We use cookies to improve your experience with our site.
Yi Wang, Yi-Xue Liu, Shun-Jia Zhu, Xiao-Feng Gao, Chen Tian. Approximation Designs for Energy Harvesting Relay Deployment in Wireless Sensor Networks[J]. Journal of Computer Science and Technology, 2022, 37(4): 779-796. DOI: 10.1007/s11390-022-1964-5
Citation: Yi Wang, Yi-Xue Liu, Shun-Jia Zhu, Xiao-Feng Gao, Chen Tian. Approximation Designs for Energy Harvesting Relay Deployment in Wireless Sensor Networks[J]. Journal of Computer Science and Technology, 2022, 37(4): 779-796. DOI: 10.1007/s11390-022-1964-5

Approximation Designs for Energy Harvesting Relay Deployment in Wireless Sensor Networks

  • Energy harvesting technologies allow wireless devices to be recharged by the surrounding environment, providing wireless sensor networks (WSNs) with higher performance and longer lifetime. However, directly building a wireless sensor network with energy harvesting nodes is very costly. A compromise is upgrading existing networks with energy harvesting technologies. In this paper, we focus on prolonging the lifetime of WSNs with the help of energy harvesting relays (EHRs). EHRs are responsible for forwarding data for sensor nodes, allowing them to become terminals and thus extending their lifetime. We aim to deploy a minimum number of relays covering the whole network. As EHRs have several special properties such as the energy harvesting and depletion rate, it brings great research challenges to seek an optimal deployment strategy. To this end, we propose an approximation algorithm named Effective Relay Deployment Algorithm, which can be divided into two phases: disk covering and connector insertion using the partitioning technique and the Steinerization technique, respectively. Based on probabilistic analysis, we further optimize the performance ratio of our algorithm to (5 + 6/K) where K is an integer denoting the side length of a cell after partitioning. Our extensive simulation results show that our algorithm can reduce the number of EHRs to be deployed by up to 45% compared with previous work and thus validate the efficiency and effectiveness of our solution.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return