
Kawamura T, Sakamoto N, Koyamada K. Level-of-detail rendering of a large-scale irregular volume dataset using particles.

JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 25(5): 905–915 Sept. 2010. DOI 10.1007/s11390-010-

1071-x

Level-of-Detail Rendering of Large-Scale Irregular Volume Datasets

Using Particles

Takuma Kawamura1, Naohisa Sakamoto2, and Koji Koyamada2, Member, IEEE

1Graduate School of Engineering, Kyoto University, Kyoto 6068501, Japan
2Center for the Promotion of Excellence in Higher Education, Kyoto University, Kyoto 6068501, Japan

E-mail: {kawamura, naohisa}@viz.media.kyoto-u.ac.jp; koayamada@mbox.kudpc.kyoto-u.ac.jp

Received July 24, 2009; revised February 27, 2010.

Abstract This paper describes a level-of-detail rendering technique for large-scale irregular volume datasets. It is well
known that the memory bandwidth consumed by visibility sorting becomes the limiting factor when carrying out volume
rendering of such datasets. To develop a sorting-free volume rendering technique, we previously proposed a particle-based
technique that generates opaque and emissive particles using a density function constant within an irregular volume cell and
projects the particles onto an image plane with sub-pixels. When the density function changes significantly in an irregular
volume cell, the cell boundary may become prominent, which can cause blocky noise. When the number of the sub-pixels
increases, the required frame buffer tends to be large. To solve this problem, this work proposes a new particle-based
volume rendering which generates particles using metropolis sampling and renders the particles using the ensemble average.
To confirm the effectiveness of this method, we applied our proposed technique to several irregular volume datasets, with
the result that the ensemble average outperforms the sub-pixel average in computational complexity and memory usage.
In addition, the ensemble average technique allowed us to implement a level of detail in the interactive rendering of a
71-million-cell hexahedral volume dataset and a 26-million-cell quadratic tetrahedral volume dataset.
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1 Introduction

The development of techniques for irregular volume
datasets has remained a challenge for the scientific vi-
sualization community. Such datasets consist mainly
of scalar data defined on collections of irregularly or-
dered cells whose shapes are not necessarily orthogonal
cubic. Data of this type are often generated by finite
element method (FEM), a technique that is widely
used in computational mechanics and is also becom-
ing popular in computational fluid dynamics (CFD)
and computational structural mechanics (CSM). Irreg-
ular volume rendering techniques can be classified into
two approaches: the image-order approach and the
object-order approach. Many techniques for irregular
volume datasets have been developed based on both
approaches. Under each approach, a tetrahedral cell is
often selected as a visualization primitive, for reasons
of stability and efficiency of computation.

Although substantial improvement has been made
in irregular volume rendering, visibility ordering re-
mains one of the most important techniques. As long
as the volume rendering algorithm follows the density

emitter model proposed by Sabella[1], visibility ordering
should be considered. Sakamoto[2] focused on the parti-
cle model from which the density emitter model was de-
rived. Koyamada[3] then developed particle-based vo-
lume rendering (PBVR), an efficient approach for ren-
dering irregular volumes without the need for a visi-
bility ordering process. Although the density emitter
model is continuous in nature, the particle model is
discrete. An obvious advantage of PBVR as compared
with volume ray-casting is that the former explores im-
portant features that the latter may miss. PBVR em-
ploys importance sampling while the ray-casting ap-
proach often relies on simple sampling. Importance
sampling is possible in ray-casting, but the sampling
must be done at each viewing point.

A key to our success in volume rendering of large ir-
regular volume datasets is scalability in the number of
volume cells. The original PBVR procedure processed
a given irregular volume dataset in a cell-by-cell man-
ner using a particle density estimation technique. Al-
though the original technique improved the image qua-
lity by employing a smaller particle size and increasing
the number of particles, the size of the required frame
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buffer tended to be large since the original PBVR proce-
dure used sub-pixel processing. To solve this problem,
the current work employs the concept of ensemble ave-
rage, repeating the particle projection to accumulate
actual pixel values by setting the sub-pixel length to
that of a single pixel.

Under the previous PBVR procedure, the density
function is constant within an irregular volume cell, and
the density value is represented by the centroid. When
the density function changes significantly in an irregu-
lar volume cell or when the aspect ratio is high, we can
see the cell boundary. This is the case when an irregu-
lar volume cell becomes large with respect to the screen
size, which is frequently the case in immersive display
environments. To solve this problem, we propose a par-
ticle generation technique for irregular volume datasets
using metropolis sampling.

This paper is organized as follows. Section 2 de-
scribes related techniques for rendering irregular vo-
lumes. After reviewing previous work on particle den-
sity estimation equations in Section 3, Section 4 deve-
lops the new particle generation technique. Section 5
describes a new particle rendering technique that uses
an ensemble set of particles. To show the effectiveness
of this new rendering method, we apply it to the rende-
ring of large-scale irregular volume datasets composed
of 71 million hexahedral cells (see Fig.1) and 26 million
quadratic tetrahedral cells, respectively. Section 6 gives

Fig.1. LOD Rendering of large-scale irregular dataset which is

the result of an oral cavity airflow simulation. (a) Coarse render-

ing for smooth movements. (b) Fine rendering to stop movements

and its close-up.

the experimental results. Section 7 gives the discussion.
Section 8 concludes the paper.

2 Related Works

Since Shirley et al.[4] proposed a projected tetrahe-
dra (PT) algorithm for generating a volume-rendered
image using tetrahedral cells, many irregular volume
rendering techniques have been proposed based on the
object-order approach. In Shirley et al.’s algorithm,
each tetrahedral cell is projected onto the screen in a
visibility order, from back to front, to build up a semi-
transparent image. The work of Williams[5] led to a
considerable amount of research on visibility ordering
techniques. Meredith and Ma[6] developed a technique
that approximates irregular volumes as an octree struc-
ture and renders them using hardware-assisted splats.
They found that when the octree nodes are ordered
back to front, the difference between sorting and not
sorting within octree nodes is nearly impossible to see
in the rendered image. One of the major current di-
rections in irregular volume rendering is to relax the
processing requirement for the visibility sorting or to
develop a technique without sorting.

Proceeding in the former direction, Callahan et al.[7]

developed an integrated visibility ordering technique
called HAVS, in which the centroids of the cell faces
are first sorted in order to make a rough visibility or-
dering, and pixel fragments generated from rasterized
faces are used along with the k-buffer in order to in-
crease the accuracy. Although HAVS achieves 1.3 fps
for 1.4 million tetrahedra, it generates some artifacts
when the k-buffer is not large enough. It is also dif-
ficult to determine the optimum value for k and the
memory required to store the cell faces is about twice
that for the tetrahedral cells.

Anderson et al.[8] proposed a point-based technique
to render irregular volumes. They represent a tetra-
hedral cell as a point primitive at the center, followed
by rendering and compositing of the represented point
primitives. Like HAVS, this technique requires sorting
of all point primitives. Although this technique has
achieved 5.3 fps for 1.4 million tetrahedra and 0.3 fps
for 6.3 million tetrahedra, there may be artifacts in the
rendered image when point primitives are rasterized as
screen-aligned squares.

Roettger et al.[9] pointed out that the memory band-
width required for visibility sorting becomes the speed-
limiting factor, and they proposed an algorithm that
requires no visibility sorting for cells of irregular vo-
lume. However, since their optical model only considers
emissions, its application is limited to the visualization
of gaseous phenomena. Csebfalvi et al. proposed a
sorting-free volume rendering technique[10-11] that can



Takuma Kawamura et al.: Level-of-Detail Rendering Using Particles 907

be categorized as an X-ray volume rendering approach.
Their optical model considers only absorption. Zhou
et al. proposed a sorting-free rendering technique that
is implemented with additional terms to help provide
enhanced depth cues without visibility sorting[12]. Al-
though this method has achieved 20 fps for 17.6 million
tetrahedra, their optical model did not consider the ab-
sorption effect.

Sakamoto et al. proposed a basic PBVR technique
and applied it to several volume datasets[2]. In this
technique, the location of particles was limited to the
regular grid, so it was difficult to generate images of
equivalent quality to ray-casting. To solve this problem,
Koyamada et al. introduced a new particle model that
enables the particle density to be determined uniquely
from a transfer function[3]. This introduction can make
the resulting image comparable to that of ray-casting.
Ding et al. designed a comparative experiment in which
PBVR and HAVS visualized the same irregular volume
datasets. In this experiment, PBVR outperformed
HAVS in both performance and image quality[13].

3 Particle-Based Volume Rendering

In the volume rendering, the brightness can be cal-
culated as

B0 =
n∑

i=1

ci ×
(
αi

i−1∏

j=1

(1− αj)
)
. (1)

Here, a viewing ray is evenly subdivided into n seg-
ments, and ci and ai represent luminosity and opacity
values at the i-th sampling point, which is a central
point of the interval [ti−1, ti]. Usually, the opacity is
specified by a visualization user through a transfer func-
tion. In the density emitter model that Sabella first
proposed for volume rendering[1], the opacity ak in the
k-th ray segment is defined as:

αk = 1− exp
(
−

∫ tk−1

tk

πr2ρ(λ)dλ
)
. (2)

Here, ρ and r represent the number of particles in the
unit volume and the radius of a particle, respectively.
Since the Poisson distribution is assumed for the num-
ber of particles in the density emitter model, the opac-
ity describes the possibility that more than one opaque
particle exists along the ray segment. If we assume
that the density function is constant in the segment,
and that the ray segment length can be described as
∆t = tk−1 − tk, we have:

αk = 1− exp(−πr2ρk∆t). (3)

From (3), the opacity can be generally expressed as:

α = 1− exp(−πr2ρ∆t). (4)

Our particle model considers three particle at-
tributes: shape, size, and density. The particle shape is
assumed to be a sphere because its projection is a circle.
The size of the sphere is characterized by its diameter,
which we assume equals the pixel side length divided
by an integer, to facilitate the particle rendering. We
call the number the sub-pixel level (Ls):

r =
1

2 · LS
. (5)

The particle density can be estimated using the ra-
dius, an opacity value in the user-specified transfer
function, and the ray-segment length used in the ray-
casting. From (4), we have:

ρ =
− log(1− α)

πr2∆t
. (6)

A particle-based volume rendering technique is com-
posed of two processes: particle generation and parti-
cle rendering. The first process constructs a density
field and generates particles consistent with the density
function. The second process projects particles onto
an image plane and calculates a final brightness value
using illuminated particles[2].

4 Particle Generation Using Metropolis
Sampling

To generate a rendering image of equivalent qua-
lity to the volume ray-casting result, the above relation
must be used to estimate the particle density function.
From (6), we understand that the number of generated
particles quadruples for each doubling of the sub-pixel
level. Thus, the opacity value α has a maximum αmax.
If the opacity value α is between αmax and 1.0, the rele-
vant density function ρ becomes a constant value, ρmax.
Here,

ρmax =
1

8r3
(7)

αmax = 1− exp(−πr2ρmax∆t). (8)

The ρmax is calculated by the simple cubic lattice be-
cause the particle positions are discretized to the sub-
pixel position during projection.

The particle density distribution can be calculated
from the opacity distribution, which can be derived by
the user-specified transfer function.

ρ =




− log(1− α)

πr2∆t
, (0 6 α 6 αmax),

ρmax, (αmax 6 α 6 1).
(9)
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Thus, the number of particles, N , in the entire volume
or in a specific volume cell is calculated as

N =
∫

Cell

ρdV. (10)

If we employ a linear interpolation function within a
tetrahedral cell, the integration is equal to the volume
multiplied by the density at the centroid. When the
number of particles in (10) is not an integer, the final
number n is determined as follows:

n =
{ bNc+ 1, if R 6 N − bNc,
bNc, otherwise,

(11)

where R is a uniform random number in [0, 1).
Particles are generated within each irregular volume

cell (see Fig.2). In order to generate the particle density
distribution according to (11), we use the metropolis
method. This method generates particles one by one in
a volume space, starting at an arbitrary initial particle
position x0. In the following, xi denotes the position
of the i-th particle, i.e., the position of the i-th gene-
rated particle. The particle generation is performed as
follows:

Step 1. Calculate ρ(xi) for the current particle position,
xi. Generate a new particle at a candidate (trial) position,
x′, that is chosen randomly in the volume space, and calcu-
late ρ(x′).

Step 2. Calculate the ratio of ρ(x′) to ρ(xi), i.e., W (xi →
x′) ≡ ρ(x′)/ρ(xi).

Step 3. If W (xi → x′) > 1, accept x′ as an updated
particle position, xi+1, and go back to Step 1. Otherwise,
go on to Step 4.

Step 4. Generate a uniform random number R ∈ [0, 1),
and determine xi+1 as follows:

xi+1 =

{
x′, if R 6 W (xi → x′),

xi, otherwise.
(12)

Then go back to Step 1.

Fig.2. Particle generation at each tetrahedral cell.

The particle generation terminates when the speci-
fied number of particles has been generated. The par-
ticles are not counted if xi+1 = xi.

We applied interpolation functions and coordinate
transformations used in the finite element method so
that the particles can be generated in cells of various
shapes. This method first generates a particle position
in local coordinates x and then carries out the coordi-
nate transformation to map a particle position into cell
T , which is described by global coordinates X.

The local coordinate of the hexahedral cell is defined
as the region [0, 1]3. In the case of the tetrahedral or
the quadratic tetrahedral cell, those local coordinates
are described by means of a barycentric coordinate with
[0, 1]4.

The interpolation function Interpolation(x, T )
calculates a scalar value S using shape functions N(x),
which are determined by the cell shape[14]:

S =
np∑

i=1

Ni(x)Si. (13)

Here, np is the number of nodes and Si are the scalar
values on the nodes of the cell T .

The coordinate transformations Mapping(x, T ) from
the local coordinate to the global coordinate are:

X =
np∑

i=1

Ni(x)Xnode
i . (14)

Here, Xnode
i are the global coordinates of cell nodes.

The function Normal(x, T ), which calculates the gra-
dient of S(X), can be expressed as:

∇S(X) = J−1∇S(x). (15)

Here, J is the Jacobian matrix of the coordinate trans-
formation (14).

The scalar value S, the particle position x, and the
gradient vector ∇S(X) are stored in the memory space
using a function setParticle(S, X,∇S(X)). The par-
ticle data (18 bytes) is composed of position (float
× 3 = 12 bytes), normal (byte × 3 = 3 bytes) and color
(byte × 3 = 3 bytes) vectors. The pixel data (7 bytes) is
composed of the color vector (3 bytes) and depth value
(float × 1 = 4 bytes) in the frame buffer. The pseudo
code for ParticleGeneration is given as Algorithm 1.

Algorithm 1. ParticleGeneration ()

1: calculate density function ρ;

2: for each cell Ti do

3: Number of Particles Np;

4: Np = NumOfParticles(Ti);

5: Local Position x0, x′;

6: x0 = SamplingInLocal(Ti);



Takuma Kawamura et al.: Level-of-Detail Rendering Using Particles 909

7: Scalar Value s0, s′;

8: s0 = interpolation(x0, Ti);

9: Global Position X;

10: Normal n;

11: while j < Np do

12: x′ = SamplingInLocal(Ti);

13: s′ = interpolation(x’, Ti);

14: Ratio of Density W = ρ(s′)/ρ(s0);

15: if W >= 1 then

16: X = mapping(x′, Ti);

17: n = normal(x′, Ti);

18: setParticle(s′, X, n);

19: x0 = x′

20: s0 = s′

21: j++

22: end if

23: else

24: if W >= random() then

25: X = mapping(x′, Ti);

26: n = normal(x′, Ti);

27: setParticle(s′, X, n);

28: x0 = x′

29: s0 = s′

30: j++

31: end if

32: end else

33: end while

34: end for

In this pseudo code, NumOfParticles(Ti) is a func-
tion that calculates the number of particles for cell Ti.
In order to calculate (10), the density of the center of
gravity replaces the density distribution, and the num-
ber of particles is expressed as the product of the cell
volume and the density of the center of gravity. The
number of particles calculated as a real number is con-
verted to an integer number, as in (11), by using the
floor function floor() and the random number gene-
rator random(). The pseudo code for NumOfParticles
is given as Algorithm 2.

Algorithm 2. NumOfParticles (cell Ti)

1: Integer Number of Particles Np;

2: Volume v = Ti.getVolume();

3: Local Position g;

4: g = Ti.getCenterOfGravity();

5: Real Number of Particles Rp;

6: Rp = v ∗ ρ(mapping(g, Ti));

7: if Rp - floor(Rp) > random() then

8: Np = floor(Rp) + 1

9: end if

10: else

11: Np = floor(Rp)

12: end else

13: return Np

In this pseudo code, getVolume() is a func-
tion for obtaining the volume of the cell, and
getCenterOfGravity() obtains the center of gravity
of the cell.

This algorithm can easily be parallelized because the
particles are generated independently in each cell.

5 Particle Rendering Using the Ensemble
Average

Using the aforementioned particle generation tech-
nique, we can generate particles in a volume cell con-
sistent with the density function. By projecting these
particles onto the image plane, we calculate brightness
values for the corresponding pixels. We also perform
particle occlusion with the Z-buffer algorithm during
projection. This incorporates the effects of particle col-
lisions, which prevent some particles from reaching the
image plane. This method assumes that the particles
are completely opaque. Thus, neither alpha blending
nor visibility ordering is required.

After the projection, color mapping and shading cal-
culations are applied to the stored particles. The color
mapping converts the scalar value to the color using
the transfer function, and the shading multiplies the
particle color by the attenuation, which is calculated
using the gradient vector and the lighting vectors. To
calculate the final color value at each pixel, one of two
averaging operations is applied to multiple pixel values:
sub-pixel average or ensemble average.

5.1 Sub-Pixel Average

In the sub-pixel average, a pixel at the sub-pixel level
is divided into various sub-domains (sub-pixels). The
final brightness value Btotal is calculated by averaging
brightness values Bi across all sub-pixels (see Fig.3).
The number of sub-pixels in a single pixel is termed
the sub-pixel level (LS)

Btotal(LS) =
L2

S∑

i=1

Bi

L2
S

. (16)

We experimentally confirmed that the fluctuation
in the brightness values is inversely proportional to
the sub-pixel level by using several irregular volume
datasets[3]. Performing particle occlusion for each sub-
pixel causes the pixel to store the nearest particles
and affects the averaging procedure that is used to de-
termine the pixel value. When performing sub-pixel
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processing, the size of the required frame buffer tends
to be large, consistent with the increase in the sub-pixel
level.

Fig.3. Sub-pixel average.

5.2 Ensemble Average

To solve the problem with respect to the size of the
required frame buffer, we employ the concept of en-
semble averaging and repeat the particle projection to
accumulate pixel values by setting the sub-pixel length
equal to that of a single pixel (see Fig.4). An ensem-
ble is an imaginary collection of notionally identical ex-
periments. In PBVR, the experiment involves a set of
processes that include particle generation and projec-
tion. Once we set the sub-pixel length equal to 1, all
sub-pixel processing is omitted. Each member of the
ensemble features is nominally identical properties such
as density and diameter. Members of an ensemble are,
by definition, statistically independent of one another.
The number of members is termed the repetition level
(LR).

Fig.4. Ensemble average.

In the ensemble average, the final brightness value
is calculated by averaging brightness values across all
of the repetitions. We define a brightness value in the
i-th repetition member as Bi.

Btotal(LR) =
LR∑

i=1

Bi

LR
. (17)

The image generation process when using the en-
semble average is composed of particle division, pro-
jection and average. The particles are divided into
LR parts where each particle is cyclically located in
generated order (see Fig.4). A set of divided particles
is projected onto the particle buffer with the existing
PBVR framework[2], and the brightness values Bi are
obtained. In order to calculate the final pixel value, the
brightness values are accumulated into the buffer and
averaged by (17).

The ensemble average technique can be used to im-
plement the level-of-detail (LOD) rendering. Only a
portion of the particle set is used at a low repetition
level to create smooth movements, and a high repe-
tition level is used to see fine-features in detail when
movement stops.

To evaluate the fluctuations in brightness with re-
spect to the repetition level, we consider a constant vo-
lume dataset in which the particle density and particle
luminosity are both constant (c = 1). As previously ex-
plained, the opacity describes the possibility that more
than one particle exists along the ray segment. The
brightness value B becomes 1 when a particle exists
or 0 if no particle exists. Thus, the average brightness
value, BAvg, can be calculated as:

BAvg = 1 · α + 0 · (1− α) = α. (18)

The variance of the brightness can be calculated as:

BVar = (1− α)α. (19)

Thus, the deviation becomes the square root of the
variance.

BDev =
√

(1− α)α. (20)

Next, we theoretically analyze the fluctuation in to-
tal brightness. If the occurrence of particles is inde-
pendent for each repetition member, the average and
variance of the brightness of each repetition are identi-
cal:

BAvg = E(Bi) = α, (21)

BVar = Var(Bi) = (1− α)α. (22)
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The variance in the total brightness can be calcu-
lated as follows:

Btotal
Var (LR) =Var

( LR∑

i=1

Bi

LR

)

=
1

L2
R

{ LR∑

i=1

Var(Bi) + 2
∑

i,j,i<j

Cov(Bi, Bj)
}

.

(23)

Since the brightness of each repetition is inde-
pendent from the other runs, the covariance term
Cov(Bi, Bj) can be estimated as zero. This makes the
variance decrease with the inverse of the number (LR)
of repetitions. Therefore, the deviation in total bright-
ness can be evaluated as:

Btotal
Dev (LR) =

BDev√
LR

=

√
(1− α)α

LR
. (24)

This equation suggests that a minimum repetition
level can be calculated if we specify a certain crite-
rion for the deviation. The larger the criterion, the
smaller the required repetition level is. The repetition
level is closely related to the computational comple-
xity of PBVR, and we can therefore use this variable
to achieve the required LOD control for volume ren-
dering. (23) and (24) demonstrate that the repetition
level is identical to the squared sub-pixel level, that is,
LR = L2

S. Note that the sub-pixel level is related to the
required frame buffer in addition to the computational
complexity, which is not preferable to the LOD control.

6 Experimental Results

We conducted experiments to verify the effectiveness
of our proposed technique in terms of performance, ima-
ge quality and memory usage.

6.1 Performance

This experiment used a PC featuring an Intel Core
2 Duo E8500 (3.17 GHz) CPU with 3GB of RAM and
an nVidia GeForce 9800 GT card. The resolution of all
rendered images was 512 × 512. The irregular volume
datasets used for this experiment are listed in Table
1, and Fig.5 shows the results of rendering for these
datasets. The maximum number of tetrahedral cells
was 1.38 M.

Fig.5(a) shows “fighter” data. An irregular tetra-
hedral mesh which is the result of an airflow simula-
tion over a jet fighter from a wind tunnel model de-
veloped at NASA Langley Research Center. Fig.5(b)
shows “blunt” data. It is a simulation result of air-
flow over a flat plate with a blunt fin rising from the

plate. Fig.5(c) shows “post” data. The incompressible
liquid oxygen flows across a flat plate with a cylindri-
cal post rising perpendicular to the plate (and therefore
the flow). The simulation is modeling a flow internal to
a rocket engine. A space shuttle launch vehicle engine
has a region in which many such posts obstruct flow of
liquid oxygen to promote better mixing. Fig.5(d) shows
“aorta” data. This is the result of blood flow simulation
in an aorta with aneurysm.

Table 1. Performance for Tetrahedral Data

Data
No. No. No. Sampling Rendering

Tets. Nodes Particles (ms) (fps)

Fighter 70 125 13 832 8 878 275 1 906 14.0

Blunt 222 414 40 948 13 121 261 2 922 11.5

Post 616 050 108 300 15 110 048 3 281 11.0

Aorta 1 386 882 248 992 10 782 231 2 656 12.6

Fig.5. Rendering result for tetrahedral data. (a) Fighter. (b)

Blunt. (c) Post. (d) Aorta.

Table 1 also shows performance results in terms of
the number of generated particles, particle generation
time (sampling time), and rendering speed by setting
the repetition level to 144. In this technique, perfor-
mance is related to the number of irregular volume cells
and to the number of generated particles. The latter
depends on the density function, which is described con-
sistently with the transfer function.

6.2 Image Quality and Fluctuation

This and later experiments used a commodity PC
featuring an Intel Core 2 Duo E6750 (2.66 GHz) CPU
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with 2.0GB RAM and an nVidia GeForce 8500 GT
card.

To evaluate the image quality of this new PBVR
technique, the error values between the PBVR ima-
ge and the volume ray-casting image were calculated.
The error value is defined as the average distance be-
tween two images in RGB space, and only active pixels
are considered in calculating the error averages. Fig.6
shows the distribution of error value with respect to
repetition level, demonstrating that the error values are
very close to each other. This means that the ensemble
average generates almost the same image as the sub-
pixel average.

Fig.6. Error distribution in sub-pixel and ensemble averages.

Fig.7. Fluctuation of the ensemble average.

Subsection 5.2 demonstrated that the fluctuation in
brightness values is inversely proportional to the square
root of the repetition level by using a simple case in
which the particle density is constant. For actual vo-
lume datasets that feature a complex distribution of
particle densities, it is preferable to investigate whether
the fluctuation is distributed with respect to the repe-
tition level by analyzing the generated images. In this
experiment, the PBVR rendering calculations were per-
formed twenty times at each repetition level by chang-
ing the seed of the random number generator. Two
types of images were calculated, the average and the
deviation. The average image was constructed by av-
eraging twenty images, and the deviation image was
constructed by taking the absolute difference between
the average and one of the twenty images. Fig.7 shows

that the average pixel values of the deviation images
decrease with repetition level, consistent with the ren-
dering results for these datasets. These results show
that the deviation curves fit well to an inverse square
root curve.

6.3 Application to Large-Scale Irregular
Volume Datasets

To visualize large-scale CFD and CSM datasets, we
develop a distributed implementation of PBVR that
is useful for efficiently handling large irregular volume
datasets. To allow efficient handling, we employed a
cell-by-cell particle generation technique described in
Section 5. Each cell may be processed to generate
particles that can be projected in an arbitrary order.
This makes the algorithm run efficiently in a distributed
computing environment.

The CFD dataset “Oral” is composed of hexahe-
dral cells, and represents the oral airflow simulation
result. In the simulation model, the oral cavity shape
of the dental fricative was obtained by a Cone Beam
CT (CBCT) scanner. Using volume datasets derived
from image slices, the oral cavity can be extracted using
two threshold CT values, and the required hexahedral
cells can be constructed for a large eddy CFD simula-
tion. The Oral dataset is composed of 71 449 236 hexa-
hedral cells with 74 452 754 nodes, and it is divided into
16 datasets as outputs generated from the distributed
CFD computation.

The irregular volume dataset of the CSM simulation
“Pump” is a result of the analysis of the elastic defor-
mation caused by its own weight with one hundred mil-
lion degrees of freedom using a PC cluster. The Pump
dataset is composed of 26 289 770 quadratic tetrahe-
dral cells with 36 728 129 nodes, and it is divided into
32 datasets as outputs generated from the distributed
CSM computation.

Only surface-based visualization has been conducted
to date, since it is currently difficult for an available vo-
lume rendering software to deal with a large-scale irre-
gular volume dataset such as Oral or Pump dataset.
This distributed PBVR was therefore applied to render
these datasets. Fig.8 shows the rendering result of the
Oral dataset. Fig.8(a) shows the absolute value of the
airflow vector and Fig.8(b) shows the pressure. The vo-
lume and its boundary surface are simultaneously ren-
dered. The inner boundary surfaces of the portion of
the volume dataset can be clearly seen.

In order to verify the effectiveness of the ensemble
average, we compared the memory usage and render-
ing speed of the sub-pixel average and proposed en-
semble average methods for the Oral volume dataset.
The screen resolution is 512× 512. Table 2 reports the
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results, including the frame buffer size (MB) and ren-
dering speed (fps) for each averaging technique. The
table also shows the number of generated particles (M)
and its memory usage (MB) for both average tech-
niques. The ensemble average process is faster when the
repetition level is larger than 8. In addition, the sub-
pixel average process cannot render the Oral dataset in
this environment when the repetition level exceeds 64.
From Table 2, we can verify that the ensemble average
saved more memory usage than the sub-pixel average.

Fig.8. Rendering result of the Oral dataset and its transfer func-

tion. (a) Absolute value of the velocity of the airflow. (b) Pres-

sure of the airflow.

In order to evaluate the effectiveness of the par-
ticle generation technique, we compared the image
quality and particle generation time of the metropo-
lis sampling-based technique to those of the uniform
sampling-based one. Fig.9 shows the close-up images
of the Oral dataset generated by both techniques. The
number of generated particles and generation times are
shown in Table 3. We can confirm that the image qual-
ity is improved by the metropolis sampling-based tech-
nique since some blocky noise exists in uniform sam-
pling. In the supplemental video material (see http://
www.youtube.com/watch?v=uH FsuGYme0), our
PBVR shows that the pressure field has a local

maximum close to the frontal teeth in the oral cav-
ity using our tiled display wall.

Table 2. Performance for Sub-Pixel and Ensemble Averages

Subpixel Level 2 4 6 8 10 12 14

Frame Buffer 7.00 28.00 63.00 112.00 175.00 252.00 343.00

fps 172.86 52.90 21.45 8.22 NA NA NA

Repetition Level 4 16 36 64 100 144 196

Frame Buffer 2.50 2.50 2.50 2.50 2.50 2.50 2.50

fps 150.29 41.50 18.93 10.10 6.45 4.01 2.69

No. Particles 0.17 0.69 1.55 2.76 4.32 6.22 8.46

(M)

Particle 2.96 11.83 26.66 47.44 74.17 106.71 145.21

Mem. (MB)

Table 3. Particle Generation Time and the Number

of Particles for Metropolis Sampling and Uniform Sampling

Metropolis Uniform

Sampling Time (s) 25.75 24.07

No. Particles (M) 31.89

Fig.9. Close-up images of the Oral pressure dataset. (a) Metropo-

lis sampling. (b) Uniform sampling.

Fig.10 shows the rendering results of the Pump
dataset as well as the LOD rendering results. Fig.10(a)
is rendered with the repetition level 2 and Fig.10(b)
is rendered with the repetition level 100. A hundred
sets of particles are generated with the repetition level
100 in advance, and only two sets are used as the
ensemble members in order to render them with the
repetition levels 2. Table 4 shows the number of gener-
ated particles and its sampling time. Table 5 shows
the rendering speed at the repetition levels 2 and
100. The supplemental video material (see http://
www.youtube.com/watch?v=uH FsuGYme0) shows
the LOD rendering of the Pump and Oral datasets.

Table 4. Particle Generation Time and the

Number of Particles for the Pump Dataset

Repetition Level Sampling Time (s) No. Particles

100 47.65 13 097 195
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Table 5. Performance for LOD Rendering

of the Pump Dataset

Coarse Rendering Fine Rendering

Repetition Level 2 100

fps 93.73 1.58

Fig.10. LOD control for rendering of the Pump dataset. (a)

Repetition level 2 to move. (b) Repetition level 100 to stop.

7 Discussion

Sub-pixel processing requires additional memory
space for large frame buffers. A sub-pixel level of 10 re-
quires 100 times as many frame buffers in order to store
sub-pixel values. By using ensemble averages of parti-
cles, the PBVR becomes more efficient with respect to
memory usage and exhibits a small increase in rende-
ring time in comparison with the sub-pixel processing
PBVR when the repetition level is relatively small as
shown in Table 3.

The performance of the proposed technique is influ-
enced by the number of particles. The number of parti-
cles changes as the visualization parameters are modi-
fied. If a transfer function or the pixel size in the global
coordinates changes, the density function will also need
to be changed, and the number of particles may ex-
ceed the system capacity. In this case, we can adopt
a streaming approach to render irregular volumes; not
all particles are stored in the main memory, but in-
stead are generated in each irregular volume cell and
projected onto the image plane, in both this approach
and the PT technique. (In addition, we can employ the
ensemble average to develop a sort-free PT technique.)

In the density emitter model, a viewing ray is ap-
proximated as a cylinder and the particle luminosity

remains constant. However, it is natural to use a cone
whose top becomes a viewing point and to use a parti-
cle whose luminosity is inversely proportional to the
squared distance from the viewing point. Since the
number of particles in the ray segment volume is pro-
portional to the square of the distance in this case, the
total particle luminosity is independent of the distance.
Thus, the cylinder viewing ray with constant luminosity
particles is equivalent to the cone approach where lu-
minosity decreases with distance. This equivalence will
hold when the viewing point is far away enough from
the nearest point of the volume. The PBVR keeps the
radius of the particle constant in the ray space. How-
ever, when the PBVR zooms up in the volume space,
the resulting image will become transparent and more
particles need to be generated. This is because the par-
ticle density has been underestimated near the view-
point and will become a negative factor for the inter-
active rendering. We plan to develop a new method
of constructing the particle radius on the image plane
according to the distance from the image plane. It can
be easily implemented by rendering the particles in a
common camera projection process.

8 Conclusion

This work presents a metropolis sampling-based
technique for generating particles in an irregular vo-
lume cell and an ensemble average technique for con-
serving the frame buffer memory usage in order to im-
prove the PBVR process. The previous PBVR ap-
proach had problems with respect to image quality and
memory usage when rendering a large-scale irregular
volume dataset. The former issue is that the cell boun-
dary may become prominent when the density function
changes significantly in an irregular volume cell. The
latter problem is that the required frame buffer tends
to be large when the sub-pixel level increases. In ad-
dition, the ensemble average can in turn be utilized to
control the LOD of volume rendering. We do not intend
to replace the ray-casting technique with our proposed
technique. Instead, we envisage it as being useful for
previewing large irregular volume datasets with mini-
mal preprocessing.

This technique scales well to large irregular volume
datasets with reasonable memory requirements. The
only restriction is that there should be sufficient mem-
ory to store at least the information of a single irregu-
lar volume cell. Each cell may be processed to generate
particles that can be projected in an arbitrary order.
Simulations using huge irregular volumes are usually
run in parallel on clusters of high-bandwidth supercom-
puters or PCs. The resulting datasets can be so massive
that they require parallel computing resources of similar
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magnitude to effectively visualize them. A streaming-
based approach is one promising solution for meeting
such a requirement, and this technique is a natural fit
for such an approach.

The transfer function exploration is important for
the volume rendering. When we modify the opacity
function, the particles need to be regenerated from
scratch. It may take a considerable computation time.
To address this issue, we will improve the performance
of the particle generation process by using two tech-
niques. The first one is to employ the parallel process-
ing in the process. Our particle generation will be ef-
ficiently parallelized since it can be independently pro-
cessed at each cell. The second one is to reduce the
number of particles by modifying the opacity function
so that its feature can be preserved.
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