
Chhabra JK, Gupta V. A survey of dynamic software metrics. JOURNAL OF COMPUTER SCIENCE AND TECHNOL-

OGY 25(5): 1016–1029 Sept. 2010. DOI 10.1007/s11390-010-1080-9

A Survey of Dynamic Software Metrics

Jitender Kumar Chhabra and Varun Gupta

Department of Computer Engineering, National Institute of Technology, Kurukshetra-136119, India

E-mail: jitenderchhabra@rediffmail.com; varun3dec@yahoo.com

Received June 12, 2008; revised April 3, 2010.

Abstract Software metrics help us to make meaningful estimates for software products and guide us in taking managerial
and technical decisions. However, conventional static metrics have been found to be inadequate for modern object-oriented
software due to the presence of object-oriented features such as polymorphism, dynamic binding, inheritance and unused
code. This fact motivates us to focus on dynamic metrics in place of traditional static metrics. Moreover, dynamic metrics
are more precise than static metrics as they are able to capture the dynamic behaviour of the software system during

measurement. These dynamic metrics are usually obtained from the execution traces of the code or from the executable
models. In this paper, advantages of dynamic metrics over static metrics are discussed and then a survey of the existing
dynamic metrics is carried out. These metrics are characterized into different categories such as dynamic coupling metrics,
dynamic cohesion metrics. Towards end of the paper, potential research challenges and opportunities in the field of dynamic
metrics are identified.

Keywords metrics, object-oriented programming, software engineering

1 Introduction

Software metrics are the units of measurement that
are used to characterize software engineering products
(design, source code etc.), software engineering pro-
cesses (analysis, design, coding, testing etc.) and soft-
ware engineering professionals (the efficiency of an in-
dividual tester, or the productivity of an individual de-
signer). If used properly, software engineering metrics
allow us to quantitatively define the degree of success
or failure, for a product, a process, or a person, make
meaningful and useful managerial and technical deci-
sions, and make quantified and meaningful estimates[1].
Thus, incorporating metrics into development plans is
a simple step towards creating better systems.

The most popular and time-honoured software met-
rics have been LOC (lines of code) and Cyclomatic
Complexity[2]. These measures were originally defined
for procedural programs and later incorporated for
object-oriented systems. The LOC metric is a mea-
sure of a size of a module and Cyclomatic Comple-
xity measures logical complexity of a module. Software
metrics proposed and used for procedural paradigm
have been found inadequate for object-oriented soft-
ware products[3] mainly because of the distinguishing
features of the object-oriented paradigm such as classes,
encapsulation, inheritance and polymorphism. Chi-
damber and Kemerer[4] addressed the need for new and

modified metrics for object-oriented systems by intro-
ducing a set of metrics. Their metrics suite has been
a subject of discussion for many years and the au-
thors themselves and other researchers have continued
to improve or add to the “CK” metric suite. Other
major metrics suites proposed for object-oriented sys-
tems are MOOD metrics[5], Lorenz and Kidd metrics[6],
Briand et al. metrics[7], Harrison et al. metrics[8] and
Bansiya et al. metrics[9]. Static metrics focus on
static properties of the software and a number of static
metrics have been proposed in literature for the mea-
surement of coupling[4,7,10-16], cohesion[4,11-12,17-27] and
other attributes of object-oriented software using design
or source code of the software, which are static in na-
ture. The static metrics are able to quantify various
aspects of the complexity of design or source code of
a software system, but their ability to accurately pre-
dict the dynamic behaviour of an application is as yet
unproven. Traditional static metrics alone may be in-
sufficient in evaluating the dynamic behaviour of an
application at runtime, as its behaviour will be influ-
enced by the execution environment as well as the com-
plexity of the source code. Object-oriented features
such as polymorphism, dynamic binding, inheritance
and common presence of unused (“dead”) code in com-
mercial software, render the static metrics imprecise,
as they do not precisely reflect the runtime situation
of the software[28]. For instance, target method of a

Survey©2010 Springer Science +Business Media, LLC & Science Press, China

Jitender Kumar Chhabra et al.: A Survey of Dynamic Software Metrics 1017

polymorphic call depends on the run time type of the
object receiving the call. In programs that employ in-
heritance, this target may change[29]. Moreover, the
complex dynamic behaviour of many real-time applica-
tions motivates us to focus on dynamic metrics in place
of traditional static metrics.

Dynamic metrics are the class of software met-
rics that capture the dynamic behaviour of the soft-
ware system and are usually obtained from the exe-
cution traces of the code or from the executable mo-
dels. Major dynamic metrics proposed have been for
the measurement of coupling[28-40], cohesion[41-43], and
complexity[34,44-46].

In this paper, need and benefits of having dynamic
metrics for software systems are discussed and major
contributions of the paper are briefly described as fol-
lows:

• a comparison between static and dynamic metrics
is done;

• study of existing dynamic metrics categorized into
different classes is carried out;

• different dynamic metrics belonging to same class
are compared and their relationships with external
quality attributes are examined;

• research challenges and opportunities available in
the field of dynamic metrics are highlighted;

The remainder of this paper is organized as follows.
In Section 2 advantages of dynamic metrics over static
metrics are discussed and in Section 3 various dynamic
coupling metrics proposed in literature are studied and
compared on the basis of their relations with quality
attributes. Section 4 examines and compares the exist-
ing metrics for the measurement of dynamic cohesion
and Section 5 describes the dynamic complexity metrics
and their relations with quality attributes. Section 6
discusses miscellaneous dynamic metrics and Section 7
discusses the relatively new concept of pseudo dynamic
metrics. Section 8 identifies the potential research di-
rections and challenges in the area of dynamic metrics
and Section 9 concludes the paper.

2 Advantages of Dynamic Metrics over Static
Metrics

In this section, we will discuss benefits of having
dynamic metrics in comparison to their static counter-
parts. Static measures are obviously simpler to collect
because there is no need to run the software. Moreover,
to obtain dynamic metrics, code or simulation models
of the software system are needed, which are available
very late in the software development lifecycle. Static
metrics are widely used due to the fact that they are
easier to obtain, especially at the early stages of soft-
ware development. However, the potential benefits of
dynamic metrics collected by executing the program
outweigh the complexity and cost of measuring them.

Static metrics satisfy the purpose of judging the
quantity attributes like size and complexity of the soft-
ware artefacts. But they are less precise than dynamic
metrics in measurement of the quality attributes of soft-
ware such as reliability, testability, as static metrics
are evaluated only by means of static inspection of the
software artefacts. The quality of software systems is
more dependent on the runtime behaviour than the po-
tential characteristics implied by the static analysis of
the software system. Dynamic metrics are computed
on the basis of the data collected during actual execu-
tion of the system, and thus directly reflect the quality
attributes (performance, error rates etc.) of the soft-
ware in its operational mode. Moreover, static metrics
deal with the structural aspects of a software system,
whereas runtime metrics also deal with the behavioural
aspects of the system. For example, according to the re-
sults of a controlled experiment conducted by Briand et

al., static coupling measures may be insufficient to ex-
plain discrepancies in changeability for object-oriented
designs[47]. Moreover, static metrics are somewhat con-
strained in their ability to deal with inheritance, poly-
morphism and dynamic binding issues since the run-
time types of field access and method invocation are
not known. However, dynamic metrics are capable to
deal with such issues. The major differences between
static and dynamic metrics are listed in Table 1.

Table 1. Comparison Between Static and Dynamic Metrics

Static Metrics Dynamic Metrics

Simpler to collect Difficult to obtain

Available at the early stages of software development Accessible very late in software development lifecycle

Less accurate than dynamic metrics in measuring qualitative
attributes of software

Suitable for measuring quantitative as well as qualitative at-
tributes of software

Deal with the structural aspects of the software system Deal with the behavioral aspects of the system also

Inefficient to deal with dead code and OO features such as in-
heritance, polymorphism and dynamic binding

Dynamic metrics are capable to deal with all object-oriented
features and dead code

Less precise than dynamic metrics for the real-life systems More precise than static metrics for the real-life systems

1018 J. Comput. Sci. & Technol., Sept. 2010, Vol.25, No.5

Major benefit of using dynamic metrics in software
engineering is their ability to more precisely measure
the internal attributes of software like coupling, com-
plexity etc., which have direct impact on quality fac-
tors of software such as reliability, testability, reusabil-
ity, maintainability, performance, error-rates. In subse-
quent sections, different dynamic metrics proposed in
literature till date are discussed and presented into dif-
ferent categories depending on their types.

3 Dynamic Coupling Metrics

Dynamic coupling metrics are used to measure ac-
tual coupling taking place between a pair of objects
or classes at runtime in a software system. Dynamic
coupling metrics are measured at object level and can
be aggregated to class or system level. Moreover, dy-
namic coupling measures can be defined at different
stages of software development lifecycle like design-time
or coding-time. In subsequent sub-sections, we will dis-
cuss and then compare different types of dynamic cou-
pling metrics proposed in literature.

3.1 EOC and IOC Metrics

Yacoub et al.[34] propose object level dynamic cou-
pling measures, Export Object Coupling (EOC) and
Import Object Coupling (IOC) based on executable
object-oriented design models and these models are
generated using Real-Time Object Oriented Modelling
(ROOM) language[48]. The design models used to
collect the coupling measures are a kind of sequence
diagrams[49] that allow execution simulation. The EOC
or IOC count the number of messages sent between two
distinct objects oi and oj in a given ROOM sequence
diagram x (in opposite directions), divided by the total
number of messages exchanged in x. Thus, the result of
each metric is the percentage that reflects the “inten-
sity” of interactions between two objects in a particular
direction relative to the total number of object interac-
tion in x. These metrics are defined within a scenario
scope, i.e., measurements are calculated for parts of the
design model that are activated during the execution

of a specific scenario triggered by an input stimulus.
Then, these metrics can be extended to have an appli-
cation scope, i.e., for all scenarios. These metrics are
presented in Table 2.

For instance, in a simple scenario x1 where o1 sends
three messages (m1, m2 and m3) to o2 and o2 sends two
messages (m4 and m5) to o1, then EOCx1(o1, o2) =
(3/5) × 100% = 60% and IOCx1(o1, o2) = (2/5) ×
100% = 40%.

3.2 Arisholm Metrics Suite

The concept of import and export coupling given
by Yacoub et al. is extended by Arisholm[29] to take
into consideration the direction as well as class level,
where he proposes 12 dynamic coupling measures for
object-oriented software divided along three orthogo-
nal dimensions: direction, mapping and strength. Out
of these 12 metrics, six metrics are defined at object
level and other six are defined at class level. Each dy-
namic coupling metric name (e.g., IC OC) starts with
either IC or EC to distinguish between import coupling

and export coupling based on direction of the coupling.
import coupling counts the messages sent from an ob-
ject or class, whereas export coupling counts the mes-
sages received by an object or class. The next letter
indicates the mapping level (‘O’ for Object and ‘C’ for
Class). Mapping level here defines the granularity level
at which coupling is being measured by the concerned
metric. The last letter in the name of a particular met-
ric denotes the strength of coupling as shown in Table
3. Here, strength of coupling measures the amount of
association between the two objects. The amount of
association between the objects may be quantified at
three levels of granularity: 1) Dynamic messages (D):
the number of times each message is sent from one ob-
ject to another; 2) Distinct method invocations (M):
the number of distinct method invocations between two
objects; 3) Distinct classes (C): the number of distinct
classes involved in association between the objects. The
twelve metrics proposed by Arisholm are defined in Ta-
ble 3.

Table 2. EOC and IOC Metrics

Metric Description Definition

Export
Object
Coupling

EOCx(oi, oj), the export coupling for object oi w.r.t.
object oj , is the percentage of the number of messages
sent from oi to oj w.r.t the total number of messages
exchanged during the execution of the scenario x.

EOCx(oi, oj) =
|{Mx(oi,oj)|oi,oj∈O∧oi 6=oj}|

MTx
× 100 where

Mx(oi, oj) is the number of messages sent from oi to oj and
MTx is the total number of messages exchanged during the
execution of the scenario x.

Import
Object
Coupling

IOCx(oi, oj), the import coupling for object oi w.r.t.
object oj , is the percentage of the number of messages
received by object oi from object oj w.r.t. the total
number of messages exchanged during the execution of
the scenario x.

IOCx(oi, oj) =
|{Mx(oj,oi)|oi,oj∈O∧oi 6=oj}|

MTx
× 100 where

Mx(oj , oi) is the number of messages received by object
oi from object oj and MTx is the total number of messages
exchanged during the execution of the scenario x.

Jitender Kumar Chhabra et al.: A Survey of Dynamic Software Metrics 1019

Table 3. Dynamic Coupling Metrics by Arisholm

Metric Description Definition

Name Direction
of Coupling

Mapping
Level

Strength of
Coupling

IC OD Import
coupling
(IC)

Object (O) Dynamic messages (D) This measure counts the total number of messages sent from one
object to other objects.

IC OM Distinct methods (M) This measure counts the number of distinct methods invoked
from one object to other objects.

IC OC Distinct classes (C) This measure counts the number of distinct server classes used
by the methods of the given object.

IC CD Class (C) Dynamic messages (D) This measure counts the total number of messages sent by all
methods in all objects of a class.

IC CM Distinct methods (M) This measure counts the number of distinct methods invoked by
all methods in all the objects of a class.

IC CC Distinct classes (C) This measure counts the number of distinct server classes used
by all methods of all objects of a class.

EC OD Export
coupling
(EC)

Object (O) Dynamic messages (D) This measure counts the total number of messages received by
one object from other objects.

EC OM Distinct methods (M) This measure counts the number of distinct methods received by
an object.

EC OC Distinct classes (C) This measure counts the number of distinct client classes that
in a given object are being used.

EC CD Class (C) Dynamic messages (D) This measure counts the total number of messages received by
all methods of all objects of a class.

EC CM Distinct methods (M) This measure counts the number of distinct methods received by
all methods of all objects of a class.

EC CC Distinct classes (C) This measure counts the number of distinct client classes that
in all objects of a given class are being used.

Table 4. Dynamic Coupling Metrics by Mitchell and Power

Metric Description Definition

Dynamic CBO for a
class

This metric is a direct translation of the C&K
CBO metric, except it is defined at runtime.

No. couples of a class with other classes at runtime

Degree of dynamic
coupling between two
classes at runtime

No. times a class A accesses methods or instances
variables from a class B as a percentage of the total
number of methods or instance variables accessed
by A.

No. times a class A accesses methods or
instance variables from a class B at runtime

Total No. times a class A access
any methods or instance variables

×
100

1

Degree of dynamic
coupling within a
given set of classes

This metric is an extension of above metric, to
indicate the level of dynamic coupling occurring
within a given set of classes.

Sum of No. accesses to methods
or instance variables outside each class

Sum of total No. accesses from these classes
×

100

1

RI Runtime import coupling between objects No. classes from which a given class accesses me-
thods or instance variables at runtime

RE Runtime export coupling between objects No. classes which access methods or instance vari-
ables from a given class at runtime

RDI Runtime import degree of coupling
No. accesses a class makes

Total No. accesses

RDE Runtime export degree of coupling
No. accesses made to a class

Total No. accesses

Arisholm et al.[31] extend the work done by
Arisholm[29] by formally defining the dynamic coupling
measures in an operational form and validating them
theoretically as well as empirically.

3.3 Mitchell and Power Metrics Suite

As discussed above, Arisholm et al. measure the
amount of import and export coupling between objects

1020 J. Comput. Sci. & Technol., Sept. 2010, Vol.25, No.5

at different levels, whereas Mitchell and Power[32-33]

propose to measure degree of import and export cou-
pling between objects. Mitchell and Power define a set
of dynamic coupling metrics as given in Table 4.

The first three metrics in Table 4 are defined on
the basis of static coupling metric, CBO[4]. They are
designed to apply to an application at runtime and
provide a means to evaluate class level coupling. The
next four metrics (RI, RE, RD I, RDE) in Table 4 are
defined to evaluate object level dynamic coupling. The
metrics RD I and RDE are an improvement over met-
rics RI and RE as they are normalized and may be more
useful in comparing classes of different sizes.

Mitchell and Power in [33] examine the relation-
ship between static and dynamic coupling metrics in
the context of the influence of instruction coverage.
The main measures used in this study are the static
coupling metric (CBO), six dynamic metrics (IC CD,
IC CM, IC CC, EC CD, EC CM, EC CC) proposed
by Arisholm et al.[29] and instruction coverage measure
(Ic). The instruction coverage measure Ic corresponds
to the Java bytecode instructions. The results of study
indicate strong influence of coverage measures on the
correlation between static and dynamic metrics.

3.4 Dynamic Coupling Metric (DCM)

Another dimension to measure dynamic coupling is
initiated by Hassoun et al.[35-37], where they target to
measure the influence of one object on others over a pe-
riod of time, instead of import/export coupling concept.
Hassoun et al. propose a dynamic coupling metric DCM
for measuring object level coupling for systems built on
meta-level architectures (declarative control languages
that allow one to write specifications of program be-
haviour). This metric is derived from the study that
coupling between two objects can be defined in terms of
time during which one object influences the other. Two
objects are said to be coupled if either one of them could
influence the history of the other. The history of an ob-
ject is defined as the sequence of its states in time. The
Dynamic Coupling Measure of an object (P) during a
time period ∆t, denoted by DCM (P)|∆t, is defined as
sum over all program execution steps and sum over the
total number of objects, (Oi), coupled to object P :

DCM (P)|∆t =
∑

j

∑

i

fi(tj)gp(|Oi|)

where i = 0, 1, 2, · · ·, the number of coupled objects,
∑

i is the sum over the set of objects coupled to P ,
∆t is an ordered sequence of program execution steps
〈t0, .., tj , .., tn〉, and

∑

j is the sum over the program
execution steps.

Here, fi(tj) assumes values 1 or 0 depending on

whether coupling of the i-th object is live at tj or not
and gp(|Oi|) denotes the complexity measure of the i-th
object coupled to object P .

At the system level, the coupling measure in a time
interval ∆t is the sum of all measures defined in the
above formula over all the objects of the system, i.e.,

DCM (system)|∆t =

all-system-objects
∑

P

DCM (P).

The DCM metric can be used to measure the
coupling of a particular object or the entire system at
runtime.

Hassoun et al.[37] conclude that reflective systems
(systems whose behaviour and structure can change
during program execution) exhibiting the same be-
haviour as corresponding non-reflective systems have
less coupling, fewer objects and more interactions.

3.5 Zaidman et al.’s Work

Zaidman et al.[38-40] propose a variation of import
coupling and use the same for the purpose of program
comprehension. Authors consider the following proper-
ties of a coupling metric in order to be useful for the
purpose of program comprehension:

• Since, software engineers try to comprehend the
software at the class-level only. While selecting dy-
namic coupling measures, only those metrics which are
defined at class-level need to be considered.

• All classes external to the actual project (e.g., li-
brary classes), have no direct influence on the program
comprehension process.

• Only those classes that have a prominent role
within the system’s architecture need to be considered
and such classes are expected to give orders to other
classes, i.e., tell them what to do and what to give in
return. As such, these classes are expected to request
the services of other classes. This suggests that direc-
tion of coupling needs to be taken into consideration
is the “import coupling” for the purpose of program
comprehension.

Out of twelve metrics proposed by Arisholm[29], two
metrics IC CM and IC CC adhere to the criteria set out
as above, namely: working at the class-level and mea-
suring import coupling. Authors also use a variation of
IC CC metric and refer it as IC CC′. This metric dif-
fers from IC CC metric in the sense that IC CC metric
is targeted more towards finding the number of class-
collaborations, while IC CC′ retrieves the number of
method-collaborations. Consider the following exam-
ple:

A class having one method calls two distinct me-
thods of second class and one method of third class.

Jitender Kumar Chhabra et al.: A Survey of Dynamic Software Metrics 1021

IC CC is calculated as two (number of distinct classes
called) and is calculated as three (number of distinct
methods called).

These dynamic coupling measures allow us to iden-
tify the most need-to-be-understood classes in a system.
Detecting these classes very early in the program com-
prehension process allows the end user to pay atten-
tion towards these classes and start exploring the soft-
ware system directly from there. Authors experiment
with various dynamic coupling metrics and also com-
pare direct and indirect coupling solutions. To simulate
the indirect coupling, they use the HITS web-mining
algorithm[50]. Their experiments show that taking in-
direct coupling into account delivers better results for
program comprehension.

3.6 Comparison of Dynamic Coupling
Measures and Their Relations with
Quality Attributes

In above subsections, a number of different metrics
have been presented for measuring dynamic coupling.
These metrics are defined at different stages of soft-
ware development and are useful for different purposes.
First type of metrics, EOC and IOC are defined at
design-time and are derived from dynamic design mo-
dels (models depicting execution scenarios). EOC and
IOC metrics can affect many of the quality attributes
such as maintainability, understandability, reusability
and error-propagation. Objects having higher values of
EOC or IOC would be more critical to changes due to
maintenance and are more likely to export or import
these maintenance changes to other objects. Moreover,
objects having higher values of EOC or IOC metrics
are harder to understand since their dynamic behaviour
tightly depends on each other. Objects with higher
EOC or IOC are less reusable because they strongly
depend on each other and are more likely to be used
together. Further, objects with high EOC or IOC are
more likely to be a source of error propagation since er-
rors are more likely to propagate from the faulty source
to the destination object as a result of the frequent mes-
sages exchanged between them.

However, these metrics do not give a precise depic-
tion of the actual runtime situation as they are calcu-
lated during the early design stage of a program. Fur-
ther, EOC and IOC metrics do not comply with the
coupling properties for object-oriented software systems
described in the axiomatic framework given by Briand
et al.[10] and these metrics do not account for inheri-
tance and polymorphism. Second type, Arisholm’s
dynamic coupling metrics are defined at actual run-
time and quantify the flow of messages between objects
at runtime. These metrics adhere to the theoretical

framework for coupling measures proposed in [10] for
object-oriented software systems. It has been shown
that these metrics are complementary to simple size
measures and static coupling measures. Moreover, au-
thors show that dynamic coupling measures capture dif-
ferent properties than static coupling measures, though
some degree of correlation exists between them. Au-
thors also demonstrate that dynamic export coupling
measures are good indicators of change proneness of
software systems. However, Arisholm et al. define
and study dynamic coupling measures as stand-alone
metrics and do not consider the effect of code coverage
measures on the proposed measures in detail.

Third type, Mitchell and Power metrics are an exten-
sion of static CBO coupling metric as defined in Table
4. The Dynamic CBO and Degree of Dynamic Cou-
pling between classes metrics are proposed to quantify
the external complexity of a class at runtime. Degree
of Dynamic Coupling within a given set of classes met-
ric is defined to determine external complexity within
a group of classes. These metrics are directly related
to testability and maintainability. The greater the level
of coupling present, the more rigorous testing needs to
be done and the greater the Dynamic CBO is for a
class, maintenance is more difficult as the class will be
more sensitive to changes in other classes with which
it is coupled. Authors[28] show that the runtime met-
rics, RI, RE, RD I and RDE capture different properties
than the static metrics although some degree of corre-
lation does exist. Authors in [33] successfully demon-
strate that dynamic coupling metrics might be better
interpreted in the context of coverage measures, rather
than as stand-alone software metrics and for this pur-
pose, they use dynamic coupling metrics proposed by
Arisholm[29].

Fourth type, DCM is a dynamic coupling measure
for systems built on meta-level architectures and is
calculated during the actual program execution. The
DCM metric can be used to predict the runtime com-
plexity of the system. The value of DCM metric in an
object-oriented system has relation with quality of the
system in terms of software maintenance. It may help
system engineers to decide on the appropriate software
components to be used in production and maintenance
phase. Classes with high object couplings need more
attention and consequently induce higher maintenance
cost. Thus, these types of classes should be assigned to
more experienced developers. Further, DCM metric can
be used to compare systems’ coupling at runtime and
can also be used as a means of comparing runtime cou-
pling of a system at different stages of its development.
Knowledge of amount of coupling at runtime can also
be helpful in making decisions on re-engineering and
re-factoring. Zaidman et al. use two already existing

1022 J. Comput. Sci. & Technol., Sept. 2010, Vol.25, No.5

dynamic coupling metrics; IC CM and IC CC defined
by Arisholm[29] and propose a metric IC CC′, which
is a variation of IC CC metric. These dynamic cou-
pling measures are quite useful in identification of key
classes for comprehension process in a software system.
Authors’ work clearly indicates that dynamic coupling
metrics and dynamic analysis with its goal-oriented
strategy, pay dividends when used for program com-
prehension purposes.

The different types of dynamic coupling metrics as
discussed above have been found to be indicators of
external quality attributes as given in Table 5.

Table 5. Relations of Dynamic Coupling Metrics

with Quality Attributes

Metric Quality Attributes

EOC & IOC Metrics Maintainability, understandability,
reusability & error-propagation

Arisholm Metrics Change proneness

Mitchell & Power Met-
rics Suite

External complexity, testability &
maintainability

DCM Metric Maintainability

Zaidman et al. Metrics Program comprehension

4 Dynamic Cohesion Metrics

Despite extensive research work conducted in the
measurement of static cohesion[4,17-27], only a few met-
rics have been proposed for the measurement of cohe-
sion at runtime.

4.1 Gupta et al. Metrics

Gupta et al.[41] re-define module cohesion metrics
SFC (Strong Functional Cohesion) and WFC (Weak
Functional Cohesion) originally proposed by Bieman
and Ott[18,51]. Gupta et al.[41] initiate the dynamic co-
hesion measurement using program execution based ap-
proach on the basis of dynamic slicing (dynamic slice is
the set of all statements whose execution had some ef-
fect on the value of a given variable). They use dynamic

slices of outputs to measure module cohesion. They
state that module cohesion metrics based on static slic-
ing approach have got some inadequacies in cohesion
measurement. The static measures significantly over-
estimate the levels of cohesion present in the software.
Their approach addresses the drawbacks of static co-
hesion metrics by considering dynamic behaviour of
the programs and designing metrics based on dynamic
slices obtained through program execution. The dy-
namic cohesion metrics are defined on the basis of com-
mon definitions, common use and common definition-
use pairs in dynamic slices, which facilitate more precise
cohesion measurement than existing static metrics.

Authors define SFC as module cohesion obtained
from common def-use pairs of each type common to
the dynamic slices of all the output variables and WFC
as module cohesion obtained from def-use pairs of each
type found in dynamic slices of two or more output
variables.

4.2 Mitchell and Power Metrics

The proposal of Gupta et al. is an extension of Bie-
man’s static cohesion and CK’s LCOM (Lack of CO-
hesion Metric)[4] is the base used for defining dynamic
cohesion metrics by Mitchell and Power[42-43]. LCOM
is an inverse metric that measures lack of cohesion in a
class. Suppose a class contains n methods, m1, . . . , mn,
and let {Ii} be the set of instance variables referenced
by method mi. Two disjoint sets can be defined as:

P = {(Ii, Ij)|(Ii ∩ Ij) = ∅},

Q = {(Ii, Ij)|(Ii ∩ Ij) 6= ∅}.

Here, P is the number of pairs of methods having no
common instance variables and Q is the number of pairs
of methods having common instance variables. LCOM

is defined as:

LCOM =

{

|P | − |Q|, if |P | > |Q|,

0, otherwise.

Table 6. Dynamic Cohesion Metrics by Mitchell and Power

Metric Description Definition

Runtime
Simple
LCOM
(RLCOM)

RLCOM is an extension of the
static LCOM and considers in-
stance variables that are actually
accessed at runtime.

RLCOM =

{

|P R| − |QR|, if |P R| > |QR|,

0, otherwise.
Here, P R = {(IR

i , IR
j)|IR

i ∩

IR
j = ∅} and QR = {(IR

i , IR
j)|IR

i ∩ IR
j 6= ∅} where {IR

i } is the set of
instance variables used by method mi at runtime.

Runtime
Call-
Weighted
LCOM
(RW LCOM)

Runtime Call-Weighted LCOM
(RW LCOM) is defined by weighing
each instance variable by the num-
ber of times it is accessed at run-
time.

RW LCOM =

{

|PW| − |QW|, if |PW| > |QW|,

0, otherwise,
where PW = ∅, if

{I1}, . . . , {In} = ∅. Here, PW =
∑

16i,j6n{(Ni + Nj)|Ii ∩ Ij = ∅} and

QW =
∑

16i,j6n{(Ni + Nj)|Ii ∩ Ij 6= ∅}, where Ni is the number of times,
method Mi dynamically accesses instance variables from the set {Ii} and Nj

is the number of times, method Mj dynamically accesses instance variables
from the set {Ij}.

Jitender Kumar Chhabra et al.: A Survey of Dynamic Software Metrics 1023

Mitchell and Power propose two metrics Runtime
Simple LCOM (RLCOM) and Runtime Call-Weighted
LCOM (RW LCOM) described in Table 6 based on above
defined LCOM metric. First metric is a direct trans-
lation of the LCOM metric to take into account only
those instance variables that are actually accessed at
runtime. Second metric is an extension of the Runtime
Simple LCOM, modified to take into account the total
number of accesses made to an instance variable by a
method of the class.

4.3 Comparison of Dynamic Cohesion
Measures and Their Relations with
Quality Attributes

Only two kinds of dynamic cohesion metrics exist
in the literature till date: one by Gupta et al. and
the other by Mitchell et al. Gupta et al. propose
dynamic cohesion metrics for procedure-oriented pro-
grams whereas Mitchell and Power define dynamic co-
hesion metrics for object-oriented programs. Dynamic
cohesion metrics proposed by Gupta et al. are impor-
tant for software restructuring during software main-
tenance. Restructuring of existing software is a form
of preventive maintenance that is essential when the
software undergoes new releases. The results of the
study conducted by Mitchell and Power indicate that
proposed runtime cohesion metrics can provide infor-
mative qualitative analysis of a program and comple-
ment existing static cohesion metrics. These dynamic
cohesion metrics can be used to indicate external soft-
ware quality attributes such as reusability, maintain-
ability and can be helpful in redesigning of classes in
object-oriented software systems.

5 Dynamic Complexity Metrics

Software complexity metrics have been frequently
used as indicators for software quality in terms of exter-
nal factors such as testability and maintainability[2,4].
Most of the complexity metrics proposed in literature
deal with the program at rest. However, the complex-
ity of a program also depends on its execution environ-
ment and thus should be measured dynamically. Some
dynamic complexity metrics have been defined as mea-
sures of complexity of the software at execution time,
which are discussed in the following subsections.

5.1 Munson and Khoshgoftar Metrics Suite

Munson and Khoshgoftar[45-46] estimate the dy-
namic complexity based on relative complexity of a
module defined by them in [44]. The relative com-
plexity of a module is obtained after classifying vari-
ous complexity metrics in few independent complexity

domains and then mapping these domains to a single
metric, i.e., relative complexity, which characterizes the
complexity of each module as a single value. Authors
define dynamic complexity of a component as the pro-
duct of the static relative complexity of the component
and the probability of execution of that component.
The probability of execution of components is based on
actual traces of execution of the software obtained using
profiling tools. Further, authors also present dynamic
complexity metrics to quantify the dynamic complex-
ity of sub-systems and systems. A system’s dynamic
complexity in a given environment is determined by its
source code complexity and its operational profile in
that environment. An operational profile characterizes
a software system’s environment in terms of the possible
evaluations of input variables along with the probabi-
lities of these inputs in that environment[52]. Let ρ′i be
the relative complexity of module i. Then, the average
complexity of the system having n modules is given by:

ρ′ =
1

n

n
∑

i=1

ρ′i.

However, in operation some modules would be refe-
renced with greater probability than others. Thus, a
system’s dynamic complexity may be represented as fol-
lows:

dp =

n
∑

i=1

pi × ρ′i

where pi is the probability of reference to module i in
the operational environment and ρ′i is the relative com-
plexity of module i. Thus, dynamic complexity of a
system may be high in an environment that exercises
complex functions having high probability of reference.

5.2 Yacoub et al. Metrics

Yacoub et al.[34] define dynamic complexity metrics
using ROOMcharts[48] specifications and use the simu-
lation reports to calculate dynamic measurements. The
ROOMcharts are extensions of state-diagrams and are
used for behavioural specifications in real-time object
modelling and simulation. The proposed dynamic com-
plexity metrics extend authors’ previous work[53] for
measuring operational complexity[46] of modules based
on Petri Net models. The operational complexity of
objects is based on the static McCabe’s cyclomatic
complexity[2] obtained from a control flow graph. For
each scenario x, a subset of the ROOMchart model of
an object oi is executed in terms of state entries, state
exits, and fired transitions. This subset of the ROOM-
chart model is translated into control flow graph. Then,
it is possible to calculate the cyclomatic complexity of
the executed path for each object oi for a scenario x, i.e.,

1024 J. Comput. Sci. & Technol., Sept. 2010, Vol.25, No.5

ocpxx(oi). Using the probabilities of execution scena-
rios (or operation profiles), a measure of the operational
complexity of the object from the simulation report is
obtained. Using these reports, the complexity of each
object oi for each scenario x can be obtained and the
probabilities of scenarios can be used to calculate the
operational complexity of the object as given below:

OCPX (oi) =

|X|
∑

x=1

PSx × ocpx x(oi).

Thus, dynamic complexity metrics guide the process
of identifying complex objects and trace these objects
to classes from which they are instantiated. As a re-
sult, classes can be graded based on the complexity of
their instantiated objects and more efforts for imple-
mentation and testing will be higher devoted to classes
having higher dynamic complexity.

5.3 Comparison of Dynamic Complexity
Metrics and Their Relations with Quality
Attributes

Munson and Khoshgoftar propose dynamic comple-
xity metrics primarily for procedure-oriented programs
whereas Yacoub et al. define dynamic complexity met-
rics for object-oriented designs. Another difference in
their approach is that metrics proposed by Munson et

al. are obtained from the code as well as executable de-
sign models whereas metrics given by Yacoub et al. can
be collected only from design models. Dynamic com-
plexity metrics proposed by Munson et al. are found to
influence the reliability of software systems. A compo-
nent that is fault-prone according to static complexity
metrics may not be failure-prone in a given environ-
ment, because the most complex component may never
be executed in a given environment. Since failures, not
faults determine quality of the software from user’s per-
spective, the detection of failure-prone components in
the system becomes more important. Therefore, dy-
namic complexity measures can be more helpful in the
detection of failure prone components in software and
thus, dynamic complexity metrics more accurately pre-
dict reliability of the software system and testing effort
required for the system. Moreover, dynamic complex-
ity metrics can be used to rank various environments or
executions. The environments that produce higher dy-
namic complexity place a greater stress on the system
or subsystem under consideration. Thus, the dynamic
complexity metrics assist in rating the effectiveness of
various test cases and selection of test cases for compo-
nents under consideration. Dynamic complexity met-
rics proposed by Yacoub et al. are useful to measure
the quality of object-oriented designs. These metrics

can be used to rank classes at design-time based on
the complexity of their instantiated objects. The iden-
tification of highly complex classes at early phase of
software development lifecycle can be helpful in esti-
mation of testing, verification and validation efforts re-
quired for the system. However, to use the proposed
dynamic complexity metrics early in the development
phase, the application has to be modelled as executable
design models. The extra effort required in developing
executable design models is justifiable for many com-
plex real-time systems where deadlines are required to
be examined prior to developing the system.

6 Miscellaneous Dynamic Metrics

In this section, we will discuss various types of dy-
namic metrics, which do not belong to a particular class
and have not been explored in much detail in literature.
A brief overview about each of them is given in the fol-
lowing subsections.

6.1 Dynamic Metrics for GUI Programs

Graphical User Interfaces (GUIs) make the software
easier to use from user’s perspective. However, they in-
crease the overall complexity of the software since GUI
programs unlike conventional software are event-based
systems. The special characteristics of a GUI program
suggest that traditional methods of statically evalua-
ting its complexity may not be suitable as a static ana-
lysis of the source code only measures what may happen
when the program is executed whereas a dynamic ana-
lysis attempts to quantify what actually happens. A
dynamic analysis of a GUI application may be prob-
lematic, as GUIs cannot be executed in the batch and
thus, it becomes necessary to define a new methodology
for collecting dynamic trace data of a GUI program.

Mitchell and Power[54] outline a new technique for
collecting dynamic trace information from Java GUI
programs and a number of simple runtime metrics are
proposed. A number of simple metrics defined by au-
thors give an approximation of attributes of a program
such as its size, coupling, cohesion and memory use.
These metrics are described in Table 7.

The meth.ob metric is a measure of size of a GUI pro-
gram. The exPubMet.Ob metric gives an estimation of
level of coupling present in a GUI program. It can be
easily perceived that the GUI program has a greater ex-
ternal public methods called per object ratio than the
non-GUI programs. The priMet.ob metric shows that
simple programs devote a greater proportion of their
method access to the internal working of their classes
than the GUI program. This is illustrated by the fact
that they have higher private methods per object ratio
than the GUI programs. The GUI programs reveal

Jitender Kumar Chhabra et al.: A Survey of Dynamic Software Metrics 1025

Table 7. Dynamic Metrics for GUI Programs

Metric Description Definition

meth.ob Measure of the program size. Total No. methods called
Total No. objects created

exPubMet.Ob Measure of the level of coupling within a program at runtime. No. external public methods called
Total No. objects created

priMet.ob Measure of the level of cohesiveness within a program. No. private methods called
Total No. objects created

meth.inst This gives an estimation of the memory use of the methods. No. methods called
Kilo byte code instructions executed

ob.inst This gives an indication of how memory hungry the program is overall. No. objects called
Kilo byte code instructions executed

higher values of meth.inst metric, i.e., higher method to
kilo byte code execution ratio in comparison to simple
programs. The ob.inst metric exhibits a similar value,
as expected for small and simple programs. The above
analysis may have a number of useful applications:

• this work may be useful in the quantification of dif-
ferent software testing strategies for GUI applications;

• this approach will promote to investigate how in-
heritance affects the runtime performance of a program;

• it will help in defining metrics to quantify various
aspects of an object-oriented application such as poly-
morphism, concurrency and dynamic binding.

6.2 Dynamic Metrics for Risk Assessment

Yacoub et al.[55] present a risk assessment method-
ology that is based on dynamic metrics obtained from
UML specifications during the early stages of the soft-
ware development lifecycle, specifically at the architec-
ture level. This work is based on authors’[34] earlier
work done on dynamic complexity and dynamic cou-
pling metrics, which can be obtained from simulating
design specifications. The complexity of components of
real-time applications can be assessed at runtime using
dynamic metrics. The dynamic metrics are used to ac-
count for the fact that a fault in a frequently executed
component will frequently manifest itself into a failure.
Severity analysis is performed using Failure Mode and
Effect Analysis (FMEA)[56] with the aid of simulation
runs to study the effect of a failure. The FMEA tech-
nique is an efficient way to identify all possible failure
modes and their consequential effects on the system. In
this method, failure modes of architecture elements are
identified and their effects are recorded. Then, these
failure modes are ranked according to the degree of
severity of their effects and the worst-case effect on the
system is recognized.

In this particular work, authors combine severity and
complexity factors to develop heuristic risk factors for
the architecture components and connectors. Based

on component dependency graphs and using analysis
scenarios, they develop a risk assessment model and a
risk analysis algorithm that aggregates risk factors of
components and connectors at the architectural level.
This work shows a method to analyse the overall risk
factor of the architecture as the function of the risk
factors of its constituting components and connectors.

6.3 Requirements-Based Dynamic Metric
(RBDM)

Cleland-Hunang et al. propose dynamic metrics for
predicting the volume of data that would flow across
a network in a distributed system[57]. This predic-
tion is driven by requirement specifications and cap-
tures dynamic metrics by defining typical usage pat-
terns in terms of scenarios. Scenarios are then mapped
to architectural components, and dataflow across inter-
partition links is estimated. These dynamic metrics
are available early in the system lifecycle. The method
provides the means of validating architectural designs
early during development, which directly addresses
well-recognized problems such as correctly partitioning
a system for distribution. Despite the fact that the met-
ric results match actual measurements fairly closely, it
is believed that it is still extremely difficult to consis-
tently predict typical runtime dataflow. The difficulty
lies in the fact that users’ interactions with the system
may vary dramatically making it hard to predict typical
user behaviour.

The dynamic metrics proposed by Yacoub et al.[34]

are also useful, but these metrics report levels of in-
teractions only relative to the overall interaction of the
scenario or the system. In contrast, RBDM predict ac-
tual runtime measurements within a realistic context,
and can be applied at a much earlier stage than the
other currently used methods.

6.4 Dynamic Metrics for Object Clustering

Cho et al.[58] propose dynamic coupling and cohesion

1026 J. Comput. Sci. & Technol., Sept. 2010, Vol.25, No.5

metrics, which can be used to cluster objects logically.
The proposed dynamic metrics are measured by the
number of messages passed between functions contained
in objects at runtime. The clustering of objects reduces
network traffic and the load of client/server so that it
can improve system performance. In client/server ap-
plications, the quality of object clustering plays a key
role in determining the overall performance of the sys-
tem. Thus, a set of objects with higher exchange of
number of messages between objects should be grouped
into a single cluster so that each cluster can have a
higher cohesion. As a result, the overall message traffic
among objects can be minimized. Various dynamic as
well as static metrics are used in order to measure the
dynamic message traffic and to tune up the system per-
formance. The proposed object-oriented design metrics
mainly deal with static coupling and cohesion, and they
only consider the basic class relationships such as asso-
ciation, inheritance, and composition. Thus, these met-
rics are not appropriate for measuring the traffic load
of object messages, which is closely related to the sys-
tem performance. Authors propose a set of metrics that
consider the relevant weights on various class relation-
ships and estimate the static and dynamic message flow
among the objects at the detailed level of member func-
tions. By applying these metrics along with UML[49],
it is believed that clusters can be defined more effi-
ciently and systematically, yielding high performance
distributed applications.

7 Pseudo Dynamic Metrics

As discussed above, despite being dynamic metrics
more accurate than static metrics, sill they are more dif-
ficult and costlier to obtain than static measures. This
gap between static and dynamic metrics can be nar-
rowed down by using the concept of pseudo dynamic
metrics. Pseudo dynamic metrics are the static met-
rics adjusted to reflect the operational profile of the
expected usage[59]. Operational profiles can be esti-
mated from the analysis of source code or UML design
specifications[49] and do not require execution traces.
Once the static metrics and the operational profiles
are available, the pseudo dynamic metrics can be es-
timated. Pseudo metrics can be collected earlier than
dynamic metrics as they depend on operation profile,
which can be obtained from UML specifications in the
design phase. It is well known that the impact of any
software metric is extremely high when used in early
stages of the software development lifecycle, when it is
more viable for changing and modifying the product
under development. The methodology for estimating
pseudo dynamic metrics involves the following steps:

1) obtain the static metrics for the components;

2) determine the operation profile for all the con-
cerned components;

3) adjust the static metrics based on operation
profile to get pseudo dynamic metrics.

Pseudo dynamic metrics correlate with their dy-
namic counterparts and hence can be used as early indi-
cators of software quality attributes such as reusability,
reliability, testability, maintainability etc.

8 Potential Research Directions

From the above detailed discussions of different
types of dynamic metrics, it can easily be said that the
field of dynamic metrics is wide open for researchers.
Some of the possible research directions in the area of
dynamic metrics are listed below:

• From above discussions on dynamic metrics, it can
be easily observed that there are no major metrics avail-
able at runtime for the measurement of testability of the
software systems. Thus, future research may involve in-
vestigating the role of dynamic metrics in the area of
software testing. These measures can guide about the
effectiveness of software testing strategies and can also
contribute to better judgement of the testability of the
code in its operational environment.

• As mentioned in Section 2, dynamic metrics have
the advantage of being more precise, but they are dif-
ficult to measure in comparison to static ones. Thus,
there is clear opportunity for researchers in hybrid ap-
proach where the dynamic analysis results are aug-
mented by static information for collection of metrics
data. This hybrid approach can combine static as well
as dynamic approaches to make the measurement pro-
cess more cost-effective.

• Since the main difficulty arises in collection pro-
cess of dynamic metrics, it becomes important to devise
some techniques so as to make the process of collection
of the dynamic metrics easy. We have found the aspect-
oriented approach as one such technique, which has the
potential of computing various metrics at runtime such
as dynamic coupling, dynamic cohesion. Going in fur-
ther details of aspect-oriented approach is beyond the
scope of this paper.

• As some dynamic metrics have been successfully
used for the purpose of program comprehension[38-40],
another possible direction of research can be to use dy-
namic metrics for identifying the key classes as well as
the key collaborations among these classes in a system.
These key classes and key collaborations can be use-
ful in better understanding the system for the purpose
of clustering and the measurement of amount of actual
coupling among them.

• From the above study, it can easily be observed
that very few metrics have been proposed for measuring

Jitender Kumar Chhabra et al.: A Survey of Dynamic Software Metrics 1027

cohesion at runtime. Hence, measurement of dynamic
cohesion of object-oriented programs based on associa-
tions taking place at runtime or dynamic/hybrid slicing
can be a promising area for future research.

• Since pseudo dynamic metrics can easily be mea-
sured from operation profiles, which is obtained from
UML diagrams, the UML based representation helps in
calculating various metrics for different purposes with
a low cost. Such metrics will have benefits of both
dynamic and static measures. Defining such pseudo
dynamic metrics for the measurement of different soft-
ware attributes is another promising research opportu-
nity readily available to researchers.

• As described above, there are a number of dynamic
metrics proposed for the measurement of internal at-
tributes of the software. But, impact of these metrics
is not well studied on external attributes of software ap-
plications. Goseva-Popstojanova[60] has studied the im-
pact of dynamic metrics on the identification of failure
prone components of the software applications being
used by NASA. Identification of the most problematic
parts of software holds enormous potential for reducing
the cost and improving the quality of software. Thus,
study of the impact of several dynamic metrics like dy-
namic coupling metrics on the external attributes of
the software applications is another good alternate for
future research.

• It can be easily observed from the survey of differ-
ent works conducted by different authors that, till date,
dynamic metrics have been measured and validated us-
ing only small software systems. In future research in
this direction, large-scale industrial systems need to be
undertaken to evaluate the usefulness of the proposed
dynamic metrics in real-life scenarios.

9 Conclusions

An extensive study of the dynamic metrics, proposed
till date, has been reported in this paper. A compar-
ison of dynamic metrics with static metrics is carried
out by the authors and observations clearly indicate
that dynamic metrics are more precise than their static
counterpart, but at the same time, are more difficult
to collect. The need and usefulness of dynamic metrics
for object-oriented systems has also been identified and
pointed out. Although lots of dynamic metrics have
been proposed in the literature to measure coupling,
cohesion, complexity, but very few metrics exist for ex-
ternal attributes. Our survey has further pointed out
that little work has been done till now to use the pseudo
dynamic metrics and hybrid approach of static as well
as dynamic metrics, although they have tremendous
scope. Based on the survey of existing dynamic metrics,
we have tried to reveal potential research challenges and

opportunities existing in the field of dynamic metrics.
Moreover, by realizing the importance of dynamic met-
rics and their clear edge over their corresponding static
metrics, we can conclude that focus of future research
in the field of software metrics is going to be on the dy-
namic metrics and on the study of impact of dynamic
metrics on different software quality attributes.

References

[1] Henderson-Sellers B. Software Metrics. Prentice Hall, Hemel
Hempstaed, UK, 1996.

[2] McCabe T. A complexity metric. IEEE Transactions on Soft-
ware Engineering, 1976, 2(4): 308-320.

[3] Fenton N, Neil M. Software metrics: Successes failures and
new directions. Journal of Systems and Software, 1999,
47(2/3): 149-157.

[4] Chidamber S R, Kemerer C F. A metrics suite for object-
oriented design. IEEE Transactions on Software Engineer-
ing, 1994, 20(6): 467-493.

[5] Abreu F B. The MOOD metrics set. In ECOOP’95 Workshop
on Metrics, Åarhus, Dénmark, Aug. 7-11, 1995.

[6] Lorenz M, Kidd J. Object-Oriented Software Metrics: A Prac-
tical Guide. Prentice Hall, Englewood Cliffs, New Jersey,
1994.

[7] Briand L C, Devanbu W, Melo W. An investigation into cou-
pling measures for C++. In Proc. the 19th International
Conference on Software Engineering (ICSE 1997), Boston,
USA, May 17-21, 1997, pp.412-421.

[8] Harrison R, Counsell S, Nithi R. Coupling metrics for object-
oriented design. In Proc. the 5th International Software Met-
rics Symposium Metrics, Bethesda, USA, Mar. 20-21, 1998,
pp.150-156.

[9] Bansiya J, Etzkorn L, Davis C, Li W. A class cohesion met-
ric for object-oriented designs. Journal of Object-Oriented
Programming, 1999, 11(8): 47-52.

[10] Briand L C, Daly J W, Wust J K. A unified framework for cou-
pling measurement in object-oriented systems. IEEE Trans-
actions on Software Engineering, 1999, 25(1): 91-121.

[11] Lee Y S, Liang B S. Measuring the coupling and cohesion
of an object-oriented program based on information flow. In
Proc. International Conference on Software Quality, Mari-
bor, Slovenia, Oct. 17-20, 1995, pp.81-90.

[12] Allen E, Khoshgoftaar T. Measuring coupling and cohesion,
an information-theory approach. In Proc. the IEEE Inter-
national Symposium on Software Metrics, Boca Raton, USA,
Nov. 4-6, 1999, pp.119-127.

[13] Eder J, Kappel G, Schrefl M. Coupling and cohesion in object-
oriented systems. Tech. Rep. 2/93, Department of Informa-
tion Systems, University of Linz, Austria, 1993.

[14] Li W, Henry S. Maintenance metrics for the object-oriented
paradigm. In Proc. the First International Software Metrics
Symposium, May 21-22, Baltimore, USA, 1993, pp.52-60.

[15] Hitz M, Montazeri B. Measuring coupling and cohesion in
object-oriented systems. In Proc. International Symposium
on Applied Corporate Computing, Monterrey, Mexico, Oct.
1995, pp.25-27.

[16] Alexander R T, Offutt J. Coupling-based testing of O-O pro-
grams. Journal of Universal Computer Science, 2004, 10(4):
391-427.

[17] Briand L C, Daly J W, Wüst J. A unified framework for co-
hesion measurement in object-oriented systems. Empirical
Software Engineering, 1998, 3(1): 65-117.

[18] Ott L M, Bieman J M, Kang B K. Developing measures
of class cohesion for object-oriented software. In Proc. the

1028 J. Comput. Sci. & Technol., Sept. 2010, Vol.25, No.5

7th Annual Oregon Workshop on Software Metrics, Oregon,
USA, 1995.

[19] Ott L M, Bieman J M. Program slices as an abstraction for
cohesion measurement. Journal of Information and Software
Technology, 1998, 40(11/12): 691-699.

[20] Kang B K, Bieman J M. Design-level cohesion measures,
derivation, comparison, and applications. In Proc. the 20th
Computer Software and Applications Conference, Seoul, Ko-
rea, Aug. 21-23, 1996, pp.92-97.

[21] Chae H S, Kwon Y R. A cohesion measure for classes in
object-oriented systems. In Proc. the 5th International Soft-
ware Metrics Symposium, Bethesda, USA, 1998, pp.158-166.

[22] Chae H S, Kwon Y R, Bae D H. A cohesion measure for
object-oriented classes. Software Practice and Experience,
2000, 30(12): 1405-1431.

[23] Chae H S, Kwon Y R. Improving cohesion metrics for classes
by considering dependent instance variables. IEEE Transac-
tions on Software Engineering, 2004, 30(11): 826-832.

[24] Chen Z, Zhou Y, Xu B, Zhao J, Yang H. A novel approach
to measuring class cohesion based on dependence analysis.
In Proc. International Conference on Software Maintenance,
Montreal, Canada, Oct. 3-6, 2002, pp.377-384.

[25] Zhou Y L, Wen L, Wang J, Chen Y, Lu H, Xu B. DRC: A de-
pendence relationships based cohesion measure for classes. In
Proc. the Tenth Asia-Pacific Software Engineering Confer-
ence (APSEC 2003), Chiang Mai, Thailand, Dec. 10-12, 2003,
pp.215-233.

[26] Zhou Y, Lu J, Lu H, Xu B. A comparative study of graph
theory-based class cohesion measures. ACM SIGSOFT Soft-
ware Engineering Notes, 2004, 29(2): 1-6.

[27] Wang J, Zhou Y, Wen L, Chen Y, Lu H, Xu B. DMC: A
more precise cohesion measure for classes. Information and
Software Technology, 2005, 47(3): 167-180.

[28] Mitchell A, Power J F. An empirical investigation into the di-
mensions of run-time coupling in Java programs. In Proc. the
3rd Conference on the Principles and Practice of Program-
ming in Java, Las Vegas, USA, Jun. 16-18, 2004, pp.9-14.

[29] Arisholm E. Dynamic coupling measures for object-oriented
software. In Proc. the Eighth IEEE Symposium Software
Metrics (METRICS 2002), Ottawa, Canada, Jun. 4-7, 2002,
pp.33-42.

[30] Arisholm E. Empirical assessment of changeability in object-
oriented software [Ph.D. Dissertation]. University of Oslo,
2001.

[31] Arisholm E, Briand L C, Foyen A. Dynamic coupling mea-
sures for object-oriented software. IEEE Transactions on
Software Engineering, 2004, 30(8): 491-506.

[32] Mitchell A, Power J F. Using object-level run-time metrics to
study coupling between objects. In Proc. ACM Symposium
on Applied Computing, Santa Fe, USA, Mar. 13-17, 2005,
pp.1456-1462.

[33] Mitchell A, Power J F. A study of the influence of coverage on
the relationship between static and dynamic coupling metrics.
Science of Computer Programming, 2006, 59(1/2): 4-25.

[34] Yacoub S, Ammar H, Robinson T. Dynamic metrics for
object-oriented designs. In Proc. the 5th International Soft-
ware Metrics Symposium, Boca Raton, USA, Nov. 4-6, 1999,
pp.50-61.

[35] Hassoun Y, Johnson R, Counsell S. A dynamic runtime cou-
pling metric for meta-level architectures. In Proc. Euro-
pean Conference on Software Maintenance and Reengineering
(CSMR 2004), Tempere, Finland, Mar. 24-26, 2004, pp.339-
346.

[36] Hassoun Y, Johnson R, Counsell S. Empirical validation of a
dynamic coupling metric. Technical Report, BBKCS-04-03,
School of Computer Science and Information Systems, Birk-
beck College, University of London, UK, March, 2004.

[37] Hassoun Y, Counsell S, Johnson R. Dynamic coupling metric-
proof of concept. IEE Proc. Software, 2005, 152(6): 273-279.

[38] Zaidman A, Demeyer S. Analyzing large event traces with
the help of coupling metrics. In Proc. the 5th International
Workshop on OO Reengineering, Oslo, Norway, Jun. 14-18,
2004.

[39] Zaidman A, Bois B D, Demeyer S. How webmining and cou-
pling metrics can improve early program comprehension. In
Proc. the 14th International Conference on Program Com-
prehension (ICPC 2006), Athens, Greece, Jun. 14-16, 2006,
pp.74-78.

[40] Zaidman A. Scalability Solutions for Program Comprehension
through Dynamic Analysis [PhD. Dissertation]. University of
Antwerp, 2006.

[41] Gupta N, Rao P. Program execution based module cohesion
measurement. In Proc. the 16th International Conference on
Automated on Software Engineering (ASE 2001), San Diego,
USA, Nov. 26-29, 2001, pp.144-153.

[42] Mitchell A, Power J F. Run-time cohesion metrics for
the analysis of Java programs. Technical Report, Series
No. NUIM-CS-TR-2003-08, National University of Ireland,
Maynooth, Co. Kildare, Ireland, 2003.

[43] Mitchell A, Power J F, Run-time cohesion metrics: An em-
pirical investigation. In Proc. the International Conference
on Software Engineering Research and Practice, Las Vegas,
USA, Jun. 21-24, 2004, pp.532-537.

[44] Munson J C, Khoshgoftaar T M. Measuring dynamic program
complexity. IEEE Software, 1992, 9(6): 48-55.

[45] Khoshgoftaar T M, Munson J C, Lanning D L. Dynamic sys-
tem complexity. In Proc. Software Metrics Symposium, Bal-
timore, USA, May 21-22, 1993, pp.129-140.

[46] Munson J C, Khoshgoftaar T M. Software Metrics for Reli-
ability Assessment. Handbook of Software Reliability Engi-
neering, Michael Lyu (ed.), McGraw-Hill, 1996, pp.493-529.

[47] Arisholm E, Sjøberg D I K, Jørgensen M. Assessing the
changeability of two object-oriented design alternatives —
A controlled experiment. Empirical Software Engineering,
2001, 6(3): 231-277.

[48] Selic B, Gullekson G, Ward P. Real-Time Object Oriented
Modeling. John Wiley & Sons, Inc., 1994.

[49] Booch G, Rumbaugh J, Jacobson I. The Unified Modeling
Language Users Guide. Addison-Wesley, 1998.

[50] Kleinberg J M. Authoritative sources in a Hyperlinked envi-
ronment. Journal of the ACM, 1999, 46(5): 604-632.

[51] Bieman J M, Ott L M. Measuring functional cohesion. IEEE
Transactions on Software Engineering, 1994, 20(8): 644-657.

[52] Musa J D, Iannino A, Okumoto K. Software Reliability: Mea-
surement, Prediction, Application. New York: McGraw-Hill,
Inc., 1987.

[53] Ammar H H, Nikzadeh T, Dugan J. A methodology for risk
assessment of functional specification of software systems us-
ing coherent petri nets. In Proc. the Fourth International
Software Metrics Symposium (Metrics 1997), Albuquerque,
USA, Nov. 5-7, 1997, pp.108-117.

[54] Mitchell A, Power J F. An approach to quantifying the run-
time behaviour of Java GUI applications. In Proc. Winter
International Symposium on Information and Communica-
tion Technologies, Cancun, Mexico, Jan. 5-8, 2004, pp.1-6.

[55] Yacoub S, Ammar H, Robinson T. A methodology for
architectural-level risk assessment using dynamic metrics. In
Proc. 11th Int. Symp. Software Reliability Eng, San Jose,
Oct. 8-10, 2000, pp.210-221.

[56] RIAC document: Procedures for performing failure mode ef-
fects and criticality analysis. US MIL-STD-1629, Nov. 1974,
US MIL-STDJ629A, Nov. 1980, US MIL STD 1629A/Notice
2, Nov. 1984.

Jitender Kumar Chhabra et al.: A Survey of Dynamic Software Metrics 1029

[57] Cleland-Hunang J, Chang C K, Kim H, Balakrishnan A. A
requirements-based dynamic metric in object-oriented sys-
tems. Proc. the 5th IEEE International Symposium on Re-
quirements Engineering, Toronto, Canada, Aug. 27-31, 2001,
pp.212-219.

[58] Cho E S, Kim C J, Kim S D, Rhew S Y. Static and dynamic
metrics for effective object clustering. In Proc. Asia-Pacific
Software Engineering Conference, Taipei, China, Dec. 2-4,
1998, pp.78-85.

[59] Gunnalan R, Shereshevsky M, Ammar H H. Pseudo dy-
namic metrics. In Proc. the Third ACS/IEEE International
Conference on Computer Systems and Applications, Cairo,
Egypt, Jan. 3-6, 2005, pp.117-iiv.

[60] Goseva-Popstojanova K. The impact of dynamic metrics on
identification of the failure prone parts of the software. Lane
Dept. of Computer Science and Electrical Engineering, West
Virginia University, Morgantown, USA, June 2006.

Jitender Kumar Chhabra

Ph.D., is working as an assistant

professor in Department of Com-
puter Engineering, National Insti-
tute of Technology, Deemed Univer-
sity, Kurukshetra-136119, INDIA.
He received his B.Tech. degree in
computer engineering as 2nd rank

holder and M.Tech. degree in com-
puter engineering as Gold Medalist,

both from Regional Engineering College (now N. I. T.),
Kurukshetra. He completed his Ph.D. degree in software
metrics in GGS Indraprastha University, Delhi, INDIA. He
has been teaching in N.I.T. Kurukshetra since last 15 years.
He has also worked in collaboration with international soft-

ware companies like Hewellet-Packard & Tata Consultacy
Services. He has published more than 50 research papers in
various international and national journals and conferences.
He is reviewer of many reputed international journals. He
has authored a widely circulated Schaum-Series book on
Programming with C along with Byron S Gottfried from

McGraw Hill Publications. He has been awarded with many
prizes and awards including International Educator of the
years 2005, 2008, All India Open Debate Winner, Best
Teacher Award, etc. His areas of interest include software
engineering, database system, data structure, procedural
and object oriented programming.

Varun Gupta is pursuing his
Ph.D. degree in software engi-
neering in Department of Com-
puter Engineering, National Institute

of Technology, Deemed University,
Kurukshetra-136119, INDIA. He ob-
tained his B.Tech. degree in com-
puter science & engineering from
Guru Nanak Dev University, Am-
ritsar in 1999 and M.E. degree in

software engineering from Thapar Institute of Engineering

and Technology, Patiala, Deemed University, in 2003. He
worked as a lecturer in Department of Computer Science
& Engineering, RIMT Institute of Engineering and Tech-
nology for 4 years. Presently, he is working as assistant
director in Directorate of Information Technology, PSEB,
Patiala. His areas of interest include software engineering,

object-oriented design & development, and aspect-oriented
software development.

