SCIE, EI, Scopus, INSPEC, DBLP, CSCD, etc.
Citation: | Michèle Weiland, Bernhard Homölle. Usage Scenarios for Byte-Addressable Persistent Memory in High-Performance and Data Intensive Computing[J]. Journal of Computer Science and Technology, 2021, 36(1): 110-122. DOI: 10.1007/s11390-020-0776-8 |
[1] |
Jackson A, Weiland M, Parsons M, Homölle B. An architecture for high performance computing and data systems using byte-addressable persistent memory. In Proc. the 2019 ISC High Performance International Workshops, June 2019, pp.258-274. DOI: 10.1007/978-3-030-34356-921.
|
[2] |
Izraelevitz J, Yang J, Zhang L et al. Basic performance measurements of the Intel Optane DC persistent memory module. arXiv:1903.05714, 2019. http://arxiv.org/abs/1903.05714, March 2020.
|
[3] |
Patil O, Ionkov L, Lee J et al. Performance characterization of a DRAM-NVM hybrid memory architecture for HPC applications using Intel Optane DC persistent memory modules. In Proc. the International Symposium on Memory Systems, September 2019, pp.288-303. DOI: 10.1145/3357526.3357541.
|
[4] |
Mason T, Doudali T D, Seltzer M, Gavrilovska A. Unexpected performance of Intelr OptaneTM DC persistent memory. IEEE Computer Architecture Letters, 2020, 19(1):55-58. DOI: 10.1109/LCA.2020.2987303.
|
[5] |
Clark S J, Segall M D, Pickard C J et al. First principles methods using CASTEP. Zeitschrift für Kristallographie, 2005, 220:567-570. DOI: 10.1524/zkri.220.5.567.65075.
|
[6] |
Weiland M, Brunst H, Quintino T et al. An early evaluation of Intel's Optane DC persistent memory module and its impact on high-performance scientific applications. In Proc. the International Conference for High Performance Computing, Networking, Storage and Analysis, Nov. 2019, Article No. 76. DOI: 10.1145/3295500.3356159.
|
[7] |
Vef M A, Moti N, Süß T et al. GekkoFS|A temporary burst buffer file system for HPC applications. J. Comput. Sci. Technol., 2020, 35(1):72-91. DOI:10.1007/s11390-020- 9797-6.
|
[8] |
Brinkmann A, Mohror K, Yu W et al. Ad hoc file systems for high-performance computing. J. Comput. Sci. Technol., 2020, 35(1):4-26. DOI: 10.1007/s11390-020-9801-1.
|
[9] |
Smart S, Quintino T, Raoult B. A scalable object store for meteorological and climate data. In Proc. the Platform for Advanced Scientific Computing Conference, June 2017, Article No. 13. DOI: 10.1145/3093172.3093238.
|
[10] |
Smart S, Quintino T, Raoult B. A high-performance distributed object-store for exascale numerical weather prediction and climate. In Proc. the Platform for Advanced Scientific Computing Conference, June 2019, Article No. 16. DOI: 10.1145/3324989.3325726.
|
[11] |
Weiland M, Jackson A, Johnson N, Parsons M. Exploiting the performance benefits of storage class memory for HPC and HPDA workflows. Journal of Supercomputing Frontiers and Innovations, 2018, 5(1):79-94. DOI: 10.14529/jsfi180105.
|
[12] |
Miranda A, Jackson A, Tocci T, Panourgias I, Nou R. NORNS:Extending slurm to support data-driven workflows through asynchronous data staging. In Proc. the 2019 IEEE International Conference on Cluster Computing, Sept. 2019. DOI: 10.1109/CLUSTER.2019.8891014.
|
[13] |
Brown N, Weiland M, Hill A et al. A highly scalable Met Office NERC Cloud model. In Proc. the 3rd International Conference on Exascale Applications and Software, April 2015, pp.132-137. DOI: 10.5555/2820083.2820108.
|
[1] | Zi-Wei Xiong, De-Jun Jiang, Jin Xiong, Ren Ren. Dalea: A Persistent Multi-Level Extendible Hashing with Improved Tail Performance[J]. Journal of Computer Science and Technology, 2023, 38(5): 1051-1073. DOI: 10.1007/s11390-023-2957-8 |
[2] | Rui-Xiang Ma, Fei Wu, Bu-Rong Dong, Meng Zhang, Wei-Jun Li, Chang-Sheng Xie. Write-Optimized B+ Tree Index Technology for Persistent Memory[J]. Journal of Computer Science and Technology, 2021, 36(5): 1037-1050. DOI: 10.1007/s11390-021-1247-6 |
[3] | Heng Bu, Ming-Kai Dong, Ji-Fei Yi, Bin-Yu Zang, Hai-Bo Chen. Revisiting Persistent Indexing Structures on Intel Optane DC Persistent Memory[J]. Journal of Computer Science and Technology, 2021, 36(1): 140-157. DOI: 10.1007/s11390-020-9871-0 |
[4] | Peng Xiao, Zhi-Gang Hu, Yan-Ping Zhang. An Energy-Aware Heuristic Scheduling for Data-Intensive Workflows in Virtualized Datacenters[J]. Journal of Computer Science and Technology, 2013, 28(6): 948-961. DOI: 10.1007/s11390-013-1390-9 |
[5] | Yan-Bo Han, Jun-Yi Sun, Gui-Ling Wang, Hou-Fu Li. A Cloud-Based BPM Architecture with User-End Distribution of Non-Compute-Intensive Activities and Sensitive Data[J]. Journal of Computer Science and Technology, 2010, 25(6): 1157-1167. DOI: 10.1007/s11390-010-1092-5 |
[6] | Gu Ning, Lin Zongkai, Guo Yuchai. On Model, Memory Management and Interface in EDBMS/3[J]. Journal of Computer Science and Technology, 1998, 13(4): 337-347. |
[7] | Hu Weiwu, Shi Weisong, Tang Zhimin. A Framework of Memory Consistency Models[J]. Journal of Computer Science and Technology, 1998, 13(2): 110-124. |
[8] | Zhou Jianqiang, Xie Li, Dai Fei, Sun Zhongxiu. Adaptive Memory Coherence Algorithms in DSVM[J]. Journal of Computer Science and Technology, 1994, 9(4): 365-372. |
[9] | Jin Guohua, Chen Fujie. On the Problem of Optimizing Parallel Programs for Complex Memory Hierarchies[J]. Journal of Computer Science and Technology, 1994, 9(1): 1-26. |
[10] | Zhang Bo, Zhang Ling. On Memory Capacity of the Probabilistic Logic Neuron Network[J]. Journal of Computer Science and Technology, 1993, 8(3): 62-66. |