc. ACM Symp. Virtual Reality Software and Technology, November 2007, pp.55-64.
|
[17] |
Nielsen M B, Østerby O. A two-continua approach to Eulerian simulation of water spray. ACM Trans. Graphics, 2013, 32(4):Article No. 67.
|
[18] |
Ren B, Li C F, Yan X, Lin M C, Bonet J, Hu S M. Multiplefluid SPH simulation using a mixture model. ACM Trans. Graphics, 2014, 33(5):Article No. 171.
|
[19] |
Busaryev O, Dey T K, Wang H M, Ren Z. Animating bubble interactions in a liquid foam. ACM Trans. Graphics, 2012, 31(4):Article No. 63.
|
[20] |
Patkar S, Aanjaneya M, Karpman D, Fedkiw R. A hybrid Lagrangian-Eulerian formulation for bubble generation and dynamics. In Proc. the 12th ACM SIGGRAPH/Eurographics Symp. Computer Animation, July 2013, pp.105-114.
|
[21] |
Kang B, Jang Y, Ihm I. Animation of chemically reactive fluids using a hybrid simulation method. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, August 2007, pp.199-208.
|
[22] |
Wojtan C, Carlson M, Mucha P J, Turk G. Animating corrosion and erosion. In Proc. the 3rd Eurographics Conf. Natural Phenomena, January 2007, pp.15-22.
|
[23] |
Ren B, Yuan T L, Li C F, Xu K, Hu S M. Real-time high-fidelity surface flow simulation. IEEE Trans. Visualization and Computer Graphics, 2017, doi: 10.1109/TVCG.2017.2720672.
|
[24] |
Losasso F, Irving G, Guendelman E, Fedkiw R. Melting and burning solids into liquids and gases. IEEE Trans. Visualization and Computer Graphics, 2006, 12(3):343-352.
|
[25] |
Miao Y B, Xiao S J. Particle-based ice freezing simulation. In Proc. the 14th ACM SIGGRAPH Int. Conf. Virtual Reality Continuum and Its Applications in Industry, October 2015, pp.17-22.
|
[26] |
Kim T, Carlson M. A simple boiling module. In Proc. the ACM SIGGRAPH/Eurographics Symp. Computer Animation, August 2007, pp.27-34.
|
[27] |
Prakash M, Cleary P W, Pyo S H, Woolard F. A new approach to boiling simulation using a discrete particle based method. Computers & Graphics, 2015, 53:118-126.
|
[28] |
Batchelor G K. An Introduction to Fluid Dynamics (2nd edition). Cambridge University Press, 2000.
|
[29] |
Zhu Y N, Bridson R. Animating sand as a fluid. ACM Trans. Graphics, 2005, 24(3):965-972.
|
[30] |
Enright D, Fedkiw R, Ferziger J, Mitchell I. A hybrid particle level set method for improved interface capturing. Journal of Computational Physics, 2002, 183(1):83-116.
|
[31] |
Hong J M, Kim C H. Discontinuous fluids. ACM Trans. Graphics, 2005, 24(3):915-920.
|
[32] |
Manninen M, Taivassalo V, Kallio S. On the mixture model for multiphase flow. 1996. http://www.vtt.fi/inf/pdf/publications/1996/P288.pdf, April 2018.
|
[33] |
Kang N, Park J, Noh J, Shin S Y. A hybrid approach to multiple fluid simulation using volume fractions. Computer Graphics Forum, 2010, 29(2):685-694.
|
[34] |
Ihm I, Kang B, Cha D. Animation of reactive gaseous fluids through chemical kinetics. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, August 2004, pp.203-212.
|
[35] |
Yang T, Chang J, Ren B, Lin M C, Zhang J J, Hu S M. Fast multiple-fluid simulation using Helmholtz free energy. ACM Trans. Graphics, 2015, 34(6):Article No. 201.
|
[36] |
Zheng W, Yong J H, Paul J C. Simulation of bubbles. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, September 2006, pp.325-333.
|
[37] |
Hong J M, Kim C H. Animation of bubbles in liquid. Computer Graphics Forum, 2003, 22(3):253-262.
|
[38] |
Mihalef V, Unlusu B, Metaxas D, Sussman M, Hussaini M Y. Physics-based boiling simulation. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, September 2006, pp.317-324.
|
[39] |
Premzoe S, Tasdizen T, Bigler J, Lefohn A, Whitaker R T. Particle-based simulation of fluids. Computer Graphics Forum, 2003, 22(3):401-410.
|
[40] |
Yan X, Jiang Y T, Li C F, Martin R R, Hu S M. Multiphase SPH simulation for interactive fluids and solids. ACM Trans. Graphics, 2016, 35(4):Article No. 79.
|
[41] |
Müller M, Charypar D, Gross M. Particle-based fluid simulation for interactive applications. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, July 2003, pp.154-159.
|
[42] |
Becker M, Teschner M. Weakly compressible SPH for free surface flows. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, August 2007, pp.209-217.
|
[43] |
Solenthaler B, Pajarola R. Predictive-corrective incompressible SPH. ACM Trans. Graphics, 2009, 28(3):Article No. 40.
|
[44] |
Macklin M, Müller M, Chentanez N, Kim T Y. Unified particle physics for real-time applications. ACM Trans. Graphics, 2014, 33(4):Article No. 153.
|
[45] |
Bender J, Müller M, Otaduy M, Teschner M, Macklin M. A survey on position-based simulation methods in computer graphics. Computer Graphics Forum, 2014, 33(6):228-251.
|
[46] |
Ihmsen M, Cornelis J, Solenthaler B, Horvath C, Teschner M. Implicit incompressible SPH. IEEE Trans. Visualization and Computer Graphics, 2014, 20(3):426-435.
|
[47] |
Cornelis J, Ihmsen M, Peer A, Teschner M. ⅡSPH-FLIP for incompressible fluids. Computer Graphics Forum, 2014, 33(2):255-262.
|
[48] |
Jiang Y T, Yang T, Chang J. Solid deformation by material point method. Communications in Information and Systems, 2016, 16(3):127-146.
|
[49] |
Stomakhin A, Schroeder C, Jiang C F F, Chai L, Teran J, Selle A. Augmented MPM for phase-change and varied materials. ACM Trans. Graphics, 2014, 33(4):Article No. 138.
|
[50] |
Tampubolon A P, Gast T, Klár G, Fu C Y, Teran J, Jiang C F F, Museth K. Multi-species simulation of porous sand and water mixtures. ACM Trans. Graphics, 2017, 36(4):Article No. 105.
|
[51] |
Zhao Y, Wang L J, Qiu F, Kaufman A, Mueller K. Melting and flowing in multiphase environment. Computers & Graphics, 2006, 30(4):519-528.
|
[52] |
Park J, Kim Y, Wi D, Kang N, Shin S Y, Noh J. A unified handling of immiscible and miscible fluids. Computer Animation and Virtual Worlds, 2008, 19(3/4):455-467.
|
[53] |
Guo Y L, Liu X P, Xu X M. A unified detail-preserving liquid simulation by two-phase lattice Boltzmann modeling. IEEE Trans. Visualization and Computer Graphics, 2017, 23(5):1479-1491.
|
[54] |
Bronson J, Levine J A, Whitaker R. Lattice cleaving:A multimaterial tetrahedral meshing algorithm with guarantees. IEEE Trans. Visualization and Computer Graphics, 2014, 20(2):223-237.
|
[55] |
Bao K, Wu X L, Zhang H, Wu E H. Volume fraction based miscible and immiscible fluid animation. Computer Animation and Virtual Worlds, 2010, 21(3/4):401-410.
|
[56] |
Misztal M K, Erleben K, Bargteil A et al. Multiphase flow of immiscible fluids on unstructured moving meshes. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, July 2012, pp.97-106.
|
[57] |
Da F, Batty C, Grinspun E. Multimaterial mesh-based surface tracking. ACM Trans. Graphics, 2014, 33(4):Article No. 112.
|
[58] |
Kim B, Liu Y J, Llamas I, Rossignac J. Advections with significantly reduced dissipation and diffusion. IEEE Trans. Visualization and Computer Graphics, 2007, 13(1):135-144.
|
[59] |
Zheng W, Yong J H, Paul J C. Visual simulation of multiple unmixable fluids. Journal of Computer Science and Technology, 2007, 22(1):156-160.
|
[60] |
Long B, Reinhard E. Real-time fluid simulation using discrete sine/cosine transforms. In Proc. Symp. Interactive 3D Graphics and Games, February 2009, pp.99-106.
|
[61] |
Mao H, Yang Y H. Particle-based immiscible fluid-fluid collision. In Proc. Graphics Interface 2006, June 2006, pp.49-55.
|
[62] |
Müller M, Solenthaler B, Keiser R, Gross M. Particlebased fluid-fluid interaction. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, July 2005, pp.237-244.
|
[63] |
Akinci N, Ihmsen M, Akinci G, Solenthaler B, Teschner M. Versatile rigid-fluid coupling for incompressible SPH. ACM Trans. Graphics, 2012, 31(4):Article No. 62.
|
[64] |
Solenthaler B, Gross M. Two-scale particle simulation. ACM Trans. Graphics, 2011, 30(4):Article No. 81.
|
[65] |
Solenthaler B, Schläfli J, Pajarola R. A unified particle model for fluid-solid interactions. Computer Animation and Virtual Worlds, 2007, 18(1):69-82.
|
[66] |
de Goes F, Wallez C, Huang J, Pavlov D, Desbrun M. Power particles:An incompressible fluid solver based on power diagrams. ACM Trans. Graphics, 2015, 34(4):Article No. 50.
|
[67] |
Alduán I, Tena A, Otaduy M A. DYVERSO:A versatile multiphase position-based fluids solution for VFX. Computer Graphics Forum, 2017, 36(8). http://diglib.eg.org/handle/10.1111/cgf12992, Mar. 2018.
|
[68] |
Ando R, Thuerey N, Wojtan C. A stream function solver for liquid simulations. ACM Trans. Graphics, 2015, 34(4):Article No. 53.
|
[69] |
Clausen P, Wicke M, Shewchuk J R, O'Brien J F. Simulating liquids and solid-liquid interactions with Lagrangian meshes. ACM Trans. Graphics, 2013, 32(2):Article No. 17.
|
[70] |
Li X S, He X W, Liu X H, Liu B Q, Wu E H. Multiphase surface tracking with explicit contouring. In Proc. the 20th ACM Symp. Virtual Reality Software and Technology, November 2014, pp.31-40.
|
[71] |
Liu S G, Liu Q G, Peng Q S. Realistic simulation of mixing fluids. The Visual Computer, 2011, 27(3):241-248.
|
[72] |
Orthmann J, Hochstetter H, Bader J, Bayraktar S, Kolb A. Consistent surface model for SPH-based fluid transport. In Proc. the 12th ACM SIGGRAPH/Eurographics Symp. Computer Animation, July 2013, pp.95-103.
|
[73] |
Shin S H, Kam H R, Kim C H. Hybrid simulation of miscible mixing with viscous fingering. Computer Graphics Forum, 2010, 29(2):675-683.
|
[74] |
Chu N S H, Tai C L. MoXi:Real-time ink dispersion in absorbent paper. ACM Trans. Graphics, 2005, 24(3):504-511.
|
[75] |
Xu S B, Mei X, Dong W M, Zhang Z Y, Zhang X P. Interactive visual simulation of dynamic ink diffusion effects. In Proc. the 10th Int. Conf. Virtual Reality Continuum and Its Applications in Industry, December 2011, pp.109-116.
|
[76] |
Xu S B, Mei X, Dong W M, Zhang Z Y, Zhang X P. Realtime ink simulation using a grid-particle method. Computers & Graphics, 2012, 36(8):1025-1035
|
[77] |
Yang T, Chang J, Lin M C, Martin R R, Zhang J J, Hu S M. A unified particle system framework for multi-phase, multi-material visual simulations. ACM Trans. Graphics, 2017, 36(6):Article No. 224.
|
[78] |
Zhu H B, Liu X H, Liu Y Q, Wu E H. Simulation of miscible binary mixtures based on lattice Boltzmann method. Computer Animation and Virtual Worlds, 2006, 17(3/4):403-410.
|
[79] |
Mullen P, McKenzie A, Tong Y Y, Desbrun M. A variational approach to Eulerian geometry processing. In Proc. ACM SIGGRAPH 2007 Papers, August 2007.
|
[80] |
Wang H M, Zhang F J, Wang H A, Wang G P, Zhou K, Wu E H. Simulation of fluid mixing with interface control. In Proc. the 14th ACM SIGGRAPH/Eurographics Symp. Computer Animation, August 2015, pp.129-135.
|
[81] |
Kim B, Liu Y J, Llamas I, Jiao X M, Rossignac J. Simulation of bubbles in foam with the volume control method. In Proc. ACM SIGGRAPH 2007 Papers, August 2007.
|
[82] |
Song O Y, Shin H, Ko H S. Stable but nondissipative water. ACM Trans. Graphics, 2005, 24(1):81-97.
|
[83] |
Cho J, Ko H S. Geometry-aware volume-of-fluid method. Computer Graphics Forum, 2013, 32(2 Pt 3):379-388.
|
[84] |
Greenwood S T, House D H. Better with bubbles:Enhancing the visual realism of simulated fluid. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, August 2004, pp.287-296.
|
[85] |
Mihalef V, Metaxas D, Sussman M. Simulation of two-phase flow with sub-scale droplet and bubble effects. Computer Graphics Forum, 2009, 28(2):229-238.
|
[86] |
Cleary P W, Pyo S H, Prakash M, Koo B K. Bubbling and frothing liquids. In Proc. ACM SIGGRAPH 2007 Papers, August 2007.
|
[87] |
Lee H Y, Hong J M, Kim C H. Simulation of swirling bubbly water using bubble particles. The Visual Computer, 2009, 25(5/6/7):707-712.
|
[88] |
Kück H, Vogelgsang C, Greiner G. Simulation and rendering of liquid foams. In Proc. Graphics Interface 2002, May 2002, pp.81-88.
|
[89] |
Kim D, Song O Y, Ko H S. A practical simulation of dispersed bubble flow. In Proc. ACM SIGGRAPH 2010 Papers, July 2010, Article No. 70.
|
[90] |
Shao X Q, Zhou Z, Wu W. Particle-based simulation of bubbles in water-solid interaction. Computer Animation and Virtual Worlds, 2012, 23(5):477-487.
|
[91] |
Ihmsen M, Bader J, Akinci G, Teschner M. Animation of air bubbles with SPH. In Proc. Int. Conf. Computer Graphics Theory and Applications, March 2011, pp.225-234.
|
[92] |
Yue Y H, Smith B, Batty C, Zheng C X, Grinspun E. Continuum foam:A material point method for shear-dependent flows. ACM Trans. Graphics, 2015, 34(5):Article No. 160.
|
[93] |
Ram D, Gast T, Jiang C F F, Schroeder C, Stomakhin A, Teran J, Kavehpour P. A material point method for viscoelastic fluids, foams and sponges. In Proc. the 14th ACM SIGGRAPH/Eurographics Symp. Computer Animation, August 2015, pp.157-163.
|
[94] |
Hong J M, Lee H Y, Yoon J C, Kim C H. Bubbles alive. In Proc. ACM SIGGRAPH 2008 Papers, August 2008, Article No. 48.
|
[95] |
Kim P R, Lee H Y, Kim J H, Kim C H. Controlling shapes of air bubbles in a multi-phase fluid simulation. The Visual Computer, 2012, 28(6/7/8):597-602.
|
[96] |
Yang T, Martin R R, Lin M C, Chang J, Hu S M. Pairwise force SPH model for real-time multi-interaction applications. IEEE Trans. Visualization and Computer Graphics, 2017, 23(10):2235-2247.
|
[97] |
Takahashi T, Fujii H, Kunimatsu A et al. Realistic animation of fluid with splash and foam. Computer Graphics Forum, 2003, 22(3):391-400.
|
[98] |
Chentanez N, Müller M. Real-time Eulerian water simulation using a restricted tall cell grid. ACM Trans. Graphics, 2011, 30(4):Article No. 82.
|
[99] |
Kim J, Cha D, Chang B, Koo B, Ihm I. Practical animation of turbulent splashing water. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, September 2006, pp.335-344.
|
[100] |
Yang L P, Li S, Hao A M, Qin H. Hybrid particle-grid modeling for multi-scale droplet/spray simulation. Computer Graphics Forum, 2014, 33(7):199-208.
|
[101] |
Kim J H, Kim W, Lee J. Physics-inspired approach to realistic and stable water spray with narrowband air particles. The Visual Computer, 2018, 34(4):461-471.
|
[102] |
Ihmsen M, Akinci N, Akinci G, Teschner M. Unified spray, foam and air bubbles for particle-based fluids. The Visual Computer, 2012, 28(6/7/8):669-677.
|
[103] |
Yang L P, Li S, Xia Q et al. A novel integrated analysis-andsimulation approach for detail enhancement in FLIP fluid interaction. In Proc. the 21st ACM Symp. Virtual Reality Software and Technology, November 2015, pp.103-112.
|
[104] |
Ren B, Jiang Y T, Li C F, Lin M C. A simple approach for bubble modelling from multiphase fluid simulation. Computational Visual Media, 2015, 1(2):171-181.
|
[105] |
Akinci N, Dippel A, Akinci G, Teschner M. Screen space foam rendering. Journal of WSCG, 2013, 21(3):173-182.
|
[106] |
Nürey T, Sadlo F, Schirm S, Müller-Fischer M, Gross M. Real-time simulations of bubbles and foam within a shallow water framework. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, August 2007, pp.191-198.
|
[107] |
Zhu B, Quigley E, Cong M, Solomon J, Fedkiw R. Codimensional surface tension flow on simplicial complexes. ACM Trans. Graphics, 2014, 33(4):Article No. 111.
|
[108] |
Da F, Batty C, Wojtan C, Grinspun E. Double bubbles sans toil and trouble:Discrete circulation-preserving vortex sheets for soap films and foams. ACM Trans. Graphics, 2015, 34(4):Article No. 149.
|
[109] |
Ishida S, Yamamoto M, Ando R, Hachisuka T. A hyperbolic geometric flow for evolving films and foams. ACM Trans. Graphics, 2017, 36(6):Article No. 199.
|
[110] |
Yang T, Lin M C, Martin R R, Chang J, Hu S M. Versatile interactions at interfaces for SPH-based simulations. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, July 2016, pp.57-66.
|
[111] |
Wang X K, Ban X J, Zhang Y L, Liu S N, Ye P F. Surface tension model based on implicit incompressible smoothed particle hydrodynamics for fluid simulation. Journal of Computer Science and Technology, 2017, 32(6):1186-1197.
|
[112] |
Beneš B. Physically-based hydraulic erosion. In Proc. the 22nd Spring Conf. Computer Graphics, April 2006, pp.17-22.
|
[113] |
Lenaerts T, Dutré P. Mixing fluids and granular materials. Computer Graphics Forum, 2009, 28(2):213-218.
|
[114] |
Baek S, Um K, Han J. Muddy water animation with different details. Computer Animation and Virtual Worlds, 2015, 26(3/4):347-355.
|
[115] |
Acar R, Boulanger P. Digital marbling:A multiscale fluid model. IEEE Trans. Visualization and Computer Graphics, 2006, 12(4):600-614.
|
[116] |
Feldman B E, O'Brien J F, Arikan O. Animating suspended particle explosions. ACM Trans. Graphics, 2003, 22(3):708-715.
|
[117] |
Nishino T, Iwasaki K, Dobashi Y, Nishita T. Visual simulation of freezing ice with air bubbles. In Proc. SIGGRAPH Asia 2012 Technical Briefs, December 2012, Article No. 1.
|
[118] |
Harris M J. Real-time cloud simulation and rendering[Ph.D. Thesis]. The University of North Carolina at Chapel Hill, 2003.
|
[119] |
Miyazaki R, Dobashi Y, Nishita T. Simulation of cumuliform clouds based on computational fluid dynamics. In Proc. Eurographics 2002 Short Presentation, January 2002, pp.405-410.
|
[120] |
Dobashi Y, Kusumoto K, Nishita T, Yamamoto T. Feedback control of cumuliform cloud formation based on computational fluid dynamics. ACM Trans. Graphics, 2008, 27(3):Article No. 94.
|
[121] |
Kawaguchi T, Dobashi Y, Yamamoto T. Controlling the simulation of cumuliform clouds based on fluid dynamics. IEICE Trans. Information and Systems, 2015, E98-D(11):2034-2037.
|
[122] |
Mizuno R, Dobashi Y, Chen B Y, Nishita T. Physics motivated modeling of volcanic clouds as a two fluids model. In Proc. the 11th Pacific Conf. Computer Graphics and Applications, October 2003.
|
[123] |
Ren B, Yan X, Yang T, Li C F, Lin M C, Hu S M. Fast SPH simulation for gaseous fluids. The Visual Computer, 2016, 32(4):523-534.
|
[124] |
Müller M, Keiser R, Nealen A, Pauly M, Gross M, Alexa M. Point based animation of elastic, plastic and melting objects. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, August 2004, pp.141-151.
|
[125] |
Chang Y Z, Bao K, Liu Y Q, Zhu J, Wu E H. A particlebased method for viscoelastic fluids animation. In Proc. the 16th ACM Symp. Virtual Reality Software and Technology, November 2009, pp.111-117.
|
[126] |
Fujisawa M, Miura K T. Animation of ice melting phenomenon based on thermodynamics with thermal radiation. In Proc. the 5th Int. Conf. Computer Graphics and Interactive Techniques in Australia and Southeast Asia, December 2007, pp.249-256.
|
[127] |
Gao Y, Li S, Qin H, Hao A M. A novel fluid-solid coupling framework integrating FLIP and shape matching methods. In Proc. Computer Graphics Int. Conf., June 2017, Article No. 11.
|
[128] |
Kim T, Lin M C. Visual simulation of ice crystal growth. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, July 2003, pp.86-97.
|
[129] |
Kim T, Henson M, Lin M C. A hybrid algorithm for modeling ice formation. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, August 2004, pp.305-314.
|
[130] |
Kim T, Adalsteinsson D, Lin M C. Modeling ice dynamics as a thin-film Stefan problem. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, September 2006, pp.167-176.
|
[131] |
Stam J, Fiume E. Depicting fire and other gaseous phenomena using diffusion processes. In Proc. the 22nd Annu. Conf. Computer Graphics and Interactive Techniques, June 1995, pp.129-136.
|
[132] |
Yngve G D, O'Brien J F, Hodgins J K. Animating explosions. In Proc. the 27th Annu. Conf. Computer Graphics and Interactive Techniques, July 2000, pp.29-36.
|
[133] |
Lamorlette A, Foster N. Structural modeling of flames for a production environment. ACM Trans. Graphics, 2002, 21(3):729-735.
|
[134] |
Wei X M, Li W, Mueller K, Kaufman A. Simulating fire with texture splats. In Proc. Conf. Visualization, October 2002, pp.227-235.
|
[135] |
Kawada G, Kanai T. Procedural fluid modeling of explosion phenomena based on physical properties. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, August 2011, pp.167-176.
|
[136] |
Kim T, Lee J, Kim C H. Physics-inspired controllable flame animation. The Visual Computer, 2016, 32(6/7/8):871-880.
|
[137] |
Kim T, Hong E, Im J, Yang D, Kim Y, Kim C H. Visual simulation of fire-flakes synchronized with flame. The Visual Computer, 2017, 33(6/7/8):1029-1038.
|
[138] |
Kwatra V, Adalsteinsson D, Kim T, Kwatra N, Carlson M, Lin M. Texturing fluids. IEEE Trans. Visualization and Computer Graphics, 2007, 13(5):939-952.
|
[139] |
Narain R, Kwatra V, Lee H P, Kim T, Carlson M, Lin M C. Feature-guided dynamic texture synthesis on continuous flows. In Proc. the 18th Eurographics Conf. Rendering Techniques, June 2007, pp.361-370.
|
[140] |
Gregson J, Krimerman M, Hullin M B, Heidrich W. Stochastic tomography and its applications in 3D imaging of mixing fluids. ACM Trans. Graphics, 2012, 31(4):Article No. 52.
|
[141] |
Gregson J, Ihrke I, Thuerey N, Heidrich W. From capture to simulation:Connecting forward and inverse problems in fluids. ACM Trans. Graphics, 2014, 33(4):Article No. 139.
|
[142] |
Okabe M, Dobashi Y, Anjyo K, Onai R. Fluid volume modeling from sparse multi-view images by appearance transfer. ACM Trans. Graphics, 2015, 34(4):Article No. 93.
|
[143] |
Wang H M, Liao M, Zhang Q, Yang R G, Turk G. Physically guided liquid surface modeling from videos. ACM Trans. Graphics, 2009, 28(3):Article No. 90.
|