We use cookies to improve your experience with our site.
Han-Bo Zhang, Peng Wang, Ming-Ming Zhang, Wei Wang. Shapelet Based Two-step Time Series Positive and Unlabeled Learning. Journal of Computer Science and Technology. doi: 10.1007/s11390-022-1320-9
Citation: Han-Bo Zhang, Peng Wang, Ming-Ming Zhang, Wei Wang. Shapelet Based Two-step Time Series Positive and Unlabeled Learning. Journal of Computer Science and Technology. doi: 10.1007/s11390-022-1320-9

Shapelet Based Two-step Time Series Positive and Unlabeled Learning

  • In the last decade, there has been significant progress in time series classification. However, in real-world industrial settings, it is expensive and difficult to obtain high-quality labeled data. Therefore, the positive and unlabeled learning (PU-learning) problem becomes more and more popular recently. The current PU-learning approaches of the time series data suffer from low accuracy due to the lack of negative labeled time series. In this paper, we propose a novel shapelet based two-step (2STEP) PU-learning approach. In the first step, we generate shapelet features based on the positive time series, which are used to select a set of negative examples. In the second step, based on both positive and negative time series, we select the final features and build the classification model. The experiments results show that our 2STEP approach can improve the average F 1 score on 15 datasets by 9.1% compared with baseline, and achieves the highest F 1 score on 10 out of 15 time series datasets.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return